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_ 1. INTRODUCTION

It has been shown by Kandori, Mailath and Rob (1993), henceforth ”KMR,” and
Young (1993), henceforth ” Young,” that adding small noise to certain adaptive dy-
namics in games can lead to rejection of strict Nash equilibria. Specifically, in 2 x 2
coordination games these dynamics allow one to conclude that in the long run the
risk-dominant equilibrium (Harsanyi and Selten, 1988) will result. This surprisingly
strong result has recently been challenged by Bergin and Lipman (1996) who show
that it depends on specific assumptions about the mutation process, namely that the
mutation rate does not vary ”too much” across the different states of the adaptive
process. They show that, if mutation rates at different states are not taken to zero
at the same rate, then many different outcomes are possible. Indeed, by choosing the
mutation rates appropriately, any desired strict equilibrium may be selected in the
long run.

Bergin and Lipman conclude from this lack of robustness that the nature of the
mutation process must be scrutinized more carefully if one is to derive economically
meaningful predictions, and they offer two suggestions for doing so. As suggested
already in the original KMR and Young papers, there are two ways of interpreting the
mutations in these models: Mutations may be thought of as arising from individuals’
experiments or from their mistakes. In the first case, it is natural to expect the
mutation rate to depend on the state - individuals may be expected to experiment
less in states with higher payoffs. Also in the second case state-dependent mutation
rates appear reasonable - exploring an idea proposed in Myerson (1978) one might
argue that mistakes associated with larger payoff losses are less likely.

While Bergin and Lipman are right to point out that these considerations might
lead to state-dependent mutation rates, they do not elaborate or formalize these
ideas. Hence, it is not clear whether their concerns really matter for the conclusions
drawn by KMR and Young. The aim of this study is to shed light on this issue by
means of a straight-forward model of mutations as mistakes. The model is based on
the assumption that players ”rationally choose to make mistakes” because it is too
costly to avoid them completely. I turns out that our model, when applied to 2 x 2
coordination games, produces mistake probabilities that do not vary ”too much” with
the state of the system. Hence, the concerns of Bergin and Lipman are irrelevant in
this case.

Specifically, we build on the control-cost model of van Damme (1987, chapter 4).
In essence, individuals are assumed to have a trembling hand, and by controlling it
more carefully, which involves some disutility, the amount of trembles can be reduced.
Since a rational player will try harder to avoid more serious mistakes, i.e. mistakes
that lead to larger payoff losses, such mistakes will be less likely. However, they will
still occur with positive probability since, by assumption, it is infinitely costly to avoid
mistakes completely. Although mistake probabilities thus depend on the associated
payoff losses, and therefore also on the state of the process, we show that, under
mild regularity conditions, they all go to zero at the same rate when control costs
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become vanishingly small in comparison with the payoffs in the game. Consequently,
the techniques developed by KMR and Young can be employed to show that, in
2 x 2-games, only the risk-dominant equilibrium survives in the long run.

We do not know of any earlier work along the above lines. Blume (1993) studies
strategic interaction between individuals who are located on a lattice and recurrently
interact with their neighbors. These individuals play stochastically perturbed myopic
best responses, in the sense that the choice probability for each pure strategy is an
increasing positive function of its current payoff. As a consequence, more costly mis-
takes are assigned lower choice probabilities. Blume (1994) elaborates and extends
this model to a more conventional random-matching setting in which choice proba-
bility ratios are an increasing function of the associated payoff differences. Maruta
(1997) generalizes Blume’s models by letting choice probability ratios be a function
of both payoffs - not necessarily only of their difference. While these studies take ran-
dom choice behavior as a starting point for the analysis, we here derive such behavior
from an explicit decision-theoretic model in which individuals take account of their
own mistake probabilities. Robles (1998) extends the KMR and Young models by
letting mutation rates decline to zero over time, in one part of the study also allowing
for state-dependent mutation rates. Also his work is complementary to ours in the
sense that while he takes the state-dependence for given and analyzes implications
thereof, we suggest a model that explains why and how mutation rates vary across
population states.

