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Abstract

This paper studies social-tie formation when individuals care about the ge-
ographical location of other individuals. In our model, the intensity of social
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viduals in the urban geographical space. We show that greater geographical
dispersion decreases the incentives to socially interact. We also show that the
equilibrium frequency of interactions is lower than the efficient one. Using
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United States, we estimate the model and validate that agents interact less
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1 Introduction

Over the past two decades, the economics literature has increasingly utilized network analysis

to understand decision-making.1 Surprisingly however, the importance of spatial proximity

to the construction and intensity of network exchange remains under-examined. For Glaeser

(2000), the existence of cities critically hinges on how social interactions and networks can be

facilitated across the space of urban entities. However, traditional models in urban economics

(Fujita, 1989) do not consider the presence of social interactions and social capital in cities.

On the other hand, most papers from the network economics literature (implicitly) assume

that the existence and intensity of dyadic contacts do not depend on agents’ location.

In this paper, we develop a new theory of social-tie formation where individuals care

about the geographical location of other individuals. In our model, a population of agents

entertains social interactions in a unidimensional geographical space (the city). In this city,

the fraction of individuals at each location is determined by a distribution function of a

general form. Each agent decides on the frequency of her visits (social interactions) to every

other agent in the city, and the value of each interaction depends on the social network

of the visited agents. We define the value of such interactions as the social capital of the

agent (Putnam, 2000). Social capital is thus defined in a recursive fashion: it increases with

interactions with highly social individuals. When deciding how much to interact with others,

agents face the following trade-off. Each agent can increase her social capital by interacting

with highly social agents. However, social interactions requires costly travel to the other

agents. We characterize the equilibrium in terms of social interactions and social capital for

a general distribution of individuals in the geographical space. We show that a more spread

spatial distribution of agents decreases the incentives to socially interact. We also show that

the equilibrium frequencies of interactions are lower than the efficient ones. We demonstrate

that a policy that subsidizes transportation costs can restore the first best but the subsidy

should be higher for trips to individuals who have higher social capital and for trips from

individuals whose social capital increases more with additional interactions.

We then structurally estimate the model using data from the National Longitudinal

Survey of Adolescent Health (Add Health) in the United States. While the Add Health data

has been used extensively for its social network information based on friends’ nominations

1For recent overviews, see Ioannides (2013), Jackson and Zenou (2015), and Jackson et al. (2017).
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(see, e.g. Calvó-Armengol et al. (2009), Currarini et al. (2010), Lin (2010), Bifulco et al.

(2011), Card and Giuliano (2013)), this dataset contains other unique information that has

not been exploited before. Indeed, Add Health also provides the longitude and latitude

coordinates of the residential location of each respondent. As a result, it is possible to

obtain information not only on the precise geometry of social contacts and the strength of

their social interactions, but also on the geographical distance between them. The challenges

in our empirical analysis are that the intensity of social interactions can be chosen at the

same time as friends, and that the interaction value offered from a friend (social capital)

is unobserved to the econometrician. We address these challenges using the method of

simulated moments (MSM) to predict the social capital. This method is widely employed in

the empirical industrial organization literature to estimate micro behavioral models where

the choices of the agents for each value of the parameter vector are unobserved (see, e.g.

Berry (1992)). Very recently it has also been used in the network literature to deal with the

complexity of the decision environment when network formation is endogenous (see Banerjee

et al. (2013), Ciliberto and Tamer (2009), Sheng (2015), and Badev (2017)). To the best of

our knowledge, it has never been used to estimate urban models in presence of an unobserved

endogenous variable.2

The estimation results provide evidence supporting our theory. We find that transporta-

tion costs (and hence geographic distance), social distances, and combined levels of socio-

demographic characteristics are all important factors in determining the intensity of social

interactions. Students interact with one another far less than the socially optimal level, and

thus accumulate less social capital. We show that these inefficiencicies can be explained by

the geographic dispersion of students but also by the size of the network. In fact, there is

a non-monotonic relationship between the inefficiencies in terms of social interactions and

the size of the network so that there are less inefficiencies in both small or large networks

compared to networks of average size (around 8 students in our data). By subsidizing social

interactions or transportation costs, policymakers can then improve the intensity of social

interactions. We find that, at a given cost, subsidizing social interactions is more effective

than subsidizing transportation costs in the sense that it leads to a higher welfare.

Our theoretical framework provides a bridge between two literatures: the traditional ur-

2 The only (recent) paper using MSM in this field is Geyer (2017), which accounts for the endogeneity of
housing prices and selection of households into communities.

3



ban models and the recent social network models. There is an important literature in urban

economics looking at how interactions between agents create agglomeration and city centers.3

It is usually assumed that the level of the externality that is available to a particular agent

depends on its location– the spillover is assumed to attenuate with distance – and on the

spatial arrangement of economic activity. This literature (whose keystones include Beck-

mann, 1976; Ogawa and Fujita, 1980; Lucas and Rossi-Hansberg, 2002; Behrens et al., 2014;

Helsley and Strange, 2014) examines how such spatial externalities influence the location of

agents, urban density patterns, and productivity. For example, Glaeser (1999) develops a

model in which random contacts influence skill acquisition, while Helsley and Strange (2014)

consider a model in which randomly matched agents choose whether and how to exchange

knowledge. Similarly, Berliant et al. (2002) show the emergence of a unique centre in the

case of production externalities. These models provide an interesting discussion of spatial

issues in terms of use of residential space and formation of neighborhoods and show under

which condition different types of city structures emerge.

In this paper, we consider a different view. While the literature cited above aims to

explain different urban configurations (monocentric versus polycentric cities) and to derive

conditions under which they emerge,4 we take the urban configuration as given and explain

how the location of each agent in the city affects her social interactions with other agents in

the city. In other words, we simplify the urban configuration of the city but we open the black

box of social interactions by examining how and why they form. On the other hand, most

of the papers looking at network formation assume away agents’ geographical locations.5 A

small strand of the literature (Brueckner and Largey (2008), Helsley and Strange (2007),

Zenou (2013), Mossay and Picard (2011); Mossay et al. (2013), Helsley and Zenou (2014),

Sato and Zenou (2015)) studies the role of social networks in cities but take the networks

as given. In the current paper, link formation depends on the location of individuals in the

geographical space. From an empirical point of view, studies on the relevance of geographical

location for social interactions in real world networks are almost nonexistent (see Ioannides

3See Fujita and Thisse (2013) and Duranton and Puga (2015) for extensive literature reviews.
4For example, Ogawa and Fujita (1980), a prominent paper in this literature, consider a “locational

potential function” in which a weighted average of pairwise Euclidean distances between firms has a negative
effect on firms’ profit. This acts as an agglomeration force for firms because it implies a (strictly) penalty
cost for firm dispersion.

5Exceptions include Johnson and Gilles (2000) and Jackson and Rogers (2005). These studies, however,
consider a framework where network formation is modeled on a link-by-link basis. As a result, it is impossible
to characterize all the possible equilibria. See Jackson (2008) for a discussion of these issues.
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(2013) for a survey). In fact, it is extremely difficult to find detailed data on social contacts

as a function of geographical distance between agents together with information on relevant

socio-economic characteristics. Some evidence can be found in Marmaros et al. (2006).

Using data on email communication between Dartmouth college students, this paper shows

that being in the same freshman dorm increases the volume of interactions by a factor of

three.6 Another strand of related literature uses geographic proximity as a proxy for social

interactions. Most notably, Bayer et al. (2008) assume that agents living in the same census

block exchange information about jobs. Their finding that residing in the same block raises

the probability of sharing work location by 33% is thus interpreted as a referral effect.7 To

the best of our knowledge there is no study using data on the precise geometry of individual

social contacts and the geographical distance between them.

The rest of the paper unfolds as follows. Section 2 develops the theoretical model and

determines the equilibrium while Section 3 studies its efficiency properties and the policy

implications of the model. Section 4 is devoted to the empirical strategy. In Section 5,

we describe our data, provide the empirical results and discuss them. In Section 6, we

test the different predictions of the model and determine the level of inefficiencies of social

interactions and social capital and how they are affected by the size of the network. We also

simulate two policies and determine which one leads to the highest social welfare. Finally,

Section 7 concludes the paper and discusses our policy results. All proofs in the theoretical

model can be found in Appendix A.

2 The model

2.1 Notations and definitions

Consider a linear city on the line segment x ∈ [−b, b] where b is the city border, and let

λ(x) : [−b, b] → R+ measure the number of agents located at x. We focus on a city with

unit mass population:
∫ b
−b λ(y)dy = 1.

6See also Fafchamps and Gubert (2007) who show that geographic proximity is a strong correlate of risk-
sharing networks and Rosenthal and Strange (2008), Arzaghi and Henderson (2008), Bisztray et al. (2017)
and List et al. (2017) who find that knowledge and productivity spillovers are important but decay sharply
with distance.

7Hellerstein et al. (2011, 2014) and Schmutte (2015) build on the same assumption using matched
employer-employee data with residential information.
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Each agent visits every other agent and benefits from social interactions. First, the utility

from social interactions is given by

S(x) =

∫ b

−b
v (n(x, y)) s(y)λ(y)dy

where n(x, y) is the number or, more exactly, the frequency of interactions that agent at x

initiates with an agent at y who offers an interaction value s(y).8 For the sake of tractability,

we assume that

v (n (x, y)) = n (x, y)− 1

2
[n (x, y)]2 . (1)

This expression assumes decreasing returns to the frequency of interactions with a given

agent; it even assumes negative returns (saturation) above n = 1.

Second, the interaction value offered by an agent residing at y is assumed to be equal to

s(y) = 1 + α

∫ b

−b
n(y, z)s(z)λ(z)dz (2)

The first constant term (normalized to 1) represents the idiosyncratic interaction value that

the agent located at y provide to her visitors. The second term, α
∫ b
−b n(y, z)s(z)λ(z)dz,

reflects the value of her social network for her visitors. It increases with n(y, z), the number

of interactions, and s(z), the value of her interactions. The parameter α > 0 measures the

importance of others’ social capital in an agent’s social capital formation. The higher is α,

the higher is the impact of the social network of “friends of friends”. We refer to s(y) as the

social capital of the agent located at y.

The social capital function s(y) defined in (2) can be interpreted in various ways according

to the context under discussion. In the context of information transmission (for example,

about job opportunities) and/or knowledge (about a product or technique), the first term

may represent the information endowed to or produced by the agent located at y while the

second term may reflect the information she received during her visits to other agents. The

parameter α then measures the imperfection of information transmission and its retention.

In the context of a service sector like advertising, law, etc. (Arzaghi and Henderson, 2008),

the first term represents the idiosyncratic productivity of a firm located at y while the second

8Here, as in Cabrales et al. (2011), individuals do not explicitly choose with whom to link with but decide
a level of social interactions at each location in the city.
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term reflects the potential and the ability to quickly subcontract parts of a project to other

competent firms. In the context of friendship, community or political participation, the first

term gives a measure of the pleasure or interest in a specific interaction (e.g. with a college

friend, priest or politician) while the second term may reflect the sense of belonging to a

community (e.g. alumni, confession or political group).

Third, each agent located at x incurs a cost of visiting another agent residing at y, c(x−y),

which is symmetric and increases with distance |x− y|: c(z) = c(−z) and c′(z) > 0 ∀z > 0.

For simplicity, we consider the class of travel cost functions c(x) that are differentiable except

at x = 0. We define the slope at x = 0 as c′+(0) ≡ limx→0,x>0 c
′(0) ≥ 0, recognizing the

possible kink at x = 0. The total social interaction cost of an agent located at x is given by

C(x) =

∫ b

−b
n(x, y)c(x− y)λ(y)dy

which increases with the number of social interactions.

We now consider the question of how social capital is distributed across space when agents

are exogenously located.

2.2 Social capital and space

We assume that λ, the population density at each location, is exogenously fixed. Each agent

located at x chooses the profile of interactions n(x, ·) that maximizes her utility

U(x) = S(x)− C(x) =

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)c(x− y)}λ(y)dy

Note that her utility depends on the profile of other agent’s social capital levels (s(y), y 6= x).

It also depends on her own social capital (s(y), y = x) but only on a set of measure zero.9

As a result, the optimal number of interactions of an agent located at x depends only on the

social capital s(y) of the other agents located at y at a non-zero distance to her. The optimal

number of interactions n∗(x, y) of an agent located at x (that we call agent x) is therefore

found by differentiating pointwise U(x) with respect to n(x, y), taking s(y) as given. This

9Under the assumption that λ(x) < +∞, the agent has no incentive to raise her number of interactions
n(x, ·) to increase her own social capital s(x). In other words, since one agent’s social capital benefits
“almost” exclusively other agents, an agent has no incentives to be strategic with respect to increasing her
own social capital.
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pointwise differentiation yields:

v′ (n∗(x, y)) s(y)− c(x− y) = 0.

Using (1), this is equivalent to:

[1− n(x, y)] s(y) = c(x− y).

