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FOREWORD 

For several years the lUl has been engaged in 

developing non-linear estimation methods. This 

report, prepared by Erik Mellander in collaboration 

with Leif Jansson, documents some results from that 

work. The project was initiated by Leif Jansson and 

has been continued by Erik Mellander , af ter Leif 

Jansson left the institute. 

Demand for the CONRAD program has grown considera­

bly in recent years. This demand, and the tragic 

circumstance of Leif Jansson's death this spring, 

makes it appropriate to publish this intermediary 

report from an ongoing research program. 

stockholm, June 1987 

Gunnar Eliasson 
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1 INTRODUCTION 

CONRAD (Constrained Regression with ~nalytical 

Qerivatives) is a FIML1 program for estimation of 

simultaneous systems of equations. 

While requiring the systems to be linear in the 

variables. the program can handle quite general 

non-linearities in the parameters. The stochastic 

specification incorporates both contemporaneous and 

intertemporal correlations between the error terms. 

the latter in the form of a first order vector 

autoregression. 

Owing to one of the characteristic features of 

CONRAD. namely the analytical determination of the 

gradient of the log-likelihood function. systems of 

considerable size can be estimated without unduly 

long execution times. In contrast to most other 

programs of comparable type. the analytical form of 

the gradient vector is automatically solved by the 

program and used to evaluate the first order 

derivatives. The user thus does not have to concern 

himself with the maximization of the likelihood 

function . 

CONRAD can be used without prior knowledge of 

programming • The program offers great flexibility 

with respect to input and model specifications. All 

input may be supplied in free format. Variables can 

be chosen freely from a given data matrix and, 

regarding time series data. the estimation can be 

based on any coherent subperiod. 

1 Full Information ~aximum 1ikelihood; for the 
principle-of maximum likelihood. see Silvey (1975). 
Hendry (1976) discusses the relationship between 
FIML and other simultaneous equations estimates. 
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By means of an optional line width, printouts can 

be obtained both on small terminals and on full­

scale printers. Not only estimation results can be 

output ; if 

input data 

desired, a thorough documentation of 

and specifications will also be sup-

plied. This facility has been implemented in such a 

way that it can be used as a means to check the 

proper arrangement of the input, before the actual 

estimation. In addition, a number of checks are 

automatically performed by the program. 

Presently, CONRAD is installed on two mainframe 

computers, a DEC-lO at the stockholm University 

Computing Center (QZ) and on a PRIME 750 at the 

stockholm School of Economics. 1 Installation on 

other mainframe computers like e.g. IBM or Amdahl 

should pose only minor problem (cf. Section 3.3). 

The compactness of the program also makes it weIl 

suited for installation on PC's. 

Finally , some reading instructions might be 

helpful. Users not interested in technical issues 

can safely skip over Section 3 and Appendix A. 

Those who just want to get started using CONRAD 

quickly, might be content to browse through Section 

2.1-2.4 and Section 4 and the n go on to study the 

example in Appendix B. The example should give a 

good idea about both what the program can do and 

how it does it. Hopefully, its length in terms of 

pages should not act as a deterrent - much of it is 

just reproductions of computer printouts. 

1 The installation on the PRIME was very much 
faciliated by the competent and imaginative help of 
Kjell Franzen, stockholm School of Economics. 
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2 ESTIMATlON AND TESTING 

2.1 Formal description of the model 

The simultaneous equations model is assumed to be 

linear in the variables. Denoting matrices and 

vectors by boldface type, using capitals for the 

matrices and small letters for the vect.ors, the 

model can be written in matrix notation in the 

following way 

t=1,2, •.. ,T. (l) 

The vector It and the matrix A are partitioned 

according to 

and A(8) (B : C) • 

The nxl and mxl vectors Yt and Zt contain observa ­

tions at time t on the endogenous and predetermined 

variables , respectively. Lagged values of the 

endogenous variables may be among the explanatory 

variables, i.e. it is possible that Yt_ if{Zt} for 

i > O. 

As indicated by the expression A(8), the elements 

of the nxm coefficient matrix A - and, accordingly, 

of the nxn and nxm matrices B and C - are regarded 

as functions of a set of k unrestricted parameters 

8 = (81 , 8 2 , •• • ,8 k )'. The set of all T realizations 

of the relationship in (1) can be compiled in the 

matrix equation 

A(8)X' BY' + CZ' O' , <la) 
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in which the row vectors If, Yt' Zt and Ut consti­

tute the t:th rows in the corresponding matrices. 

The most general stochastic specification allows 

for both contemporaneous and intertemporal correla­

tion between the error terms according to: 

I: 

such that 

But-1 + et, where 

et ~ N(O,~) for all t,l 

el if s=t 
O if s;o!t 

(2 ) 

(3a) 

(3b) 

Thus, the errors are assumed to be generated by a 

first order vector autoregressive process as 

proposed by Hendry (1971). The nxn matrix B is 

nondiagonal, making every element of ut functional­

ly dependent upon all the elements of ut-l . 

Al ternatively B can be set to the zero matrix, 

implying the more restrictive assumption that the 

stochastic process is independent of time. 

In addition to I, the following assumptions are 

made: 

II: B is nonsingular; det (B) ;o! O where "det" 

denotes determinant, 

III: X has full column rank, i.e. r(X) = n+m, 

IV: ~ is unconstrained except for being posi-

1 The normality assumption is not crucial. For all 
specifications available in CONRAD the estimate of 
e is consistent, as long as the expectation of e is 
zero and the variance is in accordance with (3b), 
cf. Hausman (1983). 
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tive definite (i.e. v'~v > O for all vec­

tors v '" O), 

V: T > n+m, 

VI: B is unconstrained. 

Assumption II is required to ensure that the 

endogenous vector Yt be unique for every predeter­

mined vector Zt and disturbance vector et. Condi­

tion IV implies that (1) does not contain any 

identities, so it is assumed that the se have been 

substituted out. Finally, III and V together make 

up a sufficient condition for the estimator to be 

weIl defined. For a more elaborate discussion about 

sample size requirements, see Brown (1981). 

Al though B is unconstrained, only those matrices 

that have all their eigenvalues within the unit 

circle can be considered meaningful . The eigen­

values Aj' j = 1 , 2, ••• ,n, which are the n roots of 

the n:th degree equation 

det (B-A Il o (4 ) 

where 

I the identity matrix of order n 

A a+bi; a scalar with real and imaginary 

parts a and b, respectively (the latter 

possibly zero) 

thus must have the propert y that (a 2 +b2 )1/2 < 1. 

(In the single equation ca se this simplifies to the 

requirement that the sole element of B be less than 

one in absolute value.) 

If this condition is fulfilled the process generat­

ing the errors can be taken to be stationary, which 

is necessary for the elements of ~ to be finite and 
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independent of t. When some of the eigenvalues lie 

outside the unit eirele the error variances and 

eovarianees will instead increase without limit 

over time. As the program ealeulates the eigen­

values of the estimated H matrix it is possible to 

check which one of these cases that is prevalent. 

2.2 The mapping from 8 to A 

The most general mapping from 8 to an element of A 

can ,be eonsidered to be the outeorne of two subse­

quent operations. 

In the first step one may apply transformation 

functions to the 8 i 's, whose ranges are constrained 

to (subsets of) the non-negative or non-positive 

real numbers, according to 

and 

where Yi and vi ar~ constants chosen by the user. 1 

This step is treated in Section 2.2.1. 

In the second step, the aij' s can be formed as a 

ratio of two second-degree polynomials in the 

transformed (or untransformed) free parameters,2 as 

shown in Section 2.2.2. 

1 To avoid confusion it should be pointed out that 
hl and h~ are distinet from the elements of the B 
matrix d1scussed in the previous section. The use 
of hl and h 2 to denote the transformation functions 
is aue to the faet that these funetions are 
hYperbolical. 

2 The seeond order polynomial mapping is eonsidered 
in Jansson and Mellander (1983). 
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2.2.1 Inequality constraints 

Of ten some parameters are restricted with respect 

to sign and/or size 

model. As long as 

by the theory underlying the 

the restrictions refer to 

individual parameters only, they can be tested by 

means of one-sided t-tests. 

In order also to make it possible to impose ine­

quality constraints on several parameters simulta­

neously,l the following two hyperbolic transforma­

tions have been implemented in CONRAD 

{'"l + y 9 )1/6 if Yi>O l. 

hl (8 i) 
(8~ + 0.05 2 )1/2 - 0.05 if Yi=O l. 

and 

-el + v 9 )1/6 if vi < o l. 

h 2 (8 i) = 

(8~ + 0.05 2 )1/2 - 0.05 if vi =0 
l. 

The constant 0.05 has been used to ensure dif -

ferentiability when the limit is equal to zero. As 

can readily be seen, the limiting values of the 

transformations when this constant goes to zero are 

18il and -18 i l, respectively. 

The user can thus impose inequality constraints on 

the parameters of his/her model by defining them as 

h 1 (8 i ) or h 2 (8 i ).2 

1 Testing procedures for this type of constraints 
tend in general to be very compl icated, however. 
See further Section 2.5. 

2 Notice the distinction between the user's model 
and the statistical model. The parameters of the 
latter are, of course, still the 8i's. 

(5a) 

(5b) 
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An example of (Sa) is given in Figure 1, with the 

lower limit set equal to 2. For illustrative 

purposes, 4 has been used for the exponents instead 

of 6. (By inereasing the integer , whieh must be 

even, the hyperbola can be made to pass arbitrarily 

elose to its asymptotes, 

lines. ) 

shown by the dotted 

Figure l The transformation function hl with y 2 

8. 
l 
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The advantage of the hyperbol ic transformation as 

compared to, e. g., a quadratic one is that the 

former becomes more "linear" the further away from 

the vertical axis one moves. So it is only in the 

neighborhood of the lower or upper limits (Yi and 

vi respectively) that the restrictions are binding 

and any severe non-l inear i ties are imposed. When 

the optimal value of Si is far from Yi (or vi) the 

search for the optimal set of parameters is thus 

little affected. This would not be the case if a 

quadratic transformation had been used. 

2.2.2 General form of the coefficients 

To simplify the notation we write the nx(n+m) 

coefficient matrix A in the form of a column vector 

according to 

vec A(S)= 

where 

a .n+m 

a.j the j:th column of A(S), 

(6 ) 

i.e. the columns of A(S) are stacked on top of each 

other. The element aij of A(S) will be in position 

g = n(j-l)+i of vec A(S). 

Further, we introduce an identity transformation of 

Bi: 



8· 
l. 
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( 7) 

An element of vecA(8) can then, in the most general 

case, be expressed in the following way : 

n 
a -.9. (S) 

g d 
, 

g 

where 
k 

n r + 2: r h,!. . (8. ) 
g go 

i=1 gi l. 
l. 

k k 
(Sa) 

+ 2: 2: P gij 
. 

h,!. . (8. ) h,!. . (8 . ) 

i=1 jh 
l. J 

l. J 

and 

k 
d s + 2: s h,!. . (8. ) 

g go 
i=1 gi l. 

l. 

(Sb) 
k k 

+ 2: 2: (5 . 
h,!. . (8 . ) h,!. . (8. ) 

i=1 jh 
gij l. J l. J 

g 1 , 2 , ••• ,n (n+m) 

,!. O, 1, 2 

where r , p , s and (5 denote constants . 

Here, second-level indices i and j have been attached 

to the h ,!.' s to indicate that for a given'!' the lower or 

upper limits, i.e . the y ' s and the v ' s, may vary with 

the parameters being transformed . However, since the 

second-level index on h is always the same as the 

parameter ind~x the former will be suppressed in the 

following, for notationai convenience. 

As can be seen, the non-linear parts of (Sa) and 

(Sb) - the doublesums - contain all the k(k+ll/2 

possible different products of the free parameters. 
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2.3 An example; the linear expenditure system 

In the general form (8) the mapping from the 8 i :s 

to ag looks rather compl icated. In practice the 

mappings are usually quite simple, however, which 

can be seen by means of the following example. 

