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Abstract 

As computer science and complex network theory develop, non-cooperative games and their 

formation and application on complex networks have been important research topics. In the inter-firm 

innovation network, it is a typical game behavior for firms to invest in their alliance partners. 

Accounting for the possibility that firms can be resource constrained, this paper analyzes a 

coordination game using the Nash bargaining solution as allocation rules between firms in an inter-

firm innovation network. We build an extended inter-firm n-player game based on nonidealized 

conditions, describe four investment strategies and simulate the strategies on an inter-firm innovation 

network in order to compare their performance. By analyzing the results of our experiments, we find 

that our proposed greedy strategy is the best-performing in most situations. We hope this study 

provides a theoretical insight into how firms make investment decisions. 
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Introduction 

Game theory plays a significant role in economics with many economic phenomena having 

been modelled as games [1-4]. There are many different types of games and these can differ in two 

main dimensions; games can differ in the number of participants – for instance two-player or n-player 

games [5,6] – and whether the participating players can credibly commit to a set of actions, more 

generally known as cooperative and non-cooperative games [7]. One core problem of any game is to 

compute the Nash equilibrium - one of the most fundamental and central concepts in game theory 

which provides a solid foundation for generalizing game theory. The Nash equilibrium concept is 

named after John Nash who provided the first existence proof in finite games by using Brouwer’s 

fixed point theorem.  

After the establishment of the Nash equilibrium concept, researchers have provided many 

methods for calculating the Nash equilibria in games; a non-linear optimization model was proposed 

to compute Nash equilibria in finite games, and the algorithm based on the quasi-Newton technique 

was coded in MATLAB by using sequential quadratic programming [8]. A method for computing the 

Nash equilibrium within a class of generalized Nash equilibrium problems with shared constraints 

through fixed point formulation has also been developed [9]. Finally, another method to solve 

generalized Nash equilibrium problems uses parametrized variational inequality approaches [10].  

In this paper, we study the Nash equilibrium on a complex innovation network. An innovation 

network is a social network with specific meanings and objectives - a network formed among firms for 

the purpose of innovation and knowledge sharing [11]. The firms in an innovation network are 

connected by way of alliances, with the alliance being able to enhance their own accumulation of 

knowledge and skill level [12]. Therefore, innovation networks can also be referred to as alliance 

networks. With the development of complex network research, scholars have been able to find 

complexity in innovation networks; empirical research by Verspagen and Duysters confirmed that 

innovation networks based on a strategic alliance have the so-called small-world property [13]. There 

are other measures characterizing the structural properties of networks including entropy and distance 

measures [14-16]. In this paper, we refer to an innovation network that satisfies the small-world 
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property and is scale free as a complex innovation network.  

Innovation networks are able to achieve a solution in which resources are allocated optimally 

[17]. Social network structure is the key of information dissemination and innovation [18]. A lot of 

researchers have concentrated on the relationship between innovation network structure and the level 

of innovation within the network [19-21]. In order to carry out empirical research in this area, 

researchers compared the alliance network structure in different industries and as a consequence been 

able to make recommendations about how to use different databases, how to combine first-hand and 

secondary data as well as exploring data sampling issues [22,23]. Some specific network structures 

which are more regular were studied by Lovejoy and Sinha. They point out that a complete graph and 

network structure with a core can promote the early formation of ideas for innovation [24]. Through 

research on innovation networks, it may be possible to understand the relationship between network 

attributes and the degree of innovation, and can provide a theoretical basis for improved strategic 

decisions. This paper has constructed and simulated a game in order to study innovation networks 

from the perspective of firms. 

In game theory, a strategy refers to a specific set of actions taken by a player, with different 

strategies potentially leading to different outcomes or payoffs. Strategies have been studied in different 

fields such as economics, politics and warfare. One widely studied strategy is known as the Tit For Tat 

(TFT) strategy [25]. Especially in repeated games, the TFT is an efficient strategy that can be used to 

promote cooperation. In the TFT strategy, a player always chooses cooperation during the first round 

of a game, and then imitates its opponent’s strategy in subsequent rounds. The TFT strategy which 

gives a solution to 2-player prisoner's dilemma game is based on the unrealistic assumption that all 

players observe the actions of all other players. To overcome this shortage, Nakai and Muto proposed 

the us-Tit For Tat (us-TFT) strategy that requires a player to regard another player who cooperated 

with himself or his partners as a friend and showed that this strategy lead to an emergence of a 

mutually cooperative society [26]. This is more realistic as players playing us-TFT need only observe 

what has occurred to himself and his allies rather than the entire set of players. If the players use 

responsive strategies such as TFT, Roberts and Sherratt find that it is difficult to solve the fundamental 
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question of how altruistic one should be when they simulate the prisoner's dilemma game. They 

propose the 'raise-the-stakes' (RTS) strategy based on a variable investment [27]. This strategy 

proposes that players offer a small amount in the first round and then, if matched, the firm raises its 

investment, something that no strategy in the discrete model can do. The analysis has also been 

extended to study cooperation in different kinds of social dilemmas from a dynamic, rather than static, 

perspective [28-30]. 