So, the optimal number of interactions is equal to:

n∗(x, y) = 1− c(x− y)

s(y)
(3)

For individual x, the number of interactions n∗(x, y) between x and y increases with y’s

social capital and decreases with the distance between x and y. For simplicity, we assume

away corner solutions and assume global interactions so that agents interact with every other

agent in the city, i.e.

n∗(x, y) > 0⇔ s(y) > c(x− y), ∀x, y

A sufficient condition for this inequality to hold is

min
y
s(y) > c(2b) (4)

Let us define the access cost measure as

g(y) ≡
∫ b

−b
c(y − z)λ(z)dz, (5)

which is lower than the maximum travel cost c(2b). By plugging (3) into (2) and using (5),

we obtain the equilibrium level of social capital s∗(y), which is given by:

s∗(y) = 1 + α

∫ b

−b
s(z)λ(z)dz − αg(y). (6)

Integral equations do not often accept simple analytical solutions, if any. Yet, under the

above utility specification, a solution can be obtained. Indeed, integrating s(z)λ(z) and

8



simplifying, we obtain:

∫ b

−b
s(z)λ(z)dz =

1

1− α

[
1− α

∫ b

−b
g(z)λ(z)dz

]
. (7)

Inserting this result into (6) yields a closed-form solution for the equilibrium social capital

given by:

s∗(y) = s0 − αg(y), (8)

where

s0 =
1− α2

∫ b
−b g(z)λ(z)dz

1− α
, (9)

and where g(y) is defined by (5). Under the condition that 0 < α < 1, the optimal social

capital s∗(y) has a finite solution. To guarantee global interactions, we must have s0−αg(y) >

c(x− y) for all x, y. Using (4), a sufficient condition is

s0 − α
[
max
y
g(y)

]
> c(2b) (10)

To summarize,

Proposition 1 Assume 0 < α < 1 and (10). Then, there exists a unique equilibrium

(n∗(x, y), s∗(y)), defined for all x, y, such that

n∗(x, y) = 1− c(x− y)

s∗(y)

and

s∗(y) =
1− α2

∫ b
−b g(z)λ(z)dz

1− α
− α

∫ b

−b
c(y − z)λ(z)dz (11)

Let us discuss the properties of the equilibrium social capital s∗(y), defined in (11),10 in

a spatial environment.

First, lower travel costs increase social capital for all agents. This conclusion arises

simply because social capital increases when the access measure g(y) falls. An upward shift

in the travel cost function c(x) raises this access measure and therefore each agent’s social

10Once we know the comparative statics results with respect to s∗(y), then it is straightforward to deduce
those of n∗(x, y).
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capital s∗(y). As a result, travel cost can be seen as a barrier to social capital formation.

Improvements in urban transportation infrastructure should therefore enhance social capital.

Second, a rise in the importance of peers’ social links in the creation of own social capital

α, has ambiguous effects. Indeed, differentiating s(y) yields

sα(y) =

∫ b

−b
n∗(y, z)s(z)λ(z)dz + α

∫ b

−b
n∗(y, z)sα(z)λ(z)dz + α

∫ b

−b
n∗α(y, z)s(z)λ(z)dz

where sα(y) and n∗α(y, z) denotes the derivatives of s(y) and n∗(y, z) with respect to α.

Thus, an agent’s social capital increases with higher α because she places greater value on

the social capital of her interaction partners (first term) and because her partners themselves

have higher social capital (second term). However, as n∗α(y, z) = −c(y−z)s∗α(z)/ (s∗(z))2 ≤ 0,

she reduces her frequency of interactions with the partners with higher social capital, which

reflects a substitution effect between the frequency and the quality of social interactions

(third term). We can get a clearer result by using the optimal frequency of interaction and

its associated social capital (6). Differentiating the latter expression with respect to α leads

to:

sα(y) =

∫ b

−b
s(z)λ(z)dz − g(y) + α

∫ b

−b
sα(z)λ(z)dz. (12)

Multiplying this expression by λ(y), integrating and simplifying gives:

∫ b

−b
sα(z)λ(z)dz =

1

(1− α)2

[
1−

∫ b

−b
g(z)λ(z)dz

]

Plugging this expression and (7) into (12) yields

sα(y) =
1

(1− α)2

[
1−

∫ b

−b
g(z)λ(z)dz

]
− g(y)

As expected, this expression is ambiguous in sign. However, it is positive for small enough

access cost measure g(·) and therefore low enough travel costs c(·). We summarize these

findings in the following proposition:

Proposition 2 Lower travel costs increase social capital for all agents. An increase in α,

the importance of peers’ social links, increases each agent’s social capital for small enough

travel cost.

10



We now look at the impact on social capital of a wider geographical dispersion of agents.

Consider a mean preserving increase in the spread of the spatial distribution λ; that is, a

change in λ that second-order stochastically dominates the present distribution. Expanding

expression (8), the social capital s(y) = s0 − αg(y) can be found to be a linear function of

−
(

(1− α) g(y) + α

∫ b

−b
g(z)λ(z)dz

)
,

which can be rewritten as

−
∫ b

−b
[(1− α) c(y − z) + αg(z)]λ(z)dz.

We can then apply standard results from the analysis of uncertainty. Namely, a mean

preserving spread of λ will decrease this expression if the square-bracketed expression is a

convex function of z for any y. Conversely, it will increase this expression if the square

bracket term is a concave function of z for any y. A sufficient condition for a decrease (resp.

an increase) of this expression is that both c(·) and g(·) are convex functions (resp. concave

functions). For our class of travel cost functions, we find that

g′′(x) =

∫ b

−b
c′′(x− y)λ(y)dy + 2c′+(0)λ(x)

where c′+(0) is the positive slope at the possible kink of the travel cost function. Therefore g(·)
is convex for any travel cost function that is piece-wise linear or convex. This includes linear

travel cost c(x) = c1 |x| and quadratic travel cost c(x) = c2x
2 where c1 and c2 are constants.

Intuitively, a spread of the spatial distribution of agents increases the trip distances and

costs, which decreases the incentives to interact. So, larger spatial dispersion of agents

reduces social capital in cities.11

Finally, agents located at the urban center have better access to others and have incentives

to increase their social interactions and social capital. One therefore expects that social

capital is less spatially dispersed than the agents. To make this argument formally, let us

measure the spatial dispersion of a distribution function φ by the ratio of “spatial variance”

11Note that general results cannot be obtained for travel cost functions that are piece-wise concave (like
c(x) = 1− exp (− |x|)) because these functions are neither convex nor concave.
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over its mean value, i.e.

Disp(φ) ≡
∫ b
−b z

2φ(z)dz∫ b
−b φ(z)dz

A mean preserving spread of the function φ around x = 0 increases this dispersion measure

because it puts higher values to more distant locations. Under this definition, social capital

is less spatially dispersed than the agents if and only if Disp(sλ) < Disp(λ). Using (8), it

is shown in the proof of Proposition 3 in Appendix A that this is equivalent to Disp(gλ) >

Disp(λ). That is, the function gλ should be more dispersed than the agent’s spatial

distribution function λ. We further show that this is true irrespective of the travel cost

function g when x2λ(x)/
∫
z2λ(z)dz is a mean preserving spread of the distribution of λ(x)

around its mean x = 0. This applies for any uniform spatial distribution λ and for most

symmetric spatial distribution functions of interest. We summarize these results in the

following proposition:

Proposition 3 Suppose linear or convex travel cost functions. Then,

(i) A mean preserving increase in the spread of a symmetric distribution λ decreases social

capital for all agents;

(ii) Social capital is less spatially dispersed than agents if x2λ(x)/
∫
z2λ(z)dz is a mean

preserving spread of the distribution of λ(x) around its mean x = 0.

The main point of Proposition 3 is to show that, provided that travel costs have appro-

priate regularity properties, a larger spatial dispersion of agents reduces the social capital

in the city and social capital is less spatially dispersed than the agents. This implies that

the level and the geographical dispersion of social capital are monotone functions of the

dispersion of individuals.

2.3 Linear travel costs

Let us now apply the above analysis to linear travel costs, which are heavily used in urban

economics for their convenient and realistic properties (see, e.g. Fujita, 1989; Zenou, 2009).

In the present paper, they permit closed-form solutions. Suppose, indeed, that c(x) = c1 |x|

12



where c1 > 0. Then,

g(y) ≡ c1

∫ y

−b
(y − z)λ(z)dz + c1

∫ b

y

(z − y)λ(z)dz

g′(y) = c1

∫ y

−b
λ(z)dz − c1

∫ b

y

λ(z)dz

g′′(y) = 2c1λ(y) > 0

So, the access cost measure g is a convex function of the distance to the center. Social capital

is a concave function that is distributed so that s′′(y) = −2αc1λ(y) < 0. Assume further

that the spatial distribution of agents λ is symmetric (λ(x) = λ(−x)). Then, g(x) is also

symmetric and therefore equal to

g(x) = g0 + 2c1

∫ x

0

∫ y

0

λ(z)dzdy, x ≥ 0

where g0 = 2c1

∫ b
0
zλ(z)dz. So, for x ≥ 0, and assuming 0 < α < 1 and (10), then the unique

equilibrium (n∗(x, y), s∗(y)) is given by

n∗(x, y) = 1− c1 |x− y|
s∗(y)

and

s∗(x) = s0 − 2c1

∫ x

0

∫ y

0

λ(z)dzdy

where

s0 =
1− 2c1α

2
[∫ b

0
zλ(z)dz − 2

∫ b
0

(∫ x
0

∫ y
0
λ(z)dzdy

)
λ(x)dx

]
1− α

It is clear that lower travel costs c1 increase social capital for all agents. For small enough

travel costs c1, higher α increases s0 and therefore each agent’s social capital.

2.4 Linear travel costs and uniform distribution of agents

Assume now that there is a uniform distribution of agents in the city so that λ(x) = 1/2b,

which implies that
∫ b
−b λ(y)dy = 1. Assume also as above that travel costs are linear so that

13



c(x) = c1 |x| where c1 > 0. It is then straightforward to show (see Appendix A) that:

n∗(x, y) = 1− c |x− y|
s∗(y)

(13)

and

s∗(y) = 1 +
α

2b

∫ b

−b
n∗(y, z)s∗(z)dz (14)

Compared to the general case (Proposition 1), when agents are uniformly distributed in the

city and travel costs are linear, we see more clearly how the size of the city, 2b, affects the

social capital s∗(y) and the frequency of interactions n∗(x, y).

3 Efficient social interactions

We now study the planner’s allocation of interaction frequency for a given location pattern

λ. The planner chooses the profiles of social interactions n(·, ·) and social capital s(·) that

maximize the aggregate utility

W =

∫ b

−b
U(x)λ(x)dx =

∫ b

−b
[S(x)− C(x)]λ(x)dx

subject to the social capital constraint

s(x) ≤ 1 + α

∫ b

−b
n(x, z)s(z)λ(z)dz (15)

where we put an inequality to express that the agent can always reduce her social capital at

no cost (e.g. she erases a part of her address book).

The government chooses the profiles n(·, ·) and s(·) that maximize the Lagrangian func-

tion

L =

∫ b

−b

∫ b

−b
{v [n(x, y)] s(y)− n(x, y)c(x− y)}λ(y)λ(x)dxdy

−
∫ b

−b
χ(x)

[
s(x)− 1− α

∫ b

−b
n(x, y)s(y)λ(y)dy

]
λ(x)dx

where χ(x) ≥ 0, or more precisely χ(x)λ(x) is the Kuhn-Tucker multiplier of the social
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capital constraint. So, χ(x) measures the welfare value of a marginal increase of the social

capital of an agent located at x.

Lemma 4 The efficient interaction frequency and social capital satisfy the following neces-

sary conditions:

v′ [n(x, y)] s(y)− c(x− y) + αχ(x)s(y) = 0 (16)∫ b

−b
{v [n(x, y)] + αχ(x)n(x, y)}λ(x)dx− χ(y) = 0 (17)

Equations (16) and (17) together with the constraint (15), solve for the functions n(x, y),

s(y) and χ(x).

Condition (16) captures the main externality at work in the process of social interaction.

When the planner chooses the interaction frequency n(x, y), he considers both the benefit

and cost to agent x and the fact that an increase in x’s social capital increases y’s social

capital. This latter effect is not considered by agent x at the equilibrium. The weight that

the planner puts on raising another agent’s social capital increases with the importance of

interactions, α, and with the social benefit of relaxing the social capital constraint, χ(x).

The second condition (17) is interpreted as follows: when the planner increases the social

capital of an agent located at y, he directly raises the utility of all agents who interact with

this agent (first term in curly brackets) and indirectly increases the social capital for all those

other agents (second term in the curly brackets). In the efficient allocation, this combined

effect should be equal to χ(y), the welfare value of a marginal increase of the social capital

of an agent located at y.

Proposition 5 The equilibrium frequency of interactions and level of social capital are lower

than the efficient ones.

Intuitively, the planner internalizes the effect that each agent has on others’ social capital

when she entertains more intense social interactions. As a result, the planner imposes agents

to increase their frequency of social interactions above the equilibrium level. This welfare

conclusion confirms Brueckner and Largey’s (2008) and extends their analysis to the case

where agents are distributed across space.
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Can the efficient allocation of social interactions be decentralized with subsidies σ (x, y)

and τ (x, y) for social interactions and travel costs? If we include these subsidies, the utility

becomes

U(x) = S(x)− C(x)

=

∫ b

−b
{v (n(x, y)) [s(y) + σ (x, y)]− n(x, y) [c(x− y)− τ (x, y)]}λ(y)dy

This implies that the equilibrium number of social interactions becomes

n∗(x, y) = 1− c(x− y)− τ (x, y)

s(y) + σ (x, y)

We can obtain the first-best solutions and efficient social interactions can therefore be de-

centralized by setting σ (x, y) = 0 and τ (x, y) = αχo(x)so(y). Indeed, in this case, we find:

n∗(x, y) = 1− c(x− y)/so(y) + αχo(x) = no(x, y).

