Bend It Like Beckham: Ethnic Identity and Integration*

Alberto Bisin† Eleonora Patacchini‡ Thierry Verdier§ Yves Zenou¶

October 21, 2009

Abstract

We propose a theoretical framework to study the determinants of ethnic and religious identity formation. We distinguish between two distinct motivational processes for identity formation that have been proposed in the social sciences: cultural conformity and cultural distinction. When the former is at work, ethnic identity is reduced by assimilation, which weakens group loyalties and prejudices. On the contrary, with cultural distinction, ethnic minorities are motivated in retaining their own distinctive cultural heritage. Data on ethnic preferences and attitudes provided by the Fourth National Survey of Ethnic Minorities in the UK enables us to test the relative preponderance of these two identity processes. We find evidence consistent with intense ethnic and religious identity mostly formed as a cultural distinction mechanism. Consistently, we document that ethnic identities are more intense in mixed than in segregated neighborhoods.

Key words: Ethnicity, identity, intermarriage, cultural transmission

JEL Classification: A14, J15

*This paper is part of the Polarization and Conflict Project C1T-2-CT-2004-506084 funded by the European Commission-DG Research Sixth Framework Programme. A different paper by the same authors circulated under the same title. We liked the title better than the paper; so we scrapped the second and kept the first. Thanks to Alberto Alesina, Bill Easterly and other participants to the Political Economy Summer Meetings of the NBER.

†New York University, Department of Economics, 269 Mercer Street, New York, NY 10003, USA. E-mail: alberto.bisin@nyu.edu

‡Universita’ di Roma "La Sapienza," Facolta’ di Scienze Statistiche, P.le Aldo Moro, 5 - 00185, Roma, Italy. E-mail: eleonora.patacchini@uniroma1.it

§PSE, 48 boulevard Jourdan, 75014 Paris, France and CEPR. E-mail: verdier@pse.cns.fr

¶Stockholm University and Research Institute of Industrial Economics (IFN), Sweden. E-mail: yves.zenou@ne.su.se.
1 Introduction

In the last decades, immigration to western countries has become an important facet of globalization. While the direct economic effects of such trends have been at the center of the debates, there has been increased concerns of the implications of non-economic issues such as the increased ethnic diversity in the host countries. In such a context, the issue of ethnic and religious identities has been at the forefront of the political debate in Europe as well as in the U.S. (see, in particular, Alba, 1990, 2005). While the diversity of social groups can be considered as a source of benefits, the persistence of ethnic minority identities is, however, often perceived as a threat or source of frictions by natives. This is well illustrated in France by the recent passionate debate around the wearing of the Islamic burqa. In a presidential address to the French parliament on June 22, 2009, President Sarkozy said that “The burqa will not be welcome on the territory of the French Republic” and supported banning the garment from being worn in public. By doing so, he faced intense critics who fear the burqa issue could stigmatize France’s Muslim population of about 4 millions. As Putnam (2007) put it, in his John Skytte Price Lecture, this type of phenomenon emphasizes that “the increase in ethnic and social heterogeneity in virtually all advanced countries is one of the most important challenges facing modern societies, and at the same time one of our most significant opportunities”.

It is therefore important to have a better understanding of the mechanism of identity formation and its determinants. In fact, two opposing views characterize the theoretical analysis in the social sciences regarding identity formation. A first group of social scientists argues that ethnic identity is reduced by assimilation and blurring of groups’ boundaries. Assimilation theories, in political science and sociology (Gordon, 1964; Moghaddam and Solliday 1991), contact theory in social psychology (Allport, 1954) are the prominent theories of this line of thought. The basic premise is the idea that social contacts between natives and ethnic minorities help weaken group loyalties and group prejudices and hence lead to a more culturally homogeneous society. Through this process, minority groups adopt inclusive identities and integrate, progressively adopting the language, values and systems of the dominant group. Underlying this reasoning is the basic principle that group identity is driven by a motive for inclusiveness and cultural conformity. Economists capture the notion of cultural conformity through positive social interactions across individuals sharing the same characteristics, views and

1 Thanks to Andrew Clark for Morissey’s quote.
2 Alesina and La Ferrara (2005) provide a general discussion of the economic effects of increased ethnic diversity.
preferences.4

The alternative view considers that ethnic minorities are motivated in keeping their own distinctive cultural heritage, identify themselves with an ethnic/social group to enhance their psychological self-esteem and generate a sense of positive distinctiveness from individuals who are part of that group (Abrams and Hogg, 1988; Turner 1982). This sense of positive distinctiveness can be achieved through various cognitive and psychological mechanisms, from group solidarity to prejudice and negative stereotypes with respect to other groups. Negative attitudes towards members of other groups, in turn, consolidate the social identity of the group. These ideas have been expressed by the theories of multiculturalism (Glazer and Moynihan, 1970; Taylor and Lambert, 1996), and conflict (Bobo, 1999).5 According to this view, the group identity formation is a sort of cultural distinction mechanism that allows individuals to reduce the psychological costs associated with cultural differences. In economic terms, the concept of cultural distinction can be motivated in terms of negative social interactions across individuals belonging to different identified groups.

To provide a conceptual framework on these issues, we propose a simple model of identity formation that accounts for both cultural conformity and cultural distinction. We can therefore formally analyze the implication of each of these opposite views of identity formation and perform an empirical investigation based on our theoretical results. We show that distinguishing between cultural conformity and cultural distinction provides contrasting empirical implications on the way neighborhood segregation and identity formation interact in the process of ethnic integration. When cultural conformity is the main motivational process of identity formation, we show that neighborhood segregation and identity formation are likely to be complements for ethnic assimilation. On the contrary, when cultural distinction is at work, neighborhood segregation and identity formation tend to be substitutes for ethnic assimilation.6

Cultural conformity and cultural distinction are quite distinct theories of identity formation and have important positive and normative implications for integration policies. Empirical evidence for cultural distinction would, for instance, suggest that intense and oppositional identities that give rise to ethnic conflicts might not necessarily be the result of the segregation of the neighborhood in which ethnic and racial minorities tend to live. In that case, neighborhood mixing policies would not necessarily favor cultural integration, contrary to presumptions often exposed by social scientists and commentators.

The distinctive implications of cultural conformity and distinction can be tested empirically and

4See Bernheim (1994) for a formal economic analysis of conformity.
5At a broader level, this view is also related to the social identity theory in social psychology (Tajfel, 1981; Turner, 1982).
6In economics, the distinction between cultural conformity and cultural distinction is also related to the notion of cultural complementarity and cultural substitutability between socialization mechanism. This has been defined formally by Bisin and Verdier (2000) and tested empirically by Bisin, Topa and Verdier (2004) and Patacchini and Zenou (2009). Indeed, in Bisin and Verdier (2000), when family and role models tend to be substitutes in the process of socialization, families with a relatively minoritarian cultural trait have larger incentives to spend resources to socialize their children to their trait in order to guarantee its persistence. Conversely, under cultural complementarity, the more minoritarian is a family’s cultural trait, the lower are the family’s incentives to socialize their children to the trait and hence to limit cultural assimilation.
can therefore inform us on the main process of ethnic identity formation. To address more directly the issue of what motivates identity formation, we study ethnic and religious identity formation as a social phenomenon at the level of the neighborhood. In particular, we consider the demographic characteristics of the neighborhood where agents reside, and, more importantly, its ethnic and religious composition. Furthermore, we link identity formation with homogamous marriages along ethnic and religious traits. It has indeed been extensively documented that interracial marriage is typically considered as a sign of inclination toward cultural assimilation (see, in particular, Al-Johar, 2005; Qian, 1999; Meng and Gregory, 2005; Lichter et al., 2007; Tucker and Mitchell-Kernan, 1990) and that marriage choices are at least in part determined by parents’ preferences to socialize their children to their own trait (Bisin, Topa, and Verdier, 2004, and the evidence cited in Bisin and Verdier, 2000).

The scarcity of empirical work examining the importance of ethnic preferences on individual behavior is partly due to the limited information and sample sizes on cultural variables. There are indeed very few direct empirical studies of identity formation in the economic literature. Notable exceptions are Battu and Zenou (2009), Constant, Gataullina and Zimmermann (2009), Nekby and Rödin (2009), and Manning and Roy (2009). These studies identify what determines an ethnic identity in England, Germany and Sweden. They find that language proficiency in the host country, isolation and segregation, years spent in the host country, intermarriage, and education acquired before immigration are important determinant of ethnic identity. All these empirical studies have no theoretical foundations and are plagued by endogeneity problems. In the present paper, we adopt a structural approach to tackle these problems.

To be more precise, our analysis exploits a unique UK dataset, the Fourth National Survey of Ethnic Minorities (FNSEM), which over-samples ethnic minority groups and explicitly acknowledges the heterogeneity within the non-white population in terms of individual, demographic, family and socio-economic characteristics. Most importantly for our purposes, this survey asks a direct question about respondents’ identification with their own ethnic group and additional (indirect) information about different dimensions of identity (e.g. attitudes towards inter-marriage, importance of religion and other aspects of individual’s ethnic preferences). In addition, the data can be merged with the 1991 Census, so that it is possible to obtain a detailed picture of each individual’s residential neighborhood at a very high level of spatial disaggregation.

With the FNSEM data, we estimate our model of the joint determinants of ethnic and religious identity and homogamy both structurally and non-structurally. The model nests cultural distinction and cultural conformity as identity formation mechanisms. Our evidence is consistent with ethnic identity to be formed as a cultural distinction mechanism rather than due to cultural conformity. Ethnic identity appears to be formed in social contexts in which the minority ethnic trait is mostly “threatened” either directly by the actions of the majority group (e.g., through explicit acts of rejection or harassment), or indirectly simply by being exposed to the interaction with the majority norm of behavior in mixed neighborhoods.

Our evidence for cultural distinction is consistent with two empirical studies studying the link between identity and segregation. Using a nationally representative sample of more than 90,000 students from 175 schools who entered grades 7 through 12 in 1994 in the US (the National Longitudinal
Study of Adolescent Health), Fryer and Torelli (2005) find that “acting white” behaviors among blacks (i.e. the higher is the test score, the less popular a student is) are more developed in racially mixed schools.\(^7\) Also, Bisin, Topa, and Verdier (2004) document that religious socialization across U.S. states is more intense when a religious faith is in minority.\(^8\)

We also address the issue of the alleged specificity of Muslim immigrants with regard to the strength of their identity and their (lack of) integration; an issue which recently surged at the center of the political debate in Europe (see, e.g., Gallis, 2005). We repeat our analysis on the restricted sample of Muslim respondents only. The results are not qualitatively different from the ones found using the whole sample. This evidence suggests that the relationship between ethnic integration effort and ethnic neighborhood composition is not significantly different for Muslims than for the other ethnic minorities. Evidence of slower integration for Muslims, both first and second generation, is, however, apparent in our analysis.