The remainder of the text is organized as follows. In Section 2 we outline the
models of KMR and Young. Section 3 discusses the Bergin-Lipman critique of these
models and argues for the need to determine the probability of mutations/mistakes
endogenously. Section 4 provides such a model, in which mistakes arise out of ra-
tional deliberation. Section 5 analyzes this model, and proves that it selects the
risk-dominant equilibrium in 2 X 2-coordination games. Section 6 discusses a counter-
example in the context of Young’s model, and section 7 concludes.

2. ADAPTIVE DYNAMICS
Let an n-person game G =< Si,...,5,,u1,...,u, > be given and, for each player
position ¢ = 1,...n, let C; be a finite population of individuals. In the KMR and
Young models, the game is played recurrently between individuals drawn from these
populations. The so drawn individuals have some information about the past play
of the game. Based on this information, the individuals form beliefs about how their
opponents will play and choose a best response to these beliefs.! The chosen actions

add to the history of play for the next round, and so on.
We restrict most of the subsequent analysis to 2 X 2-coordination games with two
strict equilibria, the reason being that Young gets his strongest results for this class,

IKMR allow individuals more freedom; they should just move, as an aggregate, to better re-
sponses than in the last round. Allowing for this here would complicate the notation without
adding more insight.
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and that KMR restrict the main part of their analysis to symmetric such games.
Formally, we then consider two-player games with payoff bi-matrices

A B
A ay, Qg bl,bz (1)
B | ci1,c0 | dy,do

where a; > ¢, as > be,d; > by and dy > co. Hence, the pure Nash equilibria are strict
and sit on the main diagonal of the bi-matrix.

In Young’s model, a pair of individuals, one from population C; and one from
population (s, are randomly drawn in each period to play the game. The state
of the system in his model is a full description of the pure-strategy profiles played
in the last m such rounds. Each individual drawn to play in position ¢ of the game
is assumed to make a statistically independent sample of k of these m profiles, and
plays a best reply to the opponent population’s empirical frequency of actions (pure
strategies) in the sample.

KMR restrict their analysis to symmetric games, i.e. where as = ay, by = ¢y,
¢o = by and ds = d;. One may then represent the game by the payoff matrix of player
L

A|B
Ala]b|, (2)
Blcl|d

where ¢ > ¢ and d > b. Moreover, KMR assume that there is only one population,
C; = (s, and they assume that in every period each individual in this population
plays against all other individuals. The state 8 of the system is defined as the number
of individuals who played the first action (pure strategy A) in the last round. All
individuals are assumed to play a best reply to the current state.?

To obtain selection of an equilibrium, noise is added to these models. Basically,
an individual in player position 7 plays a best response with probability 1 — A\;e. A
mistake or experiment occurs with positive probability \;e, with mistakes (experi-
ments) being statistically independent across time, states and individuals. Hence, all
mistake probabilities are positive, and the ratios between mistake probabilities across
states and player positions are constant as € — 0.

With these mistakes as part of the process, each state of the system is reachable
with positive probability from every other state. Hence, the full process is an irre-
ducible Markov chain on the finite state space ©, where © C (57 X S3)™ in Young’s
model and © = {0, ...|C1|} in the KMR-model. Consequently, there exists a unique
stationary distribution p° for each € > 0. KMR and Young establish the existence of
the limit distribution p* = lim,_,¢ ¢, and study its properties. They call an equilib-
rium of the underlying game G stochastically stable if p* places positive probability
weight on the state in which this equilibrium is played (in the last period in KMR, in

2Gee footnote 1.



EVOLUTION WITH MUTATIONS DRIVEN BY CoONTROL CoOSTS? 5

the last m periods in Young). The main result obtained is that, for generic 2 x 2-games
with two strict equilibria, the risk-dominant equilibrium is the unique stochastically
stable equilibrium.

Risk dominance (Harsanyi and Selten, 1988) in a game with payoff bi-matrix (1)
may be characterized as follows. Let p; be the probability that player ¢ assigns to his
first pure strategy, A, in the unique mixed-strategy equilibrium of the game. Then
(A, A), i.e. each player choosing his first action, is the risk-dominant equilibrium if
and only if

p1t+pr <l (3)

If the reversed strict inequality holds, then (B, B) - each player choosing his second
action - is the risk-dominant equilibrium.