Proposition 6 The first best solutions no(x, y) and so(x) can be restored by setting σ (x, y) =

0, i.e. social interactions should not be subsidized, and τ (x, y) = αχo(x)so(y), i.e. trips

should be subsidized as a function of the locations of the destination and origin partners.

The subsidy τ (x, y) should be higher for trips to partners who have higher social capital and

for trips from partners whose social capital increases more with additional interactions.

The optimal subsidy to travel costs is therefore not a uniform one. This suggests that

decentralization would be difficult to implement because subsidies depend on both the origins

and destinations of social interactions (it is very unlikely that τ (x, y) reduces to a simple

function of x, or y or x − y). This result contrasts with Helsley and Zenou (2014), who

advocate that the planner should subsidize the most central agents. Their model with a two

location points, however, imperfectly captures the full picture of spatial interactions. In the

present model, we observe that the planner does not subsidize those agents with high social

capital but only subsidizes the trips to those agents.

4 Empirical strategy

To bring the model to the data, we need to introduce agents’ heterogeneity in equation (1).

We assume that the benefits of the intensity of interactions between individuals x and y
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also depends on their social distance, that is on their distance in terms of socio-demographic

characteristics:

v (n(x, y)) = (n0 + θ(x, y))n (x, y)− 1

2
[n (x, y)]2 ,

where θ(x, y) denotes the social distance between x and y and n0 is a positive constant.

When the city is uniform, the utility function of individual x can be written as:

U(x) = S(x)− C(x) =

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)c(x− y)}λ(y)dy

=
1

2b

∫ b

−b

[(
(n0 + θ(x, y))n (x, y)− 1

2
[n (x, y)]2

)
s(y)− n(x, y)c |x− y|

]
dy. (18)

By pointwise differentiating U(x) with respect to n(x, y), we easily obtain the optimal number

of interactions, which is equal to:

n∗ (x, y) = n0 −
c |x− y|
s∗(y)

+ θ(x, y),

while the social capital of each individual is still given by (14), which is equal to:

s∗(y) = 1 +
α

2b

∫ b

−b
n∗(y, z)s∗(z)dz.

Let us assume we observe data from R networks (r = 1, ..., R), each comprised of Nr agents.

To avoid cumbersome notation, we assume that individual i resides in location x, individual

j in location y, and individual k in location z. The geographic distance between individuals

i and j is denoted by dij,r. As a result, the above two equations can be written as follows:

n∗ij,r = n0 −
cdij,r
s∗j,r

+ θij,r, (19)

and

s∗j,r = 1 +
α

2br

Nr∑
k=1

n∗jk,rs
∗
k,r, (20)

Observe that, quite naturally, we do not allow social interactions with oneself, i.e. we assume

n∗ii,r = 0.

We allow the social distance to depend on observed (pair-level) individual characteristics

xij,r and on unobserved factors εij,r. For simplicity, we assume that εij,r is independent and
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identically distributed across pairs and networks, but the i.i.d. assumption within a network

can be relaxed. We discuss this in Appendix B.

If the network is undirectional, that is if nji,r = nij,r for all i, j, one can use the specifi-

cation:

θij,r =
M∑
m=1

βm|xi,m,r − xj,m,r|+
M∑
m=1

βM+m(xi,m,r + xj,m,r) + εij,r, (21)

where negative values in the vector (β1, · · · , βM)T capture homophily effects (associated with

smaller socio-economic distance |xi,m,r−xj,m,r|), and (βM+1, · · · , β2M)T measures the effect of

the combined level of xi and xj, where M is the number of individual-level covariates. Indeed,

under homophily behavior (i.e. the tendency of individuals to associate and bond with others

who share common traits; see McPherson et al., 2001; Currarini et al., 2009; Graham, 2017),

individuals with similar characteristics (same race, same gender, etc.) will tend to interact

more than less similar individuals (thus βm should be negative under homophily in xm).

If the network is directional, that is when nij,r does not need to be equal nji,r, one can

use the specification:

θij,r =
M∑
m=1

βm(xi,m,r − xj,m,r) +
M∑
m=1

βM+m(xi,m,r + xj,m,r) + εij,r (22)

Similar specifications have been used in the literature; see, for example, Fafchamps and

Gubert (2007).

Technical note to ease the estimations of the fixed point Consider (19) and

(20). The first equation (19) can be written as:

nij,rsj,r = (n0 + θij,r) sj,r − cdij,r, (23)

so that (20) becomes

sj,r = 1 +
α

2br

Nr∑
k=1

[(n0 + θjk,r) sk,r]−
αc

2br

Nr∑
k=1

djk,r, (24)

where the last term is the discrete equivalent of g(x) in the model. Let us solve the fixed

point in (20). Let us denote the (Nr × 1) vector sr by: sr= (s1,r, ..., sn,r)
T. Let us also denote
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the (Nr ×Nr) matrices by: ∆r= (dij,r) and Θr = (θij,r) = (xTij,rβ + εij,r). In other words,

∆r =



d11,r ... d1i,r ... d1Nr,r

...
. . .

...
. . .

...

di1,r ... dii,r ... diNr,r
...

. . .
...

. . .
...

dNr1,r ... dNri,r ... dNrNr,r


and Θr =



θ11,r ... θ1i,r ... θ1Nr,r

...
. . .

...
. . .

...

θi1,r ... θii,r ... θiNr,r
...

. . .
...

. . .
...

θNr1,r ... θNri,r ... θNrNr,r


.

(25)

Thus, in vector-matrix form, (24) can be written as:

sr = 1Nr +
α

2br
(N0 + Θr) sr −

αc

2br
∆r1, (26)

where 1Nr is the (Nr × 1) vector of 1 and N0 is an N by N matrix in which the off-diagonal

elements are n0, and the diagonal elements are zero.

Solving this equation leads to

s∗r =

[
INr −

α

2br
(N0 + Θr)

]−1(
INr −

αc

2br
∆r

)
1Nr , (27)

where INr is the (Nr ×Nr) identity matrix. The matrix INr − α
2br

(N0 + Θr) is invertible if

α
2br

< 1
ρ(N0+Θr)

, where ρ (N0 + Θr) is the largest eigenvalue of the matrix N0 + Θr.

Estimation Besides agents’ characteristics xij,r, we assume that the data provide:

• n∗ij,r, the intensity of social interactions between agents i and j in network r

• dij,r, the geographical distance between agents i and j in network r.

• 2br, the maximum geographical distance between two agents in network r, i.e. 2br =

max dij,r.

Using this information, we need to recover α, β, c, n0, and the equilibrium social capital,

s∗j,r. We employ the method of simulated moments (MSM) proposed by McFadden (1989)

and Pakes and Pollard (1989).

The objective of MSM estimation is to find the parameter vector that provides the sim-

ulated level of social interactions that best matches the observed level of social interactions.

In addition, we match the eigenvector centrality (in lieu of social capital) based on the sim-

ulated social interactions matrix N̂∗r = (n̂∗ij,r) with the eigenvector centrailty based on the
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observed social interactions matrix N∗r = (n∗ij,r). The eigenvector centrality is recursively

defined as is social capital, and hence matching them helps identification of the parameter

in the social capital equation. We explain this with more detail below.

The estimation procedure is as follows. First, recall the equations (23) and (27). We

define

s∗(Xr,∆r, br, Er; θ) ≡
[
INr −

α

2br
(N0 + Θr)

]−1(
INr −

αc

2br
∆r

)
1Nr , (28)

where Xr and Er, which make up Θr, are the matrices of observed and unobserved pair-level

socio-economic characteristics for network r, defined similarly to ∆r in (25).12

We use θ to denote the vector of all parameters, i.e. θ = (n0, α, c, β
T, σ2

ε)
T, where σ2

ε is the

variance of ε. Let s∗j(Xr,∆r, br, Er; θ) be the jth element of s∗(Xr,∆r, br, Er; θ), i.e. social

capital of j. By plugging s∗j(Xr,∆r, br, Er; θ) into (23), n∗ij,r can be expressed as follows:

n∗ij,r(Xr,∆r, br, Er; θ) = n0 −
cdij,r

s∗j(Xr,∆r, br, Er; θ)
+ xT

ijβ + εij. (29)

Now, we draw T sets of simulation errors ε
(t)
ij,r, t = 1, · · · , T for all pairs and all networks.

These sets of errors will be fixed for the entire estimation process. Next, we compute social

capital s(t) and predict the intensity of social interactions n̂
(t)
ij,r for each set of errors using

equation (28) and (29). Then, the prediction error is given by

ν̂ij,r = n∗ij,r −
1

T

T∑
t=1

n̂
(t)
ij,r

= n∗ij,r −
1

T

T∑
t=1

(
n0 −

cdij,r

ŝj(Xr,∆r, br, E (t)
r ; θ)

+ xT
ijβ + ε

(t)
ij,r

)
, (30)

where E (t)
r is the matrix of the tth set of simulation errors. We use ŝ instead of s∗ since the

former is associated with simulation errors. The prediction error ν̂ij,r is uncorrelated with

exogenous data xij,r and dij,r at the true parameter value θ0 (e.g. Berry, 1992). That is,

E(ν̂ij,r|Xr,∆r; θ = θ0) = 0

12There are a total of 2M (i.e. M for the social distances and another M for the combined levels) number

of Nr by Nr matrices of Xm,r, m = 1, · · · , 2M . Hence, Θr =
∑2M

m=1 βmXm,r + Er. With a slight abuse of
notations, we use Xr to collect Xm,r, m = 1, · · · , 2M .
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From this, we have

E(ν̂ij,r) = 0, E(ν̂ij,rxij,r) = 0 and E(ν̂ij,rdij,r) = 0. (31)

From this, we can construct (2M + 2) moment conditions. However, we have (2M + 4)

parameters to estimate, so the model is still under-identified.

To ensure identification, we utilize the relation between social capital and the eigenvector

centrality of social interactions matrix N∗r. Recall the social capital equation (20)

s∗j,r = 1 +
α

2br

Nr∑
k=1

n∗jk,rs
∗
k,r, (21)

and compare it with the eigenvector centrality ECj,r defined as (see, e.g. Jackson (2008))

ECj,r =
1

λ

Nr∑
k=1

n∗jk,rECk,r, (32)

where λ is the largest eigenvalue of N∗r. The eigenvector centrality is a reasonable proxy for

social capital because it is recursively defined, as social capital, with respect to the social

interactions matrix N∗r. Therefore, if the model precisely predicts the data, the eigenvector

centrality from N∗r and the eigenvector centrality from the predicted social interaction matrix,

say N̂∗r, must be close to each other. Moreover, matching the eigenvector centralities helps

identification of the parameter α which appears only in the social capital equation (20). We

define another Nr × 1 vector of predicted errors ξ̂r such that

ξ̂r = ECr −
1

T

∑
t

ÊC
(t)

r , (33)

where ÊC
(t)

r is the eigenvector centrality corresponding to the predicted social interactions

network N̂
∗,(t)
r with respect to the tth simulation errors.

These prediction errors are mean independent of xij,r and dij,r at the true parameter

value θ0. That is,

E(ξ̂r|Xr,∆r; θ = θ0) = 0

From the independence between ξ̂ and the observed variables xij,r and dij,r, we have (2M+2)
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additional moment conditions.

E(ξ̂r) = 0, E(ξ̂rxij,r) = 0 and E(ξ̂rdij,r) = 0 (34)

Thus, we have a total of (4M+4) moment conditions for (2M+4) parameters, and the model

is identified (over-identified). The MSM estimator minimizes the (simulated) generalized

method of moments objective function, and we bootstrap to compute standard errors due to

the small number of networks (Horowitz, 2001). Note that the above moment conditions are

given in terms of pairs and/or individuals. With R independent networks, we specify moment

conditions by aggregating the restrictions in (31) over pairs and the restrictions in (34) over

individuals. Appendix C provides further details on how we construct the network-level

moment conditions and on the MSM estimation procedure.

5 Empirical analysis

5.1 Data

Our empirical investigation is made possible by the use of a database on friendship networks

from the National Longitudinal Survey of Adolescent Health (Add Health).13

The AddHealth database has been designed to study the impact of the social environment

(i.e. friends, family, neighborhood and school) on adolescents’ behavior in the United States.

It is a school-based survey which contains extensive information on a representative sample

of students who were in in grades 7-12 in 1995. More than 100 schools were sampled.

Three features of the Add Health data set are unique and central to our analysis: (i) the

nomination-based friendship information, which allows us to reconstruct the precise geometry

of social contacts, (ii) the detailed information about the intensity of social interactions

between each of two friends in the network; and (iii) the geo-coded information on residential

locations, which allows us to measure the geographical distance between individuals.