Beyond the large sociology and socio-psychology literature on ethnic identity formation, our work is related to a growing economic literature studying the evolution of culture and ethnic identity and its interactions with economic outcomes. Akerlof and Kranton (2000) consider identity formation as an explicit – more or less conscious – endogenous choice by individuals exposed to a certain social context. Darity, Mason, and Stewart (2006) and Eaton, Eswaran and Oxoby (2009) provide evolutionary models discussing the relationship between identity formation and inter-racial interactions. In the specific context of African American communities of the Ante-Bellum American South, Bodenhorn and Ruebeck (2003) also underline the endogeneity of racial identity. Chiswick (2006) emphasizes the role of ethnic specific human capital in minority groups’ decisions to culturally assimilate or separate. Austen-Smith and Fryer (2005), Battu, Mwale and Zenou (2007), Bisin, et al. (2008b) and Fang and Loury (2005) discuss the emergence persistence of “oppositional” or “dysfunctional” identities in marginalized social groups. In the context of migrant communities in Germany, Constant and Zimmermann (2008) and Constant, Gataullina, and Zimmermann (2009) analyze ethnic identity as the endogenous balance between commitment to and self-identification with the culture and society of the origin and the host country. Like us, this emerging literature recognizes the endogeneity and contextual character of ethnic and cultural identity formation. Our contribution is, however, to go further by opening the “black box” of identity formation, and to disentangle and identify in a specific empirical context, the precise mechanisms of identity formation (i.e., cultural distinction versus cultural conformity), which have distinct implications for cultural integration processes across social groups.

Before proceeding, we should briefly alert the reader of the methodological choice of the present paper. We proceed in steps, from a non-structural analysis of the data to a fully structured model.

\(^7\) Anthropologists have also observed that social groups seek to preserve their identity, an activity that accelerates when threats to internal cohesion intensify. Thus, groups may try to reinforce their identity by penalizing members for differentiating themselves from the group. The penalties are likely to increase whenever the threats to group cohesion intensify; for an early analysis of this issues, see Whyte (1943).

\(^8\) Relatedly, Bisin and Verdier (2000) provide many examples of the resilience of ethnic and other cultural traits that can be explained by a similar mechanism, from the case of Orthodox Jews in Brooklyn to the case of aristocrats in France.
estimation. More precisely, we start in Section 2 with a non structural probit analysis of identity and homogamy in terms of ethnic composition. Section 3 then proposes a semi-structural analysis of homogamy and identity which, while disregarding some cross-equation restrictions as imposed in a fully structural approach, has the ability to address the issue of cultural distinction versus cultural conformity. Section 4 goes further by providing and estimating a fully structural model of ethnic integration. Finally, Section 5 concludes and discusses some policy implications.

2 Descriptive analysis of the data

Our analysis exploits the Fourth National Survey of Ethnic Minorities (FNSEM), which was collected in 1993/94 in the U.K. by the Policy Studies Institute (PSI). The FNSEM over-samples ethnic minority groups and explicitly acknowledges the heterogeneity within the non-white population where the ethnic population is composed of six groups (Caribbean, Indian, Pakistani, African-Asian, Bangladeshi, and Chinese).9 It also contains detailed information about respondents’ identification with their own ethnic group (e.g. attitudes towards inter-marriage, importance of religion and other aspects of individual’s ethnic preferences) as well as variables aiming at capturing the heterogeneity within the non-white population in terms of individual, demographic, family and socio-economic characteristics (see Modood et al., 1997, for details).

We enrich the analysis of ethnic identification, necessarily a self-reported “subjective” measure, with the study of marriage homogamy along ethnic lines. Homogamy can in fact be considered an “objective” measure of identity, which is conceptually strongly related to our subjective measure.

Finally, to address the main issue of this paper, the identification of cultural distinction versus cultural conformity, we study the variation of the respondents’ identification with their own ethnic group across different residential neighborhoods as characterized by their ethnic composition. In fact, cultural conformity would induce a stronger identification with own ethnic group the higher is the proportion of the same ethnic group in the neighborhood. On the contrary, cultural distinction would introduce an opposing force, motivating strong ethnic identity in neighborhoods with relatively scarce presence of the same ethnic group, as a form of distinction/defense from the majority group. We then merge the FNSEM data with the 1991 Census in order to get valuable information of each individual’s residential ward.10

2.1 Definition of the variables

The key variables in our analysis are (i) the ethnic composition of the residential neighborhood, q; (ii) the intensity of ethnic identity, ν; (iii), the probability of homogamous marriage, π. They are described in turn.

(i) The ethnic composition of the neighborhood is observed at the level of the residential ward from the 1991 Census data. For each individual i, we consider the percentage of ward inhabitants of

9 Black Africans were not included because the bulk of their immigration in the U.K. happened earlier. Furthermore, the survey only covers England and Wales.

10 A UK Census ward contains on average 3,000-4,000 residents.
the same ethnic group. It has been divided in seven classes, \(q_i \leq 2\% \), \(2\% < q_i \leq 5\% \), \(5\% < q_i \leq 10\% \), \(10\% < q_i \leq 15\% \), \(15\% < q_i \leq 25\% \), \(25\% < q_i \leq 33\% \), \(q_i \geq 33\% \). As usual, the mean value of each interval is used in the regression analysis. Figure 1 reports the distribution of respondents over the ethnic composition of the neighborhood in which they live. It should be clear that variation in \(q \) does not proxy for ethnic group; that is, it is not the case that, for example, the respondents of distinct ethnic groups predominantly live in neighborhoods with specific ethnic composition.

![Insert Figure 1 here]

(ii) The survey contains a number of questions providing information on different dimensions of identity, in particular, the importance of religion, the attitudes towards inter-marriage, and the relevance of ethnicity in influencing the kind of school people want for their children.\(^{11}\) It also asks a direct question about ethnic identity.\(^{12}\) We perform our analysis using separately the answers on each of these questions. Identity, denoted by \(I \), is coded as a dichotomous variable taking value 1 if the individual considers as very important the role of religion in her/his life, and 0 otherwise (importance of religion). It takes value 1 if the individual would personally mind if a close relative were to marry a white person, and 0 otherwise (inter-ethnic marriage). It takes value 1 if ethnicity has a very important or at least fairly important influence in choosing the school for a child and 0 otherwise (school ethnic composition). Finally, it takes value 1 if the individual strongly agrees or agrees to the statement “In many ways, I think of myself as [respondent’s ethnic group]”, and 0 otherwise (ethnic group identification). The variable measuring the intensity of ethnic identity, \(\nu \), is then the probability that \(I = 1 \), for each aspect of these different measures of identity.

(iv) Homogamy \(H \) is a dummy variable taking value 1 if the respondent is married to a person of her/his own ethnic group, and 0 otherwise. The variable \(\pi \) measures the probability that marriage is homogamous. Singles, somewhat consistently with the theoretical analysis of integration in Section 4, are assigned \(H = 0 \), that is, they are treated as non-homogamous.

An extensive set of control variables is also available. In addition to several individuals’ observable characteristics (i.e., education, age, sex, fertility choices, employment status, job qualification, household house ownership, macro-region of residence, time spent in the UK, a dummy indicating whether the respondent is born in the UK or not), the data set also contains control vector variables aiming at capturing the influence of the social environment (family, friends, neighbors) and workplace (language typically spoken in the family, with friends, at work, a dummy capturing instances of discrimination, and one indicating whether the marriage is arranged by the parents, the ward unemployment rate). Precise definitions of all these variables, as well as our sample descriptive statistics, can be found in

\(^{11}\)The precise questions are the following ones: “How important is religion to the way you live your life? Is it not at all important, not very important, fairly important or very important?”; “Would you personally mind if a close relative were to marry a white person?; “If you were choosing a school for an eleven-year old child of yours, would your choice be influenced by how many (respondent’s ethnic group origin) children there were in the school? And, if "yes", would it be a very important influence, a fairly important influence or a not very important influence?”.

\(^{12}\)Specifically, in the FNSEM, the people interviewed are asked if they strongly agree, agree, neither agree or disagree, disagree, strongly disagree, with the statement: “In many ways, I think of myself as [respondent’s ethnic group]”.

7
the Data Appendix (Table A1). Excluding the individuals with missing or inadequate information on our target variables, we obtain a final sample of 1,565 individuals.

2.2 Identity and homogamy: A probit

Empirically identifying cultural distinction from cultural transmission would require observing a negative relationship between ethnic identity (resp. homogamy) and the ethnic composition of the neighborhood as measured by \(q \). A negative sign would indicate cultural distinction while a positive sign would mean cultural conformity. Naturally, a regression analysis is difficult to interpret because of the endogeneity of \(q \): the ethnic composition of the neighborhood might, in principle, be an important factor affecting the respondents’ residential decisions. In the course of this paper, we shall deal with this endogeneity problem, both directly and indirectly, by imposing more structure on the empirical analysis. It is nonetheless interesting to present the results of a simple probit regression, looking at the correlation between ethnic identity (measured either directly by \(I \) or indirectly by homogamy \(H \)) and ethnic composition \(q \), allowing for a non-linear relationship. We perform such a bivariate probit analysis with different (increasing) sets of control variables and using alternative definitions of ethnic identity. Table 1 shows the complete list of estimation results when “importance of religion” is used as a proxy for ethnic identity whereas Table 2 displays the same results when other measures of ethnic identity are used.13

Insert Tables 1 and 2 here

We find that there is a positive and significant relationship between ethnic identity and ethnic neighborhood composition \(q \). We also find significant non-linearities, i.e. the quadratic term in \(q \) is negative and significant, which documents, for both identity and homogamy, a negative dependence from ethnic composition for values of \(q \) greater than 20%. This suggests a cultural distinction mechanism. Figure 2a confirms this result by depicting the estimated (non-linear) effect of \(q \) on identity and homogamy when the influence of our most extensive set of controls has been purged out.14 The non-linearities picked up by the probit models might, in principle, be due to the differential distribution of ethnic groups by neighborhood class.15 This is not the case, in fact, since the same form of non-linear dependence in \(q \) is obtained when the sample is restricted to Muslims only (mostly Pakistanis, Bangladeshis, and Indians), as documented in Figure 2b.16 These non-linearities suggest that ethnic

13 In the probit estimations, we measure quite naturally \(q \) as the fraction of own ethnic group in the neighborhood. The fraction of all minority residents in the neighborhood has been, however, included among the controls.

14 This graph is depicted using “importance of religion” as a proxy for ethnic identity. The use of the other proxies leads to similar pictures.

15 We thank Bill Easterly for raising this point in a critical discussion of the paper.

16 We have also performed our analysis using a a multidimensional measure of ethnic identity, which summarizes the information contained in the available indicators. We have followed the standard approach in the sociological literature to derive quantitative information on sensitive topics using qualitative answers to a battery of related questions. This is a standard factor analysis, where the factor loadings of the different variables (questions) are used to derive the total score (multidimensional measure). The Crombach-\(\alpha \) measure is then used to assess the quality of the derived index. In our case, we obtain an \(\alpha \) equal to 0.86 (0 \(\leq \alpha \leq 1 \)) indicating that the different items incorporated in the index have
identity is weak in relatively homogenous neighborhoods and strong in mixed neighborhoods.

[Insert Figure 2a and 2b here]

The analysis in this section is essentially descriptive and more structure is necessary to be more confident in interpreting the results of Figures 2a and 2b as evidence for cultural distinction. We start introducing some more structure in the next section.

3 Conformity versus distinction: Some structure

3.1 The theoretical model

Consider a member of an ethnic or religious group, as in the previous section, let q denote the proportion of ethnic minorities in the neighborhood where this ethnic person resides. Let homogamy be an index $H \in \{0, 1\}$, with $\Pr\{H = 1\} = \pi$. There is a psychological cost of interacting with individuals from the majority (dominant) group. We assume that this (psychological) cost depends on the marriage status of the minority member and is denoted by $C(H)$. We further assume that such costs are lower in an homogamous than in an heterogamous marriage, i.e. $\Delta C = C(0) - C(1) > 0$ (1)

Indeed, all ethnic minorities need to interact with natives (for example when their kids go to the same school and have the same social activities, or when they need to find a job), and they do not like it. Quite naturally, the cost of interacting with natives is the same for all ethnic minorities. However, when they get married with someone from the same ethnic group (i.e. homogamy), they need less to socially interact with natives for socio-economic reasons (they put their kids in an “ethnic” school, they work with people from the same ethnic group, etc.). As a result, the total cost of socially interacting with natives is lower as compared to someone who is married to a native (heterogamy) since the latter needs to meet the parents in law, put his/her kids to the majority school, etc. In our framework, C denotes the total cost of interacting with a native and it is quite natural to assume (1), that is $C(0) > C(1)$.