In the symmetric version (2) of the game, we have p; = ps, and condition (3) is
equivalent to the condition that player 1 would strictly prefer pure strategy A if his
opponent were to play both pure strategies with the same probability. Hence, (4, A)
is the risk dominant equilibrium of the symmetric game (2) if and only if

a+b>c+d. (4)

The intuition for the main result can most easily be seen in the KMR-model. If
(4) is satisfied and if the system is in state ” A”, i.e., all individuals in the population
played pure strategy A in the last round, then the state is upset only if more than
half the population simultaneously make a mistake (experiment). In contrast, state
” B” is upset if less than half the population simultaneously make a mistake. Since, in
the limit, the second possibility is infinitely more likely than the first, the process will
spend (virtually) all time in state ” A”, i.e. at the risk-dominant equilibrium (A, A).3

3. ROBUSTNESS AND ENDOGENOUS MUTATION RATES

The reasoning in the preceding paragraph relies on the assumption that the mis-
take/mutation probability is the same in all states. More generally, KMR and Young
derive their results under the assumption that the ratio between any pair of mutation
probabilities is kept constant as ¢ — 0. Bergin and Lipman (1996) note that their
results continue to hold even with state-dependent mutation probabilities if the ratio
between any pair of mutation probabilities, across all population states and player
positions, has a non-zero limit when £ — 0. However, Bergin and Lipman (1996) also
show that if the mutation probabilities in different states are allowed to go to zero
at different rates, then any stationary distribution in the mutation-free process can
be turned into the unique limiting distribution p* = lim._q pe of the process with
mutations.

For example, they show that the limiting distribution p* in the KMR model places
unit probability on the risk-dominated equilibrium (B, B) in the game (2) with payoffs
a=06,b=4,c=0andd = 8, if the mutation rate in state ” B” is €8, and the mutation

3For a complete analysis one also needs to consider mutations in intermediate states.
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rate in state ”A” is ¢, for any 8 > 1.5.% As ¢ goes to zero, mutations in state ” B”
become infinitely rarer than mutations in ” A”. Consequently, it is more difficult for
the population state to get out of the basin of attraction of ” B”, although " A” has a
larger basin of attraction (in the sense of containing more population states). They
conclude: ”In other words, any refinement effect from adding mutations is solely due
to restrictions of how mutation rates vary across states.” (Bergin and Lipman, p.
944).

What is missing in these analyses, and this is Bergin’s and Lipman’s main message,
is a theory of why and how mutations occur. For instance, their counter-example
cannot be discarded if mutations indeed are (at least half) an order of magnitude rarer
in state ” B” than in state ” A”. One reason why this may be the case, suggested by
Bergin and Lipman, is that mutation rates might be lower in high-payoff states than
in low-payoff states, which might be expected if mutations are due to individuals’
experimentation (see Bergin and Lipman,1996, pp. 944, 945 and 947). Another
reason why mutation probabilities may differ across population states, also suggested
by Bergin and Lipman (pp. 945 and 955), is that mutations leading to larger payoff
losses might have lower probabilities than mutations leading to smaller payoff losses,
for reasons similar to those given in Myerson’s (1978) motivation of the concept of
proper equilibrium. Bergin and Lipman do not investigate the consequences of either
of these two ideas. We now follow up on their latter suggestion and show that it leads
to a confirmation of the earlier results of KMR and Young.

Indeed, in the case of a symmetric game, it is straightforward to see why such a
result should come about in the KMR model. Namely, condition (4) is equivalent to
a —c¢ > d — b, which says that mistakes at (A, A) are more serious - involve larger
payoff losses - than mistakes at (B, B). Hence, any "reasonable” theory of endogenous
mistakes should imply that mistakes at (A, A) are less likely than mistakes at (B, B).
In other words, the basin of attraction of state ” A” should not only be ”larger”
than that of ”B”, it should also be ”deeper”, thus making it even more difficult to
upset this equilibrium.® In the next section we formally demonstrate this result for
symmetric games played by a single population, in a model where mistakes arise from
control-cost considerations. However, we develop the model in a more general setting
that includes asymmetric games played by two populations. In such settings, the
intuitive argument above is not available: In the risk-dominant equilibrium one of
the two deviation losses may be quite small, thus inducing relatively large mistake
probabilities in one of the player positions at that equilibrium.

