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Abstract

We investigate whether temporal preferences expressed as a sum of discounted

consumption utilities can be derived from a welfare representations in the form of a

sum of discounted total utilities. We find that a consumption-based representation

in the usual exponential form corresponds to one-period “altruism” towards one’s

future selves: the current self gives positive weight to her total utility in the next pe-

riod, and weight zero to her total utility in all subsequent periods. We also find that

a consumption-based representation in the quasi-exponential (β, δ)-form suggested

by Phelps and Pollak (1968) and Laibson (1997) correspond to quasi-exponential

altruism towards one’s future selves. For β = 1/2, the welfare weights are exponen-

tial, while for β < 1/2 they are biased in favor of the current self, and for β > 1/2

in favor of one’s future selves. More generally, we establish a functional equation

which relates welfare weights to consumption-utility weights. We also postulate five

desiderata for consumption-utility weights. None of the usual formalizations satisfy

all desiderata, but we propose a simple formalization which does.
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1 Introduction

Time preferences have come into the foreground again in the economics literature, this time

in macroeconomics. This recent strand of the literature is focused on non-exponential or

“hyperbolic” preferences, which may lead to dynamic consistency problems, see for ex-

ample Laibson (1997), Barro (1999), Krusell and Smith (1999) and Harris and Laibson

(2001). This phenomenon was noted already by Ramsey (1928) and analyzed by Strotz

(1956), Pollak (1968), Phelps and Pollak (1968), and Peleg and Yaari (1973). In all these

studies, preferences are represented by utility functions in the form of a sum of discounted

instantaneous utilities from consumption. We here analyze the question whether such pref-

erences are consistent with the assumption of forward-looking agents who care about their

future total utility, not only about their future instantaneous utility from consumption.

In order to high-light the dynamic consistency issue, consider a decision-maker who is

to choose a sequence x = (x0, x1, x2, ...) of consumption vectors xt to be consumed at dates

t = 0, 1, 2, .... In Phelps and Pollak (1968) and Laibson (1997), the consumer’s preferences

at any decision time τ are represented by a utility function of the form

Uτ (x) = u (xτ ) + β
∞∑

t=1

δtu (xτ+t) , (1)

where β > 0 and 0 < δ < 1. The term u (xt) is interpreted as the instantaneous utility

of consumption in period t. Dynamic inconsistency may arise if β �= 1: a sequence

x∗ = (x∗0, x
∗
1, x

∗
2, ...) which maximizes U0 need not maximize Uτ for some τ > 0, given the

“history” x∗0, x
∗
1, x

∗
2, ..., x

∗
τ−1 preceding period τ . The reason is simple: once a future period

τ has become the present, the rate of substitution between the instantaneous utilities in

periods τ +1 and τ has changed from its original value δ to the new value βδ. We will call

discount functions in the above (β, δ)-form quasi-exponential, with exponential discounting

as the special case β = 1.

In the cited studies, the function Uτ is decision theoretic in the usual sense of revealed

preferences: it determines the actual choice made by the consumer in period τ (with

due regard to the presence or absence of commitment possibilities). From a normative

viewpoint, Uτ (x) represents the welfare of the individual in period τ : the higher this

function value is, the “better off” is the individual in that period. Current welfare (or

“total utility”), so defined, does not stem only from current consumption but also from

(the anticipation of) the stream of future consumption. But, by assumption, this is true

for the welfare in all future periods as well. In particular, the welfare in a future decision

period τ ′ > τ will in part depend on (anticipation in period τ ′ of) consumption in periods

t > τ ′. However, formula (1) does not explicitly account for future welfare. For example,

a marginal increase in consumption two periods ahead from some decision period τ by
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an infinitesimal amount ε > 0 will add βδ2εu′ (xτ+2) to current welfare, but it will also

add βδεu′ (xτ+2) to welfare in the next period - an effect not explicitly accounted for in

equation (1).

We argue that a rational and forward-looking decision maker should respect the pref-

erences of his or her future selves. In particular, if also future selves are forward-looking,

then this should not be neglected by the current self.1 Alternatively phrased: a rational

decision maker who cares about his or her own welfare in future periods should strive to

maximize some increasing function of her welfare in those periods. By contrast, an individ-

ual who in each period strives to maximize Uτ , as defined in equation (1), appears to suffer

from second-order myopia: she cares today about her future instantaneous utility from

consumption, but not about her future total utility (which also includes caring about her

future total utility etc.).2 Does this matter for the resulting behavior? Or are preferences

of the form (1) behaviorally equivalent with preferences that explicitly care about one’s

future welfare? We here investigate this question - whether consumption-based preferences

have a welfare-theoretic foundation in this sense.

In particular, we find that a consumption-based representation (1) in the “classical”

exponential form, that is with β = 1, corresponds to one-period altruism towards one’s

future selves: the individual attaches weight δ to her welfare in the next period and

weight zero to all later periods (but her next self attaches weight δ to the welfare two

periods ahead, etc. in an infinite chain). Such preferences are sometimes assumed in

intergenerational (dynastic) macroeconomic models, see for example Barro (1974) and

Barro and Becker (1988). We also find that consumption-utility based representations

(1) in the quasi-exponential form, that is with β < 1, correspond to quasi-exponential

altruism towards one’s future selves. The case β = 1/2 plays a special role. For such

quasi-exponential consumption-utility weights, the welfare weights are in fact exponential;

such individuals attach exponentially declining weight to their welfare in all future periods.