It is possible to express network games more compactly than normal games. The scale index of 

a network game is restricted by its adjacent node, if compared to a normal game. Research related to 

networks is based on graph theory, a branch of discrete mathematics, now largely used to understand 

the formation of all kinds of networks and the effect network structure has on member behavior. 

Network games are also widely applied within the field of economics. Jackson uses a game to study 

how economic networks are formed [31]. When a network game is applied to describe different 

environments, the features of the network structure and the position of network members have 

different effects on members’ behavior and payoff [32]. A complex network game can be used to study 

how local externalities shape the strategic behavior of players when the underlying network is volatile 

and complex [33]. Some scholars have researched how players should choose payoff-maximizing 

strategies within the setting of a complex network [34-36]. In a network game, every agent is regarded 

as a player in a non-cooperative game. Each player rationally chooses the strategy to maximize the 

object function (pursue maximum payoff). In doing so, all players can achieve a Nash equilibrium 

whereby the network reaches a steady state and no player can benefit by deviating from his optimal 

strategy.  

In this paper, we present an extended n-player game under non-idealized conditions, namely that 

players are resource-constrained. In real social situations, firms do not tend to invest in their allies 

according to the theoretical unconstrained Nash equilibrium solution because of financial, human or 

other resource constraints. This means that firms need to change their investment strategies based on 

the resource constraints they face. This paper provides four extreme strategies for allocating resources 

among alliance partners including an average strategy, a proportional strategy, a greedy strategy and a 
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random strategy. The advantages and disadvantages of the four strategies are compared in order to 

determine which strategy should be used in the firms’ investment decision process. For each strategy, 

we establish and simulate an experimental model and draw the conclusion that, most often, a greedy 

strategy offers the best performance. 

Methods 

In this section we extend the classic business partnership game to allow for a variable project 

return ratio and describe and analyze its Nash equilibrium. Thereafter we extend the two-player case to 

an n-player network game in which alliance firms must choose how to allocate their resources among 

partner firms under both idealized and nonidealized conditions.  

An extended two-player game and its Nash equilibrium 

Allying with other firms can promote innovation for a firm, but some investment is required in 

order to form strategic alliances. The level of investment that is required does not only depend on the 

firm itself but is also influenced by how much the partner firm is planning to invest - a typical game 

behavior. In this section, we extend the classic business partnership game (see S1 File for a description 

of the game and equilibrium strategies) to allow for differences in the return ratios of their 

investments.  

Assume two firms, 1 and 2, which are cooperating on a mutual project. Assume that for this 

project to be successful both firms need to invest, but having done so they divide any profits equally – 

a kind of win-win relationship. In the classic partnership game, the return ratio of the investment is set 

to 4. Van Zandt sets this parameter to 16 in his partnership game [37]. We set this parameter as a 

variable 𝛾 giving income as equation (1)  

𝐼 = 𝛾 (𝑆1 + 𝑆2 + 𝑏𝑆1𝑆2)                            (1) 

𝑆1 and 𝑆2 are the both firms’ investment respectively. Let parameter 𝑏, known as the complementary 

coefficient, be non-random and common knowledge among the firms. Further, let the complementary 

coefficient be restricted to values between 0 and 
1

4
, that is let 𝑏 ∈ [0,

1

4
]. From equation (1), we see that 

the total payoff received by the two firms depends on both firms’ strategies 𝑆1 and 𝑆2 and the synergy, 
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or cooperative effect given by 𝑏𝑆1𝑆2, that is generated by the two firms working together. In reality, 

firms have different competitive advantages and are skilled at different projects. This is why mutual 

investment and cooperation may lead alliances to generate additional income as compared to the 

income they could have generated individually.  Assuming income 𝐼 is split equally between the two 

firms and that investment cost is quadratic in the level of investment, the payoff expressions 𝑃1 and 𝑃2 

corresponding to firm 1 and firm 2 are given by the system of equations in (2). 

           {
𝑃1 =

1

2
∗ 𝛾 (𝑆1 + 𝑆2 + 𝑏𝑆1𝑆2)  − 𝑆1

2

𝑃2 =
1

2
∗ 𝛾 (𝑆1 + 𝑆2 + 𝑏𝑆1𝑆2)  − 𝑆2

2
                    (2) 

Given their payoff functions, firms need to choose their optimal strategies (𝑆1  ̂, 𝑆2̂) in such a way that 

any firm’s strategy is a best response to the other firm’s strategy. The first firm needs to find the best 

response strategy 𝑆1  ̂ based on the strategy 𝑆2 that the second firm chooses. Similarly, the second firm 

needs to find the best response strategy 𝑆2̂ based on the strategy 𝑆1 of the first firm.  