4. ADpAPTIVE DYNAMICS WITH CONTROL COSTS

Van Damme (1987, chapter 4) develops a model where mistakes arise in implementing
pure strategies in games. The basic idea is that players make mistakes because it is

4More exactly, the best-reply correspondence divides the state space into two basins of attraction,
one for state ” A” and one for state ” B”. Bergin and Lipman assume that the mutation rate is £° in
all population states in B’s basin, and ¢ in all population states in A’s basin.

5See footnote 3.
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too costly to prevent these completely. Each player has a trembling hand, and by
controlling it more carefully (which involves higher costs) the amount of trembles can
be reduced. It is assumed to be infinitely costly to eliminate trembles completely.

For a general n-person normal-form game, with pure strategy sets Si, ..., Sp,
mixed-strategy profiles o = (o1, ..., 0,,), and payofls m;(c), these ideas are formalized
as follows. If o is played, player i’s payoff is not just m;(0); in addition to this "reg-
ular” payoff, 4 incurs costs (disutility) to control his trembling hand and to actually
implement o;. As a result, the player’s payoff is given by u;(c0) = m;(0)—6v;(0;), where
§ > 0 is a scaling parameter that measures the importance of control costs (disutility
of control effort) relative to the original payoffs, and v;(o;) is the cost or disutility
player 4 incurs in order to implement the mixed strategy o; € A(S;). The function
v; : int [A(S;)] — Ry is called the control-cost function. This function is assumed to
be strictly convex, symmetric, and twice differentiable with lim,x_q v;(0;) = +o0 for
every pure strategy k € S;. Symmetry here means that v;(7;) = v;(0;) for every mixed
strategy o; and permutation 7; of the components of ;.5 These assumptions imply
that it is costly to keep down the probability that a given pure strategy is played,
that the marginal cost of reducing this probability is increasing, and that the cost of
reducing such a probability to zero is prohibitive.

We now apply these ideas to the KMR and Young models. Let 6 denote the
current state of the system, as described above, and let ¢;(¢) be the information that
an individual drawn to play in player position ¢ has about this state. In Young’s
model, ;(8) € (S; x S2), while in the KMR model ¢1(8) = t2(8) = 6 € {0,...|Ci[}.
In both models this information determines a probabilistic belief for each of the two
individuals about the action to be taken by the opponent. Since the state space ©
is finite, the set Q of possible beliefs in these models is finite (see section 2). Let
mi(0i,w) denote the expected payoff to an individual who plays mixed strategy o;
in player position i = 1,2, when his belief is w.” (We write m;(A,w) when he plays
pure strategy A etc.) In the unperturbed process, each individual chooses a mixed
strategy o; € A(S;) in order to maximize ;(0;,w). Taking control costs into account,
each individual chooses o; € int [A(S;)] to maximize

ui(og,w) = m;(os,w) — 6vi(o;) . (5)

The resulting stochastic process is ergodic and has a unique stationary distribution
pd. The limiting case § = 0 represents a situation in which all individuals are perfectly
rational in the sense of being able to perfectly control their actions at no cost or effort.

5Note that symmetry implies that v; achieves its minimum value when all pure strategies are
assigned the same probability. In van Damme (1987), the cost functions v; are given in the symmetric
additive form vi(03) = Y e, fi(0F), for f; strictly convex and twice differentiable.

7Tn the KMR model, w is one of the finitely many mixed strategies that correspond to a population
distribution over the set of pure strategies in the last round. In Young’s model, w is one of the finitely
many empirical frequency distributions over the opponent player position’s set of pure strategies that
correspond to a sample of size k from the opponent population’s past m plays.
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We are interested in the limit as § — 0, i.e. when control costs become insignificant
in comparison with the payoffs in the game.