For β < 1/2, the welfare weights are quasi-exponential with a bias in favor of the current

self (“myopia”), while for β > 1/2 the welfare weights are biased in favor of one’s future

selves (“longsightedness”).

We also find that exponential welfare weights attached to the next two periods - and

weight zero to all future periods - yield consumption-utility weights that are based on

the so-called Fibonacci sequence, and we show that these consumption weights need not

decrease monotonically over time. Indeed, such an individual may attach more weight to

his consumption two periods ahead than to the consumption next period. We also show,

by way of examples, that certain consumption-based preferences imply “spite” rather than

1This point was made already by Zeckhauser and Fels (1968), see below.
2A decision maker could be said to be first-order myopic if she does not even care about her future

instantaneous utility from consumption, that is, if βδ = 0 in eq. (1).
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“altruism” towards one’s future selves, i.e., a preference for lower future welfare in certain

periods. For example, if the parameter β in equation (1) would instead apply to periods

t = 2, 3, ..., rather than to periods t = 1, 2, ..., then the associates welfare weight two

periods ahead would be negative (and this would be repeated each decision period).

We are not the first to search for a welfare foundation of the consumption-based for-

mulation in equation (1). Already Zeckhauser and Fels (1968) raised the issue. They

showed that the welfare-based formulation behind the quasi-exponential consumption-

based representation (1) is also quasi-exponential. They also claimed that the boundary

case β = δ = 1 (“perfect altruism” as considered by Ramsey (1928)) has no welfare-

based counterpart.3 As indicated above, and shown below, this claim is not entirely

correct. There does exist a welfare representation, though not of the quasi-exponential

form, namely the above-mentioned one-period altruism which attaches welfare weight 1 to

the next period and zero to all other periods.

The present investigation may also have some bearing on a related modelling issue

in macroeconomics, namely whether it matters, in models of sequences of altruistic gen-

erations, if each generation cares about the next generation’s total utility, consumption

utility, consumption or wealth. Since the latter two cases are analytically considerably

simpler than the first, and therefore more commonly used, our analysis might help iden-

tify circumstances under which the two latter models are behaviorally equivalent with the

first model.

The remainder of the paper is organized as follows. Section 2 provides the model

and establishes a one-to-one relationship between welfare weights and consumption-utility

weights. Section 3 analyzes a few examples from the literature, and section 4 postulates

some desiderata for discounting functions. None of the usual formulations satisfy all

desiderata, but in section 5 we propose a (three-dimensional) parametric family of discount

functions which meet the desiderata. Section 6 suggest how forward-looking discounting

models can be generalized to include memory of past consumption. Mathematical proofs

are collected in an appendix at the end of the paper.

2 The model

Consider an infinitely lived individual who makes decisions over a sequence of periods

t ∈ N = {0, 1, 2, ...}. In each period t, the individual consumes some vector xt ∈ X, where

X ⊂ R
n is a set of consumption alternatives and n ∈ N+ = {1, 2, ...}. A consumption

3“With δ = 1, equation (3) [our equation (1)] is meaningless. This rules out perfect altruism

[consumption-based altruism with δ = 1] in a forward-looking model that relates altruistic preferences to

total utilities rather than felicities [instantaneous utilities]. Here, total altruism [welfare-based altruism]

and perfect altruism are incompatible with each other.” (p. 4, Zeckhauser and Fels, 1968)
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stream x is an infinite sequence of consumption vectors xt, and we write x = (x0, x1, ...) ∈
X∞. Let �τbe the preferences of the decision maker in period τ over consumption streams

x ∈ X∞. A preference profile � for the individual is a sequence (�τ )τ∈N of preferences,

one for each “self τ”.

We here study preference profiles that can be represented by stationary and additively

separable utility functions of the type used in the macroeconomics literature. More exactly,

we focus on preference profiles 〈�τ 〉τ∈N for which there exists functions Uτ : X∞ → R, one

for each decision period τ ∈ N, such that x �τ y if and only if Uτ (x) ≥ Uτ (y), where

Uτ (x) = f (0) u (xτ ) +
∞∑

t=1

f(t)u (xτ+t) (2)

for some for some u : X → R+ and f : N→ R+ with f (0) = 1. Here u (xs) will be called

the instantaneous (sub)utility from consumption in period s, and f(t) the weight that the

decision maker assigns to her instantaneous consumption utility t periods later.

We will say that a sequence 〈Uτ 〉τ∈N of such utility functions admits a (stationary and

additively separable) welfare representation if for all τ ∈ N and x ∈ X∞,

Uτ (x) = u (xτ ) +
∞∑

t=1

f∗ (t)Uτ+t (x) , (3)

for some f∗ : N+ → R. Here f∗ (t) is the weight that the decision maker places on her

welfare (total utility) t periods later.