In order to find the best responses for both firms, let us first compute the first-order partial derivative 

of 𝑃𝑖 with respect to 𝑆𝑖, giving 

𝑃𝑖
′ =

1

2
∗ 𝛾 (1 + 𝑏𝑆𝑗)  − 2𝑆𝑖     (3)  

Setting the derivatives in (3) to zero, 𝑃𝑖
′ = 0, we find that each firm’s best-response function is given 

by 𝑆𝑖 =
1

4
∗ 𝛾 ∗ (1 + 𝑏𝑆𝑗). Let 𝐵𝑅𝑖(𝑆𝑗) denote the best response that 𝑖 takes when 𝑗 adopts strategy 𝑆𝑗, 

then the best response functions of 1 and 2 are given by (4). 

{
𝐵𝑅1(𝑆2) = 𝑆1  ̂ =

1

4
∗ 𝛾 ∗ (1 + 𝑏𝑆2)

𝐵𝑅2(𝑆1) = 𝑆2̂ =
1

4
∗ 𝛾 ∗ (1 + 𝑏𝑆1)

                     (4) 

As can be seen from (4), if 𝑆𝑖 <
1

4
∗ 𝛾 ∗ (1 + 𝑏𝑆𝑗), firm 𝑖 does not have the resources to achieve the 

maximum, theoretical payoff. On the other hand, if 𝑆𝑖 > 1 + 𝑏𝑆𝑗, firm 𝑗 may not be able not increase 

its level of investment 𝑆𝑗 and the resources that firm 𝑖 invested are wasted. This means that only if 

𝑆𝑖 =
1

4
∗ 𝛾 ∗ (1 + 𝑏𝑆𝑗) can firm 𝑖 achieve the maximal payoff. Let 𝑆𝑖

∗ denote the Nash equilibrium 
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solution, then we can easily verify the Nash equilibrium given by (5).  

𝑆1
∗ = 𝑆2

∗ =
𝛾

4−𝛾𝑏
                                 (5) 

In this state, no firm can benefit by deviated from its strategy given the strategy of the other firm 

and hence the current set of strategies (𝑆1
∗, 𝑆2

∗) constitute a Nash equilibrium. 

From this result, we see that when the complementary coefficient 𝑏 diminishes, meaning that 

the returns to collaboration diminish, the payoffs will decline for both sides. The firm that invests more 

incurs a higher marginal cost but only receives half of the marginal return.  

Increasing the return ratio 𝛾 has a similar effect to increasing the complementarity coefficient as 

increasing the return to any of the firms participating in a joint project increases the level that the firms 

with to invest in the partnership. 

The flow chart of an extended two-player game is shown in Fig 1. 

 

 

 

Fig 1. Flow chart of investment income of two firms.  
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An extended n-player network game under idealized conditions 

The n-player game has a certain number of players and we will use a network to represent the 

relationships between these players. Let 𝑉 = {1,2, … , 𝑛} be the set of nodes and let 𝐸 = {𝑒𝑖𝑗}(𝑖, 𝑗 ∈

𝑉)be the set of edges. A network can be thought of as an undirected graph and represented as 𝐺 =

{𝑉, 𝐸}. The set 𝑉 is also a set of players. Let 𝑒𝑖𝑗 = {0,1}. Then 𝑒𝑖𝑗 = 1 represents an edge between the 

node 𝑖 and 𝑗 . 𝑉(𝑖) = {𝑗|𝑒𝑖𝑗 = 1} shows all the neighbors connected with 𝑖 , and the number of the 

direct neighbors is called the degree of 𝑖, 𝑑𝑖 = |𝑉(𝑖)|. In this model, each node represents a firm. Firm 

𝑖 plays strategy 𝑋𝑖 , where 𝑥𝑖  denotes the realization of 𝑋𝑖  and is a non-negative real number. The 

payoff of firm 𝑖 can be represented as a vector 𝑚𝑖(𝑥𝑖, 𝑥𝑉(𝑖)) where 𝑥𝑉(𝑖) is the vector of actions taken 

by the partners of firm 𝑖. As before, the payoff of firm 𝑖 depends on the actions of its partners and on 

its own actions. Letting 𝑑𝑖 = 𝑘, the payoff vector of firm 𝑖 and its action vector 𝑋𝑖 is given by equation 

(6). 

𝑚𝑖(𝑥𝑖, 𝑥1, … , 𝑥𝑘) = 𝑓(𝑥𝑖 + 𝜆 ∑ 𝑥𝑗
𝑘
𝑗=1 ) − 𝑐(𝑥𝑖)                   (6) 

In equation (6), let 𝑓(∙) be a non-decreasing function and 𝑐(∙) the cost function associated with 

the investment of firm 𝑖. The parameter λ is set to 1. Then the network game is fully characterized by 

(𝐺, 𝑋, 𝑚𝑖). 