13This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National
Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies
and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in
the original design. Information on how to obtain the Add Health data files is available on the Add Health
website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.
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The friendship information is based upon actual friend nominations at school. All stu-

dents who were present at school in the interview day received the questionnaire. Pupils

were asked to identify their best school friends from a school roster (up to five males and

five females).14 For each individual i, the friendship nomination file also contains detailed

information on the frequency and nature of interaction with each nominated friend j. The

precise questions are: “Did you go to {NAME}’s house during the past seven days?”; “Did

you meet {NAME} after school to hang out or go somewhere during the past seven days?”;

“Did you spend time with {NAME} during the past weekend?”; “Did you talk to {NAME}
about a problem during the past seven days?”; “Did you talk to {NAME} on the telephone

during the past seven days?”. “Yes” or “No” are the possible answers. These answers are

coded by one and zero, respectively. We measure the intensity of social interactions between

students i and j, that is n(x, y) or nij in the model, by summing all these items so that

the maximum value of nij is 5 and the minimum is 0. We symmetrize the social interac-

tions by choosing the largest number between nij and nji. A random sample of students in

each school (about 20,000 students) is then interviewed also at home where a longer list of

questions are asked both to the child and his/her parents. Most notably for this study, the

geographical locations of those houses is also recorded. Latitude and longitude coordinates

are calculated for each home address and then translated into X− and Y−coordinates in an

artificial space. We use this information to derive the spatial distance between students. The

maximum geographical distance between two students, which is calculated for each network

separately, is about 173 kilometers. The average distance is about 8.8 kilometers, while the

median distance is about 5.3 kilometers.

When data on individuals with geo-coded information are merged with the friendship

nomination data, valid information on nominated friends, types of interactions and geo-

graphical location is available for about 2,236 students.15 In addition, we focus on network

sizes between 4 and 70 members.16 We do this for two reasons. Firstly, the upper and lower

tails of the distribution of networks by network size are commonly trimmed since the strength

14The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends.

15A large reduction in sample size when mapping friendships in the Add Health is common and mainly
due to the network construction procedure - roughly 20 percent of the students do not nominate any friends
and another 20 percent cannot be correctly linked. In addition, there is a further 50 percent of the sample
for which information on strenght of interactions is missing.

16In our data, the maximum network size is 68, the average one contains roughly 8 students, with a notable
dispersion around this mean value (standard deviation equal to 10 pupils).
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of peer effects may be too different in too small or too large networks (see Calvó-Armengol

et al., 2009). Secondly, and most importantly, the computational burden of our estimation

procedure requests to keep sample sizes relatively small. Table 1 describes our data and de-

tails our sample selection procedure. We report the characteristics of four different samples,

which correspond to the three steps of our selection procedure. In column (1), we consider

the original sample of students who have valid geo-coded information. In columns (2)–(3),

we further restrict the sample to those with friendship information and intensity of interac-

tions. Finally, in column (4), we report our sample where we only keep students in networks

of 4-70 agents. Table 1 shows that differences in means between these samples are almost

never statistically significant. Our final sample consists of about 900 individuals distributed

over roughly 100 networks. Among the adolescents selected in our sample of students, 58%

are female and 20% are blacks. Slightly more than 70% live in a household with two married

parents. The average parental education is high school graduate. The performance at school,

as measured by the grade point average or GPA, exhibits a mean of 2.98, meaning slightly

less than a grade of “B”. The average family income is 44,562 in 1994 dollars, although 11%

of parents chose not to report such information.

[Insert Table 1 here]

5.2 Empirical results

Table 2 displays the estimation results. In Columns (1)−(2), we report the estimations when

we use equation (22), i.e. we use the set of social distances where the dyadic relationship

is directional, i.e. (xi − xj). In Columns (3) − (4), we use the set of social distances where

the dyadic relationship is undirectional, i.e. |xi − xj|. Furthermore, in Columns (1) and

(3), we use two basic sets of demographic variables, while Columns (2) and (4) extend the

number of variables to include all other socio-demographic characteristics possibly related

to the intensity of social interactions and social capital, such as household size.

Table 2 shows that the estimates are remarkably similar across Columns (1) − (2) and

across Columns (3) − (4). Moreover, the estimates for the main structural parameters, or

(n0, α, c) do not differ substantially across all specifications. Therefore, our explanation of

results will be mostly based on Columns (2) and (4) in which we use all available explanatory
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variables.

[Insert Table 2 here]

Remember that the variable “Female” in Table 2 is a dummy variable that takes 1 if the

respondent is a female (see Table 1). Let us therefore interpret Column (2) in Table 2 using

equation (22) where β1 = −0.00033 and βM+1 = 0.0048. This means that a pair of females

is associated with 0.0096 more social interactions than a pair of males.17 Furthermore, if a

male and a female student meet (xi = 0 and xj = 1), the male student would have 0.00513

social interactions while the female student would have 0.00477 social interactions.18 Given

that the unit of social interactions is a weekly frequency, these estimates indicate that the

difference is much less than one interaction per year, and hence economically insignificant.

Table 3 summarizes our discussion by giving all the possible values of the effects of gender

on social interactions using equation (22).

Table 3: Coefficients on (xi − xj) and (xi + xj)

i (self)

j (partner)
Female Male

Female 2βM+1 −β1 + βM+1

Male β1 + βM+1 0

The coefficients β1 and βM+1 can be found in equation (22).

In particular, consider a student pair (i, j). A characteristic (e.g. female) of student j is

associated with more social interactions if each item of the first column is larger than that of

the second column in Table 3. Hence, the individual j is socially prefered as social interaction

partner if βM+1 > −β1. The opposite characteristic is preferred under the opposite condition.

Applying this interpretation to the significant coefficient βM+1 in Column (2) of Table 2, we

can see that students are preferred as social interaction partners if they are female, black,

older students (higher grade), are physically more developed and are more religious. The

same applies for students with better parental education, lower family income and less than

two parents. Reciprocally, the characteristic of student i is associated with more interactions

if each element of the first row is larger than that of the second row: that is, if βM+1 > β1.

Applying this criterion to the significant coefficient βM+1 in Column (2) of Table 2, all

17Indeed, xi = xj = 1 ⇒ β1(xi − xj) + βM+1(xi + xj) = 0 + 2 × 0.0048 = 0.0096, and xi = xj = 0 ⇒
β1(xi − xj) + βM+1(xi + xj) = 0.

18Indeed, β1(xi − xj) + βM+1(xi + xj) = 0.00033 + 0.0048 = 0.00513 and β1(xj − xi) + βM+1(xj + xi) =
−0.00033 + 0.0048 = 0.00447.
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above reported characteristics apply except parental education and family composition. In

these cases, a student with lower parental education and two parents tends to have more

social interaction. Finally, a characteristic unambiguously yields more social interaction if

the elements of its column and row are larger (that is, 2βM+1 > max{−β1 + βM+1, β1 +

βM+1, 0}). Under this condition, we can see that students are unambiguously preferred as

social interaction partners if they are female, black, good student (high grade), physically

more developed and religious.

When we consider the symmetric social distances, i.e. Column (4), students’ preferences

exhibit homophily in all of their own characteristics if the coefficient βM+1 is negative and

significantly different from zero. This occurs for female, black, grade, GPA, physical de-

velopment, and religion practice. The estimates are all negative and significant, and their

magnitudes are in general larger than those from the directed social distances in Column (2),

which also supports homophily behaviors. When it comes to family background, students

have homophily in family size and having two parents, but they do not have homophily in

parental education and family income. The degree of homophily is the largest in student

grade.

Next, the estimated coefficients on the (xi+xj) variables exhibit mixed signs. The results

in Columns (2) and (4) are mostly similar to each other but different for variables such as

female, religion practice, and family income refused. In both specifications, the intensity of

social interactions is increasing if a pair has a student with the following socio-demographic

characteristics: black or other non-white race, higher grade, lower GPA, more physically

developed, more parental education, less family income, two parents, and a smaller family

size. These results are all statistically significant. It is particularly intuitive that older

students have more social interactions because those who are 16 years old or older can drive

to a friend’s house. One possibly counter-intuitive result is that of family income. One

would think students with more family income are likely to have more social interactions.

However, it is possible that students from high-income families may be involved in more

expensive types of activities such as playing sports (e.g. horseback riding, gymnastics, etc.),

which is not distinguishable in our data. Alternatively, students from high-income families

may be more likely to have best friends at other schools.

Turning our attention to the structural parameters, the baseline level of social interactions

n0 is roughly 2.2− 3.4, which is close to the optimal level of social interactions as we will see
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in Section 6. The estimated cost of transportation is 0.00011− 0.00026 across specifications

and statistically significant.

Combined with average pairwise distance (8.78 kilometers), the average estimated trans-

portation cost is 0.001− 0.0023. Although the magnitude of all the estimates are small, the

magnitudes of those estimates should be interpreted relative to each other. Given that the

estimated cost of transportation per kilometer is only 0.00011− 0.00026, the magnitudes of

homophily parameters ranging between 0.00022 and 0.0233 are not small.

6 Predictions and policy analysis

6.1 Dispersion

We now test Proposition 3 without using the structural estimates of our model. This propo-

sition shows that a mean preserving increase in the spread of a symmetric distribution λ

decreases social capital for all agents. To test this proposition, we can proceed as follows.

For each of our 104 networks, we know the coordinates (xi,r, yi,r) of each individual i and

the network baricenter (xr, yr) = ( 1
Nr

∑
i xi,r,

1
Nr

∑
i yi,r). We then compute two types of geo-

graphical distance between network members: first, the average distance between individuals

and their network baricenter, dr = 1
Nr

∑
i di,r, and second, the average distance between pairs

of members, d̃r = 2
Nr(Nr−1)

∑
i

∑
j 6=i dij,r. Furthermore, we calculate, for each network r, the

average interactions n∗r and the average social capital s∗r. Then, Proposition 3 predicts that

there is negative relationship between n∗r and dr and between s∗r and dr. We have the same

prediction with d̃r.

To verify these theoretical predictions, without claiming causality, we regress the average

interactions n∗r and the average social capital s∗r on the average distance dr as follows:

n∗r = γ0 + γ1Nr + γ2 (Nr)
2 + γ3dr + γzzr + γxxr + εr,

s∗r = δ0 + δ1Nr + δ2 (Nr)
2 + δ3dr + +γzzr + δxxr + ζr,

where Nr is the size (in terms of population) of network r, zr are network measures and xr

are network-level socio-economic control variables (such as average family income in network

r, etc.). Table 4 displays the results. It confirms that there is a negative and significant rela-
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tionship between n∗r and dr, and between s∗r and dr. In terms of magnitude, a one kilometer

increase in the geographical dispersion of individuals is associated with an approximately

0.06–0.07 decrease (5–6% decrease relative to the mean) in the average social interactions

and a 0.002 decrease (0.2% decrease) in the average social capital. Such decreases are XXX

What are these results relative to the mean (in percent terms?) The results are robust to

the choice of the dispersion measures dr and d̃r. Note that we use the average, instead of the

variance (or standard deviation) of pairwise distances because the latter captures the disper-

sion of distances rather than the dispersion of students’ geographic locations. These results

thus empirically confirm that distance is associated with lower levels of social interactions

and social capital (see also Büchel and von Ehrlich (2017) for a similar result).

[Insert Table 4 here]

From Table 4, we also see that there is a non-monotonic relationship between the average

interactions in a given network n∗r and the network size Nr.
19 Using Column (4), we have:

∂n∗r
∂Nr

= γ1 + 2γ2Nr = 0.143− 2(0.0016)Nr = 0 (35)

Solving this equation leads to: Nr = 0.143
2(0.0016)

≈ 44. This means that the average social

interactions increases with the network size until it reaches (approximately) 44 students

and then decreases. Nr = 44 is thus the size of the network that maximizes average social

interactions in our data. The result implies that students do not increase social interactions

if they are connected with more than a certain number of friends.

6.2 Welfare

We now use the estimated parameters of the model provided in Table 2, i.e. α, c and n0,

to calculate the welfare loss and perform simulations. We know from the theoretical model

(Section 3) that, if the planner optimally chooses n(x, y) and s(y), we obtain:

v′ [no(x, y)] so(y)− c(x− y) + αχ(x)so(y) = 0

19We do not comment on the relationship between the average social capital s∗r and Nr since it is not
significant.
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∫ b

−b
{v [no(x, y)] + αχ(x)no(x, y)}λ(x)dx− χ(y) = 0

so(y) = 1 +
α

2b

∫ b

−b
no(y, z)so(z)dz

where χ(x) ≥ 0 (or more precisely χ(x)λ(x)) is the Kuhn-Tucker multiplier of the social

capital constraint. So, χ(x) measures the welfare value of a marginal increase of the social

capital of an agent located at x.

