Multitask Learning and the Reorganization of Work: From Tayloristic to Holistic Organization

Assar Lindbeck; Dennis J. Snower

Stable URL:
http://links.jstor.org/sici?sici=0734-306X%28200007%2918%3A3%3C353%3AMLATRO%3E2.0.CO%3B2-1

Journal of Labor Economics is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.
Multitask Learning and the Reorganization of Work: From Tayloristic to Holistic Organization

Assar Lindbeck, University of Stockholm

Dennis J. Snower, Birkbeck College

This article analyzes an important aspect of the contemporary reorganization of work within firms: the shift from “Tayloristic” organization (characterized by specialization by tasks) to “holistic” organization (featuring job rotation, integration of tasks, and learning across tasks). We examine four driving forces behind this restructuring process: advances in production technologies promoting technological task complementarities, advances in information technologies promoting informational task complementarities, changes in worker preferences in favor of versatile work, and advances in human capital that make workers more versatile. Our analysis also helps explain the recent widening of wage differentials and disparities in job opportunities within narrowly defined groups.

I. Introduction

The past decade has witnessed a constellation of fundamental changes in production technologies, the nature of physical and human capital, and

We are indebted to Michael Orszag for his insightful comments, and we have benefited from the suggestions of Ruth Klinov, Reuben Gronau, Eric Mellander, Torsten Persson, Jörgen Weibull, and seminar participants at the Hebrew University of Jerusalem, the Industrial Institute for Economic and Social Research (Stockholm), and the Institute for International Economic Studies (Stockholm). We have profited from discussions with Solveig Wikström on the reorganization of firms.

[Journal of Labor Economics, 2000, vol. 18, no. 3]
© 2000 by The University of Chicago. All rights reserved.
0734-306X/2000/1803-0004$02.50

353
ideas about how to organize firms. These developments have set in motion a process of restructuring the organization of work in many firms of the advanced industrialized countries. The process has been given considerable attention in the news media and in the business management and sociology literatures, but it has received relatively little emphasis in economic theory thus far.¹

Until recently the evidence for this restructuring process consisted mainly of a large numbers of case studies. Over the past few years, however, a number of systematic, broad-based, empirical investigations have been completed, establishing the quantitative importance of the reorganization process. For a summary of the results of these studies, see Lindbeck and Snower (2000). The precise nature of the reorganization process naturally varies from firm to firm, but the evidence is now sufficiently detailed that it is possible to recognize some prominent central features.² These features include an increased role for team work and job rotation, a reduction in the number of management levels, continuous learning and development of complementary skills, decentralization of responsibility within firms, and direct participation of employees in decision making on multiple fronts. The empirical studies show that the restructuring process is widespread in terms of countries, sectors (encompassing services as well as manufacturing), and firms within sec-

¹ Examples of studies where this process is described, and sometimes also recommended, are Hammer and Champy (1993), Pfeiffer (1994), and Wikström and Norman (1994). Studies on the implications of this process for economic activities include Piore and Sabel (1984), Levine and Tyson (1990), Mitchell, Lewin, and Lawler III (1990), and Kremer and Maskin (1996). For an analysis emphasizing the complementarities of different functions in the restructured firms, see Milgrom and Roberts (1990). Their focus of attention differs markedly from ours, however, in that they concentrate on changes in production technology (in terms of the rate of product improvements, processing and delivery time, setup costs, and the like), while we emphasize changes in the nature of work (multitasking in particular). Finally, Lindbeck and Snower (1996, 2000) examine the implications of organizational restructuring for wage inequality and centralized bargaining, respectively.

tors. It appears that the various features of this process have a common thread: emphasis on learning multiple tasks, the blurring of occupational barriers, and the use of experience gained at one task to enhance performance at another task. These phenomena are the focus of our article.

The reorganization process appears to be driven by a variety of interrelated forces. One is the introduction of computerized information and communications systems, which have provided employees with greater access to information about other employees' work within the organization and also made it easier to communicate with others. The new information technology has also given individual employees better information about customers, permitting them to respond better and more rapidly to changing customer needs. Not only have these advances facilitated the decentralization of decision making within firms; it has also enabled employees to become more involved in each other's tasks, both within their own teams and in other parts of the organizations. Team work and job rotation, hence multitasking, have become important ways of meeting these new demands. Supervision and management control of workers continue to be important, though there is a tendency for such supervision (and the related punishments and rewards) to be less detailed, less tied to specific activities pursued by individual workers, and, instead, more closely associated with post facto performance.3

A second driving force is the introduction of flexible machine tools and programmable equipment, which has made the capital stock more versatile, that is, capable of performing a wider spectrum of tasks. As a result, the workers cooperating with this capital stock are required to become more versatile as well. In the manufacturing sectors, this development has often reduced returns to scale, lowered setup and retooing costs, permitted shorter production cycles, and resulted in faster deliveries. This, in turn, has enabled firms to give customers more individualized treatment. Moreover, greater interaction with customers often implies that employees need to exercise social, interactive skills in addition to fulfilling their formal occupational requirements.

A third force, significant throughout the industrialized world, has been the steady growth of human capital per worker, generated by education systems, vocational training programs, and on-the-job training. This growth has taken the form not only of "capital deepening," in the sense that individual workers have improved their performance of particular skills; it has also involved substantial "capital widening," that is, increased ability to acquire a variety of skills. This development—and especially the widening of human capital—is permitting firms to reorganize and integrate tasks along the new organizational lines.

3 See, e.g., Gallie et al. (1998).
A final driving force has been changes in workers’ tastes. As they have acquired better general education and a wider variety of skills, many workers have come to prefer jobs that permit the exercise of diverse skills. More and more employees have come to resent the monotonous, fragmented jobs of traditional organizations and to prefer more varied, multifaceted work.

An important consequence of the changes we have described above is that occupational barriers are breaking down. The traditional organizations required employees to have highly specialized skills, appropriate for standardized production processes. Production workers required narrowly defined manual skills; sales people needed social competence; administrative personnel needed organizational and accounting skills; product designers needed creativity; and managers required judgment, initiative, leadership, and coordination skills. It is on account of this specialization that employees could readily be divided into distinct, well-defined occupations, over which the traditional distinctions between “skilled” and “unskilled” workers could be made. In this environment, relatively little attention was given to people’s capacity to acquire and use multiple skills; if a person happened to have more than one occupational aptitude, he generally had to decide which particular one to use and let the rest lie fallow.