In general, ΔC is also a function of q as well as of the strength of identity of the ethnic minority; we denote this strength of identity by an index $I \in \{0, 1\}$ with $\Pr\{I = 1\} = \nu$. Indeed, the composition of the neighborhood as well as the strength of an identity have an obvious impact on this cost differential since families living in more “ethnic” neighborhoods and with stronger ethnic identities are more ensured that their ethnic identity will be passed on to their kids. We thus have considerable internal consistency. We find that even this aggregate measure do not depend (qualitatively) differently on q.

17 We only consider here two groups: the ethnic minority and the majority groups. Our theoretical analysis can easily be extended to more than one ethnic group.

18 which implies that C is also a function of both q and I.

19 Remember that in this section both q and I are exogenous. We will relax these assumptions below.
\[\Delta C = \Delta C(q, I) \]. It is then straightforward to formulate a precise definition of cultural conformity and distinction.

Definition 1 The preferences of an ethnic minority individual displays

(i) **cultural conformity** if the differential cost \(\Delta C \) decreases with the proportion of non-minority members \(1 - q \), i.e. \(\frac{\partial \Delta C(q, I)}{\partial q} > 0 \).

(ii) **cultural distinction** if the differential cost \(\Delta C \) increases with the proportion of non-minority members \(1 - q \), i.e. \(\frac{\partial \Delta C(q, I)}{\partial q} < 0 \);

In the cultural conformity assumption, the minority’s psychological costs of interacting with individuals from the majority group are decreasing in the proportion of whites living in the neighborhood where the minority resides. In the cultural distinction assumption, we have the opposite.\(^{20}\) To be more precise, when minorities are more exposed to the majority group (i.e. \(1 - q \) increases), then the difference in interaction costs with whites between an homogamous and heterogamous minority person is reduced when there is cultural conformity. Indeed, in that case, minorities tend to assimilate to the majority norm and their marital status have less impact on interaction costs. However, when we consider cultural distinction, this cost differential tends to increase because minorities are now rejecting the “white” norm and homogamous minorities interact much less with the majority group.

Minority members put effort in finding a spouse of the same ethnic background. Let this effort be denoted by \(\tau \in [0, 1] \). The minority member first searches a spouse in a restricted pool of partners from his/her own community minority. The search intensity, \(\tau \), determines the probability with which he/she finds his/her marital partner in the pool. With the residual probability \(1 - \tau \), he/she remains unsuccessful and therefore goes to a common pool of partners that includes both minority and majority types. There, he/she gets matched with a spouse of his/her community with probability \(q \). As a result, an ethnic minority individual living in a neighborhood with a fraction \(q \) of minority members has a probability of marrying homogamously equals to

\[
\pi(\tau, q) = \tau + (1 - \tau)q
\]

(2)

The search intensity \(\tau \) is chosen by the agent but it requires a cost \(Z(\tau) \), which is increasing and convex (in the same units of the psychological costs \(C(\cdot) \)). For analytical simplicity, we assume

\[
Z(\tau) = \frac{1}{2} \alpha \tau^2
\]

(3)

where \(\alpha \) is a measure of the relative cost of \(\tau \).

A minority member’s problem is thus:\(^{21}\)

\[
\max_{\tau \in [0, 1]} \left\{ -\pi(\tau, q)C(1) - [1 - \pi(\tau, q)]C(0) - \frac{1}{2} \alpha \tau^2 \right\}
\]

\(^{20}\)See our discussion in the Introduction.

\(^{21}\)For notational simplicity, we don’t put \(q \) and \(I \) as arguments of the cost function \(C(\cdot) \).
In other words, each minority individual chooses the homogamy effort τ that minimizes the expected cost of interacting with whites, i.e.

$$\min_{\tau \in [0,1]} \left\{ -\pi(\tau, q) \Delta C(q, I) + C(0) + \frac{1}{2} \alpha \tau^2 \right\}$$

Using (2), the first order condition leads to:

$$\tau^* = \frac{(1-q)\Delta C(q, I)}{\alpha} \quad (4)$$

The probability of an homogamous marriage is thus equal to

$$\pi^* = q + (1-q)^2 \frac{\Delta C(q, I)}{\alpha} \quad (5)$$

Observe that if there is cultural distinction, then $\partial \tau^*/\partial q < 0$, i.e., the higher is the proportion of the same ethnic group living in the neighborhood, the lower is the homogamy effort while the opposite sign is true ($\partial \tau^*/\partial q > 0$) with cultural conformity if the elasticity of q with respect to ΔC is large enough. However, the sign of $\partial \pi^*/\partial q$ tends to be ambiguous with either cultural distinction or cultural conformity. This is what we want to investigate empirically now.

3.2 Empirical implementation

Based on this simple model, we would like to test equation (5), i.e. the relationship between π (homogamy) and q (neighborhood ethnic composition), To be able to implement empirically the model, we introduce x, a vector of exogenous variables (like e.g. his/her age, education, etc.) which affects both q (neighborhood composition) and ν (identity strength), and the cost $Z(\tau)$. The relationship between (q, ν) and x can be abstractly, and without loss of generality, represented by a map

$$\begin{pmatrix} q \\ \nu \end{pmatrix} = F(x)$$

Concerning the cost $Z(\tau)$, we assume that:

$$Z(\tau) = \frac{1}{2} \alpha \tau^2 + (\gamma \tau x) \tau$$

where $\gamma, x = \sum_{j=1}^{K} \gamma_{\tau j} x_j$. Rewriting the first-order condition (5) with this extension in terms of x leads to:

$$\pi^* = q + \frac{1}{\alpha} (1-q)^2 \Delta C(q, I) - \frac{1}{\alpha} (1-q) (\gamma \tau x) \quad (6)$$

22 That is, under conditions sufficient to guarantee a unique choice of (q, ν) for any x. In fact, we do not need to assume this. We can deal with the general case, in which equilibria are multiple and the equilibrium conditions are written as

$$G(\pi, q, \nu; x) = 0$$

along the lines of Bisin, Moro, and Topa (2009). In fact, we will see below that the example in Section 4.2 displays multiple equilibria.
The empirical implementation of this equation requires therefore the following fitting:

$$\Delta C : [0, 1] \times \{0, 1\} \to \mathbb{R} \text{ and } F : \mathbb{R}^K \to [0, 1]^2$$

with appropriate approximating polynomials.

Two important caveats are, however, in order.

1. The function $F(x)$ is an equilibrium mapping. It will depend on deep parameters that determine $\Delta C(q, I)$. In other words, the model implies cross-equation restrictions between $\pi = q + \frac{1}{\alpha}(1 - q)\Delta C(q, I) - \frac{1}{\tau}(1 - q)\left(\gamma_x \xi\right)$ and $\begin{pmatrix} q \\ \nu \end{pmatrix} = F(x)$. By approximating $\Delta C(q, I)$ via polynomials, we are implicitly disregarding these restrictions. At this stage, however, the objective of our empirical work is not to estimate the deep parameters of the model but rather just to test cultural conformity (i.e. $\frac{\partial \Delta C(q, I)}{\partial q} > 0$) against cultural distinction (i.e. $\frac{\partial \Delta C(q, I)}{\partial q} < 0$).

2. The identity formation process of the members of a minority group depends on the cultural characteristics of the minority itself (e.g., his/her cultural distance to the majority), but also on the actions and predispositions of the majority (e.g., their racial attitudes). We do not have accurate data to be able to distinguish between these determinants of identity, even though x contains some controls of some relevance, e.g., a measure of the episodes of ethnic/religious harassment each respondent has been subject to.

Let us now describe more precisely our empirical strategy here. Let the deep parameters of the model be denoted by θ, a vector. Let θ be decomposed so that $\theta = [\theta_1, \theta_2, \theta_3]$. Without loss of generality, let’s assume that $\Delta C(q, \nu)$ only depends on parameters $[\theta_1, \theta_2]$, (α, γ_x) are part of θ_1, and that $\begin{pmatrix} q \\ \nu \end{pmatrix} = F(x)$ only depends on parameters $[\theta_2, \theta_3]$.

As stated above, the objective of our empirical work here is not to estimate the deep parameters of the model, θ but rather to test if the sign of $\frac{\partial \Delta C(q, \nu)}{\partial q}$ is negative (i.e. cultural distinction) or positive (i.e. cultural conformity). In that case, it is sufficient to estimate (6), approximating $\Delta C(q, \nu)$ as follows via a second order polynomial:

$$\Delta C(q, \nu) \approx \beta_1 + \beta_2 q + \beta_3 q^2 + \beta_4 \nu + \beta_5 \nu^2 + \beta_6 q \nu + \beta_7 q^2 \nu + \beta_8 q \nu^2 + \beta_9 q^2 \nu^2$$

3.3 Results

Results of the empirical analysis are reported in Figures 3a and 3b (for the whole sample and the Muslim sample only, respectively). It is easily seen that, for both samples, the partial derivative of

23It might be convenient in general to restrict the map F as follows:

$$F(x) = f(X_q, X_\nu) \text{ for } f : \mathbb{R}^2 \to [0, 1]^2 \text{ and } \begin{cases} X_q = \gamma_q \xi \\ X_\nu = \gamma_\nu \xi \end{cases}$$
interaction costs with whites with respect to \(q \) is always negative, i.e. \(\frac{\partial \Delta C(q, I)}{\partial q} < 0 \), for both \(I = 0 \) and \(I = 1 \). These results clearly favor the cultural distinction mechanism, meaning that integration in terms of high contacts with whites (i.e. high \(q \)) leads to significant difference in interaction costs between homogamous and heterogamous individuals.

[Insert Figures 3a and 3b here]

4 Ethnic integration: Structural models

In this section, we complement the analysis of the previous section by structurally studying ethnic integration via marriage, location, and identity formation. Formally, this requires expliciting a model for \(\Delta C(q, I) \) so that \(q \) and \(I \) are chosen and are not exogenously given (as in the previous section). In fact, we will study two distinct models, one in which location is exogenous and one in which identity is exogenous. To be more precise, we develop two different, extreme (semi-nested) models:

1. Marriage and identity (with exogenous location \(q \)): people are dropped in a neighborhood and then form their ethnic identity (choose \(I \)) and look for a spouse (choose \(\tau \)).

2. Marriage and location (with exogenous identity \(I \)): people are born with an identity and then look for a neighborhood where to reside (choose \(q \)) and a spouse (choose \(\tau \)).