Given linear travel costs and the uniform distribution of individuals in a linear city, we

have

no(x, y) = n0 −
c |x− y|
so(y)

+ αχ(x)so(y) + θ(x, y)

2bχ(y) =

∫ b

−b

{
(n0 + θ(x, y))no(x, y)− 1

2
[no(x, y)]2 + αχ(x)no (x, y)

}
dx

so(y) = 1 +
α

2b

∫ b

−b
no(y, z)so(z)dz

Let us now determine the equations we want to calibrate. We have:

noij,r = n0 −
cdij,r
soj,r

+ αχi,r s
o
j,r + θij,r, (36)

2brχj,r =
Nr∑
i=1

{
(n0 + θij,r)n

o
ij,r −

1

2

(
noij,r

)2
+ αχi,r n

o
ij,r

}
, (37)

soj,r = 1 +
α

2br

N∑
k=1

nojk,rs
o
k,r (38)

Here is how we proceed. From the previous estimations of the equilibrium model, we have

the estimated values of n0, α, c and θij,r. From the data, we know br and dij,r. By plugging

these values into (36), (37) and (38), we can solve numerically these equations and determine

noij,r, for each pair i, j, soj,r for all j, and υi,r for all i. For each network r, we have 2Nr + Lr

unknowns (where Lr is the number of links in network r) and 2Nr +Lr equations since there

are Lr equations for (36), Nr equations for (37) and Nr equations for (38).

When we have calculated all the noij,r, s
o
j,r and χi,r, we can then compare the observed

values of n∗ij,r in equilibrium and at the social (first best) optimum noij,r. We can also compare

the predicted value of s∗j,r, which is calculated by using equation (28) with our parameter
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estimates and at the first best soj,r (see equation (38)). According to Proposition 5, we should

find that students socially interact too little compared to the social optimal, i.e. noij,r > n∗ij,r,

∀i, j, and soj,r > s∗j,r, ∀ixr.
We numerically solve the optimal level of social interactions and social capital with the

MSM parameter estimates in Column (6) of Table 2. Table 5 displays the results. On

average, each pair interacts 1.2 fewer times than is socially optimal. The difference between

the socially optimal and the observed levels of social interactions varies from −0.81 to 2.74

across networks. Although there are a few networks where the observed level is larger than

the optimal level, most networks’ interactions fall short of the optimum. Students also have

less social capital than optimal (by 0.236, or approximately 25%, on average). Note that our

measure of social capital is based on data augmentation using the calibrating equation (20).

We compare this augmented social capital with the optimal one computed from equations

(36)–(38).

[Insert Table 5 here]

Network size and social interactions Furthermore, we would like to find which

variables are closely associated with the discrepancy between the optimal level and the

observed level. To see this, we regress the differences nor − n∗r and sor − s∗r on the network

size, network measures, and average characteristics (e.g. average family income) of students

in each network r:

nor − n∗r = γ0 + γ1Nr + γ2 (Nr)
2 + γ3dr + γzzr + γxxr + εr, (39)

sor − s∗r = δ0 + δ1Nr + δ2 (Nr)
2 + δ3dr + δzzr + δxxr + ζr. (40)

Tables 6–7 show the results. Consider first social interactions (Table 6) and let us examine

if the difference between the optimal and the observed level of social interactions, (nor − n∗r),
is increasing or decreasing with network size Nr. Using Column (5), we have:

∂(nor − n∗r)
∂Nr

= γ0 + 2γ2Nr = 0.0614− 2(0.0011)Nr = 0 (41)

Solving this equation leads to: Nr = 0.0614
2(0.0011)

≈ 28. This means that the difference between

the optimal and the observed level of social interactions is increasing until the network
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Figure 1: Difference between optimal and observed social interactions by network size
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size reaches (approximately) 28 students and then decreases. As a result, there is a non-

monotonic relationship between nor−n∗r andNr where an increase in the network size increases

nor−n∗r up to Nr = 28 and, above this size, an increase in the network size decreases nor−n∗r.
Thus, Nr = 28 is the size of the network that maximizes these inefficiencies. Given that the

average size of the networks is Nav
r = 8, in terms of magnitude, an increase by one person

in the network from Nav
r = 8, raises these inefficiencies by 0.0614− 2(0.0011)Nav

r = 0.0438.

Figure 1 illustrates how the difference changes along with the network size Nr.

Let us now determine the network size that minimizes these inefficiencies. Since there

is a hump-shaped relationship between nor − n∗r and Nr (Figure 1), it has to be either at

Nmin
r or at Nmax

r , the minimum and maximum network size. In our data (Section 5.1), we

have: Nmin
r = 4 and Nmax

r = 68. We test this equation, and Figure 1 shows that Nmax
r = 68

minimizes the inefficiencies in terms of social interactions.

Furthermore, among the network measures, in Table 6, we see that average degree, the

average eigenvector centrality, and the network diameter are negatively correlated with nor−
n∗r. This means, for example, that the more “spread” is the network (in terms of diameter),

the lower are the inefficiencies in social interactions. Moreover, the average characteristics of

the students are also associated with the optimal-observed difference in social interactions.

Networks that consist of students with higher grades, lower GPA, smaller family size, and

lower family income are more likely to have higher inefficiencies in terms of social interactions.
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In particular, it is likely that networks of students from a low-income family have higher

inefficiencies due to financial pressure.

Let us now turn to the inefficiencies in terms of social capital (Table 7). We have seen,

previously, in Table 5, that these inefficiencies were very small. As a result, quite naturally,

in Table 7, we see that the effect of the different variables on (sor− s∗r) are nearly never large

and significant. We only find a weak negative relationship between the average geographic

distance and sor − s∗r.
Although these regressions do not have a formal identification strategy, the results, partly

based on the structural estimation of the model (that determine nor−n∗r and sor−s∗r), provide

some interesting explanations on what drives the size of inefficiency of the intensity of social

interactions and social capital accumulation.

[Insert Tables 6 and 7 here]

Network size and average welfare Another interesting exercise, for which do not

have theory, is to determine the optimal network (i.e. the one that maximizes total welfare).20

For that, without any policy, we compare the average welfare (to avoid size effects, the welfare

is not defined as the sum of utilities but as the average utility) in each of the 104 networks.

Remember that the welfare per network is given by:

W ∗
r =

1

4b2
r

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

∗
ij,r −

1

2

(
n∗ij,r

)2
)
s∗j,r − n∗ij,rcdij,r

]
(42)

As a result, the average welfare per network is:

AW ∗
r =

W ∗
r

Nr

We would like know which network r maximizes AW ∗
r , i.e. maxr AW

∗
r .

20Determining the optimal network is a very difficult exercise; see König et al. (2014) and Belhaj et al.
(2016) for such attempts when the network is given. Jackson and Wolinsky (1996) provide a similar exercise
for endogenous network formation. Because this exercise is complicated, only extreme structures emerge such
as the complete network, the star network or nested split graphs. This is why we do it here by numerical
simulations based on the estimated parameters.
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For that, we run the following regression:

AW ∗
r = δ0 + δ1Nr + δ2 (Nr)

2 + δzzr + δxxr + εr

to see the relationship between average welfare and network size. In addition, as controls, we

include the average geographical distance and network measures, such as mean and standard

deviation of the degree distribution, average eigenvector centrality, clustering coefficient, and

diameter.21 We include the network measures to see how the shape of a network is associated

with the welfare.

Table 8 reports the results. We can first calculate the network size that maximizes the

average welfare per network AW ∗
r . Using Column (5), we have:

∂AW ∗
r

∂Nr

= δ1 + 2δ2Nr = 2.071− 2(0.0187)Nr = 0 (43)

Solving this equation leads to: Nr = 2.071
2(0.0187)

≈ 55. This means the network that comprises

(approximately) 55 students is the one that maximizes the average welfare per network.

This is a network of a big size given that the largest network has 68 students. We have,

however, to be careful with the interpretation of this result since the effect of Nr on AW ∗
r is

non-significant (Table 8).

In Table 8, we also find that the average pairwise geographic distance is an important

factor for designing an optimal network. The higher the distance between two individuals in

a network, the lower the average welfare. This result is closely related to our previous finding

of the negative relationship between social interactions and dispersion in Section 6.1 (Table

4). What is interesting is that the results of Tables 4 and 8 are similar, even though the

latter are obtained using the structural estimates of our model while the former are directly

derived from the data without using any structural estimation. This gives us confidence that

our model fits the data well.

[Insert Table 8 here]

21We compute the clustering coefficient as the ratio of the number of triangle loops to the number of
connected triples.
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6.3 Policies

Once we have estimated this model, we can implement the two policies suggested in Proposi-

tion 6. The first policy consists in subsidizing social interactions. The second policy consists

in subsidizing the transport cost per individual c. We then evaluate their impact on n(x, y),

the frequency of interactions. Which policy is more effective at moving the observed interac-

tions/social capital closer to the optimal levels? We have seen in Proposition 6 that the first

best solution can be restored if social interactions are not subsidized while commuting trips

are subsidized as a function of the locations of the des- tination and origin partners. The lat-

ter is unlikely to be implemented and this is why we now consider social-interaction subsidies

and travel-cost subsidies that only target each individual but not a pair of individuals.

6.3.1 Subsidizing social interactions

We assume that the planner subsidizes the intensity of social interactions n(x, y) in the

following way:

U(x) = S(x)− C(x) =

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)(x− y)}λ(y)dy + σ

∫ b

−b
n(x, y)λ(y)dy

where σ is the value of the social-interaction subsidy. In this formulation, each individual

x receives a fixed amount of money σ
∫ b
−b n(x, y)λ(y)dy proportional to the individual x’s

social interaction effort with all her friends, i.e.
∫ b
−b n(x, y)λ(y)dy. The government (or the

planner) is here introduced as an agent that can set subsidy rates on social interaction effort

before the individuals decide upon their social interaction efforts. The assumption that the

government can pre-commit itself to such subsidies and thus can act in this leadership role

is fairly natural. As a result, this subsidy will affect the levels of social interaction efforts of

all individuals.22 One example of such a subsidy is to support social mixing by providing a

community center for students’ activities.

Given linear travel costs and the uniform distribution of individuals in a linear city, we

have

U(x) =
1

2b

∫ b

−b

[(
(n0 + θ(x, y))n (x, y)− 1

2
[n (x, y)]2

)
s(y)− (c |x− y| − σ)n(x, y)

]
dy

22This is is similar to the standard policy of firms’ subsidies on R&D efforts; see e.g. Spencer and Brander
(1983).
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In that case, it is easily verified that the equilibrium is now given by:

nσ(x, y) = n0 +
σ − c |x− y|

sσ(y)
+ θ(x, y),

sσ(y) = 1 +
α

2b

∫ b

−b
nσ(y, z)sσ(z)dz,

where the superscript σ on variables is used to denote the subsidy policy.

From the data, we would like to consider these two equations written as follows:

nσij,r = n0 +
σr − cdij,r

sσj,r
+ θij,r (44)

and

sσj,r = 1 +
α

2br

Nr∑
k=1

nσjk,r s
σ
k,r (45)

The total welfare per network is now defined as

W =

∫ b

−b
U(x)λ(x)dx

=

∫ b

−b

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)c(x− y)}λ(x)λ(y)dxdy + σ

∫ b

−b

∫ b

−b
n(x, y)λ(x)λ(y)dxdy

=
1

4b2

∫ b

−b

∫ b

−b

[(
(n0 + θ(x, y))n (x, y)− 1

2
[n (x, y)]2

)
s(y)− n(x, y)c |x− y|

]
dxdy

+
σ

4b2

∫ b

−b

∫ b

−b
n(x, y)dxdy

For the estimation, the total welfare per network is equal to

W σ
r =

1

4b2
r

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

σ
ij,r −

1

2

(
nσij,r

)2
)
sσj,r − (cdij,r − σr)nσij,r

]
(46)

We find the subsidy σ∗r that gives network r the same aggregate utility W σ
r as the first best

W o
r . From the estimated value of the equilibrium model, we have α, c and n0; from the data

we have dij,r and br. We can then numerically solve equations (44) and (45) and the optimal

subsidy that maximizes (46) to obtain σ∗r , n
σ
ij,r and sσj,r. See Appendix D for technical details.

The first three columns in Table 9 display the result. On average, a subsidy level of

0.4133 for each social interaction is required for a network to achieve the first best aggregate
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level of social interactions and social capital. Most networks are offered a positive subsidy,

which reflects a lack of social interaction. Nevertheless, negative subsidies are given to three

networks, which empirically have interaction levels above the optimum. We also compute a

single subsidy σ∗ for all networks, which allows individuals to achieve the first best as close

as possible and we find σ∗ = 1.4534.

[Insert Table 9 here]

6.3.2 Subsidizing transportation costs

In the theoretical model, each agent paid a marginal transport cost per distance equal to

c. Now, it is given by c − τ so that τ is a subsidy on transportation costs financed by the

government. In that case, the total social interaction cost of an agent located at x is now

given by

C(x) =
1

2b

∫ b

−b
n(x, y)(c− τ) |x− y| dy

so that it is less costly to commute for interacting with other agents. In this case, the

equilibrium equations are defined as:

nτ (x, y) = n0 −
(c− τ) |x− y|

sτ (y)
+ θ(x, y)

sτ (y) = 1 +
α

2b

∫ b

−b
nτ (y, z)sτ (z)dz

It is clear from the theory that an increase in τ increases the levels of both social interactions

nτ (x, y) and social capital sτ (x) for each agent.

From the data, we would like to consider these two equations written as follows:

nτij,r = n0 −
(c− τr)dij,r

sτj,r
+ θij,r (47)

sτj,r = 1 +
α

2br

Nr∑
k=1

nτjk,r s
τ
k,r (48)
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The total welfare per network is defined as (see above)

W τ
r =

1

4b2
r

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

τ
ij,r −

1

2

(
nτij,r

)2
)
sτj,r − nτij,r (c− τr) dij,r

]
(49)

As for the social interaction subsidy, we find the subsidy τ ∗r that gives the same aggregate

utility W τ
r in network r as the first best W 0

r . From the estimated value of the equilibrium

model, we have α, c and n0,r, and from the data dij,r and br. We can then numerically solve

equations (47) and (48) and the optimal subsidy that maximizes (49) to obtain τ ∗r , nτij,r and

sτj,r.