In the new types of firms emerging nowadays, the traditional separation of roles tends to break down. Workers are often given responsibilities spanning more than one of the traditional occupational groupings. Greater emphasis is now also placed on continuous learning and skill development, all-round knowledge, the potential to acquire multiple skills, and the ability to learn how the experience gained from one skill enhances another skill. The new forms of work organization are commonly designed to facilitate such “multitask learning” in order to exploit complementarities among tasks.

It is, of course, not surprising that the four above-mentioned driving forces—advances in information technologies permitting integration of tasks, increased versatility of capital equipment, “widening” of human capital across tasks, and changes in workers’ preferences in favor of more varied tasks—should lead to the blurring of occupational boundaries and job rotation. But the main goal of our analysis is to provide a theoretical framework within which this association can be rigorously analyzed and thereby straightforward to think about. The analysis focuses attention on aspects of technological change, skill acquisition, and preference changes that have been largely ignored in the mainstream literature. Once we have developed a framework of thought that brings these elements into center stage, the links between multitasking and its determinants are obvious.

The blurring of occupational barriers and the rise of multitask learning is closely associated with the decentralization of authority within firms.
The traditional pyramidal structures in service and manufacturing organizations, in particular large ones, implied that authority flowed from senior executives, down through layers of middle management, to the workers in the various functional departments. This structure is increasingly giving way to flatter organizations in which customer-oriented teams are often given greater authority. Decision making has been moved closer to the people who have the relevant information, much of which is tacit knowledge among front-line workers. The decentralization of decision making often also takes the form of consultation or delegation, or both. On account of the four above-mentioned driving forces underlying the reorganization process, the decentralization of decision making often means that employees perform a wider variety of tasks within their firms than heretofore. For instance, employees often share tasks within teams or combine a core job with other tasks, even sometimes including some managerial or consultative functions (such as participation in so-called quality circles or other advisory groups).

A variety of managerial innovations—such as Total Quality Management (TQM), lean production, and just-in-time production—facilitate the decentralization of decision making and learning across tasks. The move toward customer-oriented teams encourages the exploitation of complementarities among tasks, the sharing of tasks within teams, and the bringing of the decision-making power closer to the people who have the relevant information.

But multitasking, job rotation, and the blurring of occupational barriers are not the only consequences of the ongoing reorganization of work. Particularly significant is the expansion in the scope for learning and the returns from it in the new organizational environment. This aspect is the main focus of our attention in this article. The importance of learning makes the decentralization of decision making within firms yet more important since central management has far less information about workers’ learning opportunities and achievements than the workers themselves.

We will distinguish between two broad types of learning: “intratask” and “intertask” learning. Intratask learning is learning by doing in the traditional sense (Arrow 1962): the more time a worker spends at a particular task, the more skillful he becomes at performing that task and thus the greater becomes his productivity from this activity. Intertask learning, by contrast, arises when a worker can use the information and skills acquired at one task to improve his performance at other tasks.

An important objective of lean production and just-in-time production is that they expose the precise points in organizational networks where production problems, bottlenecks, and delivery delays arise, thereby enabling employees of the organizations to tackle these deficiencies in a decentralized manner.
Much of this intertask learning takes place through job rotation within and between teams of workers in production, management, marketing, and so forth. However, intertask learning may also be important among tasks that have traditionally been separate within firms. For instance, when a worker is involved in sales, he gains information about customer preferences that can be put to use if he is engaged in consultative groups or in the provision of ancillary services to the customers (such as repairing or advice giving). Furthermore, when a worker is involved in production, he gains information about technological processes that can be useful if he contributes to organizational improvements or perhaps even product development. The business administration literature (cited in n. 1) provides a wealth of examples: information gained through marketing may be applicable to product design; information gained on the production line may be useful in product development, or in training new recruits, or in devising appropriate accounting procedures, and so on.

The tasks over which job rotation, multitasking, and learning occur are here interpreted in a wide sense. They cover not only formal occupational functions but also the exercise of social skills, communication with fellow employees and customers, collaborative skills, judgment, initiative, and creativity. In what follows, the traditional producer organizations—in which workers specialize heavily by tasks—will be called “Tayloristic.”

The new, integrated organizations—heavily reliant on job rotation, decentralization of decision making, and intertask learning—will be called “holistic.” It is important to note that our distinction between Tayloristic and holistic organizations rests on the degree of task specialization among workers, not on specialization in production among firms. These two types of specialization need not proceed in tandem; quite the contrary, many reorganized firms engage in multitasking while focusing more narrowly on their “core competences” in production.

There is a large literature, following the path of Adam Smith, on the determinants of specialization of work in society, but little of it has focused on the features described above. Much of the recent literature on the organization of work within firms (e.g., Yang and Borland 1991; Becker and Murphy 1992; Bolton and Dewatripont 1994) concentrates on the returns to specialization vis-à-vis the costs of coordinating the activities of different workers. In this context, falling costs of communication (due to improvements in information technologies) lead to greater specialization among employees within firms, not more multitasking. Others

5 A term in honor of Frederick Taylor (1911), the pioneer of scientific management of firms.

6 In making this distinction, our aim is to focus on broad, overall trends in the organization of work. There are, of course, counterexamples, involving increasing task specialization, such as much research and much medical and legal practice.
(e.g., Holmstrom and Milgrom 1991) have examined how the choice of tasks within teams depends on the remuneration system and the measurability of task performance. Rosen (1983) has shown that individuals specialize their investment in skills when there are increasing returns to human capital utilization and that nonspecialization occurs when the costs of investment in different types of skills are nonseparable.

None of these contributions, however, explains organizational changes associated with reductions in the degree of labor specialization within firms or plants and, thereby, a blurring of occupational boundaries. Our analysis does so by examining task coordination and specialization on an intrapersonal level (one individual performing one or more tasks) rather than on an interpersonal level (a group of people performing a broader or narrower range of tasks). Furthermore, our analysis examines the determinants of firms’ incentives to restructure their organizations of work in favor of multitasking or job rotation.

The rest of this article is organized as follows. Section II analyzes the trade-off between the returns from specializing at a task and the returns from exploiting the complementarities between tasks. This analysis is embedded in a model of a profit-maximizing firm. Section III examines how such a firm decides on its organization of production and work. In this context, Section IV investigates how the restructuring process is driven by changes in physical capital, information technology, workers’ preferences, and human capital. Finally, Section V concludes.