Assume that under idealized conditions, each firm has enough resources and can fully meet the 

needs of its partners. This network can reach a Nash equilibrium; Assume that firm 𝑖 and its partner 

𝑗 ∈ 𝑉(𝑖) can reach Nash equilibrium with the heterogeneous return ratios 𝛾𝑖𝑗  and complementary 

coefficients 𝑏𝑖𝑗. As before, 𝑆𝑖𝑗
∗ =

𝛾𝑖𝑗

4−𝛾𝑖𝑗𝑏𝑖𝑗
 is the best investment strategy within each partnership. As for 

firm 𝐹𝑖 , 𝑆𝑖𝑗
∗  denotes the Nash equilibrium solution between firm 𝐹𝑖  and 𝐹𝑗 . Therefore, the total 

investment 𝑅𝑖 of firm 𝑖 is given by equation (7). 

𝑅𝑖 = ∑ 𝑆𝑖𝑗
∗𝑑𝑒𝑔𝑟𝑒𝑒(𝐹𝑖)

𝑗=1,𝑗≠𝑖 = ∑
𝛾𝑖𝑗

4−𝛾𝑖𝑗𝑏𝑖𝑗

𝑑𝑒𝑔𝑟𝑒𝑒(𝐹𝑖)
𝑗=1,𝑗≠𝑖                       (7) 

Also, the payoff expression 𝑃𝑖 is given by (8). 
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𝑃𝑖 = ∑ 𝑃𝑖𝑗
𝑑𝑒𝑔𝑟𝑒𝑒(𝑅𝑖)
𝑗=1,𝑗≠𝑖 = ∑ [

1

2
∗ 𝛾𝑖𝑗  (𝑆𝑖𝑗 + 𝑆𝑗𝑖 + 𝑏𝑖𝑗𝑆𝑖𝑗𝑆𝑗𝑖)  − 𝑆𝑖𝑗

2𝑑𝑒𝑔𝑟𝑒𝑒(𝑅𝑖)
𝑗=1,𝑗≠𝑖 ]            (8) 

As shown in Fig 2, we take the G2001 innovation network diagram for the automobile industry 

during 2001-2003 as an example and firms No.1 to No.5 happen to constitute a complete graph of five 

elements. 

 

 

Fig 2. The network diagram of the first five firms of G2001. 

 

Let us look at firm No.1, the degree 𝑑1 of which is 4. Assuming that the return ratios of firm 

No.1 are 𝛾12, … , 𝛾15  and the complement coefficients are 𝑏12, … , 𝑏15 we can calculate the required 

initial investments of firm No.1 𝑅1 = 𝑆12
∗ + 𝑆13

∗ + 𝑆14
∗ + 𝑆15

∗  and the payoff 𝑃1 = 𝑃12 + 𝑃13 + 𝑃14 +

𝑃15 given that the level of initial investments are the Nash equilibrium solution 𝑆12
∗ , … ,  𝑆15

∗ . 

An extended n-player network game under non-idealized 

conditions 

Non-idealized conditions: resource constraints 

Under idealized conditions, the total investment 𝑅𝑖 a firm would like to invest is merely the 
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theoretical value given by the Nash equilibrium solution given in (7). In reality, some firms’ resource 

reserves cannot fully meet the theoretical 𝑅𝑖 for various reasons. When firm 𝑖’s resources 𝑇𝑖 cannot 

meet partners’ resources requirements in a Nash equilibrium state (𝑇𝑖 < 𝑅𝑖), a firm’s investment to its 

partners according to the Nash equilibrium will be greater than its own resources reserves. This kind of 

situation is called a resource shortage or constraint. Let the extent of the resource shortage ∆𝑖  be 

defined as in (9) and the average resource shortage per degree 𝜃𝑖 as in (10). 

∆𝑖= |𝑇𝑖 − 𝑅𝑖|                               (9) 

𝜃𝑖 = ∆𝑖/𝑑𝑖                                (10) 

Under a resource shortage, firms will employ different strategies to cope with the shortage of 

resources and control their total level of investment. During the process of adjustment of these firms, 

their partners will also adjust their strategies to maintain the best countermeasures to the new Nash 

equilibrium. Assume that two allied firms 𝑖 and 𝑗 have the initial strategies given by 𝑆𝑖𝑗
∗ = 𝑆𝑗𝑖

∗  and that 

each firm’s level of resources 𝑇  is common knowledge. If firm 𝑗  changes its strategy to a new 

investment strategy 𝑆𝑗𝑖
′  due to a resource shortage then according to equation (4) firm 𝑖’s best response 

given the new strategy is 𝐵𝑅𝑖(𝑆𝑗𝑖
′ ). So for firm 𝑖, the required total investment 𝑅𝑖

′ will be adjusted 

accordingly, as shown by equation (11). 

  𝑅𝑖
′ = 𝑅𝑖 − (𝑆𝑖𝑗

∗ − 𝐵𝑅𝑖(𝑆𝑗𝑖
′ ))                         (11) 

In this paper, we propose four investment strategies when firms face a shortage of resources and 

through simulation of a real alliance network we assess the outcomes of the four strategies by 

analyzing total investment, total payoff, the average return ratio, the degree of the average return ratio 

and assess their overall advantages and disadvantages. 