4.1 Marriage and identity

As in Section 3.1, we define the psychological cost of interacting with individuals from the majority group by \(C(H, I, q) \). In other words, this cost for an ethnic minority depends on his/her marriage status \(H \) (= 1 if homogamous and 0 otherwise), his/her identity status \(I \) (= 1 if having a strong identity and 0 otherwise) and \(q \), the percentage ethnic minorities where he/she resides. We have \((H, I) \in \{0, 1\}^2 \) and \(q \in [0, 1] \). Observe that the probability \(\nu = \Pr\{I = 1\} \) is here modeled as a choice of the individual. In terms of notation, we use \(\nu \in [0, 1] \) rather than \(I \). We assume that identity and homogamy act as complements to each other so that either \(\nu = \Pr\{I = 1\} \) and \(H = 1 \) or \(1 - \nu = \Pr\{I = 0\} \) and \(H = 0 \). In other words, individuals with strong identity are necessary married to someone from the same ethnic group \((H = 1)\) while people with weak identity are necessary married to whites \((H = 0)\). For simplicity, we use the following explicit function:

\[
C(H, \nu, q) = (1 - \nu H)C(q)
\]

which implies that either \(C(1, \nu, q) = (1 - \nu)C(q) \) or \(C(0, \nu, q) = C(q) \). This means that a strong identity \((\nu)\) with an homogamous marriage \((H = 1)\) leads to a lower cost of interacting with whites than a weak identity with an heterogamous marriage. Our explanation is as before. Individuals married to someone from the same ethnic group and having a strong identity do not interact very much with whites and thus have a lower interacting cost than someone more “integrated” to the majority group. This specification implies that
In this section, we assume that location \(q \) is exogenous and individuals choose their identity and homogamy efforts, \(\nu \) and \(\tau \). The utility cost of developing identity \(\nu \) is denoted by \(J(\nu) \) and is increasing and convex (in the same units of the psychological costs \(C(q) \)). For simplicity, we assume

\[
J(\nu) = \frac{1}{2} \nu^2
\]

(8)

As a result, a minority member’s problem is:

\[
\max_{\nu, \tau} \left\{ -\pi(\tau, q)(1 - \nu)C(q) - [1 - \pi(\tau, q)] C(q) - Z(\tau) - J(\nu) \right\}
\]

Indeed, as before, the ethnic minority minimizes his/her expected cost of interacting with whites, that is:

\[
\min_{\nu, \tau} \left\{ -\nu \pi(\tau, q)C(q) + C(q) + \frac{1}{2} \alpha \tau^2 + \frac{1}{2} \nu^2 \right\}
\]

The first order conditions of this problem are given by:

\[
\nu^* = \frac{\alpha q C(q)}{\alpha - (1 - q)^2 C^2(q)}
\]

\[
\tau^* = \frac{q (1 - q) C^2(q)}{\alpha - (1 - q)^2 C^2(q)}
\]

where \(\alpha \) is assumed to be large enough for \(\nu^* > 0 \) and \(\tau^* > 0 \). These first order conditions can easily be reduced to:

\[
\nu = \pi C(q)
\]

(9)

\[
\pi = q + (1 - q) \frac{C(q)}{\alpha} \nu
\]

(10)

This is a simultaneous equation system in which \((\nu, \pi) \) are the endogenous variables and \(q \) the exogenous variable. We can explicitly calculating \(\pi^* \) by using (9). We obtain:

\[
\pi^* = \frac{\alpha q}{\alpha - C^2(q)(1 - q)^2}
\]

(11)

4.2 Marriage and location

In this section, we still assume (7). The choice of identity \(\nu \) is now exogenous while location \(q \) is chosen. The cost of living in a neighborhood with a percentage \(q \) of ethnic minorities is denoted by \(G(q) \) and is increasing and convex (in the same units of the psychological costs \(C(q) \)).\(^{24}\) For simplicity, we assume

\[
G(q) = \frac{1}{2} q^2
\]

(12)

\(^{24}\)We assume that, other things equal, neighborhoods with higher \(q \) are less preferable (because, for example, of higher unemployment, less average income, etc.). We do not need to make this assumption. We could estimate the sign of the dependence of costs from \(q \). But all agents would live in segregated neighborhoods under the assumptions of our model if they were cheaper to reside in.
The minority member’s problem can now be written as:

$$\max_{q,\tau} \left\{ -\pi(\tau, q)(1 - \nu)C(q) - [1 - \pi(\tau, q)] C(q) - Z(\tau) - G(q) \right\}$$

As before, the ethnic minority minimizes his/her expected cost of interacting with whites, that is:

$$\min_{q,\tau} \left\{ -\nu \pi(\tau, q)C(q) + C(q) + \frac{1}{2} \alpha \tau^2 + \frac{1}{2} q^2 \right\}$$

The first order conditions of this problem are given by:

$$-\nu(1 - \tau)C(q) + C'(q) (1 - \nu \pi) + q = 0$$
$$-\nu(1 - q)C(q) + \alpha \tau = 0$$

which, using (2), are equivalent to:

$$-\nu(1 - \pi) \frac{C(q)}{(1 - q)} + C'(q) (1 - \nu \pi) + q = 0$$
$$-\nu C(q) + \alpha \frac{(\pi - q)}{(1 - q)^2} = 0$$

This is a simultaneous equation system in which \((q, \pi)\) are the endogenous variables and \(\nu\) the exogenous variable. The solution is rather involved. For our empirical application, it is convenient to write the system in terms of \(\nu\) and \(\pi\) (even if \(\nu\) is exogenous here) as a function of \(\pi\) and \(q\). After some algebra one obtains:

$$v = \alpha \frac{(\pi - q)}{(1 - q)^2 C(q)}$$

(13)

$$\pi = \frac{-B \pm \sqrt{B^2 - 4AD}}{2A}$$

(14)

where

$$A = \alpha \left[(1 - q) C'(q) - C(q) \right]$$
$$B = \alpha \left[C(q) (1 + q) - q (1 - q) C'(q) \right]$$
$$D = -\alpha q C(q) - [C'(q) + q] (1 - q)^3 C(q)$$

The system has two solutions, in principle.

4.3 Conformity versus distinction: A fully structural analysis

In the cultural conformity model, the minority’s psychological costs to interact with individuals from the majority group are decreasing in the proportion \(1 - q\) of whites residing in the neighborhood where the minority lives. The simplest formulation therefore has:

$$C(q) = cq$$

(15)
In the cultural distinction model the minority’s psychological costs to interact with individuals from the majority group are increasing in the proportion $1 - q$ of whites living in the neighborhood where the minority resides. The simplest formulation thus has:

$$C(q) = c(1 - q)$$ \hfill (16)

Given (7), this implies that $\Delta C(q, \nu) = \nu c q$ and thus $\partial \Delta C(q, \nu)/\partial \nu > 0$ for the cultural conformity model, and $\Delta C(q, \nu) = \nu c (1 - q)$ and thus $\partial \Delta C(q, \nu)/\partial \nu < 0$ for the cultural distinction model. This is exactly what was stated in Definition 1.

We can then plug the value of $C(q)$, given by either (15) or (16), into the marriage and identity model (Section 4.1) and the marriage and location model (Section 4.2). It is therefore crucial to distinguish between the cultural substitution and cultural distinction models. Formally, we can nest the reduced form equations by writing:

$$C(q) = c\psi(q), \quad \text{with} \quad \psi(q) = \gamma_1 - \gamma_2 q$$

so that

when $\gamma_1 = \gamma_2 = 1$ there is cultural distinction

when $\gamma_1 = 0$ and $\gamma_2 = -1$ there is cultural conformity \hfill (17)

Empirically, to discriminate between the two models, it is sufficient to verify whether γ_2 is greater or smaller than zero.

4.4 Empirical implementation

Both the marriage and identity, and the marriage and location models are identified exploiting the non-linearities induced by the choice problems and the functional form assumptions we impose.\(^{25}\) As in Section 3.1, for the empirical implementation of costs, we have to add the vector of individuals’ characteristics x to obtain:

$$Z(\tau) = \frac{1}{2} \alpha \tau^2 + (\gamma_{x_\tau} \tau) \quad \tau$$

$$J(\nu) = \frac{1}{2} \nu^2 + (\gamma_{x_\nu} \nu) \quad \nu$$

$$G(q) = \frac{1}{2} q^2 + (\gamma_{x_q} q) \quad q$$

where $x_j (j = \tau, \nu, q)$ are the exogenous determinants of the cost and regressors in the empirical implementation, and $\gamma_{x_\tau} \tau, \gamma_{x_\nu} \nu, \gamma_{x_q} q$ represent the vector notation: $\gamma_{x_\tau} \tau = \sum_{j=1}^{N} \gamma_{\tau j} x_j$, $\gamma_{x_\nu} \nu = \sum_{j=1}^{N} \gamma_{\nu j} x_j$, and $\gamma_{x_q} q = \sum_{j=1}^{N} \gamma_{q j} x_j$.

By using these cost formulations and solving each program, we can extend equations (9) and (10) and obtain a simultaneous equation system in ν and π for the marriage and identity model. Likewise, for the marriage and location model, we extend equations (13) and (14) and obtain a simultaneous

\(^{25}\)In particular there are no issues of logical consistency, as they might arise in models in which, for each agent, ν and/or π depend on the realization of I and/or H (see Maddala pp. 118-9 and Wilde, 2000,).
equation system in q and π. The Appendix provides the details on the systems of equations we put to data as well as simple informal argument for the identification of parameters $\gamma_1, \gamma_2, c, \alpha, \gamma_\nu, \gamma_\tau$.

Writing a likelihood function and searching for the structural parameters $(\gamma_1, \gamma_2, c, \alpha, \gamma_\nu, \gamma_\tau)$ is straightforward.26 Because there are no a priori arguments to select the variables to be included as determinants of the costs of identity and homogamy, we consider $x_\nu = x_\tau = x$.

We observe n (independent) bivariate Bernoulli trials with a pair of characteristics being studied at each trial. The probabilities of the outcomes vary over the trials. We have:

$$\Pr\{I_i = y_i\} = \begin{cases} \nu_i & y_i = 1 \\ 1 - \nu_i & y_i = 0 \end{cases} \quad \text{and} \quad \Pr\{H_i = z_i\} = \begin{cases} \pi_i & z_i = 1 \\ 1 - \pi_i & z_i = 0 \end{cases}$$

Once the joint determination of I and H is explicitly accounted for by the forms of the probabilities ν and π, the two random variables may be assumed to be independent. Hence

$$\Pr\{I_i = y_i, H_i = z_i\} = \nu_i^{y_i} (1 - \nu_i)^{1 - y_i} \pi_i^{z_i} (1 - \pi_i)^{1 - z_i}$$

The likelihood function can be then written as:

$$L = \prod_{i=1}^{n} \nu_i^{y_i} (1 - \nu_i)^{1 - y_i} \pi_i^{z_i} (1 - \pi_i)^{1 - z_i} \quad (18)$$

The maximization of the likelihood function (18) under the two (alternative) models (17) will then uncover which one of the two models of integration formation better fits our data.

4.5 Results

The estimates of the endogenous identity (i.e. marriage and identity) and the endogenous location (i.e. marriage and location) model are reported in Tables 3a and 3b, respectively, under different set of controls (none, individual controls, contextual controls).27 Model selection statistics overwhelmingly favor the endogenous identity model over the endogenous location model. Indeed, following Burnham and Anderson (2002), we adopt the Akaike Information Criterion (AIC) as a statistical test for model selection. In fact, in our simple context, the AIC of non-nested models reduce to a likelihood ratio test. Likelihoods are reported in Tables 3a and 3b. It is apparent that the endogenous identity model (with exogenous location) performs best.28

As a result, from now on, we concentrate on the endogenous identity model (i.e. marriage and identity). An unconstrained maximization of the likelihood of the endogenous identity model gives the results listed in Table 3a. As stated in (17), a positive estimate of γ_2 would be in line with the cultural distinction model whereas a negative estimate would support the cultural conformity model.