II. The Firm’s Decision-Making Problem

In deciding whether workers are to specialize or to perform multiple tasks, employers face a trade-off between two sets of returns: (i) “returns from specialization,” whereby a worker’s productivity at a particular task increases with his exposure to that task, and (ii) “returns from task complementarities,” whereby his activity at one task raises his productivity at another task.7 The returns to specialization are well known and may be viewed as the result of intratask learning. The returns from task complementarities, however, have received much less attention thus far. They may be divided into what we will call “technological” and “informational” task complementarities.

The technological task complementarities are captured by the cross-partial derivatives between different types of labor services in the production function: just as labor and capital may be complementary in the production process, so different occupational types of labor may be

7 Note that the gains from multitasking by a worker are analogous to the economies of scope arising when a firm produces several different products (see Baumol, Panzer, and Willig 1982).
complementary as well. To take a trivial example, the productivity of managers is enhanced by the services of their secretaries, and the managers do not themselves have to perform secretarial tasks for this complementarity to arise.

The informational task complementarities are the outcome of intertask learning. Analytically, these complementarities may be captured by letting a worker’s human capital at one task depend on his activity at other tasks. For example, a worker within a team may become more skillful at a specific task when he learns related tasks within his team. His ability to perform a specific task may also be enhanced by learning tasks within quite different parts of the firm.

Clearly, both the returns to specialization and the informational task complementarities manifest themselves only with the passage of time. For simplicity, however, our analysis covers just a single time period, and thus the length of this period must be taken as sufficiently long for these returns to be able to manifest themselves.

Consider a firm that produces its output through two tasks, 1 and 2. The firm’s employees can be divided into two homogeneous groups: “type-1 workers,” whose skills give them a comparative advantage at task 1, and “type-2 workers,” with a comparative advantage at task 2.

Although the returns to specialization and the returns to informational task complementarities may not be straightforward to identify in practice, it is nevertheless convenient to represent them as separate variables. We let the type-1 worker’s returns to specialization ($s_i, i = 1, 2$) at each task depend positively on the fraction τ of time devoted to that task: $s_1 = s_1(\tau)$ and $s_2 = s_2(1 - \tau), s_1', s_2' > 0$. Furthermore, the greater is the fraction of the type-1 worker’s time devoted to task i, the more information he gains about this task and consequently the more productive he becomes at task $j, j \neq i$. Thus the informational task complementarity, resulting from the type-1 worker’s intertask learning, may be expressed as $c_1 = c_1(1 - \tau)$ and $c_2 = c_2(\tau)$, where $c_1', c_2' > 0$. Specifically, c_1 is the worker’s ability to increase his productivity at task 1 through time spent $(1 - \tau)$ on task 2, and c_2 is his ability to increase his productivity at task 2 through time spent τ on task 1.

8 Thereby the informational task complementarities give leverage to the technological task complementarities.

9 These tasks could cover a vast array of complementary tasks, such as different types of production work or participation in quality circles, the supervision and training of other employees, etc.

10 It is, however, worth noting that in practice most outputs require the performance of many tasks and multitaskers usually perform only a few of these tasks in varying combinations.

11 We will define comparative advantage formally once we have specified the workers’ productivities.
The Reorganization of Work

These returns to specialization and returns to informational task complementarities will be viewed as determinants of the type-1 worker’s productivity. In particular, let e_1 and e_2 stand for the type-1 worker’s “efficiency units of labor” per hour at tasks 1 and 2, respectively. We portray these efficiency units as the sum of the associated returns to specialization and returns to informational task complementarities:

$$e_1 = s_1(\tau) + c_1(1 - \tau) = e_1(\tau), \quad (1a)$$
$$e_2 = s_2(1 - \tau) + c_2(\tau) = e_2(\tau).$$

Similarly, let the type-2 worker’s returns to specialization ($S_i, \ i = 1, 2$) at each task depend positively on the fraction T of time devoted to that task: $S_1 = S_1(1 - T)$ and $S_2 = S_2(T)$, $S_1', S_2 > 0$. Moreover, let this worker’s informational task complementarity at one task depend positively on the fraction of time devoted to the other task: $C_1 = C_1(T)$ and $C_2 = C_2(1 - T)$, where $C_1', C_2' > 0$. Let E_1 and E_2 be the efficiency units of each type-2 worker at the two tasks. Then the type-2 worker’s “efficiency units of labor” per hour are expressed as the sum of the associated returns to specialization and returns to informational task complementarities:

$$E_1 = S_1(1 - T) + C_1(T) = E_1(T), \quad (1b)$$
$$E_2 = S_2(T) + C_2(1 - T) = E_2(T).$$

In sum, we may think of the time allocations τ and T as generating human capital in type-1 and type-2 workers, respectively, and this human capital contributes to the workers’ efficiency units of labor via the returns to specialization and the returns to informational task complementarities.

Let n and N be the number of type-1 and type-2 workers employed, respectively. Then the total labor services in efficiency units devoted to tasks 1 and 2 may be expressed as

$$12$$ Specifying the efficiency units in terms of the sum is a reasonable simplification in the context of our two-task model. Here it is always possible to express the s_i and c_i functions, $i = 1, 2$, so that their sum yields the efficiency units of labor (similarly for the S_i and C_i functions, $i = 1, 2$). When there are more tasks, however, complementarities and substitutabilities among different returns to specialization and returns to informational task complementarities may preclude the above simplification.

$$13$$ We introduce A_1 and A_2 just for expositional simplicity: in the analysis below, the change in labor services as a function of the time allocation ($\partial \lambda_1 / \partial \tau$, $\partial \lambda_2 / \partial \tau$) will be specified in terms of the A_1 and A_2 functions (rather than in terms of the e_1 and e_2 functions).
\[\lambda_1 = e_1(\tau) \cdot \tau \cdot n + E_1(T) \cdot (1 - T) \cdot N = \Lambda_1(\tau, T; n, N), \]
\[\lambda_2 = e_2(1 - \tau) \cdot (1 - \tau) \cdot n + E_2(T) \cdot T \cdot N = \Lambda_2(\tau, T; n, N). \]

Observe that when a type-1 worker increases the time \(\tau \) spent at task 1, there are three effects on type-1 labor services \(\lambda_1 \): (i) a direct, positive effect in terms of labor time \(\tau n \) increases; (ii) a positive effect via the returns to specialization \(s_1(\tau) \) increases; and (iii) a negative effect via the returns from informational complementarities \(c_1(1 - \tau) \) falls. Analogous effects hold for the type-2 worker.