Strategy 1: The Average Strategy 

The idea of the average strategy is that when a firm faces a shortage of resources it will assign 

all of its resources equally to its partners, namely the inputs to each partner are 𝑆𝑖𝑗
′ =

𝑇𝑖

𝑑𝑖
. Additionally, 

each partner 𝑗 will optimally adjust its own investment. The average strategy algorithm is given below: 
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Step 1: Initialize the network based on the Nash equilibrium of every partnership; 

Step 2: Mark all the firms with a shortage of resources as 𝑖, find out the extent of the resource 

shortage ∆𝑖 and the average resource shortage per degree 𝜃𝑖; 

Step 3: Sort the average resource shortage per degree 𝜃𝑖 in descending order; 

Step 4: Take the largest 𝜃𝑖 firm 𝑖, invest its resources equally to its partners according to 𝑆𝑖𝑗
′ . At 

the same time adjust the investment of its partners 𝑗 to 𝐵𝑅𝑖(𝑆𝑗𝑖
′ ) and modify the total 

resource investment to 𝑅𝑗
′. Mark 𝑖 as a treated firm. 

Step 5: For the remaining firms complete Steps 2-4, until there is no shortage of resources in 

the network. 

The time complexity of the average strategy is 𝑂(𝑛2). Under the assumption that each firm’s 

available resources are common knowledge the allies of a resource constrained firm will be able to 

change their own strategies to a firm playing the average strategy. For the firms which face a resources 

shortage in the first allocation, after adjusting, the total investment may turn out to be within 

acceptable limits and the firm’s resource budget is sufficient again. From a practical point of view, the 

firm whose shortage of resources is more serious has to take the lead in the adjustment process. 

Strategy 2: The Proportional Strategy 

The proportional strategy is when a firm with a shortage of resources reduces the investment to 

its partners according to the fixed proportion 𝑞 =
𝑇𝑖

𝑅𝑖
, and the reduced investment becomes 𝑆𝑖𝑗

′ = 𝑆𝑖𝑗 ∗

𝑞 where 𝑆𝑖𝑗  is the initial, unconstrained Nash equilibrium. The algorithm for calculating the outcome 

of the proportional strategy is given below: 

Steps 1-3: As in Strategy 1. 

Step 4: Take the largest 𝜃𝑖 firm 𝑖 and with the same proportion 𝑞 reduce its investment to all 

partners to 𝑆𝑖𝑗
′ . At the same time adjust the investment of its partners 𝑗 to 𝐵𝑅𝑖(𝑆𝑗𝑖

′ ) and 
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modify the total resource investment to 𝑅𝑗
′. Mark 𝑖 as a treated firm. 

Step 5: As in Strategy 1. 

The time complexity of the proportional strategy is 𝑂(𝑛2). 

Strategy 3: The Greedy Strategy 

The greedy strategy is when a firm’s investment strategy is equal to the needs prescribed by the 

unconstrained Nash equilibrium, each time meeting the needs of the partner whose return ratio is 

highest, until the investing firm finally runs out of resources. 

Assume that under idealized conditions firm 𝑖’s investment into firm 𝑗 is 𝑆𝑖𝑗
∗  and that the current 

investment is 𝑆𝑖𝑗. Further, let firm 𝑗’s investment into firm 𝑖 be 𝑆𝑗𝑖. The current total investment is 𝑅𝑗. 

Depending on the firms’ situation, specific allocation strategies are shown in Table 1. 

 

Table 1. Greedy strategy investment-adjustment table. 

Situation Firm 𝑖 Firm 𝑗 Processing Method 

1 𝑆𝑖𝑗=𝑆𝑖𝑗
∗  𝑆𝑗𝑖=𝑆𝑖𝑗

∗  Do not adjust 

2 0<𝑆𝑖𝑗<𝑆𝑖𝑗
∗  𝑆𝑗𝑖=𝑆𝑖𝑗

∗  

𝑆𝑖𝑗  does not adjust; 𝑅𝑗 adjusts to 𝑅𝑗
′ (equation 11, the 

same below) 

3 𝑆𝑖𝑗=𝑆𝑖𝑗
∗  0<𝑆𝑗𝑖<𝑆𝑖𝑗

∗  
𝑆𝑖𝑗  adjusts to 𝐵𝑅𝑖(𝑆𝑗𝑖); 𝑅𝑗  adjusts to 𝑅𝑗

′;  ∆𝑆𝑖𝑗 allocate 

in turn as 𝐿𝑖𝑠𝑡(𝑖) 

4 0<𝑆𝑖𝑗<𝑆𝑖𝑗
∗  and 𝑆𝑖𝑗 > 𝐵𝑅𝑖(𝑆𝑗𝑖) 0<𝑆𝑗𝑖<𝑆𝑖𝑗

∗  
𝑆𝑖𝑗  adjusts to 𝐵𝑅𝑖(𝑆𝑗𝑖); 𝑅𝑗  adjusts to 𝑅𝑗

′;  ∆𝑆𝑖𝑗 allocate 

in turn as 𝐿𝑖𝑠𝑡(𝑖) 