A negative weight attached to another individual’s welfare expresses “spite” rather

than “altruism.” Such welfare weights appear pathological in the present context.4 We

will hence call a welfare-weight function f∗ regular if it is nonnegative. In this case we

will say that 〈Uτ 〉τ∈N admits a regular welfare representation.

2.1 The functional equation

This study originated with the following question: Does the sequence 〈Uτ 〉τ∈N defined in

equation (1) admit a regular welfare representation? If so, which?5

A key result for answering this and related questions is the observation that every

sequence 〈Uτ 〉τ∈N in the more general form (2) admits a welfare representation of the

form (3), and, moreover, f∗ : N+ → R is uniquely determined by the following system of

recursive equations:

4We do not deny that the excluded possibility may sometimes be psychologically relevant, but it

appears not to be typical for consumers.
5We were then ignorant of Zeckhauser and Fels (1968).
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f∗ (1) = f (1) and f∗(t) = f(t)−
t−1∑

s=1

f (t− s)f ∗(s) ∀t > 1. (4)

Proposition 1: If 〈Uτ 〉 satisfies equation (2) for some u : X → R and f :

N → R, then 〈Uτ 〉 admits the welfare representation (3), where f∗ : N+ → R

is the unique solution to (4).

(See Appendix for a proof.)

Conversely, the consumption-weight function f may be obtained from the welfare-

weight function f ∗ via equation (4), since this equation implies that, for all positive integers

t,

f (t) = f∗ (t) +
t−1∑

s=1

f∗(t− s)f(s), (5)

a recursive equation system which uniquely determines f from f ∗, given the initial value

f (0) = 1. This equation states that the consumption-utility weight f(t) can be computed

as the sum of that period’s instantaneous utility’s contributions to the decision maker’s

welfare in all interim periods: f (1) = f∗(1), f(2) = f∗(2) + [f∗(1)]2, f(3) = f∗(3) +

2f∗(2)f∗(1) + [f ∗(1)]3 etc.

It is immediate from equation (5) that if f∗ is non-negative, so is f . However, Propo-

sition 1 does not claim that the welfare representation necessarily be regular, even if f

is non-negative. Indeed, the welfare-weight function f∗ may well take negative values al-

though all consumption weights are positive. To see this, note that (4) gives f∗ (1) = f (1),

f∗ (2) = f (2) − f2 (1), f∗ (3) = f (3) − 2f (1) f (2) + f3 (1) etc. Hence, in order for the

welfare weight f∗ (2) to be negative it suffices that f (2) < f2 (1). This is the case, for ex-

ample, if f (1) = δ and f (2) = βδ2 for some β < 1. Another example is f(t) = 1/ (0.5 + t)

for t = 1, 2 - since then f 2 (1) = (2.25)−1 > f (2) = (2.5)−1. A third counter-example

is f(t) = 1/ (1 + t2), yielding f2(1) = 1/4 > f(2) = 1/5. In all three cases, the decision

maker is constantly spiteful to his future self two periods ahead.

A sufficient condition for all welfare weights to be non-negative, and hence for the

welfare representation to be regular, is that all consumption weights are positive and that

the ratio between successive consumption weights - the intertemporal substitution rate

between instantaneous utilities from consumption - be non-decreasing over time. This

result is due to Ulf Persson (private communication, see Appendix for a proof):

Proposition 2: Suppose f : N → R++ and let q : N+ → R be defined by

q (t) = f (t) /f (t− 1). If q is non-decreasing, then f∗ ≥ 0. If q is strictly

increasing, then f∗ > 0.
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With f, f∗ ≥ 0, we clearly have 0 ≤ f ∗ (t) ≤ f (t) for all positive integers, by (4). If,

moreover, f (t)→ 0 as t→∞, then so does f∗ (t).

In the following section we analyze examples of consumption-based and welfare-based

discount functions.

3 Examples

3.1 Exponential consumption weights

Suppose the consumption weights decline exponentially: f (t) = δt for all t, for some

δ ∈ (0, 1). This is the standard case in macroeconomic modelling, corresponding to the

special case β = 1 in equation (1). It is not difficult to verify that equation (4) then gives

f∗ (1) = δ and f∗ (t) = 0 for all integers t > 1.

To see this, first note that equation (4) gives f∗ (1) = δ and f∗ (2) = 0. Suppose that

f∗ (1) = δ and f∗ (s) = 0 for all s = 1, 2, .., t− 1. Then (4) gives

f ∗(t) = δt −
t−1∑

s=1

δt−sf∗(s) = δt − δt−1δ = 0 .

Hence, by induction this holds for all positive integers t. Note that this derivation also

applies to the boundary case δ = 1. Hence, “perfect altruism” in this sense (Ramsey, 1928)

is behaviorally equivalent with one-period welfare-based altruism, where next period’s

welfare is given weight 1 and the welfare in all future periods are given weight zero.

Conversely, suppose that the decision maker cares only about her utility from current

consumption and her welfare in the next period. Then f∗ (1) = α, for some α > 0, and

f∗(t) = 0 for all integers t > 1. An application of equation (5) immediately gives f(t) = αt

for all t. Hence, the reduced form (2) for such an individual is indeed exponential:

Uτ (x) =
∞∑

t=0

αtu (xτ+t) , (6)

where the discount factor equals the weight that the decision maker attaches to his or her

welfare in the next period.