The last three columns in Table 9 display the results. On average, a subsidy level of

0.9471 per kilometer is required for a network to achieve the first best aggregate level of

social interactions and social capital. As above, most networks receive positive subsidies to

entice more interactions. We also compute a single subsidy τ ∗ for all networks, which allows

individuals to achieve the first best as close as possible, and we find τ ∗ = 5.8601.

6.3.3 Comparing the two policies

Finally, it is interesting to compare these two policies at a given cost. The question is then

as follows: Given that the planner has an amount T to spend, which policy should she

choose? In order to distribute a total amount of subsidy T to each network, we consider

three different schemes. First, we distribute the same amount Tr = T/R for each network

(uniform subsidy). The second scheme gives an amount proportional to network population

Nr. Hence, Tr = Nr∑
r′ Nr′

T . The last subsidy scheme provides an amount proportional to the

number of pairs Nr(Nr − 1), i.e. Tr = Nr(Nr−1)∑
r′ N

′
r(Nr′−1)

T .

Let us thus write the budget constraint for each policy. For the social-interaction subsidy

policy, the planner’s budget constraint for each network r can be written as:

σr
4b2
r

Nr∑
i=1

Nr∑
j=1

nij,r = Tr (50)

where the left-hand side is the total cost of the policy for each network and T is the fixed

amount that needs to be spent. For the transportation subsidy policy, the planner’s budget
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constraint for each network can be written as:

τr
4b2
r

Nr∑
i=1

Nr∑
j=1

nij,rdij,r = Tr (51)

We shall proceed as follows. First, we consider the social-interaction subsidy policy. We

observe dij,r and br in the data and have estimated α, c and n0. We fix T to a fixed value

(say 66,000) and R = 104, and can then solve simultaneously equations (44), (45) and (50).

We get the different endogenous variables, in particular, the different subsidies σr. For this

each value of σr, we calculate the total welfare W σ
r given by (46). Then, we can calculate

TW σ, the total welfare in the economy, i.e. TW σ =
∑R

r=1 W
σ
r , or equivalently

TW σ =
R∑
r=1

Nr∑
i=1

Nr∑
j=1

1

4b2
r

(
(n0 + θij,r)n

σ
ij,r −

1

2

(
nσij,r

)2
)
sσj,r

−
R∑
r=1

Nr∑
i=1

Nr∑
j=1

1

4b2
r

nσij,rc dij,r +
R∑
r=1

Nr∑
i=1

Nr∑
j=1

σr
4b2
r

nσij,r

(52)

Second, we consider the transportation subsidy policy. We observe dij,r and br in the data

and have estimated α, c and n0. We fix T to a fixed value and R = 104, and can then solve

simultaneously equations (47), (48) and (51). We get the different endogenous variables, in

particular, the different subsidies τr. Then, for each value of τr, we can calculate the total

welfare W τ
r given by (49). Then, we can calculate TW τ , the total welfare in the economy,

i.e. TW τ =
∑R

r=1 W
τ
r , or equivalently

TW τ =
1

4b2

R∑
r=1

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

τ
ij,r −

1

2

(
nτij,r

)2
)
sτj,r −

1

4b2
nτij,r (c− τr) dij,r

]
(53)

The key question is then whether TW τ T TW σ.

Table 10 shows the results of this analysis by counting the number of networks for which

the total welfare is higher under one policy versus the other. In this table, we find that,

under the social-interaction subsidy policy, the total welfare is higher for most networks. In

particular, the social-interaction policy is more effective for most networks under the two first

schemes. Under the subsidy scheme proportional to the number of pairs, the performance of
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the transportation policy is relatively closer to the social-interaction policy but still lower.23

As a result, if a planner has a given amount of money to spend, she should subsidize social

interactions and not transportation costs because it yields greater improvements to total

welfare.24

[Insert Table 10 here]

7 Concluding remarks and policy implications

In this paper, we present a behavioral microfoundation for the relationship between ge-

ographical distance and social interactions. We characterize the equilibrium in terms of

optimal level of social interactions and social capital for a general distribution of individuals

in the geographical space. An important prediction of the model is that the level of social

interactions is inversely related to the geographical distance. Travel costs and spatial dis-

persion of agents are barriers to the development of social capital formation. Social capital

tends to be more concentrated than agents themselves. This is an interesting result, which

seems to be confirmed by what we observe in world-world cities. Indeed, despite rapid inno-

vation in communication technologies, we still observe an important growth in urbanization,

which may highlight the importance of geographical proximity for social exchange (see, e.g.

Goldenberg and Levy (2009)). We also show that greater spatial dispersion of agents in the

city (which increases trip distances and costs) decreases the incentives to socially interact.

As a result, greater spatial dispersion reduces social capital. Because of the externalities that

agents exert on each other, we demonstrate that the equilibrium levels of social interactions

and social capital are lower than the efficient ones.

When we estimate the model using data on adolescents in the United States we find that,

indeed, geographical distance is an hinder to social interactions. Moreover, we determine the

exact inefficiencies of the market equilibrium. Interestingly, and surprisingly, we find that

23We tried different values of the total amount to be spent T to check whether there are non-linear effects,
but the results remain the same regardless of the value of T .

24Observe that this result is not in contradiction with Proposition 6, which shows that to restore the first-
best solutions social interactions should not be subsidized while transportation costs should be. In Table 10,
we are not calculating the subsidy levels that restore the first best. Instead, we are determining which policy
leads to a higher total welfare for a given cost. The first best may clearly not be reached. On the contrary,
in Table 9, we are calculating the subsidy level that restores the first best for each policy. We see that, in
order to restore the first best, transportation costs should be much more subsidized than social interactions.
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there is a non-monotonic relationship between the inefficiencies in terms of social interac-

tions and the network size. In fact, these inefficiencies are the largest when the network is

composed of 28 students and the smallest for 68 students. On the contrary, we find that the

network that maximizes the average welfare in a network should have 55 students whereas

the one that maximizes social interactions should be of size 44. There is therefore a discrep-

ancy between maximizing average welfare, maximizing social interactions and minimizing

the inefficiencies of social interactions. We then perform two different subsidy policies. Our

results suggest that the individuals interact at optimal levels when either social interactions

or transportation costs are subsidized. However, subsidies on social interactions are more

effective than subsidies on transportation costs.

Our analysis thus suggests that encouraging social interactions in cities are likely to en-

hance social welfare, which is a new implication compared to what urban economics usually

predicts.25 In the real-world, there are different ways governments can subsidize social in-

teractions. One natural way is social mixing such as the Moving to Opportunity (MTO)

programs in the United States where the local government subsidizes housing to allow fam-

ilies to move from poor to richer neighborhoods (see e.g. Katz et al. (2001), Kling et al.

(2007) and Chetty et al. (2016)). These programs allow people from different neighborhoods

to interact with each other. Other policies that enhance social interactions are those that

improve physical environment such as zoning laws and public housing rules (Glaeser and

Sacerdote (2000)). For example, Glaeser and Sacerdote (2000) find that individuals in large

apartment buildings are more likely to socialize with their neighbors than those living in

smaller apartment buildings. Using Facebook data from the United States, Bailey et al.

(2018) document that, at the county level, friendship networks are a mechanism that can

propagate house price shocks through the economy via housing price expectations. These

types of policies may be particularly important under the view that social interactions pro-

mote economic growth because of the nonmarket intellectual spillovers that they generate

(Glaeser, 2000; Ioannides, 2013)26 but also because of the direct effects social interactions

25In the standard monocentric models (Fujita et al., 1999) and in their multicentric extensions (Fujita and
Thisse, 2013), unit travel cost is usually the fundamental parameter that determines the location choices
of households within cities, their consumption of housing, land use, and the population size of cities. As
a result, transportation policies that reduce commuting costs in the city have been put forward because of
their direct impact of these outcomes.

26Indeed, as argued by Romer (1986) and Lucas (1988), endogenous economic growth requires increasing
returns and without nonmarket intellectual spillovers or some form of externality, increasing returns cannot
coexist. The robust relationship between human capital and economic growth has been taken as support for
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have on innovation (Bailey et al. (2017)) and on the labor market (see e.g. Ioannides and

Datcher Loury (2004) or Beaman (2016)). We believe that more research in this area should

be done, especially empirically, in order to be able to better evaluate the exact role of social

interactions on the growth and welfare of cities.
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Appendix

A Proofs

Proof of Proposition 3: We need to show that (i) Disp(sλ) < Disp(λ) is equivalent

to Disp(gλ) > Disp(λ) and (ii) this is true when x2λ(x)/
∫
z2λ(z)dz is a mean preserving

spread of a symmetric distribution of λ(x).

First, note that s0 is a constant and s and λ are functions of z. One successively gets the

following equivalences:

Disp(sλ) < Disp(λ)

⇔
∫
z2sλdz∫
sλdz

<

∫
z2λdz∫
λdz

⇔
∫
z2 (s0 − αg)λdz∫

z2λdz
<

∫
(s0 − αg)λdz∫

λdz

⇔ s0 − α
∫
z2gλdz∫
z2λdz

< s0 − α
∫
gλdz∫
λdz

⇔
∫
z2gλdz∫
z2λdz

>

∫
gλdz∫
λdz

⇔
∫
z2gλdz∫
gλdz

>

∫
z2λdz∫
λdz

⇔ Disp(gλ) > Disp(λ)

where, for notation convenience, we have dropped the integrals the boundaries −b and b.

Second, by denoting by

µ(z) ≡ z2λ(z)∫ b
−bw

2λ(w)dw
,

we can write the last condition Disp(gλ) > Disp(λ) as
∫ b
−b gµdz−

∫ b
−b gλdz =

∫ b
−b g (µ− λ) dz >

0. Integrating by part, we obtain the following condition:

−
∫ b

−b

{∫ z

−b
[µ(x)− λ(x)] dx

}
g′(z)dz > 0 (A.1)

Finally, consider the symmetric spatial distribution λ(x) around x = 0. Because λ(x) is

symmetric around x = 0, then g(x) =
∫ b
−b c(x − z)λ(z)dz is symmetric around x = 0.
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Furthermore we know that g(x) is also convex, which implies that g′(z) > 0 if and only if

z > 0. A sufficient condition for inequality (A.1) to be true is that
∫ z
−b [µ(x)− λ(x)] dx is

negative for z > 0 and positive for z < 0. That is, if∫ z

−b
µ(x)dx ≤

∫ z

−b
λ(x)dx, for z > 0

and the opposite condition for z < 0. This condition is satisfied if µ(x) is a mean preserving

spread of the distribution of λ(x) around its mean x = 0. For example, for a uniform

distribution λ(x) = 1/(2b), we get

∫ z

−b
µ(x)dx−

∫ z

−b
λ(x)dx =

∫ z

−b

(
x2∫ b

−bw
2 1

2b
dw
− 1

)
1

2b
dx

= −1

2
z
(
b2 − z2

)
/b3 < 0

so that µ(x) is a mean preserving spread of the distribution of λ(x).

Linear travel costs and uniform distribution of agents: Proofs of (13) and (14)

Let us first calculate g(y), which is given by:

g(y) = c1

∫ y

−b
(y − z)λ(z)dz + c1

∫ b

y

(z − y)λ(z)dz

We have:

g(y) = c1

∫ y

−b
(y − z)λ(z)dz + c1

∫ b

y

(z − y)λ(z)dz

=
c1

2b

[∫ y

−b
ydz −

∫ y

−b
zdz +

∫ b

y

zdz −
∫ b

y

ydz

]
=
c1 (y2 + b2)

2b

Let us now calculate n∗(x, y) and s∗(y). From Proposition 1, we obtain (13), that is:

n∗(x, y) = 1− c |x− y|
s∗(y)
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and

s∗(y) =
1− α2

∫ b
−b g(z)λ(z)dz

1− α
− αg(z)

=
1− α2

2b

∫ b
−b

c1(z2+b2)
2b

dz

1− α
− αc1 (z2 + b2)

2b

It is easily verified that

∫ b

−b

c1 (z2 + b2)

2b
dz =

c1

2b

(
2

3
b3 + 2b3

)
=

4c1b
2

3

Therefore,

s∗(y) =
3− 2α2c1b

3 (1− α)
− αc1 (z2 + b2)

2b

Alternatively, from (2), we obtain (14), that is:

s∗(y) = 1 + α

∫ b

−b
n∗(y, z)s(z)λ(z)dz

= 1 +
α

2b

∫ b

−b
n∗(y, z)s∗(z)dz

Proof of Lemma 4: Substituting z for y we can write the Lagrangian function as

L =

∫ b

−b

∫ b

−b
{v [n(x, y)] s(y)− n(x, y)c(x− y) + αχ(x)n(x, y)s(y)}λ(y)λ(x)dxdy

−
∫ b

−b
χ(x) [s(x)− 1]λ(x)dx

Finally, we note that
∫ b
−b χ(x) [s(x)− 1]λ(x)dx =

∫ b
−b χ(y) [s(y)− 1]λ(y)dy. Substituting

the latter expression in the last term in the above expression and multiplying it by
∫ b
−b λ(x)dx

(= 1) we get the following Lagrangian function:

L =

∫ b

−b

∫ b

−b

 v [n(x, y)] s(y)− n(x, y)c(x− y)

+αχ(x)n(x, y)s(y)− χ(y) [s(y)− 1]

λ(y)λ(x)dxdy (A.2)

We now use variation calculus on the Lagragian function L =
∫ b
−b

∫ b
−b F [n(x, y), s(y), x, y]λ(y)λ(x)dxdy
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where F (n, s, x, y) denotes the integrand in the above curly bracket. It is a differentiable

function with partial derivatives F ′n and F ′s. Defining the infinitely small perturbations

ñ(x, y) and s̃(y) on the optimal profiles no(x, y) and so(y) respectively, we get the variation

of the objective function L

∆L=

∫ b

−b

∫ b

−b
F ′n[no(x, y), so(y), x, y]ñ(x, y)λ(y)λ(x)dxdy

+

∫ b

−b

∫ b

−b
F ′s[n

o(x, y), so(y), x, y]s̃(y)λ(y)λ(x)dxdy

This must be zero for any small perturbations ñ(x, y) and s̃(y). So, we get F ′n[no(x, y), so(y), x, y] =

0 and
∫ b
−b {F

′
s[n

o(x, y), so(y), x, y]}λ(x)dx = 0. This gives (16) and (17).