Consider the well-known linear expenditure system 

[eL stone (1954)) . Applied to time series data , 

this systems of equations can be written 

n 

~iPit + ~i (mt-k~l~kPkt) 

i = l "' " n 

where Pi t denotes the price of the i: th good in 

per iod t, qi t the corresponding quanti ty and mt 

total expenditures . Total expenditures are, by 

definition, equal to the sum of the expenditures on 

the individual goods , i.e. 

n 

L Pit qit' 
i=1 

The parameters to be estimated are the ~i ' s and the 

~i ' s . As can be seen, the mappings from these 

parameters onto the coefficients in front of the 

price terms are non - linear. Further, as the ~ i ' s 

have a share interpretation they should obey the 

following linear restriction 

n 
L Il i 1. 

i=1 
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Since we are not primarily concerned with the 

stochastic specification here the error terms have 

been suppressed . It should be mentioned , however, 

that they are subject to a linear restriction, 

which makes it necessary to drop one of the 

equations in the estimation. This can be seen by 

summing both sides of the above expenditure 

equation over i. Because of the relationship 

between individual and total expenditures and the 

restriction on the pi'S, both sides sum identically 

to mt . According l y, the error terms must sum to 

zero. As a consequence, condition IV in Section 2.1 

will not be fulfilled unless one equation is 

dropped . The results do not depend upen the choice 

of equation to be left out, however. 1 

To put the coefficients in the form of (8) consider 

e . g. the coefficient for Pi ' Tf this coefficient is 

denoted by ag and 

then 

(X­

l and 13 -l 

In this ca se the denominator (Sb) is equal to 

unity. The program recognizes this through the 

setting of a parameter. 2 Accordingly, it is only 

necessary to specify ng [( Sa) l which is done by 

setting 

l For a detailed discussion of this problem which 
is common to all types of allocation models derived 
from consumption theoryor production theory, cf. 
Barten (1969). It should also be noticed that for 
these models intertemporal correlation between the 
error terms must be of a special form, see Berndt 
and Savin (1975), which is not available in CONRAD . 

2 ITYPE = l; cf. Section 4.3. 
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r go cc O, P g12 -1. 

Since the other coefficients can all be regarded as 

special cases of the one just considered it should 

be obvious how they should be specified. 1 

Had dg [( Bb) l been different from unity it would 

have been necessary to specify Sgo' the 8 g i and the 

0gij'S, too. Examples of such mappings can be found 

in Appendix B. 

2.4 Identification 

Whereas for linear models criteria exist for global 

identification,2 the corresponding criteria for 

non-linear models assure only local identification, 

i.e. in the neighborhood of the true parameter 

vector . 3 However, if the non-linearities are 

conf ined to the parameters, as is the case here, 

the condition for local identification turns out to 

be guite simple. 

Given the assumptions in Section 2.1, the model is 

locally identified if the n(n+m)xk matrix of first 

partiai derivatives 

avecA(8 ) 
a8 - (~ .) 

g1 

g 

i 

1,2, ..• ,n(n+m) 

1,2, •.. ,k 

(9 ) 

1 The linear restriction on the ~ i I S is simply 
imposed by determining the ~i in the left-out 
eguation residuaily, as one minus the sum of the 
~i'S actually estimated. 

2 ef. Fischer (1966). 

3 See Rothenberg (1971). 
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has full column rank, k. That is, the number of 

linearly independent columns should be equal to the 

humber of elements in 8. If this condition is not 

fulfilled, the estimation algorithm will not be 

able to find a proper solution to the estimation 

problem.! 

For most econometric models the identifiability 

condition is either fulfilled for all conceivable 

8 i -values or for no 8i-values at all. That is the 

usual, straight-forward case. However, some models 

may be identified for most, but not all Bi-values. 

Such a situation is troublesorne since in general 

the program cannot be prevented from assigning 

"bad" values to the Bi's, i.e. values for which the 

matrix (9) does not have full column rank. Some­

times the inequality constraints (Sa) and (Sb) can 

be used for this purpose , however. An example of 

such a case is given in Appendix B. 

By means of the 

(a9)-(a13)] it can 

results in Appendix A (cf . 

be checked analytieally whether 

or not the model under consideration is identified 

for all possible Bi-values. The neeessary ealeula­

tions can be rather tedious, however, especially if 

the number of parameters (k) is large. Further, 

of ten the only thing to do if there are some 

8 i -values for which the column rank of aveeA/a8 is 

less than k, is to try to choose initial values for 

the parameter estimates which are not elose to the 

ones for whieh the rank condition fails. Aecording­

ly, to save time one might disregard this possible 

1 The eharacteristics of a proper solution are 
briefly discussed in Section 5.3, and more closely 
in Section 3.2. If the solution is not a proper 
one, it will be obvious from the content of the 
file RESF2.DAT that the results are useless. 
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problem as long as it does not arise and, if it 

does, first try to overcome it by arbitrarily 

chosing new starting values. 

2.5 Hypothesis testing 

The reader is assumed to be familiar with hypothe­

sis testing relating to single parameters, i.e . 

test which can be carried out by means of the 

t-distribution . 

In this section a more general test will be 

described , namely the likelihood ratio (LR) test . 

This test which, i.a., can be used in tests 

relating to several parameters, is short ly de­

scribed in Maddala (1977, pp . 43 - 44). 

Let HO be a hypothesis concerning the parametric 

structure of the model, which is more restrictive 

than an alternative hypothesis Hl ' 
corresponding 10g-1 ikelihood va1ues by 

respectively . Then L1 > LO and minus 

Denote 

LO and 

twice 

the 

L 1 , 

the 

10garithm of the like1ihood ratio is equal to 

-2(L O-L1 ), which is asymptotically distributed as a 

chi-square (x 2 ) under HO ' The number of degrees of 

freedom equals the difference in the number of 

unrestricted parameters. Forma11y 

(lO) 

where 

P1 the number of unrestricted parameters in 

the least restrictive model 

Po the number of unrestricted parameters ln 

the more restrictive model, 
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~ 

and Adenotes "asymptotically distributed as". The 

log-likelihood 

according to1 
values can easily be obtained 

L 

where 

F 

k 

n = 
T 

-F + k 

the function 

program 

1 -"2nT [~n ( 2n ) + 1] 

value 

number of equations 

number of observations. 

(11 ) 

calculated by the 

However, as the constant k disappears in the 

subtraction of L1 from LO the test can be performed 

directly with the F values. 

Inequality constraints can in principle also be 

tested with the LR test. However, in the presenee 

of such restrictions the asymptotic distribution of 

the test statistic is not that of a single 

chi-square variable but rather a weighted average 

of several chi - square distributions, which makes 

the practical application of the test very diffi­

cul t in most cases. For detai Is, see Gourieroux, 

Holly and Monfort (1982) and also Judge, Griffiths, 

Hill and Lee (1980, Ch. 3). 

Another use of the LR test is to check the 

compatibility of the sample information with 

different stochastic specifications. Denoting the 

more restrictive assumption of no autocorrelation 

with I' the following relationship can be exploited 

1 The corresponding formula in Appendix A is (a6). 
For simplicity, the superindex "*" used there, has 
been omitted here. 
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(12 ) 

where n is the number of equations. Note that LI 

and LI ' are assumed to be based on the same number 

of observations . 

Although the LR test is easy to use and has several 

attractive properties (cf . Maddala op . cit.) it has 

the disadvantage that it is strictly applicable 

only to large samples. Thus, when T is not large 

compared to the number of degrees of freedom, the 

outcomes of the test should be interpreted with 

care. 

Finally, it should be mentioned that there are 

other general tests bes ide the LR 

Wald and Lagrange Multiplier (LM) 

test, e.g. the 

tests. A rela-

tively non-technical discussion of the Wald, LR and 

LM tests can be found in Englf' (1984). Al though 

the se tests are all asymptotically eguivalent, they 

may yield conflicting results in finite samples . In 

general, the Wald test is more conservative than 

the LR test, whi l e the LM test i s the one most 

likely to reject the null hypothesis. 1 

1 See Berndt and Savin (1977) and Breusch (1979). 
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3 PROGRAM CBARACTERISTICS 

3.1 General features 

CONRAD is written in FORTRAN-77. Including all 

subroutines the source program has a total length 

of about 1,600 rows, giving a rough indication of 

its size . 

Since it has been · found to considerably · increase 

accuracy, without unduly increasing execution 

times, all computations are performed in double 

precision . To keep the price for this higher 

accuracy as low as possible , effort has been taken 

to economize on storage space . Consequently , many 

arrays are used for mul t .iple purposes • Comments 

have, however, been inserted in the source program 

where this might create confusion . 

Di mensioning , i . e . declarations of arrays , has been 

very much faci l iated by use of the PARAMETER 

statement . As implemented in CONRAD , this statement 

makes it possible to redeclare all arrays in the 

program by changing the values of only five 

constants • Further, to lessen the need for re­

dimensioning, in principle all matrices are stored 

in vector form1 , i . e . according to (6) in Section 

2.2 . 2. 

When changes none the less have to be made, the 

required adjustments will be indicated by the 

program, whereupon the execution will be automatic­

ally terminated. By means of these messages and the 

1 Regarding the few matrices not stored in vector 
form, their column indices will never have to be 
changed . 
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cornments inserted af ter the PARAMETER statement in 

the main program it should be a simple matter to 

specify the necessary memory allocation. If, still, 

something should go wrong the program will print 

out further messages until all declarations are 

correct. 

The use ofinput/output media is confined to disk 

files. Further, the program assumes all input to be 

in alphanumeric form and provides all output in the 

same format. 

3 . 2 Optimization method 

Since restrictions on the elements of A are handled 

by treating them as functions of the unconstrained 

vector e, the maximization of the log- likelihood 

function is an unconstrained optimization problem . 

The function to be maximized is the "concentrated" 

l og - likelihood function L* (cf . Appendix A) , whose 

only argument is the vector e. In practice the 

program instead follows the equivalent route of 

minimizing -L*, or, more specifically, F = -L* + k* 

where k* is a constant. 

The minimization is carried out by means of a 

quasi-Newton,l routine, VA09AD, from the Harwell 

Subroutine Library,2 which is based on an algorithm 

developed by Fletcher (1970). Although similar to 

the more well-known Davidon-Fletcher-Powell (OFP) 

algorithm [Fletcher and Powell (1963)], Fletcher's 

1 I.e. of the Newton type but not 
evaluation of second order derivatives. 
Quandt (1983, pp . 721-722). 

requiring 
See e. g. 

2 An auxiliare routine, MCIlAO, from the same 
library is also employed. 
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method is considerably more efficient since it has 

almost eliminated the linear search subproblem 

inherent in the DFP. 1 

Function values and first order derivatives, which 

are required as input to VA09AD are provided by the 

subroutine MFLD. Concerning second order deriva­

tives, only a positive definite initial estimate of 

the Hessian matrix is needed. We have chosen the 

simpliest possible alternative, i . e . the identity 

matrix . VA09AD then gradually approximates the 

1nverse Hessian . The propert y of positive defi­

niteness is preserved in the updating process, so 

as to avoid the tendency of Newton methods to move 

in the wrong direction when far from the optimum . 

The single stopping or convergence criterion 

employed is the accuracy that the user requires in 

the estimates . Thus, the algorithm is terminated 

when 

1 ~~+1 _ ~rl < EPS f . 1 2 k l l or 1= , , • •• , , 

where the superindices denote iteration number and 

EPS is the prespecified accuracy.2 Although this is 

one obvious convergence criterion, there are sev­

eral alternatives, some of which might be more 

efficient . 3 

1 The linear search problem is discussed in Quandt 
(1983, pp. 734 - 737). For comparisons between 
Fletcher's algorithm and the DFP, see Fletcher 
(1970) • 

2 Termination may also occur because the prespeci­
fied maximum number of function evaluations, MXFN, 
has been reached. 

3 See Belsley (1980) and Quandt (1983, pp. 737-
738) • 
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According to our experience the algorithm is very 

reliable. For almost any set of "reasonable" start­

ing values for the 8 i 's it converges rapidly to a 

local minimum. 1 In ca se of non-convergence the most 

probable cause is that the optimization problem is 

not weIl defined (for some values on the 8 i 's). An 

illustration of such a ca se is given by the example 

in Appendix B, where the model is not identified 

for certain sets of parameters. 

In order to avoid unnecessary long execution times 

i t is recommended, however, that the problem :i s 

scaled such that the 8 i 's do not differ in magni­

tude by more than a factor of 100. That can always 

be achieved by a slight change in the mapping from 

the 8 i 's to the coefficients, e.g . by specifying 

the relevant parameters according to 

il> i c8 i ' 

where c is a constant . 

The first order conditions that the derivatives 

should be equal to zero at the terminating point 

are usually very closely fulfilled . When CONRAD is 

run on the DEC-lO computer the biggest element of 

the gradient vector seldom exceeds 1.10-6 in 

absolute value. On the PRIME computer , which has 

markedly lower precision, it might happen that some 

derivatives are of the magnitude 1.10- 3 • Other 

computers like e.g. IBM should be expected to fall 

between these two extreme values. 