The firm’s production function is
\[q = f(\Lambda_1(\tau, T; n, N), \Lambda_2(\tau, T; n, N)), \]

where \(q \) is the firm’s output, \(f_i > 0, f_{ii} < 0 \) \((i = 1, 2)\), and \(f_{ij} > 0 \) \((i = 1, 2 \text{ and } j \neq i)\). The technological task complementarities may be depicted in terms of the positive cross-partial derivatives, \(f_{ij} \) \((i = 1, 2 \text{ and } j \neq i)\).

Let the firm’s real labor costs be \(wn + WN \), where \(w \) and \(W \) are the real wages of the type-1 and type-2 workers, respectively. For simplicity, but without any substantive loss of generality, we assume that these wages are the reservation wages of these workers (i.e., the wages that make them indifferent between employment and leisure). Furthermore, we suppose that the workers have preferences regarding the organization of work. If workers prefer specialized to versatile work, then their reservation wage achieves a maximum at \(T = 1/2 \) (when they devote equal amounts of time to both tasks); if they prefer versatile work, then their reservation wage attains a minimum at \(T = 1/2 \). So, provided that the wage depends positively on the reservation wage, we specify that \(w = w(T) \), \(w'(1/2) = 0 \); and if the workers prefer specialization, then \(w'' < 0 \), whereas if they prefer versatility, then \(w'' > 0 \).

The firm’s profit is
\[\pi(\tau, T, n, N) = f(\Lambda_1(\tau, T; n, N), \Lambda_2(\tau, T; n, N)) - wn - W(T)N \]

The comparative advantage of the type-1 workers is mirrored in the following condition:
\[f(\Lambda_1(1, T; n, N), \Lambda_2(1, T; n, N)) - w(1)n - W(T)N \]
\[> f(\Lambda_1(0, T; n, N), \Lambda_2(0, T; n, N)) - w(0)n - W(T)N \]

for any \(T, 0 \leq T \leq 1 \). In words, for any given time allocation \(T \) of the type-2 workers, it is more profitable for the type-1 workers to devote
The Reorganization of Work

themselves fully to task 1 than to devote themselves fully to task 2. Similarly, the comparative advantage of the type-2 workers implies

\[f(\lambda_1(\tau, 1; n, N), \lambda_2(\tau, 1; n, N)) - \omega(\tau)n - W(1)N \]
\[> f(\lambda_1(\tau, 0; n, N), \lambda_2(\tau, 0; n, N)) - \omega(\tau)n - W(0)N. \]

Observe that the type-1 and type-2 workers are in analogous positions with regard to the organization of work, that is, they occupy analogous positions in the firm’s production function and generate analogous costs. Thus, in the analysis that follows, it will be sufficient to focus on the type-1 worker alone.\(^{14}\)

The firm’s aim is to maximize its profit with respect to the number of employees (\(n\) and \(N\)) and the organization of work (\(\tau\) and \(T\)). We now proceed to examine the determinants of the Tayloristic and holistic organizations of work.

III. The Tayloristic and Holistic Organizations of Work

Under the Tayloristic organization of work, type-1 workers specialize in task 1, so that \(\tau = 1\); whereas, under the holistic work organization, the worker performs both tasks, so that \(0 < \tau < 1\).

The following proposition shows how the profit-maximizing firm chooses its organization of work:

Proposition 1. Given the profit function \(\pi = \pi(\tau, T, n, N)\), the necessary conditions for a holistic organization of work are that there exists a \(\tau^*\) in the interval \(0 < \tau^* < 1\), such that

\[\frac{\partial \pi}{\partial \tau} \bigg|_{\tau=\tau^*} = 0, \]

and

\[\frac{\partial^2 \pi}{\partial \tau^2} \bigg|_{\tau=\tau^*} < 0. \]

\(^{14}\) Unless the two types of workers enter the profit function symmetrically, in the analysis below, the profit-maximizing organization of work for the type-1 workers need not be the same as the profit-maximizing organization of work for the type-2 workers.

\(^{15}\) The conditions of this proposition ensure that there exists a local profit maximum characterized by a holistic work organization. If there are multiple local maxima, we assume that the firm—knowing its entire profit function—is able to identify the global optimum. Then the organization of work is holistic if the
The profit-maximizing organization of work is Tayloristic whenever this condition is violated, and thus $\tau^* = 1$.

Intuitively, since workers specialize by task in a Tayloristic organization, the profit-maximizing allocation of time across tasks must lie at a corner point. But since workers in a holistic organization do not specialize in this way, the profit-maximizing allocation of time must lie in the interior of the feasible set.

We now proceed to examine various driving factors influencing a firm’s choice of organizational form. The marginal profit from a change in the organization of work is

$$\frac{\partial \pi}{\partial \tau} = MR - MC^o - MC^w,$$ \hspace{1cm} (6)

where $MR = f_1 \frac{\partial \Lambda_1}{\partial \tau}$, $MC^o = -f_2 (\frac{\partial \Lambda_2}{\partial \tau})$, and $MC^w = \frac{d\omega}{d\tau} n$. Here MR is the marginal revenue with respect to τ: an increase in the fraction of time at task 1 changes the firm’s revenue by changing the labor services devoted to task 1. Further, MC^o is the marginal opportunity cost of task 1 in terms of task 2: an increase in the fraction of time at task 1 changes the firm’s revenue by changing the labor services devoted to task 2. And MC^w is the marginal cost due to changes in the wage rate that result from changes in the time allocation τ. These marginal revenue and cost terms are illustrated in figure 1.