Proof of Proposition 5: Condition (16) yields

v′ [n(x, y)] =
c(x− y)

s(y)
− αχ(x) (A.3)

which gives

no(x, y) = 1− c(x− y)

so(y)
+ αχo(x)

under our specification of v. With social capital at y held fixed at the equilibrium level

(s∗(y) = so(y)), this expression is larger than the equilibrium number of visits n∗(x, y)

because χo(x) ≥ 0. The question thus becomes how social capital changes in this efficient

allocation.

Inserting (9) in the binding condition (15), we get

so(x) = 1 + α

∫ b

−b
so(z)λ(z)dz − αg(x) + α2χo(x)

∫ b

−b
so(z)λ(z)dz

We use the same algebraic manipulation leading to expression (7), multiplying both mem-

bers of the last expression by λ(x), integrating them and simplifying to get the value of∫ b
−b s

o(x)λ(x)dx. We then insert this expression in the previous equality and simplify, get-

ting the following closed-form solution for the efficient level of social capital:

so(x) = 1 + α
[1 + αχo(x)]

[
1− α

∫ b
−b g(z)λ(z)dz

]
1− α− α2

∫ b
−b χ

o(z)λ(z)dz
− αg(x)
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If χo(x) = 0, this yields the equilibrium s∗(x). However, since χo(x) ≥ 0, the numerator

is larger and the denominator is smaller than in the equilibrium. It thus must be that

so(x) > s∗(x). In turn, this implies that no(x, y) ≥ n∗(x, y).

B Correlation of unobserved variables

In this appendix, we allow for correlation of unobservables across pairs by incorporating

individual-specific unobserved variables. Ignoring such clustering may lead to smaller stan-

dard errors and overstating significance of the results. Recall equation (21).

θij,r =
M∑
m=1

βm|xi,m,r − xj,m,r|+
M∑
m=1

βM+m(xi,m,r + xj,m,r) + εij,r. (22)

We let εij,r = ηi,r + ηj,r + υij,r, where ηi,r is individual-specific unobserved variable of i at

network r, and υij,r is a pair-specific unobserved variable. The individual specific unobserved

variable ηi,r is i.i.d. across i and r with mean zero and variance σ2
η, and the pair-specific

unobserved variable is i.i.d. across individuals, pairs, and networks with mean zero and

variance σ2
υ.

Under the above specification, each component in the variance-covariance matrix Ωε,r of

the N2
r × 1 vector of unobservables εr has the following form:

Cov(εij,r, εkh,r) =



2σ2
η + σ2

υ, if i = k and j = h.

2σ2
η, if i = h and j = k.

σ2
η, if ij and kh share only one index.

0, otherwise.

Table B1 shows the estimation results with correlated errors.

Our parameter estimates are close to the result in Table 2, which are obtained under the

assumption of independently distributed pair-level unobserved variables. By incorporating

clusters, standard errors becomes larger, but the increments are small in magnitudes. Hence,

the significance levels of the estimation results are almost identical to those in Table 2. The

estimated standard deviation ση of individual-specific unobserved variable is small as well.
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Table B1: Structural estimation results with individual-specific unobserved variables

(1) (2) (3) (4)
** Social interaction equation **
β: Social distances (xi − xj) (xi − xj) |xi − xj | |xi − xj |
Female -0.00061** -0.00033** -0.00029** -0.00022**

(0.00031) (0.00014) (0.00012) (0.00009)
Black -0.0025** -0.0019** -0.0191** -0.0127**

(0.0011) (0.0008) (0.0090) (0.0053)
Grade -0.0046** -0.0035** -0.0321** -0.0235**

(0.0021) (0.0015) (0.0142) (0.0093)
GPA -0.0033** -0.0037** -0.0017** -0.0017**

(0.0014) (0.0016) (0.0007) (0.0007)
Parental education 0.0118** 0.0078** -0.0010** 0.0035**

(0.0051) (0.0032) (0.0004) (0.0015)
Family income -0.0026** -0.0021** 0.0011** 0.0012**

(0.0012) (0.0009) (0.0005) (0.0005)
Two parents 0.00059** 0.00035** -0.0048** -0.0033**

(0.00025) (0.00015) (0.0022) (0.0014)
Other race -0.0145** -0.0021***

(0.0062) (0.0008)
Physical development 0.0041** -0.0031**

(0.0017) (0.0013)
Religion practice -0.0039** -0.0191**

(0.0017) (0.0079)
Family size 0.0041** -0.0011**

(0.0016) (0.0005)
Family income refused 0.0031** -0.0058**

(0.0016) (0.0023)

β: combined levels (xi + xj) (xi + xj) (xi + xj) (xi + xj)
Female 0.0040** 0.0048** -0.0027** -0.0030**

(0.0017) (0.0019) (0.0011) (0.0013)
Black 0.0212** 0.0207** 0.0086** 0.0062**

(0.0094) (0.0086) (0.0042) (0.0026)
Grade -0.0006*** 0.0057*** -0.0037*** 0.0378***

(0.00018) (0.0021) (0.0011) (0.0132)
GPA -0.00068*** -0.0117*** 0.0008*** -0.0294**

(0.00024) (0.0044) (0.00027) (0.0131)
Parental education 0.00029*** 0.00316*** 0.00009*** 0.00092**

(0.0001) (0.00119) (0.00003) (0.0004)
Family income -0.0047** -0.0038** -0.0059** -0.0049**

(0.0020) (0.0016) (0.0026) (0.0021)
Two parents 0.0050** 0.0053** 0.00009** 0.00008**

(0.0021) (0.0022) (0.00004) (0.00004)
Other race 0.0062** 0.0098**

(0.0025) (0.0038)
Physical development 0.0043** 0.0017**

(0.0017) (0.0007)
Religion practice 0.0054** -0.0051**

(0.0022) (0.0022)
Family size -0.0048** -0.0098**

(0.0020) (0.0043)
Family income refused 0.0066** -0.0014**

(0.0027) (0.0005)
n0 2.9846*** 2.4530** 2.9555*** 2.2793***

(1.0981) (0.9987) (1.1247) (0.8839)
c (transportation cost) 0.00015** 0.00011** 0.00043* 0.00023**

(0.00007) (0.00005) (0.00022) (0.00010)
ση 0.0565** 0.0507** 0.0905** 0.0909**

(0.0252) (0.0225) (0.0389) (0.0366)
συ 3.7179** 3.7147** 4.5468** 2.4079***

(1.8271) (1.5647) (1.8191) (0.9167)
** Social capital equation **
α 0.0299** 0.0241** 0.0238** 0.0178**

(0.0124) (0.0099) (0.0109) (0.0078)
Number of networks 104 104 104 104
Number of pupils 890 890 890 890
Number of directed pairs 18,482 18,482 18,482 18,482

We estimate parameters (n0, c, βT, σε)T in the social interaction equation (19) and subsequent specifications (22)–(21),
and parameter α in the social capital equation (20).
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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C Estimation: technical details

C.1 Moment construction

We estimate the parameter vector θ = (n0, α, c, β
T, σ2

ε)
T using MSM. We assume that the

true parameter vector θ0 lies in the interior of the compact parameter space Θ ⊂ IR2M+2,

where M is the number of individual-level covariates. In our main specification, we use

M = 12 variables.

Recall the prediction errors ν̂ij,r and ξ̂j,r in equations (30) and (33). These prediction

errors are mean independent of exogenous variables xij,r and dij,r. Note that the first predic-

tion error ν̂ij,r is pairwise, while ξ̂j,r is individual. However, this discrepancy does not raise

an issue, because the asymptotic argument in our MSM estimation is R, i.e. the number

of networks. For the sake of exposition, let xij,r subsume the constant, and hence, it is a

(2M+1) by 1 vector. Then, the first (2M+2) moment conditions related to the equilibrium

social interactions are found as

E[
1

Nr(Nr − 1)

∑
i

∑
j

xij,rν̂ij,r] = 0, (C.1)

E[
1

Nr(Nr − 1)

∑
i

∑
j

dij,rν̂ij,r] = 0. (C.2)

Note that the moment conditions are given for each network, and therefore we use the simple

average of pairwise moments within a network. This average is not a sample analogue. We

choose the simple average for simplicity. One can use a weighted average instead. The next

(2M + 2) moment conditions are related to social capital.

E[
1

Nr

∑
i

(∑
j

xij,r
)
ξ̂i,r] = 0, (C.3)

E[
1

Nr

∑
i

(∑
j

dij,r
)
ξ̂i,r] = 0. (C.4)
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Let x̄i =
∑

j xij and ḡ
(m)
R (θ) be the mth sample moment:

ḡ
(1)
R (θ) =

1

R

∑
r

[ 1

Nr(Nr − 1)

∑
j 6=i

∑
i

ν̂ij,r(θ)
]
,

ḡ
(2)
R (θ) =

1

R

∑
r

[ 1

Nr(Nr − 1)

∑
j 6=i

∑
i

xij,1,rν̂ij,r(θ)
]
,

...

ḡ
(2M+1)
R (θ) =

1

R

∑
r

[ 1

Nr(Nr − 1)

∑
j 6=i

∑
i

xij,2M,rν̂ij,r(θ)
]
,

ḡ
(2M+2)
R (θ) =

1

R

∑
r

[ 1

Nr(Nr − 1)

∑
j 6=i

∑
i

dij,rν̂ij,r(θ)
]
,

ḡ
(2M+3)
R (θ) =

1

R

∑
r

[ 1

Nr

∑
i

ξ̂i,r(θ)
]
,

ḡ
(2M+4)
R (θ) =

1

R

∑
r

[ 1

Nr

∑
i

x̄i,1,rξ̂i,r(θ)
]
,

...

ḡ
(4M+3)
R (θ) =

1

R

∑
r

[ 1

Nr

∑
i

x̄i,2M,rξ̂i,r(θ)
]
,

ḡ
(4M+4)
R (θ) =

1

R

∑
r

[ 1

Nr

∑
i

d̄i,rξ̂i,r(θ)
]
.

We collect all the sample moments in ḡR(θ). Then, the MSM estimator θ̂MSM minimizes the

objective function

G(θ) = ḡR(θ)TWRḡR(θ),

where WR is a weighting matrix. We use the traditional two-step approach to estimate the

weighting matrix, but given the large number of moments with a small sample size, we use

a diagonal weighting matrix suggested by Pischke (1995). That is, we first use the identity

matrix to obtain ŴR and then run the optimization again by replacing the identity matrix

with a weighting matrix with the optimal weights from ŴR on the main diagonal and zeros

elsewhere.
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C.2 Many networks

The asymptotic argument in our MSM estimation is the number of networks R, which is often

referred to the “many markets” asymptotic analysis in the empirical industrial organization

literature. This approach has a few advantages. First, the many markets asymptotic analysis

allows us to have a flexible correlation structure among εij,r within a network, which will

be further discussed in the next subsection. Under the assumption of independent and

identically distributed networks, the regularity conditions for MSM estimation in Pakes

and Pollard (1989) are satisfied although pair-level observations in one network are not

necessarily independent with each other. Therefore, the MSM estimator θ̂ is consistent and

asymptotically normally distributed.

Second, the different levels of observations between the first and the second prediction

errors do not create a problem. The population moment condition is constructed at the

network level, and therefore, the pair-level and individual-level prediction errors are taken

into account as the form of average. For example, the rth sample moment for the first

moment condition for network r can be written as g
(1)
r (θ) = 1

Nr(Nr−1)

∑
j 6=i
∑

i ν̂ij,r(θ).

The variance covariance matrix of the MSM estimator can be computed using either a

formula given in Pakes and Pollard (1989) or a resampling method. We use the bootstrap

method to compute standard errors and report them. We do so because the bootstrap

standard errors are more efficient given that our sample size (the number of networks) is

small (R = 104). The simulation errors remain fixed for all estimation procedures including

bootstrap.