In sum: exponential consumption weights have a regular welfare foundation. Zero

weight is given to the welfare in all future periods except the next.

3.2 Exponential welfare weights

Suppose instead that it is the welfare weights f∗(t) that decrease exponentially over future

periods t. What are then the associated consumption weights? More exactly, suppose that
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f∗(t) = αt for some α ∈ (0, 1) and for all t ∈ N+. Equation (5) gives f(1) = α, f (2) = 2α2,

and f (3) = 4α3. One may thus conjecture that

f(t) =
1

2
(2α)t ∀t > 0. (7)

This conjecture is easily proved to be true induction, see appendix. Substituting (7) in

(2) we thus obtain

Uτ (x) = u (xτ ) +
1

2

∞∑

t=1

δtu (xτ+t) , (8)

for δ = 2α. Hence, exponential welfare weights assigned to all future periods imply the

Phelps-Pollak-Laibson reduced form (1) with β = 1/2.

Note that in the special case when α = 1/2, δ = 1 and thus f(t) = 1/2 for all positive

integers t. Hence, in this case the same weight is given to the instantaneous consumption

utility in all time periods. This special case is relevant from a biological viewpoint, since

the genetic kinship between any pair of successive generations is precisely 1/2.

3.3 Quasi-exponential consumption-utility weights

We found that exponential welfare weights imply quasi-exponential consumption weights

(β, δ) with β = 1/2. What welfare weights correspond to quasi-exponential consumption

weights (β, δ) when β �= 1/2?

Suppose, thus, that f (0) = 1 and f (t) = βδt for all positive integers, where β, δ ∈
(0, 1). Then f∗ (1) = βδ and f∗ (2) = β (1− β) δ2. It is not hard to prove by induction

that

f∗ (t) =
β

1− β
[(1− β) δ]t ∀t ∈ N+ (9)

(see appendix). In other words: a representation in the Phelps-Pollak-Laibson form (1) is

the reduced form of a welfare representation (3) in the quasi-exponential form

Uτ (x) = u (xτ ) + β∗
∞∑

t=1

(δ∗)t Uτ+t (x) , (10)

where

β∗ = β/ (1− β) and δ∗ = (1− β) δ. (11)

Quasi-exponential consumption weights thus do have a regular welfare foundation,

namely quasi-exponential welfare weights, and vice versa, and these weights are related

as in equation (11). As mentioned above, this result was obtained in Zeckhauser and Fels

(1968, eq. (4)). We note that the “welfare myopia” factor β∗ is an increasing function of
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the “consumption myopia” factor β, such that β∗ reaches the value 1 - hence exponential

welfare weights - precisely when β reaches 1/2, an observation that is consistent with our

earlier finding in the case of exponential welfare weights. At β = 1/2, welfare weights

switch from being biased toward “myopia” to being biased toward “longsightedness.”

Laibson et al (2001) made the following estimate of the parameter pair (β, δ) in the

Phelps-Pollak-Laibson model, based on annual US data: β = 0.55 and δ = 0.96. The

associated welfare representation is thus slightly biased toward “longsightedness”: β∗ =

1.22 and δ∗ = 0.43. In other words, individuals place relatively more weight on their future

welfare, in comparison with exponential weights: f∗(1) = β∗δ∗ = 0.52, f∗(2) = β∗ (δ∗)2 =

0.23 etc., see Figure 1 below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
t

0.1

0.2

0.3

0.4

0.5

0.6

f* HtL HaL

0 1 2 3 4 5 6 7 8 9 10 11 12 13
t

0.2

0.4

0.6

0.8

1
f*Ht+1Lêf*HtL HbL

Figure 1: (a) Altruistic weights, f∗(t), corresponding to quasi-exponential consumption

weights (β, δ), for β = 0.55 and δ = 0.96. (b) The ratio f∗(t + 1)/f∗(t) for the same

parameters.

3.4 Finite-horizon exponential welfare weights

We next consider the intermediate cases between one-period altruism and infinite-horizon

exponential altruism, namely when the welfare weight decreases exponentially over a finite

number of time periods, beyond which all weights are zero. What is the corresponding

reduced form (2)? More exactly, suppose f ∗(t) = αt for some α ∈ (0, 1) and for all positive

integers t ≤ T < +∞, and suppose f∗(t) = 0 for all integers t > T . It is then easily verified

that f can be written as

f (t) = mT (t)α
t, (12)

where

mT (t) =

min{t,T}∑

s=1

mT (t− s) (13)
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for all positive integers t, andmT (0) = 1 (see appendix). It follows from (13) that, for any

finite horizon T ,

1 ≤ mT (t) ≤ mT+1(t) ≤ 2t−1 (14)

and

αt ≤ fT (t) ≤ fT+1(t) ≤ 1

2
(2α)t (15)

for all t. Hence, the longer the altruism horizon T is, the higher is the weight given

to each future instantaneous utility term. Moreover, it follows from a well-known result

for recursive equations that the ratio between the m-weights assigned to two consecutive

periods t and t+ 1 converges as t goes to infinity (see e.g. Weisstein, 1999):

lim
t→∞

mT (t+ 1)

mT (t)
= λT , (16)

where λT is the unique solution λ > 1 of λ = 2− λ−T . Notice that λT is increasing in T

and limT→∞ λT = 2.