1 The algorithm cannot discriminate between a l ocal 
and a global minimum. The only way to check whether 
there are several minima is to try several sets of 
starting values and see if the terminating points 
differ. That is seldom the case, however. 
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Besides the derivatives there are two additional 

checks on the solution. One is the integer IEXIT, 

which gives the reason for the exit from VA09AD. It 

can take on the following values: 

IEXIT=l 

IEXIT=2 

IEXIT=3 

The normal exit, in which the accu­

racy condition has been fulfilled. 

The specified accuracy has not been 

obtained. Probable cause is that 

EPS has been set too small for 

computer word length. 

Maximum number of funetion evalua­

tions, MXFN, has been reached. By 

making use of the file RESF4.DAT 

the search can be carried on from 

the point where this happened, 

rather than having to be started 

all over again (ef. Seetion 5.5). 

It should be noticed that if the 

model is not identifjed for some 

set s of parameter values,l the 

algorithm can in principle evaluate 

the function an infinite number of 

times in the neighborhood of these 

parameter values, 

an optimum. One 

without finding 

should thus be 

assign a to high 

if identification 

careful not to 

value to MXFN 

problems can be suspeeted. 

l ef. Section 2.4. 
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The other test concerns the estimate of the Hessian 

matrix. By construction I this matrix is positive 

definite and so its eigenvalues are all strictly 

positive. EquivalentlYI for the Cholesky factori­

zation L'dL of the Hessian, the Cholesky values, 

i.e. the diagonal elements of D, are all positive. l 

One (or several) of the Cholesky values may be very 

small, however , indicating that the solution is not 

wholly satisfactory. That can happen, for instance , 

if one of the parameters is just barely identified, 

due to the strong collinearities in the data. In 

such cases the difference between the largest and 

the smallest of the Cholesky values will be big and 

so the ratio. 

will be small, where ~in is the smallest of the 

Cholesky values and ~ax the largest. 

One measure that can be used as a lower bound for S 

is the Euclidean norm of the gradient vector. 

Denoting the gradient vector by g, the Euclidean 

norm is defined according to 

IlglI 
~ 2 1/2 
L gj) 

i=1 

Thus , for a well-behaved solution the followin~ 

inequality should hold 

1 > ~ = COND , 

1 The Cholesky factorization 
in Theil (1983). An extensive 
of the stated equivalence 
(1978). 

is briefly discussed 
treatment and a proof 

can be found in Lau 
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COND being the number eomputed by the program. 

One problem with this measure is that it is 

dependent upon the degree to whieh the first order 

e onditions are fulfilled. The further away from 

zero the first order derivatives are the larger 

will be the norm of 9 and, aceordingly, COND. When 

CONRAD is run on a relatively impreeise machine 

l ike the PRIME eomputer CON D will aeeordingly be 

higher than otherwise, sometimes failing to fulfill 

the eriterion. (Indireetly, 8 will also depend upon 

the derivatives , through the eonstruetion of the 

optimizat.lon algorithm. However, with respeet to 

this eons tant it is impossible to know the diree­

tion of the effect.) 

Before eoneluding this seetion an interesting 

result reported by Belsley (1980) will be remarked 

upon. 

Considering the DFP algorithm, Belsley finds that 

execution times can be considerably reduced (up to 

50 percent) if the Hessian is initialized by the 

estimate proposed by Berndt, Hall, Hall and Hausman 

(1974), instead of the identity matrix . The fact 

that the BHHH Hessian is quite easy to program 

makes the suggested approach particularly attrac­

tive. 

According to a (very) small number of test, 

Belsley's co~clusions do not seem to hold for 

Fletcher's algorithm, however. In fact, initializa­

tion by the BHHH Hessian actually increased 

execution times slightly in a few cases. The 

procedure has thus not been implemented in the 

present program. 
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3.3 Computation of Var(8) 

It can be shown that the variance of 8 fulfills the 

following inequality1 

Var(8) ~ 

a(aL*(8 )/a8)' 1 
(E[ o ])- _ Q-l 

a8 

where 8 0 is the true parameter vector and Q the so 

called information matrix. Since matrices are in­

volved, the interpretation of the inequality sign 

is that the difference between Var (a) and Q-l is a 

positive semidefinite matrix. Equality holds asymp­

totically, as the sample size approaches infinity. 

One way to estimate Var(8) is thus to determine the 

analytic expression for Q-l and evaluate it at 8 . 

For the model in Section 2 , Q can be found by a 

simple generalization of Hendry's (1974) result, so 

as to include nonlinear restrictions on the parame­

ters . 2 

However, since Q is a rather compl icated matrix, 

which is difficult to program, we have instead 

based our estimate of Var(8) on the Hessian matrix 

produced by the minimization routine (cf . above). A 

justification for this is given by the following 

equality,3 

-1 
Q _plim[a (L* (8) /~8) ~ J -1 _ 

a8 

1 See Silvey (1975). 

2 See Mellander (1984). 

3 ef. Pollock (1979, p. 345). 

~ -1 
-plim[G(8) J 
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where plim denotes probability limit and G(S) the 

Hessian, evaluated at 8. The inverse of G(S) is 

thus a consistent estimate of the lower bound for 

Var(S) • 

As the minimization algorithm makes a second order 

approximation of the function to be minimized, the 

Hessian matrix obtained from it will be equal to 

G(S) only if L* is quadratic. However, at least in 

large samples, L* is known to be very nearly so. 

Further, for the models considered by Belsley 

<1980 ) the Hessian matrices produced by two 

different quasi-Newton routines were very close to 

their analytic counterparts in spite of the sample 

sizes being very moderate , 20-40 observations . 

Although the two estimates of Var (S) described 

above are asymptotically equal they may of course 

differ in small samples. In general, variance 

estimates based on the Hessian matrix tend to be 

based on the information greater than those 

matrix . 1 Accordingly, one would expect inferences 

based on the former estimates to be more cautious 

if the inferences are based on t-tests. 2 Inferences 

based on likelihood ratio tests will not be 

affected, however . 

3. 4 Compatibility with other computers 

Since CONRAD has been written in accordance with 

standard FORTRAN-77 conventions it should be easy 

l ef., e.g. Calzolari and Panattoni (1983) . 

2 More cautions in the sense of reducing the 
probability of so called type I error, Le. of 
wrongly rejecting the null hypothesis when it is 
true. 
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to implement on other computers than DEC-lO and 

PRIME 750. Probably, the only obstacle concerns the 

input and output of data and the handling of the 

corresponding filea. The subroutine OC which opens 

and closes input and output files may not be 

directly transferable to other computers. Further, 

terminal output is not generated in the same way on 

different computers. On the DEC machine terminal 

output is obtained by means of the TYP E statement, 

whereas on an IBM computer it would be generated by 

routing the output to the device with logical unit 

number 5. 
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INPUT INSTRUCTIONS 

Three input files are used . Each of the se will be 

described separately, under headings equalto the 

names which should be assigned to them. 

Common to all the three files is the use of free 

format input . Hence, considering a particular row 

the only requirement is that the strings (values ) 

appea r in the prescribed order, separated by at 

least one blank position. There is only one 

exception to this rule and it concerns the naming 

of variab les , cf . Section 4 . 3 . 

Regarding the observations on the endogenous and 

predetermined variables, a distinction is made 

between the dataset in the input fi l e and the data 

actually used in the estimation. The latter may be 

a subset of the former, differing both in number of 

variab l es a nd/o r observat i ons . 

The choice of variables is completely free. 

Arbitra r y subsystems of the total system comprised 

by the data material may thus be estimated without 

renewing the data input . The choice of observations 

is somewhat more limited, but, e . g., in the context 

of time series data it allows the estimation to be 

based on any coherent subperiod . 

Sections 4.1 , 4 . 2 and 4.3 all contain schematic 

representations of the corresponding files. These 

are such that unI ess otherwise specified one row in 

the manual corresponds to one row in the file. The 

notations have been chosen so as to be easily 

recognizable with those used in Section 2.2. 
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When the input files have been properly arranged 

the execut.ion can be started by the command RUN 

CONRAD. If the program discovers any errors in the 

input data or if the memory allocation is insuffi­

cient for the problem at hand instructions about 

how to make 

printed out, 

deleted. 

corrections will automatically be 

whereupon the execution will be 

4.1 DATAM.DAT 

This file contains observations on the endogenous 

and predetermined variables . 

The data must be arranged in matrix form . The 

matrix should be structured so that the endogenous 

and predetermined variables form block matrices , 

according to 

YTl YT2 YT'Il ZT l zT2 ZTt, 

where 

'Il the number of endo-genous variables, 

t, the number of predetermined variables , 
T = the number of observations. 

As mentioned in the previous section, the data 

actually used in the estimation may be a subset of 

the data matrix in this filea The indices above 

thus constitute upper limits for the corresponding 
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indices of the X matrix (cf. Section 2.1), accord­

ing to n ~ ~, m ~ ~ and T ~ T. 

In principle, one row in the data matrix should 

correspond to one row in the input file. However, 

with many variables that may be impossible, due to 

lack of space in the file's rows. In that ca se the 

matrix can be partioned into submatrices of 

appropriate sizes. The submatrices should then be 

"stacked" in the file, one underneath the other. 

For instance, if the user wants to spI i t up the 

data in two parts, the first part containing all 

the endogenous variables and the first predetermin­

ed variable, that could be done in the following 

way: 

The number of blocks and the number of columns in 

each block is freely determined by the user. 

Different blocks need not have equally many 

columns. They must, however, have the same number 

of rows (i.e. T). 
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The blocks may be separated by blank rows. This can 

be convenient, e.g. by making it easier to check 

the file. The numberof blank rows - which may be 

zero - is set by the user. However, all blocks must 

be separated by the same number of blank rows. No 

blank rows should preceed the first block. 

4.2 PARIC.DAT 

Initial values for the unrestricted parameters and 

information about inequality constraints should be 

provided in this file. 

File structure 

where 

y/u (Sl) 

y/u (S2) 

k the number of unrestricted parameters to 

be estimated, 

s'" "';;1, .•. ,k. The initial value of the pa­

rameter having the '" :th ordinal number. 

(Ordinal numbers will always be indicated 

by superindices, so as to avoid confusion 

with the subindices used in Section 2.) 

i(S"') 1 ~ i ~ k. The (sub)index of the parame­

ter whose initial value is S"'. 
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=0 if no hyperbolic transformationshould 

be applied to the parameter. The O 

should be followed by (at least) one 

blank position and a "I" (slash). 

=1 if the parameter should be transformed 

according to (Sa). 

=2 if the parameter should be transformed 

according to (Sb). 

y/v (SD<) Specified only if .t =.t (SD< )~1. If .t =1 the 

parameter's lower limit, i.e. y, should 

be given and if .t=2 the upper limit, v . 

In general it does not matter very much how the 

initial values are constructed. The program will 

almost always find a solution if they are not 

wholly unreasonable. However, the execution time 

can be considerably reduced if the starting values 

are based on some kind of consistent estimates. 

For a systern of the "seemingly unrelated" type 

(Zellner (1962») aLS provides consistent estimates. 

The linear expenditure system considered in Sectian 

2.3 is of this kind. However, like all allocation 

models that model has a characteristic feature 

which somewhat complicates the application of aLS 

to generate initial values. The common charact.er­

istic is that same or all of the parameters appear 

in every equation of the systern. Hence, aLS 

estimation of the individual equations will provide 
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several estimates of one and the same parameter. 1 

Usually, it will work weIl to use the mean values 

of the various OLS estimates as starting values. 

For a (truly) simultaneous equations model the most 

simple consistent estimator is given by 2SLS 

(two-stage least squares), appl ied without taking 

the non-linear restrictions on the parameters ex­

plicitly into account. An example of this technique 

is given in Appendix B. 

4.3 GICOF.DAT 

In this file some general information should first 

be given, regarding, i.a., the stochastic specifi­

cation and the format of output. Then the file 

DATAM.DAT should be described. Finally, the desired 

data set and the nonzero coefficients have to be 

specified. 

A subset of the data in DATAM.DAT is determined in 

the following way. The relevant observations are 

indicated by the row numbers of the data matrix 

corresponding to the "first" and "last" observa­

tions. To select the appropriate variables, maximum 

numbers are first set for both the endogenous and 

the predetermined variables. In the respective 

block matrices (cf. 4.1), these numbers are equal 

to the column numbers corresponding to the right­

most of the considered variables. Whether the 

l Of course, if the equations are non-linear in the 
parameters OLS wi Il not prov ide estimates of all 
parameters directly. Regarding, e.g., the linear 
expenditure system OLS will yield estimates of 
(~i - Pi~i)' Pi and P'~', j # i, respectively. From 
the se expresslons all =the unknown parameters can 
easily be solved for, however. 
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maximum numbers of variables will be equal to or 

greater than the number of variables aetually taken 

into aeeount in the estimation is deeided by the 

speeifieation of the eoeffieients in the A matrix. 