D Calibration in the policy exercises

Consider equations (44)–(48) in Section 6 and denote them as follows:

nij,r = n0 + θij,r −
σr − (1− τr) cdij,r

sj,r
(D.1)

and

sj,r = 1 +
α

2br

Nr∑
k=1

njk,rsk,r
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where we implement together the two policies. The first equation can be written as

nij,rsj,r = (n0 + θij,r) sj,r + σr − (1− τr) cdij,r

so that the second equation becomes

sj,r = 1 +
α

2br

Nr∑
k=1

[(n0 + θjk,r) sk,r]−
α

2br

Nr∑
k=1

[σr − (1− τr) cdjk,r] (D.2)

where the last term is the discrete equivalent of g(x) in the model. Let us denote the

(Nr × 1) vector sr as follows: sr= (s1,r, ..., sn,r)
T. Let us also denote the (Nr ×Nr) matrices

as: ∆r= (dij,r) and Θr = (θij,r) as in (25). Thus, in vector-matrix form, (D.2) can be

written as:

sr = 1Nr +
α

2br
(N0 + Θr) sr +

ασrNr

2br
1Nr −

α (1− τr) c
2br

∆r1Nr

where 1Nr is the (Nr × 1) vector of 1 and N0,r is an N by N matrix in which the off-diagonal

elements are n0, and the diagonal elements are zero. Solving this equation leads to:

sr =

[
INr −

α

2br
(N0 + Θr)

]−1 [(
1 +

ασrNr

2br

)
1Nr −

α (1− τr) c
2br

∆r1Nr

]
or equivalently

sr =

[
INr −

α

2br
(N0 + Θr)

]−1 [(
1 +

ασrNr

2br

)
INr −

α (1− τr) c
2br

∆r

]
1Nr (D.3)

where INr is the (Nr ×Nr) identity matrix. The matrix INr − α
2br

(N0 + Θr) is invertible

if α
2br

< 1
ρ(N0+Θr)

, where ρ (N0 + Θr) is the largest eigenvalue of the matrix N0 + Θr.

As a result, we could solve the model using (D.1) and (D.3). Observe that nij,r > 0 if

(1 + θij,r) sj,r > (1− τr) cdij,r, ∀i, j. A sufficient condition is

sj,r > max
i

(1− τr) cdij,r − σr
(1 + θij,r)

.
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Table 2: Structural estimation results

(1) (2) (3) (4)
** Social interaction equation **
β: social distances (xi − xj) (xi − xj) |xi − xj | |xi − xj |
Female -0.00040** -0.00033** -0.00024** -0.00022**

(0.00018) (0.00014) (0.0001) (0.00009)
Black -0.0011** -0.0019** -0.0147** -0.0127**

(0.0005) (0.0008) (0.0072) (0.0061)
Grade -0.0040** -0.0035** -0.0241** -0.0233**

(0.0017) (0.0014) (0.0102) (0.0106)
GPA -0.0046** -0.0037** -0.0017** -0.0017**

(0.0023) (0.0015) (0.0007) (0.0007)
Parental education 0.0069** 0.0077** 0.0035** 0.0034**

(0.0031) (0.0032) (0.0016) (0.0013)
Family income -0.0046** -0.0020** 0.0013** 0.0012**

(0.0021) (0.0008) (0.0005) (0.0005)
Two parents 0.00044** 0.00034** -0.00335** -0.00327*

(0.00022) (0.00014) (0.00156) (0.00177)
Other race -0.0145** -0.0021***

(0.0058) (0.0008)
Physical development 0.0041** -0.0031**

(0.0017) (0.0013)
Religion practice -0.0039** -0.0189**

(0.0016) (0.0086)
Family size 0.0040** -0.0011**

(0.0016) (0.0005)
Family income refused 0.0031** -0.0057**

(0.0013) (0.0024)
β: combined levels (xi + xj) (xi + xj) (xi + xj) (xi + xj)
Female 0.0031** 0.0048** -0.0028** -0.0030**

(0.0012) (0.002) (0.0013) (0.0013)
Black 0.0196** 0.0206** 0.0066** 0.0062**

(0.0095) (0.0087) (0.0032) (0.0025)
Grade -0.00037*** 0.00642*** -0.00813*** 0.0377**

(0.00012) (0.00247) (0.00237) (0.0147)
GPA -0.0012*** -0.0117** -0.0212*** -0.0291**

(0.0004) (0.0047) (0.0065) (0.0132)
Parental education -0.00042*** 0.00313** 0.00082*** 0.00092**

(0.00015) (0.00124) (0.00024) (0.00039)
Family income -0.0049** -0.0037** -0.0047** -0.0047**

(0.0023) (0.0015) (0.0023) (0.0020)
Two parents 0.0037** 0.0053** 0.00009** 0.00008**

(0.0015) (0.0022) (0.00004) (0.00004)
Other race 0.0062** 0.0097***

(0.0026) (0.0033)
Physical development 0.0043** 0.0017**

(0.0017) (0.0008)
Religion practice 0.0054** -0.0051**

(0.0022) (0.0021)
Family size -0.0048** -0.0097**

(0.0019) (0.0040)
Family income refused 0.0066** -0.0014**

(0.0027) (0.0005)
n0 2.7713** 2.4992** 3.0630*** 2.2698***

(1.1191) (1.0166) (1.1723) (0.7849)
c (transportation cost) 0.00014** 0.00011** 0.00026* 0.00023**

(0.00007) (0.00005) (0.00014) (0.0001)
σε 3.9449** 3.5152** 4.5948** 2.667**

(1.7992) (1.4374) (1.8119) (1.0471)
** Social capital equation **
α 0.0334** 0.0243** 0.0167* 0.0179**

(0.0134) (0.0100) (0.0091) (0.0076)
Number of networks 104 104 104 104
Number of pupils 890 890 890 890
Number of directed pairs 18,482 18,482 18,482 18,482

Note: We estimate parameters (n0, c, βT, σε)T in the social interaction equation (19) and subsequent specifications
(22)–(21), and parameter α in the social capital equation (20).
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Social interactions and geographic dispersion of students

Average social interactions Average social capital
(1) (2) (3) (4) (5) (6) (7) (8)

Dispersion -0.0913*** -0.120*** -0.0052*** -0.0055***
(0.0327) (0.0291) (0.0011) (0.0012)

Avg. distance -0.0661*** -0.0819*** -0.0036*** -0.0037***
(0.0231) (0.0204) (0.0008) (0.0008)

Population 0.146*** 0.143*** 0.0013 0.0011
(0.0315) (0.0357) (0.0008) (0.0008)

Population2 -0.0016*** -0.0016** -0.000006 -0.000004
(0.00047) (0.00063) (0.00001) (0.00001)

Observations 104 104 104 104 104 104 104 104
R-squared 0.064 0.074 0.308 0.312 0.245 0.259 0.306 0.314

Note: Dispersion of a network is measured by taking the average of distances from each student’s home to the network center.
Average distance is the average of pairwise distances of students in a network.
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Social interactions and social capital: Optimal level vs. observed level

Social interactions Social capital
Optimal Observed Average Minimum Maximum Optimal Observed Average Minimum Maximum

level level difference difference difference level level difference difference difference
2.349 1.144 1.205 -0.810 2.741 1.265 1.028 0.236 -0.095 3.504

Note: The statistics are computed using the network-level average social interactions and social capital from 104 networks. For example,
the largest difference between the average levels of optimal and observed social interactions is 2.741. Note that these statistics differ from
pair-level averages.
The observed level of social capital is augmented using equation (27).
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Table 6: Difference between optimal level and observed level of social interactions

Optimal−Observed (social interactions)
(1) (2) (3) (4) (5)

Network population 0.1060*** 0.1020*** 0.143*** 0.0637*** 0.0614***
(0.0109) (0.0109) (0.0149) (0.0190) (0.0130)

Network population2 -0.0016*** -0.0015*** -0.0019*** -0.0011*** -0.0011***
(0.00018) (0.00018) (0.00021) (0.00021) (0.00016)

Avg. geographic distance 0.0145* -0.0078 -0.0130** -0.0094**
(0.0073) (0.0060) (0.0060) (0.0041)

Avg. degree centrality -0.260*** -0.107** -0.171***
(0.0334) (0.0524) (0.0357)

Std.dev. of degree centrality -0.0178 -0.1130** -0.0397
(0.0393) (0.0442) (0.0285)

Avg. eigenvector centrality -5.156*** -4.477***
(1.022) (0.639)

Clustering coefficient -1.080 0.583
(1.162) (0.646)

Diameter -0.0394** -0.0243**
(0.0158) (0.0107)

Female fraction -0.0708
(0.0829)

Black fraction 0.0037
(0.0824)

Other race fraction 0.7810
(0.6020)

Avg. student grade 0.0724***
(0.0228)

Avg. GPA -0.1150*
(0.0682)

Avg. level of religion practice -0.0281
(0.0294)

Avg. family size -0.0888**
(0.0363)

Fraction of students with two parents 0.0703
(0.1070)

Avg. level of physical development 0.0054
(0.0493)

Avg. family income -0.0060***
(0.00057)

Fraction family income refused 0.2290
(0.1600)

Constant 0.583*** 0.487*** 1.774*** 4.263*** 4.103***
(0.091) (0.110) (0.144) (0.478) (0.396)

Observations 104 104 104 104 104
R-squared 0.357 0.374 0.618 0.687 0.915

Note: The outcome variable is the difference between optimal level and observed level of social interactions for each network.
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Difference between optimal level and observed level of social capital

Optimal−Observed (social capital)
(1) (2) (3) (4) (5)

Network population 0.0115 0.0177* 0.0157 -0.0120 -0.0129
(0.0087) (0.0099) (0.0111) (0.0232) (0.0246)

Network population2 -0.000215 -0.000314** -0.000294** 0.000019 0.000047
(0.00013) (0.00015) (0.00015) (0.00025) (0.00027)

Avg. geographic distance -0.0217** -0.0211** -0.0208** -0.0194*
(0.0103) (0.0105) (0.0102) (0.0108)

Avg. degree centrality 0.00022 -0.0118 -0.0139
(0.0414) (0.0514) (0.0593)

Std.dev. of degree centrality 0.0087 0.0175 0.0280
(0.0688) (0.0660) (0.0638)

Avg. eigenvector centrality -1.011 -0.704
(0.838) (1.018)

Clustering coefficient -0.929 -0.625
(0.910) (0.949)

Diameter 0.0124 0.0149
(0.0199) (0.0217)

Female fraction -0.0743
(0.152)

Black fraction 0.0517
(0.108)

Other race fraction 0.165
(1.268)

Avg. student grade -0.0404
(0.0494)

Avg. GPA -0.120
(0.178)

Avg. level of religion practice 0.0553
(0.0670)

Avg. family size -0.0409
(0.0538)

Fraction of students with two parents 0.248
(0.184)

Avg. level of physical development 0.0473
(0.136)

Avg. family income -0.00094
(0.00087)

Fraction family income refused 0.254
(0.323)

Constant 0.184** 0.328** 0.303* 0.764* 1.047
(0.0760) (0.134) (0.162) (0.436) (0.753)

Observations 104 104 104 104 104
R-squared 0.007 0.071 0.071 0.088 0.117

Note: The outcome variable is the difference between optimal level and observed level of social capital for each network.
The observed level of social capital is augmented using equation (27).
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 8: Optimal network design: average welfare and number of students

(1) (2) (3) (4) (5)
Welfare Welfare Welfare Welfare Welfare

Network population -2.108* -1.074 0.488 3.590 2.071
(1.245) (0.918) (1.514) (3.762) (3.264)

Network population2 0.0279 0.0114 -0.0040 -0.0402 -0.0187
(0.0178) (0.0133) (0.0150) (0.0394) (0.0327)

Avg. geographic distance -3.610** -3.914* -3.968* -3.181*
(1.755) (2.117) (2.148) (1.834)

Avg. degree centrality 1.835 4.519 3.679
(3.299) (4.774) (9.706)

Std.dev. of degree centrality -8.068 -9.581 -4.249
(9.719) (9.643) (10.05)

Avg. eigenvector centrality 87.22 158.5
(116.4) (194.9)

Clustering coefficient 3.164 76.42
(97.79) (198.0)

Diameter -1.734 -0.805
(1.521) (2.489)

Controls No No No No Yes
Observations 104 104 104 104 104
R-squared 0.005 0.025 0.051 0.060 0.132

Note: Control variables include the averages of the social distances and the combined levels used in
structural estimation. See Table 2.
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Policy levels for optimal outcomes

(1) Subsidizing social interactions: σ (2) Subsidizing transportation costs: τ
Average Minimum Maximum Average Minimum Maximum
0.4133 -0.5473 10.3352 0.9471 -0.2470 17.7655

Note: The subsidy level for each network is computed for students in each network to obtain the optimal level of
social interactions and social capital in (36)–(38).

Table 10: Comparison of two policies

Number of networks that lead to higher welfare for each policy
Subsidy schemes Policy: σ Policy: τ
(1) Uniform subsidy amount for each network 81 11
(2) Subsidy proportional to Nr 81 11
(3) Subsidy proportional to Nr(Nr − 1) 97 7

Note: 104 networks. Two policies are tied for some networks.
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