In particular the sequence m2 (t) is the Fibonacci sequence, 1, 1, 2, 3, 5, 8 etc. (each

term being the sum of the two preceding terms). The ratio between successive Fibonacci

numbers is known to converge to the so-called golden number (Kelley and Peterson, 1991):

m2(t+ 1)

m2(t)
→ λ2 =

1 +
√
5

2
.

Note also that the induced weight function f , need not be monotonic. In fact, for all

T ≥ 2 and α > 1/2: f (1) < f(2) < f(0). Figure 2 illustrates this feature for T = 2 and

α = 0.55.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

0.2

0.4

0.6

0.8

1

fHtL

Figure 2: Consumption weights, f(t), generated from two-period-horizon exponential al-

truism, with α = 0.55.

6The number f(0) = 1 has been inserted for the sake of mathematical completeness when solving the

recursive equation (5).
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3.5 Hyperbolic consumption-utility weights

Empirical work suggests that the consumption weights f(t) be hyperbolic, rather than

exponential, in t. Hence, Ainslie (1992) suggests f(t) = (λ+ αt)−1 for some α, λ > 0 (op.

cit. eq. (3.7)). A similar hyperbolic expression, (1 + αt)−β/α is suggested by Loewenstein

and Prelec (1992).

As noted above, for certain α and λ, the first form may correspond to negative welfare

weights - in which case the representation does not have a regular welfare representation.

In particular, such hyperbolic preferences express spite against oneself two periods ahead

(after each current period) if and only if λ+2α > (λ+ α)2. In Figure 3 below, this is the

area below the curve.7

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 3: Points below the curve are parameter combinations (α, λ) for which the welfare

weight f∗ (2) is negative.

We also note that this implies that the conditions in proposition 2 are violated if

λ+2α > (λ+ α)2. In fact, under the reversed inequality, and the assumption that f (0) =

1, all welfare weights are non-negative. To see this, let f (0) = 1 and f (t) = (λ+ αt)−1

for all positive t. Then q (t) ≥ q (t− 1) for all t ≥ 1 if and only if q (2) ≥ q (1), which is

equivalent to λ+ 2α ≤ (λ+ α)2.

Without any loss of generality, we relabel the parameters in the second, and study

f(t) = (1 + at)−b ∀t ∈ N, (17)

for a, b > 0. It follows from proposition 2 that the corresponding welfare-weight function

f∗ is everywhere positive, since f > 0 and the ratio between successive consumption-utility

weights is strictly increasing over time:

q (t) =
f (t)

f (t− 1)
=

[
1−

a

1 + at

]b
.

7Recall that f∗ (2) = f (2)− f2 (1). Also note that f∗ (1) = f (1) ≤ 1 iff λ+ α ≥ 1.
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We do not have an explicit formula for f∗, though. Instead, using equation (4) we have

generated the welfare weights f∗(t), for t = 1, 2, ..., 50, corresponding to the consumption

weights f (t) = (1 + at)−b, for different combinations of a and b, and fitted the function

f̃ (t) =
θ

(1− α+ αt)β
(18)

to the data. (Note that f̃ (1) = θ.)

Figure 4 below shows the welfare weights f ∗ (t) (dots) obtained from equation (5), for

a = 100 and b = 1, the estimated function-values f̃ (t), as well as the ratio f̃ (t) /f∗(t).

10 20 30 40 50
t

0.999

0.99925

0.9995

0.99975

1.00025

1.0005

1.00075

f
ˆ

HtLêf∗HtL HbL

10 20 30 40 50
t

0.002

0.004

0.006

0.008

0.01

f∗HtL,f
ˆ

HtL HaL

Figure 4: (a) Altruistic weights f∗ (t) obtained from equation f (t) = (1 + 100t)−1 ,

t=1,2,..50 (dots) and the estimated function f̃ (t) (solid line). (b) The ratio f̃ (t) /f∗(t),

for t=1,2,..50.

Table 1 reports the estimates α, β and θ, as well as the maximum absolute and relative

errors in the first 50 periods. We note that, for fixed a, α is decreasing and β increasing

in b. Moreover, α ≈ 1 and β ≈ b when a is large.
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Table 1: Estimates of f∗ based on computer simulations.

a b θ α β max
t≤50

∥∥∥f̃ (t) -f∗ (t)
∥∥∥ max

t≤50

∥∥∥f̃ (t) /f∗(t)-1
∥∥∥

1 1 0.49999 3.02432 1.28221 0.00079 0.09922

1 2 0.24999 1.74474 1.61539 0.00047 0.44643

1 5 0.03125 0.78373 3.97018 0.00001 4.31526

10 1 0.09091 1.07430 1.14852 0.00003 0.01001

10 2 0.00826 0.95289 1.97737 9.9 · 10−7 0.02664

10 5 6.2 · 10−6 0.90933 4.99927 4.3 · 10−7 0.00149

100 1 0.00990 1.00327 1.01909 1.9 · 10−7 0.00008

100 2 0.00009 0.99069 1.99968 1.7 · 10−10 0.00041

100 5 9.5 · 10−11 0.99009 4.99999 1.1 · 10−22 2.9 · 10−8

4 Desiderata for stationary discount functions

Having examined circumstances under which utility functions Uτ in the consumption-based

form (2) have a regular welfare foundation in the form (3), we now turn to a discussion of

some more desiderata for consumption-based discount functions f .