All eoeffieients not explieitly speeified will be 

set equal to zero. This alBo applies to the 

diagonal elements of the B matrix (whieh usually 

are automatieally set to -1 in most program). Among 

the variables ehosen in the first step (ef. above), 

eertain ones can thus be ignored in the estimation 

by not speeifying the eoeffieients assoeiated with 

them . 

No difference is made between 8 i , h 1 (8 i ) and h 2 (8 i ) 

when the coefficients are speeified. All three of 

these expressions are identified by the index i . 

The task here is thus only to assign values to the 

constants in the polynomials (Sa) and (Sb). 

As all nonzero coefficients should be specified 

aecording to the same principle only one coeffi­

cient is shown in the schematic file structure 

below. For easy reference to (S), constants in the 

polynominal have been written with small letters. 

To simplify the notation the common index g has 

been suppressed, however. 

As in the previous section, superindicies denote 

ordinal numbers. 
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File structure 

LP EPS MXFN WIDTH HEAD 

NY NZ NO 

NBLC ICL (1) ICL(NBLC) NBR 

IFO ILO NMX MMX 

(Variable names) 

(Title) 

NA lORI IOR 2 

lA JA ITYPE 

ro 

r 1 

n.td 
o 

.tn n.tn 

i(r1 ] 

So .td n.td 

g 
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where 

LP Determines the stochastic specification: 

=1 for autocorrelated errors 

=0 otherwise . 

EPS A real positive number, specifying the 

accuracy of the estimates (cf . 3 . 2' . 

MXFN Should be set to O ln the first run, 

resulting in printout of all input data 

in RESFl . DAT . Otherwise set equal to the 

maximum number of evaluations of t he 

log-l ikelihood function . 

WIDTH The maximum number of character positions 

per row in t he main output file . 

HEAD If the use r wants to provide the output 

f il es with a t i t ie , then HEAD= l , othe r­

wise HEAD=O . 

NY The number of endogenous variables in the 

data matrix in DATAM . DAT . 

NZ The number of predetermined variables in 

the data matrix in DATAM.DAT . 

NO The number of observations on the vari­

ables in DATAM . DAT . 

NBLC The number of blocks into which the data 

matrix in DATAM . DAT is partitioned . If 

NBLC=l the "1" should be followed by (at 

leastl one blank posit i on and a "I" 

(slashl . 
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ICL(i) Specified only if NBLC>l. The number of 

columns in the i:th block, i=1,2, ••• , 

NBLC. 

NBR Specified only if NBLC>l. The number of 

blank rows between the blocks. Assumed to 

be zero if omitted. 

IFO, The row numbers of the data matrix in 

ILO DATAM.DAT, which correspond to the first 

and last observations, respectively, that 

are to be considered in the estimation. 

NMX The maximum numbers of endogenous and 

MMX pre-determined variables, respectively, 

that are to be considered in the estima­

tion (cf. the beginning of this sec­

tion) • 

Vari- The NMX+MMX variable names , given ln 

able the same order that the variables appear 

name s in the X matrix . 

a maximum of 8 

Each name can conta in 

characters, including 

blanks . The maximum number of name s per 

l ine is 9, the first 8 positions being 

reserved for the first name, positions 9 

to 16 for the second name and so on. If 

NMX+MMX > 9 the 10:th to 18:th names are 

given on the second line, the 19:th to 

27 : th on the third line and so forth . 

Title Given only if HEAD=l. The maximum length 

of the title is 72 characters, including 

blanks . 

NA The number of all nonzero coefficients in 

the A matrix. 
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The numbers of the equations containing 

intercepts. These are required for the 

calculation of goodness-of-fit measures. 

A particular equation is identified by 

the number of the column in the data 

matrix that contains its endogenous 

variable. The last number should be 

followed by (at leastl one blank position 

and a "I" (slashl. 

IA,JA The coefficients' row and column indices, 

respectively, in the A matrix. 

ITYPE =0 if the coefficient ~s restricted, a 

priori, to be equal to a constant, 

=1 if the coefficient is equal to (a 

special ca se ofl ng in (Sal. 

=2 otherwise . 

ro The constant in the polynomial ng' which 

constitutes the numerator of ag . If - and 

only if - ITYPE=O, ro is set equal to the 

a priori constant, followed by (at leastl 

one blank position and a "I" (slashl, 

thereby completing the specification of 

the coefficient. 

tn, Specified only if ITYPE>O. The number of 

nt n terms in the l inear and nonl inear parts 

of ng' respectively, Thus, tn is equal to 

the number of r' s and nt n to number of 

p' s. Either of these might be equal to 

zero but not both at the same time. If 

- and only if - ITYPE=1 then "ntn" should 

be followed by (at leastl one blank and a 

" /" (s l ash l • 
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so,~d Specified only if ITYPE=2. The So is the 

constant in dg • ~d and n~d are defined in 

analogy with ~n and n~ n, Le. ~d is the 

number of s's and n~n the number of o's. 

I<. 
r , Specified only if ~n>O. 1<.=1, ••• , ~n. rl<. 

i(rl<.] is the I<.:th constant and i(rl<.] the index 

of the parameter associated with this 

constant. (Notice the difference between 

k = the number of parameters to be esti­

mated 1 and the greek letter I<. used here) • 

As indicated by the use of superindices, 

no particular order is required. 

p~, Specified only if n~n>O. ~=1, •.• , n~n. 

i(p~ ], The 

j (p~ ] used 

notation 

for the 

may be equal. 

is analogous with that 

ris. The i- and j-indices 

If ITYPE=2, the nonzero s- and o-constants with 

related indices are the n specified, in the same way 

as the r's and o's. 

1 ef. Section 4.2. 
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5 COMMENTS ON OUTPUT 

The results are presented in four output files. In 

addition, some information - e . g . concerning the 

development of the likelihood function in the 

search for the optimum - is provided as terminal 

output, during the execution. 

The content of this section is organized in the 

same way as that of the preceding one, i.e. it is 

divided into subsections corresponding to the 

different output files. Further, there is also a 

short subsection about the terminal output . 

It is recommended that this section and the example 

in Appendix B be read in parallel. 

5 .1 RESFl. DAT 

This fi l e will be created only if the parameter 

MXFN is set to zero . In that case the input to 

CONRAD, organized in easily readable form, will be 

printed here, whereupon the execution will be 

terminated • This should enable the user to check 

that the input has been proper ly arranged, before 

turning to the actual estimation. Another advantage 

is that this file provides a thorough documentation 

of the data and specifications used in the regres­

sion. 

Concerning the data, only the NMX and MMX first 

columns of the Y and Z matrices are printed, 

respectively, beginning with the IFO:th observation 

and ending with the ILO:th. (The format is Fll.6.1 
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The number of observations (i.e. ILO-IFO+l) is the n 

explicitly given, together with the values of IFO 

and ILO. 

If the vector autoregressive stochastic specifica­

tion has been chosen, that will be indicated by a 

statement saying that the number of observations on 

the model is one less than the number of observa­

tions on the variables. 

The initial values for the parameters are then 

given, together with information about the inequal­

ity constraints. Actually, the initial values 

subject to the chosen hyperbol ic transformations 

are given, rather than the initial values them­

selves. The reason for this is just that it makes 

it easier to check the equality constraints (cf. 

below) . 

Since the program sorts the rows of PARIC.DAT 

according to parameter index, the initial values 

and information about the transformations will 

appear in increasing order, irrespective of the 

order in which they have been input. The transfor­

mations are identified by the numbers O (no 

transformation), l or 2 as set out in Section 2.2 . 

The required accuracy in the est ima tes, i • e . the 

value of the parameter EPS (ct. Section 3.2), is 

also shown. 

Finally, the values of the nonzero elements in the 

coefficient matrix A are given, together with the 

corresponding equality constraints. The values of 

the aij's should be the ones implied by the speci­

fied constraints and the initial values of the 

(hyperbolically transformed) parameters. No change 

is made with respect to order, i.e. the coeffici-
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ents appear in the same order as they have been 

input in GICOF.DAT. 

For each of the coeff icients the type of constraint 

is indicated by the value of ITYPE (cf. Section 

4.3). The constants in the mapping from the (trans­

formed) parameters are also given, together with 

the indices of the corresponding parameters. The 

constants are denoted in the same way as in (8a) 

and (8b) in Section 2.2.2, except that the p 's and 

,,' s are denoted "greek r" and "greek s", respec­

tively. 

5.2 Terminal output 

One type of terminal output concerns checks on 

input and problem specification. The program per­

forms a number of such checks, before starting the 

actual estimation. If an error is detected it is 

communicated to the user via the terminal, where­

af ter the execution is stopped. 

During the optimization the function value and its 

two basic components will be printed according to 

F .t n [det (B)] .t n [det (~)] 

each time the function is evaluated. 1 If the model 

is specified either in the form of a single equa­

tion or as a system of "seemingly unrelated" equa ­

tions (l ike, e. g" the linear expendi ture system 

considered in Section 2.3) .tn[det(B)] will be iden­

tically equal to zero. The relationship between the 

function F and the two determinants is given by 

1 (".tn" and "det" denote natural logarithm and 
determinant, respectively), 
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F 
l l T ["2X n( det (z») - x n( det (B) ) l 

whereas the relationship between F and the log­

likelihood funetion is given in seetion 2.5. 

Af ter the final iteration, "END OF VA09" will be 

printed. The estimated parameter vector and the 

eorresponding gradient vector are then given, their 

elements ordered aeeording to parameter index. A 

final printing of F and the logarithms of the two 

determinants eonelude the terminal output . 

5.3 RESF2.DAT 

This is the main output file. The first line 

eontains some teehnieal information, eonveyed 

through the variables IEXIT and COND . If the run 

has been suecessful IEXIT should equal unity and 

COND be less than l (et. Section 3.2). The final 

F-value and the logarithms of the eorresponding 

determinants are the n given; ef. the previous 

seetion . 

To enable eomputation of the generalized R2 measure 

proposed by Berndt1 the logarithm of the determi ­

nant of a matrix denoted (Y-YBAR )' (Y-BAR) is also 

given . The generalized R2 , whieh measures the 

goodness of fit for the whole system of equations, 

can be obtained aeeording to 

l Ct. Berndt and Khaled (1979, p. 1228). Other 
generalized measures have been proposed by e.g. 
Carter and Nagar (1977). The advantage of Berndt's 
measure is that it is the only one whieh is invari­
ant to whether the struetural or the redueed form 
of the system is considered. 
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R2 1 - expC~n(det(~)) - 2~n(det(B)) 

- ~n[det( (Y-BAR)' (Y-YBAR))]). 

Ordinarily, the i: th eolumn of YBAR will eontain 

the mean value of the i:th endogenous variable, the 

matrix Y-BAR thus eontaining the deviations of the 

endogenous variables from their respeetive means. 

However, if the i:th equation does not eontain an 

intereept, the i:th eolumn of YBAR will eontain 

zeros only . 

In ease some of the NMX first equations are not 

considered ln the estimation they are of eourse not 

considered in the ealeulation of det[(Y-YBAR), 

(Y-YBAR )] either. 

To indieate the relevant alternative of these three 

possibilities with respeet to the different equa­

tions, a row of the matrix YBAR has been printed 

below the logarithm of det[(Y-YBAR)'(Y-YBAR)]. 

Aeeordingly, for the equations considered ln the 

estimation , the i:th element in the row will either 

be equal to the mean value of the endogenous vari­

able in the i: th equation or have a zero value, 

depending on whether the equation eontains an 

intereept or not . Equations whieh have not been 

considered in the eomputation of the determinant 

are indieated by the value -999. 

The estimated parameter vector is then given, 

followed by the eorresponding veetors of first 

order derivatives (the gradient) and standard 

errors, respeetively. The elements of the gradient 

vector should be elose to zero, ef. Sectian 3.2, p. 

27 . 
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To make it possible to calculate the variances of 

coefficients involving several parameters, the 

complete covariance matrix of the parameter vector 

is also printed. l (The standard errors have, of 

course, been obtained as the square root of the 

diagonal elements of this matrix.) The heading, 

HESIAN(-l), where (-l) indicates inverse, refers to 

the way this matrix has been estimated; see further 

Section 3.3. 