5. THE RESULT
Focusing on 2 x 2-games with payoff bi-matrices (1), we first introduce some sim-
plifying notation. For any belief w € Q of an individual in player position i = 1,2,
let
bl(w) = max {ﬂ"i(A7 (U), Wi(B’ w)} ’ wl(w) = min {Wi(Aa w)? W’i(Ba CU)} ) (6)

and l;(w) = b;(w)—w;(w). Given the finiteness of 2, we may, without loss of generality,
assume that the payoff loss [;(w) in case of a mistake is positive for both player
positions and all beliefs.®

Now consider the game with payoff functions specified by (5). We assume that the
control costs are the same in both player positions, and simplify notation by writing
v(p) for v;(p,1 — p) (= v;(1 — p,p) by symmetry). Writing ¢ for the probability with
which an individual in player position ¢ by mistake plays the non-optimal action, we
can write the game as a game on the open unit square, where the individual in each
player position i chooses a mistake probability € € (0,1) in order to maximize his or
her expected payoff, b;(w) — el;(w) — dv(e). The optimal mistake probability at w,
gi(6,w), is thus determined by the first-order condition

—v'(e) = li(w)/6 . (7)

Here —v'(¢) is the marginal cost of reducing the mistake probability from e. Our
assumptions imply that the function —v' is decreasing on (0, ) from plus infinity to
zero. Figures 1 and 2 show the graphs of the control-cost function v(p) = —logp —
log(1 — p) and the associated marginal-cost function.

(Figures 1 and 2 about here)

Since the marginal-cost function —v' is decreasing, larger potential payoff losses
are accompanied by lower optimal mistake probabilities. For all beliefs w and w':

L(w) < (W) = g:i(6,w') < &;(6,w) . (8)

It follows that our model selects the risk-dominant equilibrium in the KMR-
setting. For, as already noted, equilibrium (A, A) being risk-dominant in game (2) is
equivalent to a mistake in state ” A” resulting in a smaller payoff loss than a mistake
in state ” B”. More precisely, let w% denote the belief that one’s opponent will play
pure strategy A with probability p, and let w% denote the belief that one’s opponent
will play pure strategy B with probability p. Such beliefs correspond in the KMR

8More precisely, this is true for any finite population sizes in the Young and KMR models, for
generic payoffs (1) or (2), respectively.
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model to situations where the population share p played pure strategy A (B) in the
last round. Thus %} corresponds to a population state at ”distance” 1 — p from state
”A”, and ¥ to a population state at ”distance” 1 — p from state ” B”. For each p
sufficiently close to one, the payoff loss from a mistake at the first state is larger than
at the second state. Hence, by (8), the optimal mistake probability at the first state
is smaller than at the second. In fact:
p>———— = W) >R = aluh) <abeh), ()
showing that the basin of attraction of state ” A” is not only ”larger” but also (point-
wise) “deeper” than that of ” B”.
Using this observation and following the steps of the proof in KMR one establishes:

Proposition 1. The risk-dominant equilibrium is the unique stochastically stable
equilibrium in the KMR-model.

Below we establish a similar result for Young’s model. We do this by way of
identifying a mild regularity condition under which the mistake probabilities at all
information states are of the same order of magnitude when 6 is taken to zero in that
model. For this purpose, let ¢ : R, — R, denote the inverse of —v'. Before stating
the regularity condition, however, we note that for no control-cost function v and
scalar A > 1 is it the case that the ratio ¢(Az)/¢(z) converges to zero as z goes to
plus infinity:

Proposition 2. limsup,_,. ¢(Az)/¢(z) >0 for all A > 1.

Proof: Suppose the contrary, i.e., limsup,_,., ¢(Az)/¢(x) = 0 for some X > 1.
Then limg . (Ax)/@(z) = 0 for this ), since ¢ is positive. Thus p(Az)/@(z) < FA™
for all z sufficiently large, say z > zo. Hence,

/:o p(z)dz < (A = 1)zop(z0) iT'* < oo,

o t=0

and thus [§° ¢(z)dz < co since ¢ is decreasing with ¢(0) = 3. But we also have

1
(o] _ 3 ) T _ -];
| e@s == [*v/(p)dp <lim o(p) - v(3) ,
which contradicts the assumption that liné v(p) = +o0. O
p—)

We define v to be nice if liminf, o ¢(Azx)/p(z) > 0 for some A > 1. It follows
from proposition 2 that a control-cost function is nice if lim, ., ¢(Az)/p(z) exists for
some A > 1. Moreover, it is easily seen that if v is nice then liminf, .., p(nz)/@(z) >
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0 for all p > 1.° An example of a nice control-cost function is the one used in Figures
1 and 2. That function v is clearly strictly convex, symmetric and twice differentiable
with lim, o v(p) = +o0, and it is easily verified that lim, o, @(Az)/p(z) = 1/ for
any A > 0.1% See Figures 3 and 4.