5 0<𝑆𝑖𝑗<𝑆𝑖𝑗
∗  and 𝑆𝑖𝑗 < 𝐵𝑅𝑖(𝑆𝑗𝑖) 0<𝑆𝑗𝑖<𝑆𝑖𝑗

∗  𝑆𝑖𝑗  does not adjust; 𝑅𝑗 adjusts to 𝑅𝑗
′; 

 

The algorithm for calculating the greedy strategy is given below; 
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Step 1: For each firm in the network, sort its partners in descending order according to the 

return ratio 𝛾  (if equal then sort in descending order according to complementary 

coefficient 𝑏) in order to obtain the sequence of investment 𝐿𝑖𝑠𝑡(𝑖). Every firm invests 

in turn according to the sequence 𝐿𝑖𝑠𝑡(𝑖) on the basis of the Nash equilibrium. Proceed 

until completed or resources run out. 

Steps 2-3: As in Strategy 1.  

Step 4: Take the largest 𝜃𝑖 firm 𝑖, invest in turn according to the sequence in 𝐿𝑖𝑠𝑡(𝑖). Mark 𝑖 as 

a treated firm. 

Step 5: For the remaining firms, complete Steps 2-3, until there is no shortage of resources in 

the network. 

Step 6: For any remaining untreated firm 𝑖 (with sufficient reserves) fix the level of investment. 

If its partner 𝑗 is the treated firm, and firm 𝑖’s investment into firm 𝑗 is 𝑆𝑗𝑖
′  right now, 

revise firm 𝑖’s investment to the best response 𝐵𝑅𝑖(𝑆𝑗𝑖
′ ). 

The time complexity of the greedy strategy is 𝑂(𝑛3). 

Strategy 4: The Random Strategy 

In contrast to the three allocation strategies above, the random strategy selects random partners 

to invest resources in all of its relationship and the sum of the investments is equal to the firm’s 

resource reserves value. The algorithm for calculating the random strategy is given below; 

Steps 1-3: As in Strategy 1. 

Step 4: For all firms 𝑖 facing a resource shortage, invest 𝑆𝑖𝑗
′  randomly in the relationship with 

firm 𝑗. The total value of the investments is the firm’s resource reserves. At the same 

time adjust the investment of its partners 𝑗 to 𝐵𝑅𝑗(𝑆𝑖𝑗
′ ), and modify the total resource 

investment to 𝑅𝑗
′. Mark 𝑖 as a treated firm; 
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Step 5: For the reaming firms complete Steps 2-4, until there is no shortage of resources in the 

network. 

The time complexity of the random strategy is 𝑂(𝑛2). 

These four strategies can all be seen as extreme adjustment strategies. In the real world, because 

there are many factors to consider, firms cannot completely adjust according to these strategies. 

However, we believe that these strategies provide a reference point for the firm’s adjustment strategy 

and that firms can make investment strategies based on these. 

Results and Discussion 

Data and Experiment 

The data used in the experiment is for the automotive industry innovation network of Chinese 

automobile manufacturing firms G2001 and is taken from the Thomson Reuters SDC Platinum database 

for the 2001-2003 period. The data is manually compared with Chinese news to add any missing data 

and correct any issues in the existing data [38]. The G2001 network is built from this data in the 3 year 

interval using the fast innovation network building method described in [39]. The data and a 

corresponding description can be found in S2 File and S3 File respectively.  

 The network consists of a total of 54 node firms and 66 cooperative relationships. The 

parameters needed for conducting the experiment are the return ratio 𝛾, the complementary coefficient 

𝑏, each firm’s resource reserves 𝑇 and each firm’s total investment 𝑅. In the G2001 data, the return ratio, 

the coefficient of complementary or firm resource budget information are all unavailable, so we set 

these parameters through randomization. 

The return ratio 𝛾 and the complementary coefficient 𝑏 depict each edge of the network and the 

parameters of each edge should be different. The return ratio and complementary coefficient data 

between the alliance is not available and we cannot use other indicators in their place. For the resource 

budget of the firm, we need to consider the firm’s own resources and the amount the firm is willing to 

invest into the network. In this section, we use the firm’s degree in the alliance to adjust the resource 

budget 𝑇. Each firm’s total investment 𝑅 in the innovation network can be calculated through each 
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relationship’s 𝛾 and 𝑏 parameters. 

In previous studies, the value of the return ratio 𝛾  is typically 2 but because the value of 

parameter 𝛾 on every edge in the innovation network should be different, in this experiment we assign 

𝛾 randomly. The random space of parameter 𝛾 includes 1000 random values, these random values are 

drawn from a normal distribution (𝜇 = 2, 𝜎 = 1), the values are mainly concentrated between 0 and 4 

(𝑝 = 0.9545) and we replace the randomly generated negative values with 0. Fig 3 depicts the 

parameter space of 𝛾. 

 

 

Fig 3. The parameter space of parameter 𝜸. 