Most of the following output should be easily 

understood, since the notation corresponds directly 

to the one used in Section 2. 

The goodness of fit measure used for the individual 

equations needs some explanation, however. It is 

equal to the squared cosine of the angle between 

either the vector of observations on the endogenous 

variable (y) and the corresponding predicted vector 

(yp), or between the same vectors, measured as 

deviations from their respective means. 2 The latter 

variant, which is used if the equation contains an 

intercept, is equal to the 

coefficient between y and yp. 

Wonnacott (1970, p. 303).] 

squared correlation 

[ef. Wonnacott and 

In contra st to the conventionaI R2 , which is not 

bounded from below when applied to one of the 

equations in a simultaneous system, this measure 

always lies in the closed interval [O,ll • It is 

l General formulas for such computations can be 
found in Klein (1953, p. 258) or Fornby, Hill and 
Johnson (1984, p. 58). 

2 ef. Haessel (1978). 
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also applicable 1n the case of non-linearities, 

which R2 is not. 1 

The d statistic of Durbin and Watson <1950, 1951> 

is supplied in connection with the goodness of fit 

measure (under the heading "D-W"). It should be 

pointed out, however, that the distributionai 

properties of this statistic are not weIl known in 

the context of simultaneously estimated systems of 

equations. 2 This holds in particular if non-lineari­

ties are present. It is thus intended as an indica­

tive measure rather than as a test statistic. For 

testing purposes the LR test described at the end 

of Section 2 . 5 is instead recommended . 3 

5.4 RESF3.DAT 

The content of this file is supplied by the opti­

mization algorithm. Presumably , it will be of 1n­

terest only if the execution is unsatisfactory in 

some technical sense - as indicated, e.g., by the 

values of iEXIT and eOND, given at the beginning of 

RESF2.DAT. 

1 There is a relationship between the squared 
cosine measure and the ordinary R2 , however, which 
makes them take on identical values when appl ied 
to a linear equation with intercept, estimated by 
OLS. 

2 ef., however, Durbin (1957). 

3 If, still, used as a test statistlc Farebrother's 
(1980) tables should be used if the equation does 
not contain an intercept. Further, if the equation 
contains lagged endogenous variables the "h" sta­
tistic should be substituted for the d statistic. 
The former can, however, be cornputed with the help 
of the latter, cf. Durbin (1970, p. 419). 
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For every fifth iteration, and al so on exit, the 

following is printed 

Iteration number, Number of calls on MFLD 

The value of F 

8 1 , 8 2 ,.··,8k 

gl' g2'···' 9k 

(5 to a line) 

where 9i is the first order derivative of F with 

respect to 8 i • 

On exit, the value of IEXIT is also printed, af ter 

the number of calls on MFLD. 

It is the number of calls on MFLD that is delimited 

by the setting of the parameter MXFN (ef. Section 

4.3). The number of iterations will be at most 

equal to the number of calls on MFLD but usually 

somewhat smaller. 1 

5.5 RESF4.DAT 

This file is organized in the same way as the input 

file PARIC.DAT, the only difference being that the 

final estimates of the parameters have been substi­

tuted for the initial values. 

Af ter having been renamed it can thus serve as an 

input file in the next rune This is convenient if, 

e.g., the optimization algorithm has been stopped 

1 The reason is that the algorithm sometimes has to 
seek the minimum along a line, in order to obtain a 
sufficient reduction in F, in which ease the itera­
tion will involve several function evaluations. 
This is the "linear search subproblem" referred to 
in Seetion 3.2. 
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before having reached the optimum, due to a too low 

value ha v ing been assigned to MXFN . The search can 

then continue from the point where it was previ­

ously terminated . 

Another conceivable use of the file is to prov i de 

starting values when the stochastic specification 

is changed from the one assuming time - independent 

residuals to the one allowi ng them to follow a 

first order vector autoregression . 
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TBE CONCENTRATED LOG-LIKELIBOOD FUNC­

TION AND ITS FIRST ORDER DERIVATIVES 

The (unconcentrated) log-likelihood function corre­

sponding to the equations (l), (2) and (3) is given 

by1 

L(S,B,L) 

- ~r[(UIU - 2BUiU + 

(al) 

BU'U B' )L-lj 
l l 

where index l denotes one period lag and 

k 

It should be noticed that T is the number of obser­

vations on the model, which is one less the number 

of observations on the variables . 

Application of matrix differentiation techniques,2 

yields the following first order conditions for B 

and L, respectively: 

BU ' U1 (a2) 

and 

(a3) 

l Cf. Hendry (1971). 

2 cL, e.g., Neudecker (1969) and Pollock (1979). 
Derivations based on Pollock I s conventions can be 
found in Mellander (1984). 
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Since B and L are both unrestricted, they can be 

solved for from (a2) and (a3).1 Substitution of the 

solutions into (al) gives the concentrated 10g­

likelihood function. 

The solution for B, implied by (a2), is 

~ 

B B(8) 
(a4) 

By substitution of (a4) in (a3) L can also be 

expressed as a function of 8 according to 

(a5) 

The concentrated log-likelihood function thus 

becomes 

L* (8) (a6) 

where 

k* 1 - 2nT[~n(2n) + 1]. 

Differention of L* yields2 ,3 

1 The solutions for B and ~, given below, ean also 
be found in Hendry, op.cit. 

2 A derivation is given in Mellander (1984). 
Following Pollock (op.eit.) aL*/a8 is defined to be 
a row vector; thus the transposition. 

3 The eorresponding expression for the ease when A 
is unrestricted, is given in Hendry (op.eit.). Due 
to a misprinting, the prime on i in the last term 
has been omitted there, however. 
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( a veeA) , vee [T ( B-l: O) - lIX 
a8 

(a7) 

(a8) 

The partitioned matrix (B- 1 :0) has the same dimen­

sions as the matrix A, and so the zero matrix has 

the same dimensions as the C matrix. 

The n(n+m)xk matrix 8veeA/a8 can be written 

aveeA 
a8 

( a ve cA 8 veeA 
a8 1 ' ~ 

, ... , avecA) 
a8 • 

k 
(a9) 

Denoting a particular ~dement of veeA by ag (ef. 

Section 2.2.2), the derivative of this coeffieient 

with respect to the i:th parameter can be obtained 

aeeording to 

aa 
~ 
a8. 

1 

aa 
g 

ah (8.) 
.t 1 

ah (8.) 
.t 1 

a8. 
1 

(a10) 

Expansion of the first faetor on the RHS yields 

aa 
- g 
ah (8.) 

.t 1 

where 

an 
g 

ah (8.) 
.t 1 

an ad 2 
[d • ah (~.) - n 'ah {~. )l/d 

g .t1 g.t1 g 
(all ) 

r . + 2p .. h. (8 . ) 
g1 g1)'" 1 

(a12) 
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and an analogous expression for ad /ah (8.), with r g .t 1 

and p replaeed by s and 0, respeetively . 

For .t=O the last faetor on the RHS of (a10) equals 

unity (ef . Seetion 2.2.2) . If .t=1 then 

if l'i>O 

if l'i=O 
(a13) 

(ef . Section 2.2.1). The eorresponding formula for 

.t =2 is obtained by mere substitution of 2 and v . 
1 

for 1 and l' i' respecti vel y , and mul tipl ieation by 

- 1. 
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APPENDIX B 

The following example is based on the disequilibrium 

version of the supply and demand model for exports, 

suggested by Goldstein and Khan (1978). The model will 

be estimated on Swedish annual data 1959-80, under the 

two alternative stochastic specifications that the 

program can allow for. 

Overview of the model 

Goldstein and Khan consider the following demand and 

supply equations for exports . 

log x~ (bl) 

where 

xd quantity of exports demanded 

px price of exports 

pxw weighted average of the export prices of 

Swedenls trading partners 

yw weighted average of the real incomes of Swe-

denIs trading partners 

and 

(b2) 

where 

1 The dataset used in this example was kindly provided 
by Eva Christina Horwitz, Kommerskollegium, Stockholm. 
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XS quantity of exports supplied 

p domestic price index 

y* logarithm of an index of domestic capacity. 

As the equatioris have been specified in logarithmic 

form the parameters - except for the intercepts - can 

be regarded as elasticities. Accordingly, ~l and ~l are 

the price elasticities of export demand and export 

supply, respectively. Of course, ~l is expected to be 

negative and ~l to be positive. Further, the parameter 

~2 can be interpreted 

ity of the countries 

parameter should thus 

as the aggregate income elastic ­

importing Swedish goods. This 

be positive (assuming Swedish 

exports not to be inferior goods) . Finally , the capac­

ity variable y* is assumed to have a positive influence 

on the supply of exports . 

The disequilibrium properties are introduced by the 

fo l lowing equations1 

l og xt - l og xt - l (b 3) 

o < ~ ~ l 

and 

log pX t - log pXt-l ~(log xt - log x~) (b4) 

l In Goldstein ' s and Khan ' s notation the parameter in 
equation (b3) is denoted by y instead of ~. The change 
here has been made to avoid confusion with the constant 
Yi used in the transformation (Sa) . 
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where xt is the volume of exports actually realized in 

period t. 1 The first of these equations is a direct 

application of Nerlove's (1956l partiaI adjustment 

model. Its interpretation is that because of sluggish­

ness in adjustment behavior, the actual change in the 

quantity of exports is only a fraction of the change 

necessary to eliminate all of the excess demand. The 

expected length of the time lag in the adjustment proc­

ess can be estimated as 1/~.2 

It should be noted that the specification (b3l is not 

in accordance with the usual assumption of price-taking 

behavior on the part of the producers/exporters. For 

instance, if the demand for exports is increased, (b3l 

postulates an increase in the quantity of exports 

rather than a rise in the export price, which would 

have occurred had the exporters been price takers . 

1 The careful reader may notice that whereas the actual 
quantity of exports enters the RHS of (b3l with a one 
period lag, no such lag is present on RHS of (b4l. This 
is for reasons of simplicity only . The dynamie counter­
parts of {b3l and (b4l are, respectively 

d~ logx(tl = ~[logxd{tl-logx(tl] (* l 

and 

d 
dt logpx(tl A [logx{tl-logxs(tl] . ( * * ) 

Since logxd(tl is obviously dependent upon logpx(t) the 
equations {*l and {**l are simultaneously determined. 
The equations (b3) and (b4l are just two of the many 
discrete approximations to {*l and (**l which preserve 
this property. Had logx been lagged in (b4l the 
resul ting system would not have had the simul tanei ty 
propert y it would have been recursive instead of 
simultaneous. 

2 The reason is that the distribution of adjustment 
times corresponding to equation (*l is exponential 
with intensity ~. 
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Obviously, if the exporters are not price takers they 

must be price setters. This is also the meaning of the 

second adjustment equation (b4), which says that the 

export price adjusts to conditions of excess supply. 

Accordingly, if the volume of exports that the export­

ers would like to supply at the going prices, x~, is 

larger than the actual quantity, xt ' export prices will 

be lowered. 

For a rather small country like Sweden, it might seem 

somewhat strange to assume exporters to be price set­

ters. However, Goldstein and Khan obtained quite plau­

sible results with this set-up, even for very small 

countries like Belgium and the Netherlands, pointing to 

the passibility that the supply side may have a more 

monopolistic structure than the demand side. 

To obtain the final model, (bU and (b2) are inserted 

in (b3) and (b4), respectively. This yields, af ter some 

rearranging, the following simultaneous equation sys­

tem, containing observable variables only: 

(b5 ) 

(b6) 

Although simple, this is a quite flexible, dynamic 

model. In contrast to the static relationships (bl) and 

(b2) which constituted the starting point, it allows 

the effects of changes in the exogenous variables to be 

dependent upon the time perspecti ve considered . Both 
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the short-run and the long-run impacts can be calcu­

lated, as weIl as the effects af ter an arbitrary number 

of periods. However, although CONRAD generates all the 

output necessary to obtain the se so called dynamic 

multipliers, the computational details lie outside the 

scope of this example. The interested reade r is instead 

referred to Wallis (1973) and Brissimis (1976). 

EBtimation 

To estimate the system (b5)-(b6) by means of CONRAD we 

first renarne the parameters according to Table 1, which 

also gives the expected signs (if any) of the parame­

ters. 