26 Otherwise one can proceed via GMM as in Bisin, Topa and Verdier (2004).
27 The estimation has been performed using R programming language (www.r-project.org). The code is available upon request.
28 For only one of the two solutions of the endogenous location model the estimate converges.
Table 3a shows that such an estimate is clearly positive, which indicates that a cultural distinction mechanism of identity formation is consistent with our data.

We also pursue the estimation of the model (maximization of the likelihood function (18)) under the two (alternative) sets of constraints (17), i.e. distinction and conformity models. Results are also reported in Table 3a. The maximized likelihood value is much higher when the constraints implied by the cultural distinction model (i.e. \(\gamma_2 = 1 \)) are imposed.\(^{29}\) The parameter estimates for the cultural distinction model (i.e., the preferred one) are also reported in Table 3a.\(^{30}\) As noted before, the effects of the exogenous regressors are not additively separable from the effect of \(q \).

To develop a better intuition about which aspect of the data drives this result, we study the endogenous identity model in more detail. Under cultural distinction, the first order conditions of the model are given by:\(^{31}\)

\[
\begin{align*}
\nu &= \pi c(1 - q) \\
\pi &= q + \frac{c(1 - q)^3}{\alpha} \nu
\end{align*}
\]

Various simple conclusions can be obtained from these equations. Consider first condition (19), expressing how identity formation \(\nu \) depends on the proportion \(q \) of minority members and on \(\pi \) the probability of homogamy. Clearly, the is larger the proportion of minority members and the more segregated the neighborhood is, the lower is \(C(q) = c(1 - q) \), the psychological cost of interacting with the majority group, and the smaller are the incentives for identity formation as a cultural distinction. On the other hand, the higher is the probability \(\pi \) of homogamous marriage resulting from socialization effort, the larger are the expected benefits from identity formation and the more intense is the identity.

Interestingly, marital segregation, as reflected by \(\pi \), and neighborhood segregation, as reflected by \(q \), are substitutes in terms of identity formation. In other words, the marginal effect of marital segregation on identity formation tends to be reduced the more segregated the neighborhood is (i.e., the larger is \(q \)).

In summary, under cultural distinction: (i) Identity is decreasing with neighborhood segregation and increasing with minority homogamy; (ii) Marital segregation and neighborhood segregation are substitutes for identity formation.

Consider now equation (20) characterizing the (endogenous) probability of homogamy as a function of identity \(\nu \) and neighborhood segregation \(q \). The more intense is the identity formation, the higher is the probability of homogamy. On the other hand, the effect of \(q \) on \(\pi \) is ambiguous and reflects two opposite effects. First, there is a direct effect related to the fact that the larger the proportion of minority people in the neighborhood, the larger the probability of finding a minority spouse in the common pool of potential partners. This effect is reflected in the first term \(q \) of (20). The second effect is illustrated by the second term \((1 - q)^2 C(q) \nu \) and indicates the impact of a change in \(q \) on the marginal incentives to marital segregation (i.e., the socialization effort \(\tau \)). Indeed, the

\(^{29}\) A more rigorous statistical comparison is problematic in these cases because the distribution of the resulting likelihood ratio tests with inequality constraints is non-standard (see Chernoff, 1954; Wilks, 1938; Seif and Liang, 1987; Shaw and Geyer, 1997).

\(^{30}\) Here the value of \(\gamma_2 \) is set to 1 (see (17)).

\(^{31}\) We replace \(C(q) = c(1 - q) \) in (9) and (10).
more segregated is the neighborhood (i.e., the larger is \(q \)), the smaller are the incentives to spend resources of finding directly a partner in the restricted pool of minority spouses. First, because social interactions with the majority people are less costly, there is less of a need for identity formation that can be effectively expressed in an homogamous marriage. This is reflected by the term \(C(q) \). Second, a larger proportion of minority people in the neighborhood also reduces the incentives to make special effort to find a spouse in a segregated marital pool, as minority people are already more likely to be found in the common marital pool. Both channels reduce therefore the incentives for socialization efforts \(\tau \), which, in turn, tends to reduce the probability of homogamy \(\pi \).

It is also interesting to observe that, for the choice of socialization effort and probability of homogamy, identity and neighborhood segregation (as reflected by \(q \)) are substitutes. More precisely, the marginal effect of identity on minority homogamy tends to be reduced the more segregated the neighborhood (i.e., the larger is \(q \)).

This discussion can be summarized as follows: (i) *The probability of marital segregation is increasing in the intensity of identity while the effect of neighborhood segregation is ambiguous*, (ii) *Identity and neighborhood segregation are substitutes for homogamy.*

Under *cultural conformity*, instead, the first order conditions of the model are given by:

\[
\nu = \pi cq \tag{21}
\]

\[
\pi = q + \frac{C}{\alpha}q(1-q)^2\nu \tag{22}
\]

Again, simple conclusions can be drawn from these equations. Consider first (21). In that case, the larger the proportion \(q \) of minority members and the more segregated the neighborhood, the higher \(C(q) \). Similarly, the larger the probability \(\pi \) of homogamous marriage, the larger the expected benefits from identity, and hence the more intense is identity formation. Again the sign of the cross derivative is interesting. Marital segregation (as reflected by \(\pi \)) and neighborhood segregation (as reflected by \(q \)), under cultural conformity, are complements in terms of identity formation. In other words, the marginal effect of marital segregation on identity formation is larger, the more segregated the neighborhood is (i.e., the larger is \(q \)).

In summary, under cultural conformity: (i) *Identity is increasing with neighborhood segregation and increasing with minority homogamy;* (ii) *Marital segregation and neighborhood segregation are complements for identity formation.*

Consider now equation (22). The more intense is identity formation, the larger is the probability of homogamy. The effect of \(q \) on \(\pi \) is also ambigous and reflects now three effects. First, there is as before the direct effect related to the fact that the larger the proportion of minority people in the neighborhood, the larger the probability of finding a minority spouse in the common pool of potential partners. This effect is illustrated by the first term \(q \) in (22). A second positive effect is illustrated by \(\nu C(q) \) in the second term \((1 - q)^2 \nu C(q)\). The larger \(q \), the larger the conformity psychological gain of social interactions with other minority individuals in the neighborhood and the associated identity formation process that can be effectively expressed in homogamous marriages. This increases the incentives for homogamous marriages and the marginal incentives to marital segmentation (i.e., the socialization effort \(\tau \)).
The last effect of q on π is negative. As in the case of cultural distinction, it reflects simply the fact that a larger q reduces the incentives to make special efforts to find a spouse in a segregated marital pool, as minority people are already likely to be found in the common marital pool. This channel, captured by the expression $(1 - q)^2$ in the second term $(1 - q)^2 \nu C(q)$ of equation (22), decreases the incentives for socialization efforts τ, and tends to reduce the probability of homogamy π.

Finally, identity and neighborhood segregation (as reflected by q) interact in terms of the formation of homogamous minority marriages. The second cross derivative of π with respect to ν and q has the sign of

$$\frac{d}{dq} \{ (1 - q)^2 C(q) \},$$

which is, in general, ambiguous. When $C(0) = 0$, namely when identity formation gains are very small for small minority populations, it is easy to see that

$$\frac{d}{dq} \{ (1 - q)^2 C(q) \} > 0$$

for small enough values of q. In that case, neighborhood segregation and identity are complements for homogamy.

We conclude that: (i) The probability of marital segregation is increasing in the intensity of identity while the effect of neighborhood segregation is ambiguous; (ii) For small enough minority groups, identity intensity and neighborhood segregation are complements for homogamy.

From the first order conditions of the cultural distinction and the cultural conformity models, it clearly appears that the distinctive characteristics of the cultural distinction model are:

1. ν is decreasing in q, for q large; and
2. $\frac{\partial^2 \pi}{\partial \nu \partial q} < 0$.

The reader might want to conclude that these are the characteristics of cultural distinction we are identifying in the data.

4.6 On the endogeneity of q once again

In the previous section, we document that the data favor the endogenous identity model over the endogenous location one. The endogenous identity model, in turn, postulate an exogenous q. Observe that q is exogenous for our purposes even if respondents do choose the neighborhood in which they reside as long as their choices do not depend on the ethnic composition of the neighborhood. In this section, we offer some evidence to support the exogeneity of q. More precisely, we present some facts about the ethnic identity of people whose residential choices are exogenous with respect to ethnic preferences and beliefs that seem to be in line with our analysis. Indeed, the FSEM also contains detailed questions about the residential neighborhood and residential neighborhood preferences. Specifically, it is asked whether the residential neighborhood is “good”, “neither good nor poor”, “poor for being with other people of the respondent’s ethnic group” and if, given a choice, the respondent would like to
move out of this area or would prefer to stay there. The sample of people declaring that the residential area is poor for being with other people of their own ethnic group and who prefer to stay are those for which the residential choice can be considered as exogenous with respect to ethnic preferences and beliefs. However, we cannot run our analysis on this sub-sample because the detailed questions about neighborhood and about ethnic identity are asked to different individuals. This is a consequence of the FSEM design. Specifically, in the FSEM sample design, in each ethnic minority household, up to two adults were selected at random to answer questions about themselves. Because the number of questions to be asked would have made the interview too long if everybody had been asked all of the possible questions, two versions of the questionnaire were used, which contain different levels of detail on the different topics. Our analysis is run on the sample of individuals who answer to the questionnaire with detailed questions on self and culture. Nevertheless, we can use the respondents to the other questionnaire to provide some facts about the relationship between neighborhood preferences and one indicator of ethnic identity. In fact, the alternative questionnaire asks whether the respondents “strongly agree”, “agree”, “neither agree nor disagree”, “disagree or disagree strongly” with the statement “people of Black-Caribbean and Asian origin should try to preserve as much as possible of their culture and way of life”. Therefore, we select those individuals for which \(q \) can be considered as exogenous and inspect the distribution of those declaring to strongly agree to the previous statement, i.e. those with a strong ethnic identity, across neighborhood classes. Evidence in contrast with our analysis would be the findings of large fractions of people with high identity in more segregated neighborhood, thus pointing towards a cultural conformity behavioral mechanism. On the contrary, we find the picture illustrated in Table 4. Because of our criterion in identifying individuals with exogenous location, the majority of people (63%) live in highly mixed neighborhood (\(q < 1.99 \)). The interesting fact is that almost 40% of them declare having an extremely marked ethnic identity and this percentage decreases, the more the neighborhood is segregated. Therefore even in this exercise, where the neighborhood can be taken as exogenous, does not seem to show signs that strong ethnic identity are fostered in more segregated neighborhoods.

\[\text{[Insert Table 4 here]}\]

4.7 Simulations

We now perform a series of simulations, using the estimates of our best model, the endogenous identity model restricted to cultural distinction, to predict ethnic integration, that is, identity and homogamy as a function of neighborhood composition and of “time spent in the UK” (identified as “age” for second generation individuals). More precisely, our analysis suggests that ethnic identities might be more intense in mixed rather than in segregated neighborhood. The additional question that we seek to investigate is the role played by neighborhood composition when the evolution of time of ethnic identity is considered, in particular distinguishing between first and second generations of immigrants.

Figures 4a and 4b show the predicted identity and homogamy values as a function of time spent

32 In single adult households, the questionnaire was assigned at random.
in the UK for different generations. We can see that there is a tendency toward ethnic integration, which is particularly pronounced for the second generation, in particular for homogamy.