Our first desideratum is that the representation (2) should be invariant with respect

to periodization, in the sense that there should exist a continuous-time discount function

from which the discrete-time consumption discount factor in each period t can be derived

for any given period length ∆ > 0. The Phelps-Pollack-Laibson model (1), to be referred

to as the PPL model, is unclear in this respect, since it states that discounting kicks in from

period 1 on, without specifying for what lengths ∆ of the time period this should hold,

or, more generally, how the parameters β and δ should be adjusted if the time period is

changed. In exponential discounting models one usually assumes δ = exp (−r∆) for some

real-time discount rate r, but what about β?

Secondly, empirical work suggests that the considered class of discount functions should

contain some form of hyperbolic discounting as a special case. As mentioned above,

hyperbolic discounting of instantaneous utilities of consumption has been shown to fit the

data better than exponential consumption discounting. It therefore seems desirable that

the model contain such hyperbolic consumption discounting as a special case. Clearly the

quasi-exponential PPLmodel does not meet this second desideratum - it only approximates

hyperbolic discounting over the first few periods.

Third, exponential discounting has traditionally been the main approach in economics,

and should therefore be a special case of the model. The PPL model clearly meets this

desideratum (just set β = 1 in equation (1)).

If a random variable T is exponentially distributed, then its conditional probability

13



distribution, given T ≥ t, is identical to the original, for any t. It is precisely this time

homogeneity property that guarantees dynamic consistency. As a weaker requirement,

in the present context of discount functions, our fourth desideratum is that the class of

discount functions considered should be “closed under truncation” in the sense that the

normalized consumption discount factors, from any given future date on should belong to

the class. When currently contemplating a future decision point, in a dynamic decision

problem, it should not be necessary to step outside the model. The quasi-exponential

(β, δ) model evidently satisfies this desideratum: the decision maker’s models of his future

selves are exponential.

Finally, the model, given in the consumption form (2), should have a regular welfare

foundation. We saw above that the PPL model (1) satisfies this last desideratum.

Formally, we consider stationary preferences over infinite consumption streams x rep-

resented in the form

Uτ (x) =
∞∑
t=0

ϕ (t,∆)u (xτ+t) , (19)

where ϕ (t,∆) is the discount factor that the decision maker in period τ ∈ N assigns to his

or her instantaneous utility of consumption in period τ + t, if the length of each period is

∆ > 0.

Let F be any family of functions ϕ : N×R+ → [0, 1] such that for all∆ > 0, ϕ (0,∆) =

1 and ϕ (t,∆) is non-increasing in t. Our desiderata are:

Desideratum 1 (invariance w.r.t. periodization): There exists a function

f : R+ → [0, 1] such that ϕ (t,∆) = f (t∆) for all t ∈ N and ∆ > 0.

Desideratum 2 (hyperbolic discounting allowed): Every function ϕ of the

form ϕ(t,∆) = (1 + αt∆)−β for some α > 0 and β > 1, belongs to F .

Desideratum 3 (exponential discounting allowed): Every function ϕ of the

form ϕ(t,∆) = exp (−γt∆) for some γ > 0, belongs to F .

Desideratum 4 (algebraic closure under truncation): If ϕ ∈ F , then also

ϕτ ∈ F for any τ ∈ N+, where ϕτ : N× R+ → [0, 1] is defined by

ϕτ (t,∆) =
ϕ (τ + t,∆)

ϕ (τ ,∆)
∀t ∈ N.

Desideratum 5 (regular welfare foundation): If ϕ ∈ F and f : N→ [0, 1] is

defined by f (t) = ϕ (t, 1) for all t, then the associated welfare weights f∗ (t)

are all non-negative.
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5 Hyperbolic-exponential discount functions

One family F which meets all five desiderata are the functions ϕ of the form

ϕ (t,∆) = (1 + at∆)−b exp (−ct∆) (20)

for some a, b, c > 0. This family F is three-dimensional, the minimal parametric dimen-

sionality for the PPL model to hold across different time discretization. Hence, we have

not added any real degree of freedom above and beyond that of the PPL model.

It is not difficult to see that all five desiderata indeed hold. Desideratum 1 is given by

construction. Also Desiderata 2 and 3 are self-evident; one obtains exponential discounting

by setting b = 0, and hyperbolic discounting by setting c = 0. That desideratum 4 holds

follows from

ϕτ (t,∆) = (1 + a′t∆)
−b

exp (−ct∆) ,

where a′ = a/ (1 +∆τa) > 0. In other words, ϕτ ∈ F . Note that the parameters b and c

are unaffected by such truncation of the past, while the parameter a changes. Dynamic

inconsistency in time preferences arises from the single fact that this parameter decreases

with the number τ of past periods, for any fixed period length ∆. Desideratum 5, finally,

also holds. To see this, note that we have

f (t) = (1 + at)−b exp (−ct) ,

which implies that all welfare weights f∗ (t) are positive, see proposition 2.