Table 1 Parameter notation 

Original CONRAD Expected 
notation notation sign 

'TI" 8 1 + (Hl 

0<0 8 2 

0<1 8 3 

0<2 8 4 + 

}, 8 5 

Po 8 6 

PI 8 7 + 

P2 8 8 + 
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Secondly, we form the matrices of endogenous and prede­

termined variables . They are 

y (log x,lo9 px) (b7a) 

(b7b) 

respectively, where 1 is the unit vector. 

The system (bS)-(b6) is thus reformulated according to 

(b8) 

(b9) 

where 

1 As explained in Section 2.2.2 y. j denotes the j: th 
column of the y matr1x, and so forth. 
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1 

Regarding identifieation (ef. Seetion 2.4), it can be 

seen that problems are bound to occur whenever 8 1 , 

and/or 8 5 are elose to zero, since several of the eol­

umns of avecA/a8 will then approach zero vectors. In 

fact, the latter parameter can cause trouble even with­

out being particularly small, if the product 8 58 7 is 

large. 

Aetually, it is not neeessary to inspect the matrix 

avecA/a8 to see that these situations can cause 

trouble . According to (b3) and (b4) the quantity and 

price adjustment equations are not defined when 8 1 =TT 

and 8 5=).. are equal to zero. Further, if 8 7 , and so 

8 58 7 , becomes very large all but one of the coeffi ­

cients on the right hand side of (b9) will approach 

zero. 

Whereas it is impossible to impose a constraint pre­

venting the product 8 58 7 from becoming "too large", the 

hyperbolic transformation (5a) can be used to keep TT 

and).. from taking on zero values . This can be done by 

defining 

(bIO) 

and 

y 5 > O. (bU) 

To ensure that TT and).. be strictly positive, without 

imposing too severe constraints, Yl and Y5 can be as­

signed small positive values. If the restrictions are 

not binding the right hand sides of (bIO) and (blI) 

will be very close to 8 1 and 8 5 , respectively, making 

the differences between these definitions and the ones 

used in Table 1 very small. 
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Regarding the parameter 11" i t should be noticed that 

while (bIO) guarantees that 11" >0, there is nothing to 

stop 11" from taking on values larger than unity . Thus, 

one cannot be sure that 0<1I"~1 as required by (b3). 

Further, if it should happen that the constraint (bIO) 

is not binding, but, instead, 11" takes on a value above 

unity it is not possible to impose the constraint 1I"~1, 

cf. Section 2.2.1. 1 

Concerning the stochastic specification, finally, the 

model (b8) - (b9) provides a good example of when the 

availability of the autoregressive specification (2) is 

of great value . The reason is that for models which , 

like this one , contain lagged endogenous variables, 

autocorrelation in the residuals will lead to inconsis­

tent parameter estimates . 2 By means of the specifica­

tion (2) it will be possible to test if the residuals 

are autocorrelated and, if this should be the case, to 

correct for it so as to obtain consistent estimates. 

The estimations reported below were carried out on the 

DEC-ID computer at the stockholm University Computing 

Center (QZ) . Although not explicitly recorded here the 

same examples have been executed on the other machine 

on which CONRAD has been implemented - a PRIME 750 at 

the stockholm School of Economics . As discussed in 

Section 3, the PRIME is inferior to the DEC-ID regard­

ing the degree of precision in the calculations. Ac­

cordingly, the two computers yield results which differ 

slightly in some respects . These differences will be 

commented upon at appropriate places. 

1 An attempt to impose an erroneous constraint like 1I"~1 
will cause the program to send a message to the termi­
nal saying that the limit in one of the hyperbolic 
transformations has been incorrectly specified, where­
upon the execution will be terminated. 

2 See, e.g., Maddala (1977, pp. 371-72). 
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Input 

DATAM.DAT 

0.59333 4 . 34251 1. 4.42004 4.03954 4.30136 4.08933 0.50682 4.34251 
0.72271 4.36437 1. 4.44030 4.15779 4.32413 4.16200 0.59333 4.34251 
0.81978 4.37450 1. 4.45085 4.19192 4.35927 4.22975 0.72271 4.36437 
0.92028 4.37450 1. 4.44969 4.25731 4.36945 4.29456 0.81978 4.37450 
1.00063 4.39445 1. 4.45783 4.32744 4.37450 4.35543 0.92028 4.37450 
1 . 10856 4.40672 1. 4.47050 4.44524 4.41764 4.41159 1.00063 4.39445 
1.18173 4.43082 1. 4.48526 4.54287 4.45899 4.46591 1.10856 4.40672 
1. 26976 4 . 45435 1. 4.50756 4 . 63337 4.47392 4.51743 1.18173 4.43082 
1. 31909 4.48864 1. 4.51305 4.69583 4.46706 4.56539 1. 26976 4 . 45435 
1. 39377 4.48864 1. 4.50976 4.83961 4.45202 4.61115 1. 31909 4.48864 
1. 53687 4.52179 1. 4.54436 4.96375 4.51415 4.65586 1. 39377 4.48864 
1. 65250 4.60517 1. 4.60517 5.04349 4.60517 4.69866 1. 53687 4.52179 
1. 70656 4.65396 1. 4.65110 5.11883 4.65205 4.73883 1.65250 4.60517 
1.73519 4.78749 1. 4.73180 5.20351 4.77576 4 . 77828 1. 70656 4.65396 
1. 88555 4.96284 1. 4.89485 5.33383 4.97949 4.81624 1. 73519 4.78749 
1. 95445 5.15329 1. 5 . 09006 5.43149 5.18122 4.85203 1 . 88555 4 . 96284 
1.88555 5 . 34711 1. 5.20483 5.38564 5.34568 4.88734 1. 95445 5.15329 
1.90658 5 . 38907 1. 5 . 21330 5 . 48935 5 . 36317 4.92071 1. 88555 5.34711 
1. 89912 5 . 45104 1. 5.29079 5.54869 5 . 42495 4.95371 1 . 90658 5 . 38907 
1. 95303 5.53733 1. 5.44415 5 . 58953 5.51423 4.98498 1. 89912 5.45104 
2.01357 5.69709 1. 5.57405 5.63679 5.67332 5.01595 1. 95303 5 . 53733 
1.96991 5.84064 1. 5.67195 5.69235 5 . 82393 5 . 04600 2.01357 5.69709 

The 22 observations cover the period 1959-80. However, 

these 22 observations on the variables will correspond 

to only 21 observations on the model, namely the years 

1960- 80 . The reason is that one observation is lost 

when the stochastic specification (2) is used . 

In the first estimation, when the residuals are assumed 

to be only contemporaneously 

is equal to the zero matrix, 

use all 22 observations . But, 

correlated, i.e . when 8 

it would be possible to 

in order to make the LR 

test of the hypothesis 8=0 applicable, the first obser­

vation will be disregarded under this more restrictive 

stochastic specification, too. (ef. Section 2.5.) 

PARIC . DAT 

8 
0.49 l 1 0.1 
-2.7320/ 
-1.15 3 o / 
1.1140/ 
0.38 5 l 0.1 
5.65 7 o / 
-4.97 6 o / 
1.7780/ 
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The initial values have been obtained by 2SLS. Accord­

ingly, logx and logpx have first been regressed on all 

the predetermined variables (the zi 's), yielding pre-
- -dicted values logx and logpx, respectively. Af ter sub-

stitution of the endogenous variables on the right hand 

sides of (b8) and (b9) for these predicted variables 

the equations have been estimated by OLS. 1 The result­

ing estimated equations where 

- 0.563 logpx t 1.340 + 0.444 logpxwt 

+ 0.544 logywt + 0 . 509 logx t _1 

and 

0.127 logx t + 0.630 + 0 .71 5 logpt 
* - 0.224 Yt + 0.336 10gpx_1' 

By means of the functional relations between the aij's 

and the 8 i 's given in connection with (b8) and (b9), 

the estimated coefficients yield the initial values in 

PARIC.DAT. For instance, an estimate of 8 1 , is obtained 

as one minus the coefficient for 10gxt _1 • Given this 

estimate , initial estimates of 8 2 , 8 3 and 8 4 are easily 

obtained from the other coefficients in the equation 

for logx t • Likewise, an estimate of 8 5 can be obtained 

from the second equation by dividing the coefficient of 

logx t with the coefficient of logpx t _1' whereupon 8 6 , 

8 7 and 8 8 can be solved for. 

Notice that the initial values are not strictly ordered 

according to parameter index in PARIC.DAT; the initial 

value for 8 7 preceeds the initial value for 8 6 , This is 

just to examplify the fact that the ordering of the 

initial values in this input file can be chosen freely 

1 In both the first and the second steps the estima­
tions were based on data for the period 1960-80, i.e. 
on the same data set as the one subsequently employed 
by CONRAD. 
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by the user . As will be seen below , however , all output 

concerning the parameters is always ordered according 

to parameter index ,starting with index 1 and ending 

with index k . The reason is that program automatically 

sorts the content of PARIC . DAT in this order. 

It can al so be seen that inequal ity constraints have 

been imposed on ~ and A , in accordance with (blO) and 

(bll). For both ~ and A the lower limits has been set 

equal to 0.1. 

GICOF . DAT 

o 1. E-9 o 78 1 
2 7 22 
1 I 
2 22 2 7 
LOGX LOGPX CONST . LOGPXW LOGYW LOGP YSTAR LOGX- 1 LOGPX- 1 
EXPORT SYSTEM ACC . TO GOLDSTEIN & KHAN (1978) . ESTIMATlON PERIOD 1960- 80 
12 l 2 I 
l l o 
- 1. o I 
l 3 l 
0 . 0 o l I 
1. o 1 2 
l 4 1 
0 . 0 o l I 
-1. o 1 3 
151 
0.0 o l I 
1. o l 4 
l B l 
1.0 l O I 
-1. O l 
2 l 2 
0 . 0 1 O 1.0 
1.0 5 
1.0 5 7 
2 2 O 
-1. O I 
2 3 2 
0 . 0 o l 1.0 
-1.0 5 6 
1.0 5 7 
2 6 2 
0 . 0 O 1 1.0 
1.0 5 7 
1.0 5 7 
2 7 2 
0 . 0 O l 1.0 
-1. O 5 B 
1.0 5 7 
2 9 2 
1.0 O O 1.0 
1.0 5 7 
l 2 l 
0 . 0 O l I 
1.0 l 3 

O l 

O l 

O l 

O l 

O l 
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Since the first estimation is to be performed with 8=0 

LP, the first number in the first row, has been set 

equal to zero. 

The numerical value assigned to EPS, 1.E-9, might seem 

remarkably low. According to Section 3.2 it implies 

that the algorithm should keep searching until the 

changes in the parameter estimates are less than one 

over a billion in absolute value. Such an extremely 

high degree of precision in the 8 i I S is, of course, 

never needed . However, in addition to determining the 

precision in the parameter estimates themsel ves, EPS 

also, indirectly, affects the estimation of their vari­

ances and covariances. According to our experience, to 

get good estimates of the 8 i ' s variances and covari­

ances, EPS should not be set larger than 1.E-6. Of ten 

the increase in execution time caused by even lower 

EPS-values is quite modest, however. 1 On the other 

hand, values below 1 . E-9 mostly only result in "under­

flow", i.e. numbers too small to be recognized by the 

computer . 

MXFN has been set equal to zero, in order to obtain a 

listing of the input specifications in RESFl.DAT, he­

fore the actual estimation is carried out. By the set­

ting of WIDTH=78 the printout is certain to be readable 

on an 80-character terminal. 

Notice that IFO=2 (first number on the fourth line). 

The first row of the matrix in DATAM.DAT should thus be 

ignored; cf. the discussion above. 

Since the model contains only nine variables altogether 

(including the intercept) all the variable names can be 

l For example, regarding the present problem the CPo­
time was increased only by 7 % when EPS was decreased 
from 1.E-6 to 1.E-9, i.e. by a thousand times. 
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written on one line. As mentioned in Section 4.3 nine 

is the maximum number of name s that can be given on one 

line. Accordingly, if yet another variable is incorpo­

rated in the model its name will have to be given on a 

subsequent line. 

The specifications of the nonzero coefficients (the 

aij'sl are given on line 8 and onwards. It might be 

somewhat difficul t to see where different specifica­

tians start and end. As will be seen below, the corre­

sponding listing in RESF1.DAT is easily readable, how­

ever. By means of RESF1.DAT it is thus easy to check if 

any of the coefficients have been wrongly specified. 

Further, since, in contrast to the parameter specifica­

tions, the program prints out the coefficient specifi­

cations in the same order as they have been input it 

should not be very difficult to see where in GICOF.DAT 

changes should be made, if errors are discovered. 