The change in the marginal profit is

$$\frac{\partial^2 \pi}{\partial \tau^2} = \frac{\partial MR}{\partial \tau} - \frac{\partial MC^o}{\partial \tau} - \frac{\partial MC^w}{\partial \tau},$$ \hspace{1cm} (7)

where

$$\frac{\partial MR}{\partial \tau} = \left[\left(f_{11} \frac{\partial \Lambda_1}{\partial \tau} + f_{12} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_1}{\partial \tau} + f_1 \frac{\partial^2 \Lambda_1}{\partial \tau^2} \right],$$

$$\frac{\partial MC^o}{\partial \tau} = \left[\left(f_{21} \frac{\partial \Lambda_1}{\partial \tau} + f_{22} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_2}{\partial \tau} + f_2 \frac{\partial^2 \Lambda_2}{\partial \tau^2} \right],$$

conditions above are satisfied at the global maximum, and the organization is Tayloristic otherwise.

\[^{16}\text{Under Tayloristic organization, the type-1 worker specializes in task 1 and the type-2 worker specializes in task 2 on account of the comparative advantage conditions, (5a) and (5b).}\]
The Reorganization of Work

To fix ideas, we assume that the tasks are technological complements: $f_{12} = f_{21} > 0$. Moreover, if $(\partial \Lambda_1 / \partial \tau) > 0$, $(\partial \Lambda_2 / \partial \tau) < 0$, and $f_{11} < 0$, then the first term of $(\partial \text{MR} / \partial \tau)$ is negative. Consequently, the sign of $(\partial \text{MR} / \partial \tau)$ depends critically on $f_1 (\partial \Lambda_1^2 / \partial \tau^2)$, where $f_1 > 0$ and $(\partial^2 \Lambda_1 / \partial \tau^2)$ measures the diminishing (or increasing) returns to the time allocation τ.
The term \((\partial^2 \Lambda_1 / \partial \tau^2) \) depends on the returns to specialization relative to the returns to informational task complementarities. In particular, recall that raising \(\tau \) increases the opportunity to reap the returns from specialization at task 1 but reduces the opportunity to reap the return from using information gained at task 1 to enhance productivity at task 2. Thus, the more rapidly the return from specialization falls relative to the task-1 return from the informational task complementarity (productivity at task 1 gained from information at task 2), the more rapidly will the type-1 labor service decline as \(\tau \) rises; thus, the lower is \((f_1(\partial^2 \Lambda_1 / \partial \tau^2)) \) and the more rapidly the marginal revenue declines (or the more slowly it rises) with respect to \(\tau \) (i.e., the lower is \((\partial MR / \partial \tau)) \). As parts \(a \) and \(b \) of figure 1 show, the more rapidly the marginal revenue declines (or the more slowly it rises), the more attractive it eventually becomes for the firm to adopt a holistic organization of work.

In our expression for the change in the marginal opportunity cost of task 1 in terms of task 2,

\[
\frac{\partial MC^o}{\partial \tau} = - \left[(f_{21} \frac{\partial \Lambda_1}{\partial \tau} + f_{22} \frac{\partial \Lambda_2}{\partial \tau}) \frac{\partial \Lambda_2}{\partial \tau} + f_2 \frac{\partial^2 \Lambda_2}{\partial \tau^2} \right],
\]

the first term of \((\partial MC^o / \partial \tau) \) is positive, provided that \((\partial \Lambda_1 / \partial \tau) > 0, \) \((\partial \Lambda_2 / \partial \tau) < 0, \) \(f_{22} < 0, \) and \(f_{21} > 0. \) Then the sign of \((\partial MC^o / \partial \tau) \) depends critically on \(f_2(\partial^2 \Lambda_2 / \partial \tau^2) \), where \(f_2 > 0, \) and \((\partial^2 \Lambda_2 / \partial \tau^2) \) indicates the diminishing (or increasing) returns to the time allocation \(\tau. \) In particular, \((\partial^2 \Lambda_2 / \partial \tau^2) \) will be lower the faster the rate at which the task-2 return to specialization falls relative to the task-2 return to the informational task complementarity (productivity at task 2 gained from information at task 1); thus, the faster will the marginal cost \(MC^o \) rise (or the more slowly it will fall) with respect to \(\tau \). Then, as figure 1 implies, the firm eventually gains an incentive to adopt a holistic work organization.

Finally, the change in the marginal cost in terms of the wage \((\partial MC^w / \partial \tau) \) depends on the worker’s preferences regarding work versatility. The more the worker prefers versatile work over task specialization, the greater is \(d^2 w / d \tau^2 \) and thus the faster will the marginal cost \(MC^w \) rise (or the more slowly will it fall) with respect to \(\tau; \) consequently, as indicated in figure 1, the more worthwhile it eventually becomes for the firm to adopt a holistic organizational form.

In part \(a \) of figure 1, we assume that (i) the returns to specialization increase sufficiently fast relative to the returns from informational task complementarities, and (ii) the type-1 workers have a sufficiently strong preference for specialized work, so that the marginal revenue rises with \(\tau, \)
i.e., \(\frac{\partial MR}{\partial \tau} > 0 \) and the total marginal cost declines with \(\tau \), i.e., \(\frac{\partial MC}{\partial \tau} < 0 \). Here work is organized along Tayloristic lines.\(^{17}\)

In part b of figure 1, by contrast, we assume that (i) the returns from the informational task complementarity (at each task) increases sufficiently fast relative to the associated returns to specialization, and (ii) the type-1 workers have a sufficiently strong preference for versatile work, so that the marginal revenue falls with \(\tau \) and the total marginal cost rises with \(\tau \). Since the intersection of the marginal revenue and marginal cost curves occurs at \(\tau^* < 1 \) in the figure, the organization of work is holistic.

IV. The Restructuring Process

In this context, we are now able to analyze the determinants of the restructuring process, whereby Tayloristic organizations turn into holistic ones. We conceive of this process as being driven by four major forces: (i) changes in physical capital, (ii) changes in information technology, (iii) changes in workers’ preferences, and (iv) changes in human capital.\(^{18}\)

Only certain types of changes in physical capital give firms an incentive to adopt holistic organizational forms. In the traditional literature on capital formation, the productivity of capital and the complementarity between capital and labor (or between capital and other factors of production) is often the center of attention. Our analysis focuses attention on a different characteristic of physical capital, namely, the associated technological task complementarities. In the model above, these complementarities are captured by the cross-partial \(f_{12} = f_{21} \) of the production function.

We argue that whereas the prominent changes in physical capital occurring in the first half of the twentieth century favored Tayloristic organizations, the more recent changes (occurring over the past decade or two) are strongly biased in favor of holistic organizations. The big breakthroughs in mass production and mass marketing that were the hallmark of technological progress in the first part of this century—such as assembly lines, specialized manufacturing equipment, and hierarchical organizations within firms—accentuated returns to scale at specialized tasks. In terms of our analysis, they can be viewed as being associated

\(^{17}\) Note that under a Tayloristic work organization, \(\tau \) must be equal to unity, rather than zero, since type-1 workers have a comparative advantage in task 1.