[Insert Figures 4a and 4b here]

We then simulate those patterns when setting neighborhood composition equals to the sample minimum, average and maximum levels. The results are reported in Figures 5a and 5b, for identity and homogamy variables, respectively. Although the starting values are always greater in mixed neighborhood (with the exception of homogamy for second generations), the pictures show a steeper decreasing trend over time in mixed neighborhood rather than in segregated neighborhood. This is true for both identity and homogamy variables and for both generations.

[Insert Figures 5a and 5b here]

5 Is Muslim identity different?

A large debate has recently emerged in the popular press about the alleged specificity of Muslim immigrants with regard to the strength of their identity and their (lack of) assimilation tendencies. Several of the ethnic groups for which we have data have in fact a significant Muslim population; notably Pakistani and Bangladeshi are predominantly Muslim, while Indians and African-Asian have substantial Muslim minorities. Furthermore, the FNSEM survey contains a direct question asking the respondent to identify his or her religious faith. In this section, we exploit therefore our data to address directly the alleged Muslim specificity issue.

To this end, we repeat our analysis on the restricted sample of Muslim respondents (roughly the 43 percent of the whole sample). We maintain however the distribution by ethnic group as the relevant neighborhood composition variable in the identity formation and socialization processes.

Tables 5a and 5b report our results. They are not qualitatively different from those in Tables 3a and 3b. The endogenous identity with cultural distinction model remains the mechanism that is more likely to represent the observed evidence. Indeed, the estimate of γ_2 is still positive and the maximized likelihood value with the constraints imposed by the cultural distinction model is higher than the value obtained when the likelihood is constrained accordingly to the cultural conformity model. Such a finding indicates that the relationship between ethnic assimilation effort and ethnic neighborhood composition is not different for Muslims than for other minorities. In other words, we still find evidence in line with the possibility that ethnic identity and socialization effort are more intense in mixed rather than in segregated neighborhoods when only the Muslim subsample is considered.

[Insert Tables 5a and 5b here]

33 This position has been taken, in a rather extreme form, by several nationalist parties, e.g., the Lega in Italy, the Front National in France. But similar though less extreme positions have been taken by center-right parties essentially all over Europe. A clear example of the inflamed rhetoric that often accompanies this debate is Fallaci (2006). See also the discussion in Sheikh (2005) for Muslims in the US and Bisin et al. (2008a) for Muslims in the UK.
If we now look Figures 6a and 6b, and 7a and 7b, where we perform the same exercises as in Figures 4a and 4b, and 5a and 5b, we find roughly the same results. Indeed, we find that, for the subsample of Muslims, there is a tendency toward ethnic integration, which is particularly pronounced for the second generation, in particular for homogamy. We also find that strong ethnic identity decreases over time in mixed neighborhood rather than in segregated neighborhood. Evidence of slower integration for Muslims, both first and second generation, is, however, apparent from these figures.

[Insert Figures 6a, 6b, 7a, and 7b here]

6 Discussion and policy implications

In this paper, we find that: (i) in mixed neighborhoods, ethnic identity is much stronger than in homogenous neighborhoods, suggesting cultural distinction among ethnic minorities in England; (ii) there is a tendency toward ethnic integration, which is particularly pronounced for the second generation, in particular for homogamy marriage; (iii) there are no significant differences in terms of identity between Muslims and non-Muslims.

In light of these results, our analysis suggests that integration policies favoring the formation of mixed neighborhoods, fearing the effects of geographical segregation, are possibly minimally effective if not counterproductive. In this respect, our results could explain why the different integration policies implemented in the US and in Europe seem to have small effects because of the possible perverse effects of integration policies which might trigger more intense ethnic identities. Indeed, mixing policies, which include school busing, Affirmative Action in public schools and in the workplace, forced integration of public housing, and laws barring discrimination in housing and employment, consistently with the view that identity formation mechanisms are driven by cultural distinction, have often had limited effects and are even being at times opposed by the same minority groups in whose interest they have been pursued (see e.g., Jacoby, 1998, and Thernstrom and Thernstrom, 2002). James Coleman, for instance, fifteen years after the Coleman Report in 1966, which originally proposed busing, admitted that, “the assumption that busing would improve achievement of lower-class black children has now been shown to be fiction;” (cited in Jacoby, 1999). But Moving to Opportunity (MTO) programs in the United States that relocates families from high- to low-poverty neighborhoods (and from racially segregated to mixed neighborhoods) also have had positive but arguably small effects (see, in particular, Ludwig, Duncan, and Hirschfield, 2001, and Kling, Ludwig, 2002). See, for example, Benabou et al. (2009) for an evaluation of the ZEP and Brubaker (2001) who compares the different ways of assimilating ethnic minorities in France, Germany, and the US.

34 For instance, the creations of Zones of Educational Priority (ZEP) and the rehabilitation of bleak housing projects in immigrant neighborhoods under the guise of urban policy (‘politique de la ville’) in France had very limited effects. See, for example, Benabou et al. (2009) for an evaluation of the ZEP and Brubaker (2001) who compares the different ways of assimilating ethnic minorities in France, Germany, and the US.

35 See Lang (2007) for an overview of these policies in the U.S.

36 The failure of the busing and other civil right policies is certainly also due to the whites’ flying from de-segregated schools and neighborhoods.
and Katz, 2005). In Europe different integration policies and ambitious social programs have been implemented in urban areas where immigrants live but they have had also limited results. This is the case, for instance, for the creations of Zones of Educational Priority (ZEP) and for the rehabilitation of bleak housing projects in immigrant neighborhoods under the guise of urban policy (‘politique de la ville’) in France. Finally, even racially integrated schools have recently lost much of their appeal in African-American communities (see e.g., the ethnographic study of Gussin Paley, 1995, for schooling).

Far from supporting policies to establish segregated neighborhoods, in this paper, we simply document that the effect of mixed neighborhood on identity formation and socialization might be perverse, because of cultural distinction.

References

Similarly, the Toronto housing program where adults were assigned as children to different residential housing projects (Oreopoulos, 2003) did not give the expected results in terms of education outcomes.

[44] Maddala, G.S. (),

APPENDIX

1. The marriage and identity model

Let us consider the model where both the strength of identity and the type of marriage are choice variables. In the extended model, the ethnic minority minimizes his/her expected cost of interacting with whites, that is:

$$\min_{\nu, \tau} \left\{ -\nu \pi c (\gamma_1 - \gamma_2 q) + c (\gamma_1 - \gamma_2 q) + \frac{1}{2} \alpha \tau^2 + (\gamma_\tau x_\tau) \tau + \frac{1}{2} \nu^2 + (\gamma_\nu x_\nu) \nu \right\}$$

where the cost $C(q) = c \psi(q)$, with $\psi(q) = \gamma_1 - \gamma_2 q$. In the cultural conformity model, $\gamma_1 = 0$ and $\gamma_2 = -1$, while, in the cultural distinction model, $\gamma_1 = \gamma_2 = 1$. Solving this program leads to:

$$\nu = [c (\gamma_1 - \gamma_2 q)] \pi - \gamma_\nu x_\nu$$ \hspace{1cm} (23)

$$\tau = \frac{\nu (1 - q) [c (\gamma_1 - \gamma_2 q)] - \gamma_\tau x_\tau}{\alpha}$$ \hspace{1cm} (24)

Now using the fact that $\tau = (\pi - q) / (1 - q)$ (from (2)), equation (24) can be written as:

$$\pi = q + \frac{\nu}{\alpha} (1 - q)^2 [c (\gamma_1 - \gamma_2 q)] - \frac{(1 - q)}{\alpha} \gamma_\tau x_\tau$$ \hspace{1cm} (25)

Observe that (23) and (25) are equivalent to (9) and (10) for the extended model. We would like to express ν and π as a function of q only. By combining these equations, we obtain:

$$\nu^* = \frac{\alpha [c (\gamma_1 - \gamma_2 q)] q - (1 - q) [c (\gamma_1 - \gamma_2 q)] \gamma_\tau x_\tau - \alpha \gamma_\nu x_\nu}{\alpha - [c (\gamma_1 - \gamma_2 q)]^2 (1 - q)^2}$$ \hspace{1cm} (26)

$$\pi^* = \frac{\alpha q - (1 - q) \gamma_\tau x_\tau - [c (\gamma_1 - \gamma_2 q)] (1 - q)^2 \gamma_\nu x_\nu}{\alpha - [c (\gamma_1 - \gamma_2 q)]^2 (1 - q)^2}$$ \hspace{1cm} (27)

We need therefore to identify $\gamma_1, \gamma_2, c, \alpha, \gamma_\nu$ and γ_τ. A simple informal argument for the identification of these parameters is as follows. For each ethnic minority, we observe q (the proportion of ethnic minorities living in his/her neighborhood), x_ν (the individual’s characteristics links to the cost of identity choice) and x_τ (the individual’s characteristics links to the cost of the type of marriage choice), the realization of $I \in \{0, 1\}$ (i.e. whether he/she has a strong identity or not), and the realization of $H \in \{0, 1\}$ (i.e. whether he/she is married to someone from the same ethnic group). Since $Pr\{I = 1\} = \nu$ and $Pr\{H = 1\} = \pi$, we identify ν with the fraction of individual with identity $I = 1$ and π with the fraction of agents with homogamous marriage $H = 1$. The parameters γ_1, γ_2, c and α are identified out of variations in q, from equations (26) and (27). Variations in x_ν and x_τ identify instead γ_ν and γ_τ. This is even the case if a single vector x enters in the determination of ν and π, that is, $x_\nu = x_\tau = x$. For given q, c, γ_1, γ_2, in fact, in this case γ_ν and γ_τ solve:

$$k_\nu = - \frac{\alpha \gamma_\nu + c (\gamma_1 - \gamma_2 q) (1 - q) \gamma_\tau}{\alpha - (1 - q)^2 c^2 (\gamma_1 - \gamma_2 q)^2}$$
\[k_\pi = \frac{-c(\gamma_1 - \gamma_2)q(1-q)^2\gamma_\nu + (1-q)\gamma_\tau}{\alpha - (1-q)^2c^2(\gamma_1 - \gamma_2)^2} \]

where \(k_\nu \) and \(k_\pi \) are the estimated coefficients of \(x \) in the equations (26) and (27) for \(\nu \) and \(\pi \), respectively, for a given \(q \). It is easy to check that one such solution exists.