In order to compare this family of discount functions with the PPL model, we consider

the successive ratios between discount values. Recall that in the PPL model these rates

are q (1) = f (1) /f (0) = βδ and q (t) = f (t) /f (t− 1) = δ for all positive integers t, while

the corresponding ratios for discount functions f from the family F are

q (t) =
f (t)

f (t− 1)
=

(
1−

a

1 + at

)b

δ,

where δ = e−c. In particular, q (1) = βδ, for β = (1 + a)−b, and q (t) → δ as t →∞, just

as in the PPL model. See Figure 5 below, plotted for the values β = 0.55 and δ = 0.96,

with a and b such that (1 + a)−b = β. As a increases, the curve point-wise approaches the

PPL-values.
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Figure 5: The ratios q (t), for a = 1 (solid curve) and 125 (dotted curve), where

b = − (lnβ) / ln (1 + a), and c = − ln δ, for β = 0.55 and δ = 0.96.

As a final remark, we note that the present family of discount functions seems to

be sufficiently rich to fit a wide range of empirical observations. Frederick, Loewenstein

and O’Donoghue (2001) report empirical estimates of discount rates from no less than 40

studies (Table 2, op. cit.) Their general finding is that the average discount rate over

longer time intervals is lower than the average discount rate over shorter time intervals.

Figure 6 below is their Figure 1, with the addition of the dotted curve. The points are

their data points, and the solid curve has been fitted by them, while the dotted curve has

been fitted by us, from a discount function in the present family F .8 This fitting was made

by way of “eye econometrics,” resulting in the following estimates: a = 10, b = 0.3 and

c = 0.

Figure 6: Fitting a discount function f (dotted curve) from the family F to the data in

Figure 1 of Frederick, Loewenstein and O’Donoghue (2001).

8The dotted curve is the graph of y (t) = [f (t)]1/t = (1+ at)−b/t e−c, for a = 10, b = 0.3 and c = 0.

Note that limt→0 y (t) = exp [− (ab+ c)] and.limt→+∞ y (t) = exp (−c).
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Figures 7 and 8 compare the consumption weights f (t) and the welfare weights f∗(t)

corresponding to our estimate, f (t) = (1 + 10t)−0.3 (gray bars), with the Laibson et al

(2001) estimate (black bars in figure 7) and with exponential discounting with an annual

discount rate of 5% (black bars in figure 8). The latter is the estimate of Cooley and

Prescott (1995).9

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t

0.2

0.4

0.6

0.8

1
fHtL HaL

1 2 3 4 5 6 7 8 9 10 11 12 13 14
t

0.2

0.4

0.6

0.8

1
f* HtL HbL

Figure 7: (a) f(t) = (1 + 10t)−0.3 (black) and quasi-exponential consumption weights

(β, δ), for β = 0.55 and δ = 0.96 (gray).(b) The corresponding welfare weights f∗(t)
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Figure 8: (a) f(t) = (1 + 10t)−0.3 (black) and f(t) = e−0.05t (gray).(b) The corresponding

welfare weights f∗(t).

6 Extension

The class of models studied here contains as special cases the traditional exponential

discounting as well as the quasi-exponential discounting models which are currently under

investigation in the macroeconomics literature (see e.g. Laibson (1997), Barro (1999),

Krusell and Smith (1999) and Harris and Laibson (2001)). However, from the viewpoint

9To be more precise, they give the estimate 0.987 of the quarterly discount factor.
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of psychology and experimental economics, all these models are quite special, as is apparent

from reading, for example, Frederick, Loewenstein and O’Donoghue (2001) and Kahneman

(2000). Given the accumulated knowledge of discounting models, it might be wise to

proceed step-wise when generalizing these, by adding only one new element at a time,

so as better understand what assumption leads to what conclusion. At each such step,

the task then is to change little and yet add a lot in terms of richer conclusions. The

mentioned recent work on quasi-exponential models can be viewed as a successful such

step.

We feel that a major aspect of intertemporal preferences and decision making which

is missing from current economics models is memory. At first sight, one might argue that

although our memories certainly do affect our well-being, this is irrelevant for decision

making, since the memory of the decision maker is fixed and given. However, if the decision

maker is forward-looking, and cares about his or her future well-being, then memory is

relevant, since a decision today may influence future memories. Can the forward-looking

models considered here be generalized in an operational way so as to include memory?

We believe they can.