\(^{18}\) A fifth force, lying beyond the scope of our analysis, is a trend change in consumer preferences in favor of more highly differentiated products. This force favors holistic organizations over Tayloristic ones since holistic organizations usually permit closer interactions between their employees and the customers and enable the employees to use their detailed information about customer preferences to affect their performance of other tasks.
with large returns to specialization and low technological task complementarities (i.e., low intertask crosspartials such as $f_{12} = f_{21}$).

However, the salient recent advances in physical capital—such as the adoption of multipurpose machine tools and programmable manufacturing equipment—have increased the versatility of machines across tasks and, therefore, have facilitated the exploitation of intertask complementarities. For instance, recent technical changes have enabled rapid retooling and reprogramming of machines in many sectors, permitting faster production responses to changes in customer demands, thereby making it easier to exploit complementarities between production and sales tasks. In short, as machines have become more versatile, so, too, labor has been enabled to become more versatile. These advances may be expected to increase the technological task complementarities, that is, to raise the intertask cross-partials, such as $f_{12} = f_{21}$.

By equation (7), an increase in the cross-partial $f_{12} = f_{21}$ makes the marginal revenue fall more rapidly with respect to the time allocation τ (i.e., it reduces $(\partial \text{MR}/\partial \tau)$) and makes the marginal opportunity cost of task 1 in terms of task 2 rise more rapidly with respect to τ (i.e., it increases $(\partial \text{MC}_{1}^\tau / \partial \tau)$). Through these channels, the above changes in physical capital reduce the value of $(\partial^2 \pi / \partial \tau^2)$.

To highlight the role of changes in physical capital that increase the value f_{12}, observe that equation (7) implies that

$$\frac{\partial^2 \pi}{\partial \tau^2} < 0 \Leftrightarrow f_{12} > \frac{1}{\partial \Lambda_1 / \partial \Lambda_2} \left[-f_{11} \left(\frac{\partial \Lambda_1}{\partial \tau} \right)^2 - f_1 \frac{\partial^2 \Lambda_1}{\partial \tau^2} - f_{22} \left(\frac{\partial \Lambda_2}{\partial \tau} \right)^2 - f_2 \frac{\partial^2 \Lambda_2}{\partial \tau^2} + \frac{\partial^2 \omega}{\partial \tau^2} n \right].$$

Thus a rise in f_{12} reduces the second derivative of the profit function. If this change is sufficiently large to ensure that the above inequality holds, the firm may choose a holistic organization of work.

Furthermore, we argue that recent changes in information technologies—such as the proliferation of information-gathering processes and the introduction of computerized production, design, and product development—also favor holistic organizations. The reason is that these advances provide rapid and cheap access to information; thereby, they encourage the exercise of multiple skills over multiple tasks and provide scope for intertask learning. In this respect, they may be expected to augment informational task complementarities relative to the associated returns to specialization.

In the context of our model, an increase in informational task comple-
mentarities may be represented by an increase in \((\partial e_1/\partial c_1)\) and \((\partial e_2/\partial c_2)\), and possibly also by an increase in \((\partial^2 e_1/\partial c_1^2)\) and \((\partial^2 e_2/\partial c_2^2)\). These changes have the following effects on the relation between the type-1 and type-2 labor services and the time allocation between tasks: they reduce \(\partial \Lambda_1/\partial \tau = -(\partial e_1/\partial c_1)\tau n + e_1 n\) and \(\partial \Lambda_2/\partial \tau = -(\partial e_2/\partial c_2)(1 - \tau)n - e_2 n\), and they also reduce \(\partial^2 \Lambda_1/\partial \tau^2 = -(\partial^2 e_1/\partial c_1^2)\tau n + 2(\partial e_1/\partial c_1)n\) and \(\partial^2 \Lambda_2/\partial \tau^2 = (\partial^2 e_2/\partial c_2^2)(1 - \tau)n\). By (7), these changes make the marginal revenue fall more rapidly with respect to the time allocation \(\tau\) and make the marginal opportunity cost of task 1 in terms of task 2 rise more rapidly with respect to \(\tau\), thus reducing the value of \((\partial^2 \pi/\partial \tau^2)\). As noted, if this value becomes negative, the firm may choose a holistic work organization.

To clarify the influence of the above changes in information technologies on work organization, let us simply suppose that \((\partial^2 \Lambda_i/\partial \tau^2) = (\partial^2 \Lambda_2/\partial \tau^2)\). Then equation (7) implies that

\[
\frac{\partial^2 \pi}{\partial \tau^2} < 0 \iff \frac{\partial^2 \Lambda_i}{\partial \tau^2} < \frac{1}{f_1 + f_2} \left[- \left(f_{11} \frac{\partial \Lambda_1}{\partial \tau} + f_{12} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_1}{\partial \tau} \right. \\
\left. - \left(f_{21} \frac{\partial \Lambda_1}{\partial \tau} + f_{22} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_2}{\partial \tau} + \frac{\partial^2 w}{\partial \tau^2} n \right],
\]

for \(i = 1, 2\). Consequently, a change in information technology that reduces the value of \((\partial^2 \Lambda_i/\partial \tau^2)\) will reduce the second derivative of the profit function. If this change is sufficiently large to ensure that the above inequality holds, a holistic organizational form will be chosen.

Along the same lines, changes in worker preferences in favor of versatile work increase the value of \((\partial^2 w/\partial \tau^2)\) and thereby increase the marginal cost \((\partial MC_w/\partial \tau)\) and thereby also reduce \((\partial^2 \pi/\partial \tau^2)\). There is plentiful evidence in the sociology and business literatures (referenced above) that many workers have a growing need to be stimulated at work. Since holistic work tends to be more varied, creative, and challenging than the narrowly defined Tayloristic jobs, these workers are likely to be progressively less inclined to work for Tayloristic organizations than for holistic ones. In the context of our analysis, by equation (7), it is clear that if \((\partial^2 w/\partial \tau^2)\) is large enough so that

\[
\frac{d^2 w}{d \tau^2} > \frac{1}{n} \left[\left(f_{11} \frac{\partial \Lambda_1}{\partial \tau} + f_{12} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_1}{\partial \tau} + f_1 \frac{\partial^2 \Lambda_1}{\partial \tau^2} \right]
\\
+ \frac{1}{n} \left[\left(f_{21} \frac{\partial \Lambda_1}{\partial \tau} + f_{22} \frac{\partial \Lambda_2}{\partial \tau} \right) \frac{\partial \Lambda_2}{\partial \tau} + f_2 \frac{\partial^2 \Lambda_2}{\partial \tau^2} \right],
\]

then \((\partial^2 \pi/\partial \tau^2) < 0\), and the firm may prefer a holistic organizational form.
Finally, we maintain that the steady rise of human capital, produced largely by education and training systems, has favored holistic organizations as well. In the traditional literature, the aspects of human capital growth that have been emphasized are those relating to the productivity of labor and the transferability of labor across firms ("general" vs. "firm-specific" skills). Our analysis highlights a different aspect of human capital growth, namely, the increased ability to perform multiple tasks.