(Figures 3 and 4 about here)

Our main result is that if the control-cost function v is nice, then all mistake
probabilities are of the same order of magnitude at all states:

Proposition 3. If the control-cost function v is nice and l;(w) > l;(w'), then

0< liméin% gi(6,w)/e;(6,w") <limsupe;(,w)/e;(6,') <1
- 50

Proof: Rewriting (7), we have ¢;(6,w) = ¢[l;(w)/d], and the first inequality
follows from the observation after the definition of niceness. The second inequality
follows from (8). O

Corollary 1. If the control-cost function v is nice, then the risk-dominant equilib-
rium is the unique stochastically stable equilibrium also in Young’s model.

Proof: This follows from proposition 3 combined with the arguments used in
Young. While Young establishes the result formally only for the case where all mis-
takes are a positive multiple of € (at each state # player ¢ makes a mistake with
probability A;e), it is easily verified that his arguments remain valid in the slightly
more general case considered here, where the mistake probabilities are of the same
order of magnitude in all states. The interested reader may consult Samuelson (1994,
Theorem 4) for the more general case. O

9By chosing h such that M > 5, one obtains liminf, . ¢(n2)/@(z) >
(liminf,_,. @(Az)/@(x))* > 0.

OHere —v'(p) = 1/p — 1/(1 — p), and hence ¢(z) = 1/2 + 1/x — sign(z)/1/4 + 1/z2 for = # 0,
and ¢(0) = 1. An application of 'Hopital’s rule gives the sought limit ratio.
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6. A COUNTER-EXAMPLE
Here we briefly turn to the case of control-cost functions that are non-nice. It is
not difficult to see that such cost functions do exist.!! For this purpose, define the
sequence < (Zn,Yn) >52,in R by z; = 1, 41 = 3, and for all integers n > 1,

Ty = 2Ln if n is even
Yn =Yo_4 if n is even (10)
Tp = 3%Tpn—1 + 2/Yn_1 if n is odd
Yn = Yn—1/2 if n is odd

where a > 1. Clearly < z,, > is an increasing sequence in R going to plus infinity, and
< y, > is a decreasing sequence in R, going to zero. Hence, there exist differentiable
(to any order) and strictly decreasing functions ¢ : Ry — Ry such that ¢(0) = 1,
and p(z,) = y, for all positive integers n. Any such function ¢ decreases sufficiently
on intervals (z,, Zn4+1) with n odd in order for ¢(2z,)/p(z,) — 0 to hold for n odd,
as n — o0o. On other intervals, however, ¢ decreases sufficiently little in order for
its total integral to be infinite (the integral of ¢ over any interval (z,, ;) with n
even is at least 1). The equation v' = —p~! defines a control-cost function v that is
non-nice.

What might happen in case of such a control-cost function is that a stochastically
stable equilibrium need not exist in Young’s model. Consider the following special
case of the payoff bi-matrix (1):

A B
A|5,1]0,0 (11)
B0,0]2,2

With p; denoting the probability that player ¢ assigns to his pure strategy A in
the unique mixed equilibrium of this game, we have p; = —32- and p; = % Hence
p1+p2 < 1,50 (A, A) is the risk-dominant equilibrium. However, a mistake by player
2 at this equilibrium incurs the smallest payoff loss in the two equilibria - this player
loses only 1 payoff unit, while all other equilibrium payoff losses are at least 2 units.
Consequently, the largest mistake probability occurs in state " (A, A)”.

Let ¢ be as constructed above, and let 6, = 1/z, for every odd positive integer
n. By definition of ¢,

52(65 A) = Yn, E1(67 B) = 52(67 B) = ygz ’ and 51(57 A) = O(yz) ’ (12)

where y, — 0 as n — 00.1? Hence, when individuals’ memory size m is 1, then
the equilibrium (A, A) is more easily upset than equilibrium (B, B) - because of 2’s

" The following construction of functions ¢ is an adaptation of an example suggested to us by
Henk Norde, Tilburg University.