2. The marriage and location model

The ethnic minority minimizes his/her expected cost of interacting with whites, that is:

\[
\min_{q,\tau} \left\{ -\nu \pi c (\gamma_1 - \gamma_2)q + c (\gamma_1 - \gamma_2)q + \frac{1}{2}\alpha \tau^2 + (\gamma_\tau x_\tau) \tau + \frac{1}{2}q^2 + (\gamma_q x_q) q \right\}
\]

The first order conditions of this individual’s problem are:

\[
-\nu c [(1 - \tau)(\gamma_1 - \gamma_2) - \pi \gamma_2] - \gamma_2 c + q + \gamma_q x_q = 0
\]

\[-\nu (1 - q) c (\gamma_1 - \gamma_2)q + \alpha \tau + \gamma_\tau x_\tau = 0\]

which, using \(\tau = \frac{\pi - q}{q} \) (from (2)), are equivalent to:

\[
(1 - \pi \nu) c \gamma_2 + \nu \left(\frac{1 - \pi}{1 - q} \right) c (\gamma_1 - \gamma_2)q - q - \gamma_q x_q = 0
\]

\[\nu c (\gamma_1 - \gamma_2)q - \alpha \left(\frac{\pi - q}{1 - q} \right) \gamma_\tau x_\tau = 0\]

Writting this system of equations in terms of \(\nu \) and \(q \) leads to:

\[\nu = \frac{\alpha (\pi - q) + (1 - q) \gamma_\tau x_\tau}{(1 - q)^2 c (\gamma_1 - \gamma_2)q}\]

and \(\pi \) is implicitly determined by the following equation

\[A_e \pi^2 + B_e \pi + D_e = 0\]

where

\[A_e = -\alpha c (\gamma_1 - \gamma_2)\]

\[B_e = \alpha c (\gamma_1 - \gamma_2) (1 + q) + \alpha q (1 - q) c \gamma_2 - (1 - q) c (\gamma_1 - \gamma_2) q - (1 - q) \gamma_2 \gamma_\tau x_\tau\]

\[D_e = (1 - q) c (\gamma_1 - \gamma_2) \gamma_\tau x_\tau - q \alpha c (\gamma_1 - \gamma_2) - (q + \gamma_q x_q + c \gamma_2) (1 - q)^3\]

As a result,

\[\nu = \frac{\alpha (\pi - q) + (1 - q) \gamma_\tau x_\tau}{(1 - q)^2 c (\gamma_1 - \gamma_2)q}\]

and \(\pi \) is implicitly determined by the following equation

\[\pi = -\frac{B_e \pm \sqrt{B_e^2 - 4A_eD_e}}{2A_e}\]

To identify \(\gamma_1, \gamma_2, c, \alpha, \gamma_\nu \) and \(\gamma_\tau \), we can again use the same informal argument as we did above for the marriage and identity model.
Figure 1: Ethnic composition by neighborhood class
Figure 2a: Non linear effect of neighborhood ethnic composition on identity and homogamy - whole sample

![Graph](image1)

Dep. Var. = Importance of religion

Dep. Var. = Homogamy

Figure 2b: Non linear effect of neighborhood ethnic composition on identity and homogamy - Muslim sample

![Graph](image2)

Dep. Var. = Importance of religion

Dep. Var. = Homogamy
Figure 3a: Partial derivative of costs as a function of q - whole sample

Figure 3b: Partial derivative of costs as a function of q - Muslim sample
Figure 4a Predicted Identity as a function of time spent in the UK

Notes to Figures 4a to 7b. Endogenous identity model, cultural distinction, controls at sample average

Figure 4b Predicted Homogamy as a function of time spent in the UK
Figure 5a Predicted Identity as a function of time spent in the UK - i) at minimum q, ii) at average q, iii) at maximal q
Figure 5b Predicted Homogamy as a function of time spent in the UK - i) at minimum q, ii) at average q, iii) at maximal q
Figure 6a Predicted Identity as a function of time spent in the UK- Muslim sub-

![Graph showing predicted identity over time spent in the UK for Muslim subgroups.]

Figure 6b Predicted Homogamy as a function of time spent in the UK- Muslim sub-

![Graph showing predicted homogamy over time spent in the UK for Muslim subgroups.]

Figure 7a Predicted Identity as a function of time spent in the UK - i) at minimum \(q \), ii) at average \(q \), iii) at maximal \(q \) - Muslim sub-sample
Figure 7b Predicted Homogamy as a function of time spent in the UK - i) at minimum q, ii) at average q, iii) at maximal q - Muslim sub-sample
Table 1: Ethnic Identity, Homogamy and Ethnic Neighborhood Composition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward density of own ethnic groups</td>
<td>0.0461*** (0.0156)</td>
<td>0.1081*** (0.0265)</td>
</tr>
<tr>
<td>Ward density of own ethnic groups^2</td>
<td>-0.0013*** (0.0004)</td>
<td>-0.0019** (0.0008)</td>
</tr>
<tr>
<td>Age at arrival</td>
<td>0.0055 (0.0049)</td>
<td>0.0292* (0.0176)</td>
</tr>
<tr>
<td>Age</td>
<td>0.4078* (0.2396)</td>
<td>0.1112*** (0.0339)</td>
</tr>
<tr>
<td>Age^2</td>
<td>-0.0013*** (0.0004)</td>
<td>-0.0019** (0.0008)</td>
</tr>
<tr>
<td>Female</td>
<td>0.0913 (0.0882)</td>
<td>0.0272 (0.0896)</td>
</tr>
<tr>
<td>Born in the UK</td>
<td>-6.5322* (3.5163)</td>
<td>-0.2273 (2.9235)</td>
</tr>
<tr>
<td>Arranged marriage</td>
<td>0.4712*** (0.0960)</td>
<td>1.0410*** (0.3494)</td>
</tr>
<tr>
<td>Discrimination</td>
<td>0.1505 (0.1312)</td>
<td>0.0733 (0.1877)</td>
</tr>
<tr>
<td>Children</td>
<td>0.0562 (0.1537)</td>
<td>0.0434 (0.1874)</td>
</tr>
<tr>
<td>Years since arrival</td>
<td>-0.0294 (0.0196)</td>
<td>-0.0245 (0.0363)</td>
</tr>
<tr>
<td>Years since arrival^2</td>
<td>0.0005 (0.0004)</td>
<td>-0.0014* (0.0007)</td>
</tr>
<tr>
<td>British degree</td>
<td>0.0550 (0.1133)</td>
<td>-0.6510*** (0.1475)</td>
</tr>
<tr>
<td>British high education</td>
<td>-0.4770*** (0.1285)</td>
<td>-0.0833 (0.1612)</td>
</tr>
<tr>
<td>Foreign education</td>
<td>-0.1913* (0.0978)</td>
<td>0.0639 (0.1717)</td>
</tr>
<tr>
<td>Employed</td>
<td>-0.2961*** (0.0999)</td>
<td>0.1892 (0.1572)</td>
</tr>
<tr>
<td>Manager</td>
<td>-0.1726 (0.2373)</td>
<td>-0.0637 (0.2829)</td>
</tr>
<tr>
<td>Employee</td>
<td>-0.0834 (0.0933)</td>
<td>-0.3205* (0.1695)</td>
</tr>
<tr>
<td>House owner</td>
<td>-0.0946 (0.1093)</td>
<td>0.5326*** (0.1577)</td>
</tr>
<tr>
<td>English spoken at home</td>
<td>-0.2996** (0.1360)</td>
<td>0.1892 (0.1849)</td>
</tr>
<tr>
<td>English spoken at work</td>
<td>0.0745 (0.1232)</td>
<td>0.3815** (0.1904)</td>
</tr>
<tr>
<td>English spoken with friends</td>
<td>-0.1136 (0.1102)</td>
<td>0.3065* (0.1772)</td>
</tr>
<tr>
<td>Ward density of all ethnic groups</td>
<td>-0.0019 (0.0034)</td>
<td>0.0171*** (0.0063)</td>
</tr>
<tr>
<td>Ward unemployment rate</td>
<td>0.0438*** (0.0118)</td>
<td>-0.0171 (0.0191)</td>
</tr>
<tr>
<td>South</td>
<td>-0.1248 (0.0948)</td>
<td>-0.0089 (0.1375)</td>
</tr>
<tr>
<td>Observations</td>
<td>1559</td>
<td>1559</td>
</tr>
<tr>
<td>Likelihood</td>
<td>-1342.0755</td>
<td>-1152.1474</td>
</tr>
</tbody>
</table>

Notes. Bivariate probit model estimation results. *** p<0.01, ** p<0.05, * p<0.1
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward density of own ethnic groups</td>
<td>0.0151</td>
<td>0.1069***</td>
<td>0.0166</td>
<td>0.1310***</td>
<td>0.0138</td>
<td>0.1131***</td>
</tr>
<tr>
<td></td>
<td>(0.0210)</td>
<td>(0.0268)</td>
<td>(0.0205)</td>
<td>(0.0315)</td>
<td>(0.0220)</td>
<td>(0.0344)</td>
</tr>
<tr>
<td>Ward density of own ethnic groups^2</td>
<td>-0.0004</td>
<td>-0.0019**</td>
<td>-0.0005</td>
<td>-0.0026***</td>
<td>-0.0002</td>
<td>-0.0026**</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>(0.0008)</td>
<td>(0.0006)</td>
<td>(0.0010)</td>
<td>(0.0006)</td>
<td>(0.0011)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward density of own ethnic groups</td>
<td>0.0419***</td>
<td>0.1120***</td>
<td>0.0431***</td>
<td>0.1393***</td>
<td>0.0356**</td>
<td>0.1156***</td>
</tr>
<tr>
<td></td>
<td>(0.0157)</td>
<td>(0.0268)</td>
<td>(0.0161)</td>
<td>(0.0313)</td>
<td>(0.0172)</td>
<td>(0.0342)</td>
</tr>
<tr>
<td>Ward density of own ethnic groups^2</td>
<td>-0.0011**</td>
<td>-0.0020**</td>
<td>-0.0011**</td>
<td>-0.0028***</td>
<td>-0.0011**</td>
<td>-0.0028***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0008)</td>
<td>(0.0005)</td>
<td>(0.0010)</td>
<td>(0.0005)</td>
<td>(0.0011)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward density of own ethnic groups</td>
<td>0.0420***</td>
<td>0.0999***</td>
<td>0.0437**</td>
<td>0.1247***</td>
<td>0.0346*</td>
<td>0.1027***</td>
</tr>
<tr>
<td></td>
<td>(0.01562)</td>
<td>(0.0268)</td>
<td>(0.0175)</td>
<td>(0.0316)</td>
<td>(0.0187)</td>
<td>(0.0346)</td>
</tr>
<tr>
<td>Ward density of own ethnic groups^2</td>
<td>-0.0007</td>
<td>-0.0016*</td>
<td>-0.0010**</td>
<td>-0.0023**</td>
<td>-0.0008</td>
<td>-0.0024**</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0008)</td>
<td>(0.0005)</td>
<td>(0.0010)</td>
<td>(0.0005)</td>
<td>(0.0011)</td>
</tr>
</tbody>
</table>

Control set for all specifications

- Individual variables: no, no, yes, yes, yes, yes
- Contextual variables: no, no, no, yes, yes, yes

Notes. Bivariate probit model estimation results. *** p<0.01, ** p<0.05, * p<0.1
Table 3a: Maximum likelihood results
-Structural approach-
(1) Unconstrained model, (2) Cultural distinction model

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0658***</td>
<td>0.5408*</td>
<td>0.9058***</td>
<td>0.4542***</td>
<td>0.8033***</td>
<td>0.5890***</td>
</tr>
<tr>
<td></td>
<td>(0.0136)</td>
<td>(0.3001)</td>
<td>(0.1079)</td>
<td>(0.1867)</td>
<td>(0.1176)</td>
<td>(0.0910)</td>
</tr>
<tr>
<td>Alpha</td>
<td>-5.4493</td>
<td>2.0174</td>
<td>2.1743***</td>
<td>1.0347</td>
<td>1.2111***</td>
<td>0.9553***</td>
</tr>
<tr>
<td></td>
<td>(3.0135)</td>
<td>(7.3598)</td>
<td>(0.4494)</td>
<td>(0.8250)</td>
<td>(0.2114)</td>
<td>(0.2454)</td>
</tr>
<tr>
<td>gamma1</td>
<td>13.9730***</td>
<td>-4.9059</td>
<td>2.9126***</td>
<td>-2.0702</td>
<td>-2.3301***</td>
<td>-1.8608***</td>
</tr>
<tr>
<td></td>
<td>(1.9789)</td>
<td>(21.1685)</td>
<td>(0.3914)</td>
<td>(1.5951)</td>
<td>(0.2691)</td>
<td>(0.3686)</td>
</tr>
<tr>
<td>gamma2</td>
<td>0.2819 ***</td>
<td>-</td>
<td>0.0156</td>
<td>-</td>
<td>0.3900***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0462)</td>
<td></td>
<td>(0.0253)</td>
<td></td>
<td>(0.1159)</td>
<td></td>
</tr>
</tbody>
</table>