This development plays a different role in organizational change than do the changes discussed above. As noted, the changes in physical capital, information technologies, and worker preferences analyzed above all serve to reduce the value of $(\delta^2\pi/\delta\tau^2)$, ultimately making it negative. But, as proposition 1 indicates, a negative value of $(\delta^2\pi/\delta\tau^2)$ is not sufficient to make a holistic organization more profitable than a Tayloristic one. What is required, in addition, is that $(\partial^2\pi/\partial\tau) = 0$ for $0 < \tau < 1$. It is this latter aspect that is promoted by the "widening" of human capital.

Specifically, if $(\delta^2\pi/\delta\tau^2) < 0$, then changes in human capital that enable workers to do more versatile work serve to move the profit-maximizing time allocation τ^* toward $1/2$, in the interior of the feasible region $0 \leq \tau \leq 1$. In other words, this development favors holistic work organization by increasing the rate at which the marginal opportunity cost of task 1 (in terms of task 2) rises with τ.

The profit-maximizing responses in the work organization to the above changes are summarized in the following proposition:

Proposition 2. In response to sufficiently large (i) changes in production technologies that increase the technological task complementarities $(f_{ij}, i \neq j)$, (ii) changes in information technologies that decrease the informational task complementarities (reducing $(\delta^2\Lambda_i/\delta\tau^2)$), (iii) changes in worker preferences in favor of versatile work (increasing $(\delta^2w/\delta\tau^2)$), and (iv) changes in human capital that increase worker versatility, Tayloristic organizations gain the incentive to restructure into holistic organizations.

These profit-maximizing responses follow directly from our framework of analysis, which we believe indicates the usefulness of this framework. Our analysis also has implications for whether the restructuring process is continuous or discontinuous:

Proposition 3. If the switch from a Tayloristic to a holistic organization of work is induced by changes in human capital that make workers more versatile, then the restructuring process will be smooth. If, however, the switch is induced by (i) changes in technological task complementarities, (ii) changes in informational task complementarities, or (iii) greater preferences for versatile work, then the restructuring process may be discontinuous.

To see this, observe that if it is the improvements in information and
production technology that induce the switch, then it is the change in the sign of \((\partial^2 \pi / \partial \tau^2)\) that is responsible for the switch. Specifically, if \((\partial^2 \pi / \partial \tau^2) > 0\) in the original equilibrium, whereas \((\partial^2 \pi / \partial \tau^2) < 0\) and \((\partial \pi / \partial \tau) = 0\) at \(0 < \tau < 1\) in the new equilibrium, then the profit-maximizing number of hours changes discontinuously from complete specialization to multitasking. This phenomenon is illustrated in part a of figure 2, where the initial profit function \(\pi_1\) (for which \((\partial^2 \pi / \partial \tau^2) > 0\)) is maximized at the Taylo-
ristic point E_1 (where $\tau^* = 1$) and once $(\partial^2 \pi / \partial \tau^2) < 0$ the maximum shifts discontinuously to $0 < \tau^* < 1$, such as at point E_2.

However, if $(\partial^2 \pi / \partial \tau^2) < 0$ and the profit-maximizing time allocation is initially at $\tau^* = 1$, then changes in human capital that make workers more versatile will move the profit-maximizing time allocation gradually into the interior of the domain $0 \leq \tau \leq 1$. This change is continuous, as pictured in part b of figure 2. Here the initial profit function, denoted by π_a, achieves a maximum at the Tayloristic point E_a (where $\tau^* = 1$) and, as changes in human capital gradually shift this profit function toward π_b, the maximum moves gradually toward E_b.

V. Concluding Remarks

This article has analyzed the role of multitasking, intratask learning, and intertask learning in the contemporary reorganization of work. We have focused on four driving forces behind the reorganization process: advances in production technologies promoting technological task complementarities, advances in information technology promoting informational task complementarities, changes in worker preferences in favor of versatile work, and advances in human capital that make workers more versatile.

As mentioned in the introduction, the business and management literature indicates that a dramatic and broadly based process of organizational change—involving a move toward multitasking, job rotation, and intertask learning—has been underway for some time and is likely to continue. Furthermore, as noted, recent empirical studies suggest that reorganization of work is a quantitatively significant phenomenon. But while this reorganization has been much discussed in an informal, descriptive way, there has been little if any theoretical framework to analyze this process. Our main ambition in this article has been to develop such a framework. This accomplished, the connections between the reorganization of work and its main determinants (recent changes in physical capital, information technologies, human capital, and preferences) look intuitively obvious.

Our analysis may also be viewed as a contribution to the contemporary debate on the sources of the increased dispersion of wages and job opportunities in the United States and Europe. The dominant hypotheses thus far have been that these phenomena are the outcome of (i) skill-biased international trade flows, (ii) skill-biased technological change, and (iii) deficient education and training relative to the demand for skilled labor.19

19 Regarding skill-biased international trade flows, see, e.g., Sachs and Shatz (1994) and Leamer (1996). Regarding skill-biased technological change, see, e.g.,
Our theory complements the hypothesis that increased wage dispersion is a result of international trade since the expansion of trade has enabled an increasing number of firms in the advanced industrialized countries to shift to products and production processes requiring holistic organization while they contract out the routine, assembly line work to other countries. Our theory also complements the hypotheses that increased wage dispersion is a result of technological change, education, and training. But it goes further than these hypotheses in that it brings in organizational changes alongside changes in pure production technologies. In this way, it helps to explain wage and employment dispersion since it specifies how changes in production and information technologies and how education and training may be expected to affect the dispersion of wages and employment opportunities in the context of the reorganization of work.