Results1 

Execution of CONRAD by the command "RUN CONRAD" now 

resul ts in the file RESF1.DAT which looks like the 

following. 

1 In this section the convention of denoting vectors 
and matrices by boldface type has . been abandoned, in 
order to conform with the output produced by the pro­
gram. 
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RESFloDAT 

1
==========================================================================\ 

EXPORT SYSTEM ACC . TO GOLDSTEIN & KHAN (1978) . ESTIMATlON PERIOD 1960-80 
========================================================================== 

Y-MATRIX 

LOGX LOGPX 

0 . 722710 4.364370 
0 . 819780 4.374500 
0.920280 4.374500 
1. 000630 4. 394450 
1.108560 4.406720 
1.181730 4 .4 30820 
1. 269760 4.454350 
1. 319090 4.488640 
1. 393770 4.488640 
1. 536870 4.521790 
1. 652500 4. 605170 
1. 706560 4.653960 
1. 735190 4 . 787490 
1 . 885550 4. 962840 
1. 954450 5.153290 
1. 885550 5 . 347110 
1. 906580 5.389070 
1.899120 5 .451040 
1.953030 5.537330 
2 . 013570 5 . 697090 
1.969910 5.840640 

Z-MATRIX 

CONST. LOGPXW LOGYW LOGP YSTAR LOGX-1 LOGPX-1 

1.000000 4.440300 4.157790 4.3 24130 4.162000 0.593330 4.342510 
1.000000 4.450850 4.191920 4.359270 4.229750 0.722710 4. 364370 
1.000000 4.44969 0 4.257310 4.3 694 50 4.294 560 0 . 819780 4. 374500 
1.000000 4.457830 4. 327440 4.3 74500 4. 355430 0.920280 4 . 374500 
1.000000 4 . 470500 4.445240 4.417640 4.411590 1. 000630 4.394450 
1 . 000000 4.485260 4.542870 4.458990 4.465910 1.108560 4.406720 
1.000000 4. 507560 4.633370 4.473920 4.517430 1.181730 4.430820 
1.000000 4.513050 4.695830 4.467060 4.565390 1. 269760 4.454350 
1 . 000000 4. 509760 4.839610 4.452 020 4. 611150 1. 319090 4.4 88640 
1.000000 4.544360 4.963750 4.514150 4.655860 1. 393770 4.4 88640 
1. 000000 4.605170 5.043490 4.605170 4.698660 1. 536870 4. 521790 
1 . 000000 4.651100 5 .118830 4.652050 4.738830 1. 652500 4.605170 
1 . 000000 4.731800 5 . 203510 4 . 775760 4.778280 1 . 706560 4.653960 
1 . 000000 4.894850 5 . 333830 4.979490 4.816240 1. 735190 4.787490 
1.000000 5 . 090060 5 .4 31490 5 .181220 4 . 852030 1. 885550 4.962840 
1.000000 5 . 204830 5 . 385640 5 . 345680 4.887340 1 . 954450 5 . 153290 
1.000000 5 . 213300 5 .489350 5 . 363170 4. 920710 1.885550 5 . 347110 
1.000000 5 . 290790 5 . 548690 5 .4 24950 4.953710 1. 906580 5 . 389070 
1.000000 5.444150 5 . 589530 5 . 514 230 4.984980 1. 899120 5.451040 
1.000000 5.574050 5 . 636790 5.673320 5.015950 1,953030 5.537330 
1 . 000000 5 . 671950 5 . 692350 5.823930 5 . 046000 2.013570 5.697090 

21 OBSERVATIONS ; NUMBER 2 TO 22 

PARAMETERS, INEQUALITY CONSTRAINTS 

INIT . VALUES INDEX TRANSF . SOUND 
0 .490006 l l 0 . 10 

-2.730000 2 O 
- 1 . 150000 3 O 

1.110000 4 O 
0.380021 5 1 0.10 

-4.970000 6 O 
5 . 650000 7 O 
1. 770000 8 O 

REQUIRED ACCURACY IN THE ESTIMATES : . 10E-08 
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EQUALITY CONSTRAINTS 

A( l, 1) -1. 00000 TYPE OF CONSTRAINT: O 

RO = -1. 00 

A( l, 3) = -1. 33772 TYPE OF CONSTRAINT: 1 

CONSTANTS GREEK R 1.00 
CORR. PAR.-INDICES 1 2 

A( l, 4) = 0.56351 TYPE OF CONSTRAINT: 1 

CONSTANTS GREEK R -1. 00 
CORR . PAR.-INDICES 1 3 

A( l, 5) = 0 . 54391 TYPE OF CONSTRAINT: 1 

CONSTANTS GREEK R 1. 00 
CORR. PAR.-INDICES l 4 

A( l, 8) = 0.50999 TYPE OF CONSTRAINT: 1 

RO = 1. 00 

CONSTANTS R -1. 00 
CORR . PAR.-INDEX 1 

A( 2, 1) = 0.12075 TYPE OF CONSTRAINT: 2 

CONSTANTS R 1. 00 
CORR . PAR. - INDEX 5 

SO = 1. 00 

CONSTANTS GREEK S 1. 00 
CORR. PAR . -INDICES 5 7 

A( 2, 2) = -1. 00000 TYPE OF CONSTRAINT: O 

RO = - 1. 00 

A( 2, 3) = 0 . 60014 TYPE OF CONSTRAINT: 2 

CONSTANTS GREEK R -1. 00 
CORR. PAR.-INDICES 5 6 

SO = 1. 00 

CONSTANTS GREEK S 1. 00 
CORR. PAR.-INDICES 5 7 

A( 2, 6) = 0.68225 TYPE OF CONSTRAINT: 2 

CONSTANTS GREEK R 1. 00 
CORR . PAR . -INDICES 5 7 

SO = 1. 00 

CONSTANTS GREEK S 1. 00 
CORR. PAR.-INDICES 5 7 

A( 2, 7) = -0.21373 TYPE OF CONSTRAINT: 2 

CONSTANTS GREEK R -1. 00 
CORR . PAR.-INDICES 5 8 

SO = 1. 00 

CONSTANTS GREEK S 1. 00 
CORR. PAR.-INDICES 5 7 

A( 2, 9) = 0.31775 TYPE OF CONSTRAINT: 2 

RO 1. 00 

SO 1. 00 

CONSTANTS GREEK S 1. 00 
CORR. PAR.-INDICES 5 7 

A( l, 2) = -0.56351 TYPE OF CONSTRAINT: l 

CONSTANTS GREEK R 1. 00 
CORR. PAR.-INDICES 1 3 
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The first observation in DATAM . DAT is not printed out, 

since it will not be considered in the estimation. 

Notice that the initial values are now strictly ordered 

according to parameter index. This ordering of the 

parameters will be used in all output files. 

As mentioned in Section 5.1, regarding the parameters 

which are subject to hyperbolical transformations , the 

hyperbolically transformed initial value have been 

subs t ituted for the original initial values . Accord­

ingly, the initial values for 8 1 and 8 5 have been re­

placed by, respectively, 

and 

That the mappings from the 8 i ' s onto the aij ' s have 

been correctly specified can be checked easi l y . For 

instance, we know that [cf . (b9)] 

Given the initial values in this file a27 should thus 

be equal to 

O· • 3 8 O O 21 . 1 . 77 ~ 
1+0 . 380021 . 5 . 65 - 0 . 21373 , 

which is in accordance with the value computed by the 

program ; cf . the specification of a27 under the heading 

"EQUALITY CONTRAINTS ". 

The actual estimation was carried out by setting 

MXFN~100 and, again, giving the command RUN CONRAD . The 

run required 3.55 seconds of CPU time and yielded the 

following resul ts . (The termina l output is not repro­

duced. ) 
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RESF2 . DAT 

1

==========================================================================\ 
EXPORT SYSTEM ACC . TO GOLDSTEIN & KHAN (1978). ESTIMATlON PERIOD 1960-80 

========================================================================== 

IEXIT= 1 COND= 0 . 02324 

F= -0.1639077E+03 LNDET(B)= 0 . 7642503E- 01 

LNDET«Y-YBAR)' (Y-YBAR))= 0 . 1638678E+01 

Y BAR 

1.5160 4.8440 

MINIMUM AT 

0.430083 - 3 .482521 -1. 844085 1.030875 

1.129218 

GRADIENT 

-0.760E-08 0.1l0E-06 0.155E-07 0.622E-06 

-0.248E-06 

STD. DEV . 

0.136357 0.599532 1. 048350 0.133026 

0 . 563581 

HESIAN(-l) 

0.185933E-Ol 
0 . 614245E- 01 
0 . 126428E+00 

- O .142794E-Ol 
0 . 475636E-Ol 

-0.209366E+00 
-0.864498E+00 

0 . 507117E-Ol 

- O. 209366E+00 
-O . 932450E+00 
- 0 . 180332E+Ol 

0.211325E+00 
- 0 . 11572 6E+Ol 

0 . 548417E+01 
0 . 221905E+02 

-0.131894E+Ol 

0 . 614245E-01 
0 . 359438E+00 
0.597994E+00 

- 0 . 796003E- Ol 
0 . 221698E+00 

- 0 .9 32450E+00 
- 0 .407633E+01 

0 . 227047E+OO 

-0.864498E+00 
-0.407633E+Ol 
-0.750447E+Ol 

0.917548E+00 
- 0 . 506909E+Ol 

0 .22190SE+02 
0 . 1066S8E+03 

-0.540428E+01 

0 . 126428E+00 
0 . 597994E+00 
0 . 109904E+01 

-0.134729E+00 
0 . 409275E+00 

- 0.180332E+Ol 
- 0 . 750447E+Ol 

0 .4 36617E+OO 

0.S07117E-01 
0.227047E+OO 
0 .4 36617E+00 

- O. S14092E-Ol 
0 . 28081SE+00 

-0.131894E+01 
-0.S40428E+Ol 

0 . 317624E+00 

LNDET(SIGMA)= -0.1545741E+02 

0 .4 09 474 -3. 988291 7.544305 

0.266E-07 -0.470E-07 -0.164E-08 

0.513633 2.341830 10 . 327559 

- 0.142794E-01 
- 0.796003E-Ol 
-0. 134729E+00 

0 . 176960E- Ol 
- 0.499618E-0l 

0 . 211325E+00 
0 . 917548E+00 

-O.S14092E-Ol 

0.475636E- Ol 
0 .221698E+00 
0 .4 09275E+OO 

- 0 .499618E-Ol 
0 . 263818E+00 

-o . 115726E+01 
-0.S06909E+01 

O. 2BOB1SE+00 
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A 

-1.000000 -0.793131 -1.497813 
0 . 100136 -1.000000 0.399373 

0.793131 
0.000000 

0.443373 
0.000000 

0.569906 
0 . 000000 

SIGMA 

0.000000 
0.244540 

0.000898 -0.000260 
-0.000260 0 . 000291 

STRUCTURAL FORM EQ., 

OBS. Y 
2 0 . 72271 
3 0 . 81978 
4 0 . 92028 
5 1.00063 
6 1.10856 
7 1.18173 
8 1. 26976 
9 1. 31909 

10 1. 39377 
11 1. 53687 
12 1. 65250 
13 1. 70656 
14 1. 73519 
15 1. 88555 
16 1. 95445 
17 1. 88555 
18 1 .90658 
19 1. 89912 
20 1. 95303 
21 2.01357 
22 1. 96991 

(COS (P) ) **2 

NR . : 1 

YP 
0 . 74401 
0.83321 
0 . 91660 
0 . 99560 
1.09394 
1.19133 
1. 27218 
1. 32720 
1. 41645 
1. 51520 
1. 61421 
1. 71124 
1.73769 
1. 80204 
1. 93480 
1. 89104 
1. 87120 
1. 92180 
1.98885 
2.01685 
2.03978 

D-W 
0 . 9948 1. 4975 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

STRUCTURAL FORM EQ. , NR. : 2 

OBS . Y YP 
2 4.36437 4.32975 
3 4.37450 4.36370 
4 4.37450 4.37660 
5 4.39445 4.38158 
6 4.40672 4.42351 
7 4.43082 4.45893 
8 4.45435 4.47909 
9 4.48864 4.47918 

10 4.48864 4.47851 
11 4.52179 4.53472 
12 4.60517 4.61832 
13 4.65396 4.67500 
14 4.78749 4.77880 
15 4.96284 4.97612 
16 5.15329 5.17425 
17 5 . 34711 5.33418 
18 5 . 38907 5.39312 
19 5.45104 5 .4 4558 
20 5 . 53733 5 . 53004 
21 5 . 69709 5 . 67389 
22 5 . 84064 5.81896 