 

In previous research, the value of the complementary coefficient 𝑏 is typically set to 
1

4
 but in this 

experiment parameter 𝑏 comes from a random parameter space containing 1000 values. These random 

values are drawn from a normal distribution (𝜇 =
1

4
, 𝜎 =

1

8
), the values are mainly concentrated 

between 0 to 1/2 (𝑝 = 0.9545) and again we set negative values to 0. Fig 4 depicts the parameter 

space of 𝑏. 



16 

 

 

 

Fig 4. The parameter space of parameter 𝒃. 

 

The resource budget of each firm is independent of the parameters 𝛾 and 𝑏. The resource budget 

is the value of a firm’s capital input to the alliance and the firm can set it according to its own 

willingness. However, the capital firm’s typically allocate is both uncertain and unpredictable. One 

simple way is to relate a firm’s capital allocation towards alliance investment as a function of the 

number of firms within each firm’s current alliance (that is, the degree of the firm in the innovation 

network). In this experiment, we randomly generate a resource budget for each node and adjust the 

random value through the degree of the node. We draw random resource budgets from a normal 

distribution and assuming that the degree of the firm node is 𝑑, we let the resource budget of the firm 

node be concentrated on the interval [0, 𝑑]. If we set (𝜇 =
𝑑

2
, 𝜎 =

𝑑

4
) then the probability that the value 

of resources budget randomly generated within [0, 𝑑] is 0.9545. Again, we set negative values to 0. Fig 

5 shows the parameter space of 𝑇 under 4 different degree values. 
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Fig 5. The parameter space of 𝑻 under different node degrees. 

 

The investment demand of the network can be calculated by the Nash equilibrium of each 

relationship. After generating the return ratio 𝛾, complementary coefficient 𝑏, firm resource budget 𝑇 

and a firm’s total investment demand 𝑅, we can analyze and discuss the advantages and disadvantages 

of these four resource allocation strategies. 

In this experiment, we used the controlling variable method. We made single variable changes 

to the return ratio 𝛾, complementary coefficient 𝑏, firm resource budget 𝑇 respectively, and analyze 

the possible impact of these single factor changes on the results of the experiment. In order to improve 

the credibility of the experiment and improve accuracy, this experiment is replicated multiple times to 

make the results more representative (each individual group experiment is replicated 50 times). This 

experiment prepared 3 groups with a total of 150 times the initial data. 

Experimental Results 

The change in the experimental parameters - return ratio 𝛾, complementary coefficient 𝑏 and 

firm resource budget 𝑇, can substantially influence each firm’s investment and income. When we 

modify the return ratio 𝛾 or complementary coefficient 𝑏, each firm’s total investment expenditure 𝑅 

will change according to the formula 
𝛾

4−𝛾𝑏
, and subsequently, the income can be calculated according 

to the allocation strategy. When we instead modify the firm resource budget 𝑇 the degree to which a 

firm faces a resource shortage will change. We can obtain the corresponding income levels according 
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to the allocation strategy. 

Figs 6-9 graph the experimental results and show the expected value of income and expenses for 

the four allocation strategies proposed earlier. In these figures, the solid icons show the firm’s 

mathematical expectation of the level of investment whereas hollow icons represent the mathematical 

expectation of the income.  

(1) Experimental results of every firm node for the average strategy 

 

Fig 6. Investment and income for the average strategy. 

 

(2) Experimental results of every firm node for the proportional strategy 

 

Fig 7. Investment and income for the proportional strategy. 

 

(3) Experimental results of every firm node for the greedy strategy 

 

Fig 8. Investment and income for the greedy strategy. 

file:///E:/è½¯ä»¶2/æ��é��è¯�å�¸/Dict/6.3.67.3030/resultui/frame/javascript:void(0);
file:///E:/è½¯ä»¶2/æ��é��è¯�å�¸/Dict/6.3.67.3030/resultui/frame/javascript:void(0);
file:///E:/è½¯ä»¶2/æ��é��è¯�å�¸/Dict/6.3.67.3030/resultui/frame/javascript:void(0);
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(4) Experimental results of every firm node for the random strategy 

 

Fig 9. Investment and income for the random strategy. 

 

Innovation networks are composed of alliance firms and their allied relationships. On the one 

hand, the members of an organized network always want to pursue the best interests of the alliance; 

On the other hand, the firm also wants to prioritize the status and interests of the firm itself. Therefore, 

we can compare and analyze the experimental results from the point of view of the whole network and 

the network node, the firm. 

Contrast and analysis of network level 

First of all, from the perspective of the whole network, we compare the total payoff expectations 

of the three groups of parameters for the initial game for each of the four strategies. The results are 

shown in Fig 10. 

 

file:///E:/è½¯ä»¶2/æ��é��è¯�å�¸/Dict/6.3.67.3030/resultui/frame/javascript:void(0);
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Fig 10. Profit expectations under four allocation strategies. 