Finally, the three mainstream hypotheses explain neither the widening inequality of wages within education, occupation, and job tenure groups in the United States and the United Kingdom nor the widening inequality of employment opportunities within these groups in various countries on the European continent. Our analysis offers an explanation for these phenomena: people within particular education, occupation, and job tenure groups are likely to vary considerably in terms of their social competence, judgment, and ability to perform multiple tasks. Thus, in countries such as the United States and the United Kingdom, where real wages often respond flexibly to changes in labor demands and supplies, the move from a Tayloristic organization of work to a holistic one may lead to widening wage dispersion of wages within these groups. By contrast, in several European countries where real wages are more rigid, the reorganization of firms may give rise to a widening dispersion of employment opportunities among these groups, for a given distribution of abilities.

References

You have printed the following article:

Multitask Learning and the Reorganization of Work: From Tayloristic to Holistic Organization
Assar Lindbeck; Dennis J. Snower
Stable URL: http://links.jstor.org/sici?sici=0734-306X%28200007%2918%3A3%3C353%3AMLATRO%3E2.0.CO%3B2-1

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

Footnotes

1 *The Economics of Modern Manufacturing: Technology, Strategy, and Organization*
 Paul Milgrom; John Roberts
 Stable URL: http://links.jstor.org/sici?sici=0002-8282%28199006%2980%3A3%3C511%3ATEOMMT%3E2.0.CO%3B2-H

2 *How Common is Workplace Transformation and Who Adopts it?*
 Paul Osterman
 Stable URL: http://links.jstor.org/sici?sici=0019-7939%28199401%2947%3A2%3C173%3AHCIWTA%3E2.0.CO%3B2-%23

19 *Trade and Jobs in U.S. Manufacturing*
 Jeffrey D. Sachs; Howard J. Shatz; Alan Deardorff; Robert E. Hall
 Stable URL: http://links.jstor.org/sici?sici=0007-2303%281994%291994%3A1%3C1%3ATEA%3E2.0.CO%3B2-7

19 *Changes in the Structure of Wages in the 1980's: An Evaluation of Alternative Explanations*
 John Bound; George Johnson
 Stable URL: http://links.jstor.org/sici?sici=0002-8282%28199206%2982%3A3%3C371%3ACITSOW%3E2.0.CO%3B2-1

NOTE: The reference numbering from the original has been maintained in this citation list.
19 How Computers Have Changed the Wage Structure: Evidence from Microdata, 1984-1989
Alan B. Krueger
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199302%29108%3A1%3C33%3AHCHCTW%3E2.0.CO%3B2-Q

19 Changes in the Demand for Skilled Labor within U.S. Manufacturing: Evidence from the Annual Survey of Manufacturers
Eli Berman; John Bound; Zvi Griliches
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199405%29109%3A2%3C367%3ACTDF%3E2.0.CO%3B2-%3A

19 U.S. Earnings Levels and Earnings Inequality: A Review of Recent Trends and Proposed Explanations
Frank Levy; Richard J. Murnane
Stable URL: http://links.jstor.org/sici?sici=0022-0515%28199209%2930%3A3%3C1333%3AUERF%3E2.0.CO%3B2-D

References

The Economic Implications of Learning by Doing
Kenneth J. Arrow
Stable URL: http://links.jstor.org/sici?sici=0034-6527%28196206%2929%3A3%3C155%3AUEOL%3E2.0.CO%3B2-%3A

The Division of Labor, Coordination Costs, and Knowledge
Gary S. Becker; Kevin M. Murphy
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199211%29107%3A4%3C1137%3ATDOL%3E2.0.CO%3B2-8

NOTE: The reference numbering from the original has been maintained in this citation list.
Changes in the Demand for Skilled Labor within U.S. Manufacturing: Evidence from the Annual Survey of Manufacturers
Eli Berman; John Bound; Zvi Griliches
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199405%29109%3A2%3C367%3ACTTDPS%3E2.0.CO%3B2-%23

The Firm as a Communication Network
Patrick Bolton; Mathias Dewatripont
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199411%29109%3A4%3C809%3ATFAACN%3E2.0.CO%3B2-A

Changes in the Structure of Wages in the 1980's: An Evaluation of Alternative Explanations
John Bound; George Johnson
Stable URL: http://links.jstor.org/sici?sici=0002-8282%28199206%2982%3A3%3C371%3ACITSOW%3E2.0.CO%3B2-1

How Computers Have Changed the Wage Structure: Evidence from Microdata, 1984-1989
Alan B. Krueger
Stable URL: http://links.jstor.org/sici?sici=0033-5533%28199302%29108%3A1%3C33%3AHCHCTW%3E2.0.CO%3B2-Q

U.S. Earnings Levels and Earnings Inequality: A Review of Recent Trends and Proposed Explanations
Frank Levy; Richard J. Murnane
Stable URL: http://links.jstor.org/sici?sici=0022-0515%28199209%2930%3A3%3C1333%3AUIEJL%3E2.0.CO%3B2-D

The Economics of Modern Manufacturing: Technology, Strategy, and Organization
Paul Milgrom; John Roberts
Stable URL: http://links.jstor.org/sici?sici=0002-8282%28199006%2980%3A3%3C511%3AATEOMMT%3E2.0.CO%3B2-H

NOTE: The reference numbering from the original has been maintained in this citation list.
How Common is Workplace Transformation and Who Adopts it?
Paul Osterman
Stable URL:
http://links.jstor.org/sici?sici=0019-7939%28199401%2947%3A2%3C173%3AHCIWTA%3E2.0.CO%3B2-%23

Specialization and Human Capital
Sherwin Rosen
Stable URL:
http://links.jstor.org/sici?sici=0734-306X%28198301%291%3A1%3C43%3ASAHC%3E2.0.CO%3B2-8

Trade and Jobs in U.S. Manufacturing
Jeffrey D. Sachs; Howard J. Shatz; Alan Deardorff; Robert E. Hall
Stable URL:
http://links.jstor.org/sici?sici=0007-2303%281994%291994%3A1%3C1%3ATAJIUM%3E2.0.CO%3B2-7

A Microeconomic Mechanism for Economic Growth
Xiaokai Yang; Jeff Borland
Stable URL:
http://links.jstor.org/sici?sici=0022-3808%28199106%2999%3A3%3C460%3AAAMMFEG%3E2.0.CO%3B2-5

NOTE: The reference numbering from the original has been maintained in this citation list.