Consider a decision maker who is born in period 0 and lives through a sequence of

time periods. In each period τ , let his or her memory be a function of the “history”

hτ = (x0, x1, ..., xτ−1) preceding that period. Assume that the preferences �τ in each

decision period τ are represented by a utility function Uτ : X
∞ → R of the following form:

Uτ (x) = f (0) v (xτ , hτ ) +
∞∑

t=1

f(t)v (xτ+t, hτ+t)

for some v : X ×H → R and f : N→ R, where H = {h0} ∪t∈N+ Xt and h0 is the “null”

history at birth. Here v (xτ , hτ ) may still be interpreted as the instantaneous utility in

period τ , arising from current consumption and, now, also from current memory. Formally,

also this generalized model falls into the category of models covered by the above analysis,

so one may speak of welfare foundations and other desiderata in precisely the manner done

above.

A key concern, however, is to find an operational and behaviorally justifiable functional

form for v. In the light of Kahneman (2000) it seems desirable to allow v to account for

the “peak” and “end” effects, that is, v should depend on the maximum value of pleasure

or pain in the history and on the most recent elements of that history. Roughly speaking,

the idea is that one’s best and worst meals play a prominent role in one’s memory. One
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formalization which captures this is:

v (xτ , hτ ) = (1− µ) u (xτ ) + µ
[
αmax

t<τ
u (xt) + βmin

t<τ
u (xt)

]

+µ (1− α− β)
1− (1− ν)τ

ν

τ−1∑
t=0

(1− ν)τ−t−1 u (xt) ,

where u : X → R+ as before represents the instantaneous utility from current consump-

tion, and where α, β, γ, µ, ν ∈ [0, 1]. Here µ represents the importance of memory in

comparison with current consumption, and α and β the relative importance for memory

of the maximal and minimal experienced consumption utility, respectively, and the last

term is the exponentially discounted mean value of past consumption utilities, where ν is

the emphasis on the most recent past (only the most recent period matters when ν = 1).

We leave these investigations for future research.

7 Appendix

7.1 Proof of proposition 1

Suppose 〈Uτ〉 satisfies equation (2) for some u : X → R and f : N → R with f (0) = 1.

Let f∗ : N+ → R be defined by (4). Then

f (t) =

t∑
s=1

f∗(s)f(t− s) ∀t ∈ N+ .

Hence,

Uτ (x) = u (xτ ) +

∞∑
t=1

t∑
s=1

f ∗(s)f(t− s)u (xτ+t) =

= u (xτ ) +
∞∑
s=1

f ∗(s)

[
∞∑
t=s

f(t− s)u (xτ+t)

]

= u (xτ ) +
∞∑
s=1

f ∗(s)

[
∞∑
k=0

f(k)u (xτ+s+k)

]
= u (xτ ) +

∞∑
s=1

f∗(s)Uτ+s (x)

Since this holds for all τ , this proves the claim.
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7.2 Proof of proposition 210

Suppose first that q is non-decreasing. We know that f∗ (1) = f (1) > 0. Suppose

f∗(s) ≥ 0 ∀s < t. Then

f∗(t) = f(t)− f(1)f∗(t− 1)−
t−2∑
s=1

f∗(s)f(t− s)

= q(t)f(t− 1)− f(1)f∗(t− 1)−
t−2∑
s=1

q(t− s)f∗(s)f (t− s− 1)

≥ q(t)

[
f(t− 1)−

t−2∑
s=1

f∗(s)f (t− s− 1)

]
− f(1)f ∗(t− 1)

= q(t)f∗(t− 1)− f(1)f∗(t− 1) = [q(t)− f(1)] f∗(t− 1) ≥ 0.

The last inequality follows from the assumption that q is non decreasing and f(1) = q(1).

Secondly, suppose that q is strictly increasing. Suppose f∗(s) > 0 ∀s < t. The same

reasoning as above then leads to f∗(t) > [q(t)− q(1)] f∗(t− 1) > 0 .

7.3 Proof of equation (7)

Suppose f(s) = 2s−1αs for s = 1, 2, .., t, for some positive integer t. Then (5) gives

f(t+ 1) = αt+1 +
t∑

s=1

2s−1αsαt+1−s = αt+1

[
1 +

t∑
s=1

2s−1

]
(21)

= αt+1
[
1 + (2t − 1)

]
= 2tαt+1. (22)

By induction in t, this establishes (7).

7.4 Proof of equation (9)

Equation (9) may be established by induction over t, as follows. First note that f(1) =

f∗ (1). Suppose that equation (9) holds for all s < t for some t. Equation (5) then gives

10Due to Ulf Persson, Department of Mathematics, Chalmers University of Technology (Gothenburg,

Sweden).
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f(t) = f∗(t) +
t−1∑
s=1

f∗(s)f(t− s)

= β∗ (δ∗)t +
t−1∑
s=1

β∗ (δ∗)s (δ∗/δ)s βδt

= β∗ (δ∗)t + βδt

[
t−1∑
s=1

β∗(1− β)s

]

= β∗ (δ∗)t + βδt
[
1− (1− β)t−1

]
= βδt

7.5 Proof of equation (13)

Under equation (13), we have

f(t) = αt

min{t,T}∑
s=1

m(t− s) = αt

min{t,T}∑
s=1

αs−tf (t− s)

=

min{t,T}∑
s=1

αsf(t− s).

Setting f∗(s) = αs for all positive integers s ≤ T and otherwise f∗(s) = 0, we obtain (5).
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