12To see this, note that if § = 1/z, then &;(6,w) = ¢ [li(w)z,]. Hence, £2(6, 4) = ¢ (z) = ¥,
and €1(6, B) = €2(6, B) = ¢ (2zn) = ¢ (Tn+1) = Y. Moreover, €1(6,4) = ¢ (5zn) > @p(Tny2) =
Yn+2 = Y5 /2, since ¢ is decreasing and 5z, < Zpgo = 32pp1 + 2/yYns1 > 6y,
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trembles in state ”(A, A)”: State (A, A)” is infinitely more easily upset than state
”(B, B)” in the limit as n — oo, granted a > 1. More generally, for an arbitrary
memory size m, state ” (A, A)” is upset if population 1 makes [m/3], mistakes, the
probability for which is e;(8, A)/™3+ or if population 2 makes [5m,/7] . mistakes,
the probability for which is £5(8, A)P™/7+ 13 Likewise, state ”(B, B)” is upset if
population 1 makes [2m/3], mistakes, the probability for which is & (8, B)*™/3+, or
if population 2 makes [2m/7], mistakes, the probability for which is e5(6, B)P?™/7+,
Using the observations in (12) one finds that, as n — oo, state ”(A4, A)” is infinitely
more easily upset than state ” (B, B)”, for any m, granted a > 3.1

We conclude that there exists a sequence of §’s converging to zero such that the
associated subsequence of stationary distributions in the limit places all probability
mass on state ” (B, B)”. At the same time, proposition 2 implies that there exists an-
other sequence of §'s such that the associated subsequence of stationary distributions
places all probability mass on state ”(A, A)” in the limit. Hence, the overall limit of
stationary distributions does not exist for this control-cost function.

Another way of formulating our result thus is that, for every control-cost func-
tion, the risk-dominant equilibrium belongs to the limit set of supports of stationary
distributions, and that this limit set is a singleton if the control-cost function is nice.*®

7.  CONCLUSION

Bergin and Lipman (1996) showed that if mutation rates are state dependent, then
the long-run equilibrium depends on exactly how these rates do depend on the state.
They conclude that the causes of mutations need to be modeled in order to derive
justifiable restrictions on how mutation rates depend on the state. In particular,
they suggest that one might investigate the consequences of letting the probability of
mistakes be related to the payoff losses resulting from these mistakes. This is exactly
what we have done in this paper. We have developed a model in which mistakes are
endogenously determined, and shown that this model vindicates the original results
obtained by Kandori, Mailath and Rob (1993) and Young (1993): the risk-dominant
equilibrium is selected in the long run in all generic 2 X 2-coordination games.

The model analyzed in this paper, although allowing for mistakes, is based on
strong rationality assumptions. Mistakes arise because players choose to make them
(since it is too costly to avoid them). Our individuals are hence unboundedly rational
when it comes to decision making. Their lack of rationality is only procedural: At no
cost or disutility can they choose their own mistake probabilities in every population
state. This is a very strong rationality assumption. However, we believe that our

3Here [2], denotes the smallest integer exceeding 2.

4The condition is that a exceeds f(m) = [5m/7], /[2m/7] . The function f achieves its maxi-
mum value, 3, at m = 3, and approaches -g— as m — 0o.

5By the limit set of supports of stationary distributions, for a given control-cost function, we
here mean the union of the supports of probability distributions pu, each of which is the limit to
some subsequence of stationary distributions (i.e., associated with some sequence of positive §’s
converging to zero).
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conclusion is robust in this respect. For we obtain the same limit result as in the KMR
and Young models, in which no individual takes any account of control costs. The
effect of introducing control-costs was seen to only ” deepen” the "basin of attraction”
of the risk-dominant equilibrium, and hence speeding up the convergence to it. The
limit result should therefore also be valid in intermediate cases of rationality.
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Figure 1: The control-cost function v(p) = —log [p(1 — p)].
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Figure 2: The marginal-cost function —v' corresponding to the control-cost function
v in Figure 1.
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Figure 3: The inverse ¢ of the marginal-cost function —v' in Figure 2.
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Figure 4: The ratio ¢(2z)/¢(z), for the marginal-cost function —v' in Figure 2.