Control set

<table>
<thead>
<tr>
<th>Individual variables</th>
<th>no</th>
<th>no</th>
<th>yes</th>
<th>Yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual variables</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>No</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Constrained likelihood

| Cultural conformity model | -2033.426 | -2019.004 | -2027.065 |

Table 3b: Maximum likelihood results
-Structural approach-
(1) Unconstrained model, (2) Cultural distinction model

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>3.6349***</td>
<td>10.5065</td>
<td>-2.2563</td>
<td>0.5377</td>
<td>0.6768***</td>
<td>0.6905***</td>
</tr>
<tr>
<td></td>
<td>(0.0604)</td>
<td>(12.0523)</td>
<td>(1.3993)</td>
<td>(0.3007)</td>
<td>(0.0145)</td>
<td>(0.0981)</td>
</tr>
<tr>
<td>alpha</td>
<td>2.4432***</td>
<td>8.5981</td>
<td>0.9979***</td>
<td>2.2542***</td>
<td>1.7376***</td>
<td>1.5077***</td>
</tr>
<tr>
<td></td>
<td>(0.0114)</td>
<td>(218.3171)</td>
<td>(0.0042)</td>
<td>(1.1085)</td>
<td>(0.0211)</td>
<td>(0.1128)</td>
</tr>
<tr>
<td>gamma1</td>
<td>-0.1224**</td>
<td>1.6419</td>
<td>1.9496**</td>
<td>0.7528*</td>
<td>0.5209***</td>
<td>1.5581***</td>
</tr>
<tr>
<td></td>
<td>(0.0609)</td>
<td>(18.5896)</td>
<td>(0.7959)</td>
<td>(0.3402)</td>
<td>(0.0109)</td>
<td>(0.0461)</td>
</tr>
<tr>
<td>gamma2</td>
<td>0.9123***</td>
<td>-</td>
<td>-0.0015</td>
<td>-</td>
<td>1.5025***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0479)</td>
<td></td>
<td>0.0031</td>
<td></td>
<td>(0.0233)</td>
<td></td>
</tr>
</tbody>
</table>

Control set

<table>
<thead>
<tr>
<th>Individual variables</th>
<th>no</th>
<th>no</th>
<th>yes</th>
<th>Yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual variables</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>No</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Constrained likelihood

<p>| Cultural defense model | -8564.976 | -9830.328 | -9938.35 |
| Cultural conformity model | -12268.60 | -10096.61 | -13160.74 |</p>
<table>
<thead>
<tr>
<th></th>
<th>(q)</th>
<th>1.99</th>
<th>3.5</th>
<th>7.5</th>
<th>12.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residents</td>
<td></td>
<td>0.63</td>
<td>0.17</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>of which</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High identity residents</td>
<td></td>
<td>0.37</td>
<td>0.47</td>
<td>0.40</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 4: Distribution of people with exogenous \(q \) by neighbourhood type and ethnic identity
Table 5a: Maximum likelihood results
- Structural approach -
(1) Unconstrained model, (2) Cultural distinction model

<table>
<thead>
<tr>
<th>MUSLIM SUB-SAMPLE</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0.3211</td>
<td>0.1509</td>
<td>0.1905***</td>
<td>0.0831***</td>
<td>0.9416***</td>
<td>0.6750***</td>
</tr>
<tr>
<td></td>
<td>(0.3038)</td>
<td>(0.2603)</td>
<td>(0.0237)</td>
<td>(0.0084)</td>
<td>(0.1978)</td>
<td>(0.0957)</td>
</tr>
<tr>
<td>alpha</td>
<td>5.3463</td>
<td>1.6258</td>
<td>2.3255***</td>
<td>2.3991***</td>
<td>1.3533***</td>
<td>1.3666***</td>
</tr>
<tr>
<td></td>
<td>(54.6523)</td>
<td>(6.3470)</td>
<td>(0.4012)</td>
<td>(0.3192)</td>
<td>(0.3565)</td>
<td>(0.2933)</td>
</tr>
<tr>
<td>gamma1</td>
<td>-14.6787</td>
<td>-15.2402</td>
<td>1.6581***</td>
<td>1.6810***</td>
<td>-2.2249***</td>
<td>-1.5582***</td>
</tr>
<tr>
<td></td>
<td>(78.6984)</td>
<td>(31.0822)</td>
<td>(0.1827)</td>
<td>(0.4018)</td>
<td>(0.4624)</td>
<td>(0.5604)</td>
</tr>
<tr>
<td>gamma2</td>
<td>-0.00179</td>
<td>-</td>
<td>0.4935***</td>
<td>-</td>
<td>0.1522**</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.4587)</td>
<td></td>
<td>(0.0308)</td>
<td></td>
<td>(0.0696)</td>
<td></td>
</tr>
</tbody>
</table>

Control set

<table>
<thead>
<tr>
<th>Individual variables</th>
<th>no</th>
<th>no</th>
<th>yes</th>
<th>Yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual variables</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>No</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Constrained likelihood

- Cultural defense model -811.745 -794.6653 -791.9213
- Cultural conformity model -823.684 -832.4669 -815.3603

Table 5b: Maximum likelihood results
- Structural approach -
(1) Unconstrained model, (2) Cultural distinction model

<table>
<thead>
<tr>
<th>MUSLIM SUB-SAMPLE</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>4.43097***</td>
<td>4.6382</td>
<td>-1.2623***</td>
<td>1.4321***</td>
<td>0.2976***</td>
<td>0.9186***</td>
</tr>
<tr>
<td></td>
<td>(0.5091)</td>
<td>(92.4344)</td>
<td>(0.0439)</td>
<td>(0.1990)</td>
<td>(0.0751)</td>
<td>(0.1781)</td>
</tr>
<tr>
<td>alpha</td>
<td>16.3128***</td>
<td>23.7373</td>
<td>3.1102***</td>
<td>2.3504***</td>
<td>3.8396***</td>
<td>1.3373***</td>
</tr>
<tr>
<td></td>
<td>(0.9763)</td>
<td>(13483.0034)</td>
<td>(0.1262)</td>
<td>(0.5479)</td>
<td>(0.0492)</td>
<td>(0.2689)</td>
</tr>
<tr>
<td>gamma1</td>
<td>2.0658***</td>
<td>-18.4402</td>
<td>2.0234***</td>
<td>0.3239</td>
<td>0.3921***</td>
<td>1.8843***</td>
</tr>
<tr>
<td></td>
<td>(0.5572)</td>
<td>(9812.577)</td>
<td>(0.0562)</td>
<td>(0.3194)</td>
<td>(0.0408)</td>
<td>(0.0100)</td>
</tr>
<tr>
<td>gamma2</td>
<td>-2.5708***</td>
<td>-</td>
<td>-1.4948***</td>
<td>-</td>
<td>1.6885***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.5727)</td>
<td></td>
<td>(0.06141)</td>
<td></td>
<td>(0.0899)</td>
<td></td>
</tr>
</tbody>
</table>

Control set

<table>
<thead>
<tr>
<th>Individual variables</th>
<th>no</th>
<th>No</th>
<th>yes</th>
<th>Yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contextual variables</td>
<td>no</td>
<td>No</td>
<td>no</td>
<td>No</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Constrained likelihood

- Cultural defense model -8104.676 -2854.586 -2882.496
- Cultural conformity model -11050.31 -3231.863 -3462.099
DATA APPENDIX

Table A1: Description of data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Explanation of the variable</th>
<th>Mean</th>
<th>St.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance of religion</td>
<td>In the text</td>
<td>0.61</td>
<td>0.49</td>
</tr>
<tr>
<td>Homogamy</td>
<td>In the text</td>
<td>0.92</td>
<td>0.27</td>
</tr>
<tr>
<td>Ward density of own ethnicity</td>
<td>In the text</td>
<td>13.60</td>
<td>10.76</td>
</tr>
<tr>
<td>Individual controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at arrival</td>
<td>Respondent's age in years at arrival in the UK</td>
<td>21.15</td>
<td>10.38</td>
</tr>
<tr>
<td>Age</td>
<td>Respondent's age in years</td>
<td>41.37</td>
<td>13.09</td>
</tr>
<tr>
<td>Female</td>
<td>Dummy variable taking value one if the respondent is female.</td>
<td>0.47</td>
<td>0.50</td>
</tr>
<tr>
<td>Born in the UK</td>
<td>Dummy variable taking value one if the respondent is born in the UK</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Arranged Marriage</td>
<td>Dummy variable taking value one if the husband/wife of the respondent has been chosen by the parents.</td>
<td>0.37</td>
<td>0.48</td>
</tr>
<tr>
<td>Discrimination</td>
<td>Dummy variable taking value one if the respondent had been insulted or threatened in the last year for reasons to do with race or colour.</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Children</td>
<td>Dummy variable taking value one if the respondent has children.</td>
<td>0.91</td>
<td>0.28</td>
</tr>
<tr>
<td>Years since arrival</td>
<td>Number of years since respondent's arrival in the UK.</td>
<td>20.22</td>
<td>11.42</td>
</tr>
<tr>
<td>British degree</td>
<td>Dummy variable taking value one if the respondent has a UK degree.</td>
<td>0.21</td>
<td>0.41</td>
</tr>
<tr>
<td>British high education</td>
<td>Dummy variable taking value one if the respondent has a UK O-level (or equivalent) or above qualification.</td>
<td>0.16</td>
<td>0.37</td>
</tr>
<tr>
<td>Foreign education</td>
<td>Dummy variable taking value one if the respondent has a qualification achieved abroad.</td>
<td>0.28</td>
<td>0.45</td>
</tr>
<tr>
<td>Employed</td>
<td>Dummy variable taking value one if the respondent is employed.</td>
<td>0.47</td>
<td>0.50</td>
</tr>
<tr>
<td>Manager</td>
<td>Dummy variable taking value one if the respondent is a manager.</td>
<td>0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>Employee</td>
<td>Dummy variable taking value one if the respondent is an employee.</td>
<td>0.57</td>
<td>0.50</td>
</tr>
<tr>
<td>House owner</td>
<td>Dummy variable taking value one if the household owns (or is buying) the accommodation</td>
<td>0.76</td>
<td>0.43</td>
</tr>
<tr>
<td>Contextual controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English spoken at home</td>
<td>Dummy variable taking value one if English is the language normally spoken at home with family members (who are older) by the respondent.</td>
<td>0.12</td>
<td>0.33</td>
</tr>
<tr>
<td>English spoken with friends</td>
<td>Dummy variable taking value one if English is the language normally spoken with friends (outside work) by the respondent.</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>English spoken at work</td>
<td>Dummy variable taking value one if English is the language normally spoken at work by the respondent.</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>Ward density of all ethnic groups</td>
<td>Percentage of residents of any ethnic group in the ward</td>
<td>33.63</td>
<td>21.01</td>
</tr>
<tr>
<td>Ward unemployment rate</td>
<td>Ward unemployment rate</td>
<td>14.38</td>
<td>5.24</td>
</tr>
</tbody>
</table>