 

As we can see from Fig 10, the return ratio 𝛾, complementary coefficient 𝑏 and firm resource 

budget 𝑇 have little impact on the whole innovation network. No matter which of the parameters 𝛾, 𝑏, 

𝑇 we modify, out of the four strategies, the total profit of the random strategy always performs the 

worst, the average strategy second worst, the proportional strategy the second best and the greedy 

allocation strategy the best. This suggests that greedy strategy is able to bring the biggest income for 

the entire network. 

Thereafter, we compare the profit rate of the three groups of the initial game for each of the four 

strategies. The results are shown in Fig 11. 

 

 

Fig 11. Profit rate contrast under four allocation strategies. 

 

As we can see from Fig 11, changing the return ratio 𝛾, complementary coefficient 𝑏 or firm 

resource budget 𝑇 again has little impact on the whole innovation network. No matter which of the 

parameters 𝛾, 𝑏, 𝑇 we modify, out of the four strategies, the total profit of the random strategy always 

performs the worst, the average strategy second worst, the proportional strategy the second best and 

the greedy allocation strategy the best. This suggests that the greedy strategy gives the highest profit 

rate for the alliance when the alliance’s total investment is fixed or total income is fixed. 
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Contrast and analysis of firm level 

The degree of the node is the key value which captures a firm’s status in the network. The 

degree of the 54 firms used in the G2001 network is shown in Table 2. There is no firm of degree 6 

within the network. In order to better relate the payoff value to the degree, the degree of 6 will not be 

listed in the following comparison. 

 

Table 2. 54 firm node degree distribution table. 

Degree of 

node 

1 2 3 4 5 6 7 

Number of 

firms 

17 14 10 10 2 0 1 

 

Here, we present a comparison of the profit expectations and profit rate expectations for firms of 

different degrees under our four different allocation strategies. The results are shown in Figs 12 and 13 

respectively. 

 

 

Fig 12. Profit expectations of different degrees of firms under four allocation strategies. 
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Fig 13. Profit rate expectations of different degree of firms under four allocation strategies 

 

As can be seen from Fig 12, regardless of which strategy the firms choose, firm profits and 

degree are positively correlated. As before, for a firm of given degree, the greedy strategy always 

brings the highest profit, the proportional strategy second highest, the average strategy second least 

and the random strategy the least profit. It can also be seen from Fig 13, that regardless of which 

strategy you choose, degree and profit rate are negatively related. This suggests that the higher the 

degree of a firm, the greater the profit of the firm but that the profit rate is not necessarily higher. 

Conclusion 

Based on the above analysis, in this experimental environment in which we study innovation 

networks, we are able to draw the following conclusions: 

(1) The greedy strategy is the most suitable resource allocation strategy in order to pursue 

maximum payoff for the whole network. It always brings the highest payoff for the alliance network. 

In second place is the performance of the proportional strategy which also performs well. This strategy 

is also worth considering when making allocation decisions. Although the performance of the average 

strategy is better than the random strategy, the average strategy is still worse than the first two 
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strategies and is therefore not recommended. 

(2) When the total investment of the alliance is a fixed value, or more extremely, the total 

income of the alliance is a fixed value, we need to select the appropriate strategy according to the 

profit rate. If the total investment of the alliance is a fixed value then selecting the greedy strategy, 

which has the highest profit rate, can bring a higher payoff for the alliance. If the total income of the 

alliance is a fixed value, then selecting the greedy strategy which has the highest profit rate can help 

keep the total investment for the alliance to a minimum so that the alliance has more resources 

available to meet other needs. 

(3) The more partners a firm has the higher status the firm obtains but the more the firm has to 

invest into the alliance. No matter which strategy is chosen, the firms that have higher status can 

always obtain a higher payoff. 

(4) No matter which strategy is chosen, the firms with higher status will always obtain a lower 

profit rate. This is because the more partnerships a firm has, the higher the costs of the investing firm, 

for example to maintain the partnership. Therefore, the profit rate is not high. However, for business, 

achieving the maximum profit rate is perhaps not necessary with a higher payoff instead being more 

important. 

From the point of view of practical significance, the average strategy is not as good as the 

proportional strategy or the greedy strategy. This is because the latter two have a higher tendency to 

pursue the maximization of benefit than does the average strategy. The greedy strategy always seeks to 

allocate to the project with the highest return ratio and reduces the investment accordingly in order to 

obtain the highest profit rate. The proportional strategy retains the same allocation relationships as the 

unconstrained Nash equilibrium but it allocates less to high profit rate partners than does the greedy 

strategy. Thus the payoff of the proportional strategy is lower than the greedy strategy. 

For possible future work, it should be noted that although the experimental environment is 

based on a real innovation network, some of the parameters are randomly generated. So the 

conclusions presented in this paper may not be applicable for all cases. In addition, the partnership 

game between firms still has a lot of additional factors that need to be considered and this model only 
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gives certain experimental conclusions in a handful theoretical extreme situations to offer theoretical 

reasons for firms’ allocation decisions. Additionally, we believe our model could be extended to study 

the way in which liquidity shocks to alliance firms affect the network as a whole and whether a 

liquidity shock to one or more members of the alliance puts the existence of the entire alliance at risk.  
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