(COS(P))**2 D-W 
0.9989 1.1380 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

RES . 
-0.02130 
-0.01343 

0.00368 
0.00503 
0 . 01462 

-0.00960 
-0.00242 
-0.00811 
-0.02268 

0.02167 
0.03829 

-0.00468 
-0.00250 

0.08351 
0.01965 

- 0 . 00549 
0.03538 

-0.02268 
-0. 03582 
-0 . 00328 
-0.06987 

RES. 
0 . 03462 
0.01080 

- 0.00210 
0 . 01287 

- 0.01679 
-0.02811 
-0.02474 

0.00946 
0.01013 

-0.01293 
-0.01315 
-0.02104 

0 . 00869 
-0.01328 
-0.02096 

0.01293 
- 0 . 00405 

0 . 00546 
0 . 00729 
0.02320 
0.02168 

0.000000 0.000000 
0 . 755460 -0.113076 



-B(-I)C 

-1. 681056 
0.231038 

OMEGA 

0.734774 
0.073578 

0.001282 -0.000327 
-0.000327 0 . 000213 

REDUCED FORM EQ. , NR. : 

OBS . Y 
2 0.72271 
3 0.81978 
4 0.92028 
5 1. 00063 
6 1.10856 
7 1.18173 
8 1. 26976 
9 1. 31909 

10 1. 39377 
11 1. 53687 
12 1. 65250 
13 1.70656 
14 1.73519 
15 1.88555 
16 1. 95445 
17 1.88555 
18 1.90658 
19 1. 89912 
20 1. 95303 
21 2.01357 
22 1. 96991 

(COS(P»* *2 D-W 
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0 .410751 -0.555092 0.083085 
0.041131 0 . 699875 -0.104756 

l 

YP RES. 
0.76788 -0.04517 
0.84015 - 0 . 02037 
0.91533 0 . 00495 
1 . 00543 -0.00480 
1. 08268 0.02588 
1.16997 0 . 01176 
1. 25382 0 . 01594 
1. 33355 - 0.01446 
1. 42223 -0.02846 
1. 50730 0.02957 
1. 60736 0 . 04514 
1. 69544 0.01112 
1. 74390 -0.00871 
1. 79842 0 . 08713 
1. 92084 0 . 03361 
1. 90014 -0. 01459 
1. 87082 0 . 03576 
1. 92415 - 0 . 02503 
1. 99157 -0. 03854 
2.03365 -0.02008 
2.05056 - 0 . 08065 

0.9926 1. 2471 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

REDUCED FORM EQ., NR. : 2 

OBS. Y YP RES. 
2 4.36437 4.33427 0 . 03010 
3 4 . 37450 4.36574 0 . 00876 
4 4.37450 4.37610 -0.00160 
5 4.39445 4.38206 0 . 01239 
6 4.40672 4.42091 -0.01419 
7 4.43082 4.45775 - 0 . 02693 
8 4.45435 4.47749 -0.02314 
9 4.48864 4.48063 0 . 00801 

10 4.48864 4.48136 0 . 00728 
11 4.52179 4.53175 - 0 . 00996 
12 4.60517 4.61380 -0.00863 
13 4.65396 4.67389 - 0.01993 
14 4.78749 4.77967 0 . 00782 
15 4. 96284 4.96740 -0.00456 
16 5.15329 5 .17089 - 0 . 01760 
17 5.34711 5 . 33564 0.01147 
18 5.38907 5.38954 -0.00047 
19 5 .4 5104 5 .44808 0.00296 
20 5 . 53733 5 . 53390 0.00343 
21 5.69709 5 . 67590 0.02119 
22 5.84064 5 . 82704 0 . 01360 

(COS(P»**2 D-W 
0.9992 1. 2325 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

0.527973 -0.179682 
0 . 052869 0.226548 
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According to IEXIT and COND the run has been success­

fully completed. This is confirmed by the first order 

derivatives, given below the heading "GRADIENT", which 

are very close to zero. 

When the same estimation was carried out on the PRIME 

750 computer the requirement that COND<l was not ful­

filled. In fact, CON D was far above unity. The primary 

reason for this was that due to the lower precision on 

the PRIME the algorithm did not manage to get the first 

order derivatives sufficiently close to zero; the 

smallest derivative (in absolute value) produced by the 

PRIME was of the same magnitude as the largest of the 

derivatives reported here. This, in turn, yielded a 

high value on COND. l However, that does not mean that 

the estimation was a failure. The parameter estimates 

were very close to those obtained on the DEC-lO, the 

differences being confined to the fifth or sixth deci­

mal points. Although the differences in the estimated 

standard deviations were higher, they were in no case 

larger than 5 % in relative magnitude. 

By means of the information given on the second and 

third lines, Berndt's generalized R2 can be computed 

according to 

R2 l-exp[LNDET(SIGMAl - 2 · LNDET(Bl 

- LNDET (Y-YBAR)'(Y-YBARl)] 

~ 0.99999997 , 

indicating an . astonishingly good fit for the model as a 

whole. However, R2 has a general tendency to lie very 

close to unity, comparing, as it does, the residual 

variance of the system actually estimated with that of 

a corresponding system, employing constants as the only 

l Cf. Section 3.2. 
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explanatory variables. l As a consequence, R2 may weIl 

be over 0.999 without the model fitting the data par­

ticular ly weIl, especially if the model contains many 

equations. 

When, as in this ca se , the estimatian is based on a 

short time series and the variables are defined in 

levels rather than differences, a very good fit is 

of ten obtained, causing R2 to take on values extremely 

close to one. [R2 ,s of almost the same magnitude were 

reported by Berndt and Khaled (1979 p. l23S)]. 

The final estimates are given below "MINIMUM AT". They 

are ordered according to parameter index, beginning 

with 8 1 , and ending with 8 8 • Some of them differ sub­

stantially from the initial estimates • In particular , 
- -the price elasticities of demand and supply, 8 3 and 8 7 

respectively, have changed considerably, and so has the 

elasticity with respect to production capacity, 8 8 . 

Further, it should be noticed that the inequality con­

straints have not been binding ; both 8 1 (=11") and 8 S 
(=J..) are far from the lower limit 0.1. Accordingly, 

their effeets on the estimation can safely be assumed 

to have been negligible. 

The varianees and eovariances of the parameter esti­

mates can be found ln the matrix denoted by HESIAN(-l), 

where "( -l)" denotes inverse. (For a further explana­

tion of the naming of this matrix, et. Seetion 3.3.) 

Beeause of the setting of WIDTH=78 it has been neces­

sary to partitian HESIAN( -l). Its sixth, seventh and 

l Here, the model contains intereepts in both equations 
as indieated by the typieal elements of YBAR (ef. Sec­
tion S.3). However, if it had lacked constants in some 
of the equations, the hypothetieal model of camparison 
would not have had any eons tant s in the corresponding 
equations, either. 
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eighth columns have been printed below the columns one. 

two and three . respectively. The standard errors haVe 

been given below .. STD.DEV . ... are equal to the square 

roots of the diagonal elements of HESIAN(-l) . As can be 

seen. all the parameters in the first equation. i . e . 8 1 
to 8 4 , have small standard errors. while the opposite 

is true for the parameter estimates in the second equa­

tion. 

HESIAN(-l) is followed by the coefficient matrix A and 

the variance-covariance matrix of the structural form 

residuais. SIGMA . The matrix A is partitioned in the 

same way as HESIAN(-1) . 

Actual and predicted values of the e ndogenous variables 

are next printed, together with the corresponding re ­

siduals . The (COS(P) 1**2 ", where " **2 " denotes squared , 

are goodness - of-fit measures, explained i n Section 5 . 3 . 

"D-W" denotes the Durbin-Watson statistic. 

Since , i n t his mode l. the equations contain lagged 

endogenous var i ables the Durbin-Watson sta t istics are 

bia sed towards acceptance of the null hypothesis of no 

autoeorrelation ( Maddala (1977, p . 372) I . In spite of 

this bias they do not eonfirm the hypothesis . 1 This is 

a strong indieation that the residual s. really , are 

autoeorrelated . 

Af ter the (COS(P) 1**2 and the Durbin-Watson statistie 

of the last struetura l form equation - no . 2 in this 

case - information about the redueed form of the model 

is given . The matrix -B(-IIC eontains the redueed form 

eoefficients and OMEGA is the dispersion matrix of the 

redueed form of residuais. 

1 On both the 5 % and the 1 % signifieance level they 
fall in the so called "inconclusive" region, ef . 
Maddala (op.cit. p . 284). 



- 81 -

RESF3.DAT 

1

==========================================================================\ 
EXPORT SYSTEM ACC. TO GOLDSTEIN & KHAN (1978). ESTIMATION PERIOD 1960-80 

========================================================================== 
ENTRY TO VA09A 

O 1 
-0.1017 042E+03 

0 . 4900000E+00 
-0.4970000E+01 

0.4703049E+02 
-0.9689873E+00 

5 13 
-0.1530926E+03 

0 . 4993829E+00 
-0.5031286E+01 
-0.2 045742E+02 
-0.2881381E+02 

10 20 
-0.1621864E+03 

0.4391762E+00 
-0.4917398E+01 
-0.1517 398E+02 

0.9581849E+01 
15 26 

-O. 1638115E+03 
0.4684736E+00 

-0.4597627E+01 
0.1948798E+OO 

-0.8477188E+OO 
20 31 

-0.1638705E+03 
0.4356130E+00 

-0.4391763E+01 
-0.8350007E+00 
- 0.3912416E+00 

25 36 
-0.1639062E+03 

0 .4 329031E+00 
-0.4052408E+01 
-0.4033553E+00 

0 .1022567E+Ol 
30 41 

-0.1639076E+03 
0.4312030E+00 

- 0.4009267E+Ol 
0.2732952E-01 
0 .1090229E+00 

35 46 
-0.1639077E+03 

0.4300919E+00 
-0.3988379E+01 
-0.5573053E-03 
-0.7260643E-03 

40 51 
- 0.1639077E+03 

0.4300831E+00 
-0.3988291E+01 
- 0 .3900872E-06 

0.5229298E-06 
43 57 1 

- 0 .1639077E+03 
0.4300831E+00 

-0.3988291E+01 
-0.7603473E-08 
-0.4695014E-07 

0 . 1110000E+01 0.3800000E+00 -0.2730000E+01 -0.1150000E+01 
0.5650000E+01 0.1770000E+Ol 
0.1924761E+02 -0.6445542E+01 

-0.1303505E+01 0 . 6453632E+01 
0.5715055E+02 -0.2710501E+02 

-0.3539129E+01 -0.1116546E+01 0.1027611E+01 
0.6164022E+01 0.1362236E+01 

-0.5386628E+02 0.1758788E+02 -0.1577648E+03 
-0.3022693E+00 -0.1548906E+03 

-0.3262737E+01 -0.1613577E+01 
0.6174196E+01 0.1351201E+01 

-0.42 67438E+02 -0.3465197E+01 
0.3846265E+00 0.4581320E+02 

-0.3309839E+01 -0.1524524E+01 
0 .4 727149E+01 0.1277229E+01 
0 .1203899E+01 0.3636853E+00 

-0 . 7405970E-01 -0.3955837E+01 

0 . 9835287E+00 

-0.2290187E+03 

0 . 9920842E+00 

0.7290565E+01 

-0.3424158E+01 -0.1757057E+01 0 .1018277E+01 
0 . 5714685E+01 0 .1226816E+01 

-0.6176059E+00 -0.3397790E+00 -0.4884678E+01 
-0.2226160E-01 - 0 .1262589E+01 

0.8636964E+00 

o . 1196911E+02 

0.9460301E+00 

0.2485098E+01 

0 . 6144172E+00 

0.3316656E+00 

0.5206323E+00 

0.2195213E+00 

-0.3468688E+01 
0 . 7190997E+01 

- 0 . 1221455E+Ol 

-0.18182 42E+01 0.1027769E+01 0 .423384 0E+00 
0 .114 5024E+01 

-0.3437729E-02 

- 0.3478550E+Ol 
0.7493270E+Ol 

-0.2166061E+00 
0.3535902E-02 

-0.3482483E+01 
0 . 7543484E+01 

-0.8691489E-03 
-0.5047692E-04 

-0.3482521E+01 
0 . 7544305E+01 
0 . 3968512E- 06 

-0.8463531E-08 

-0.3482521E+Ol 
0 . 7544305E+01 
0 .1096530E-06 

-0.163751 0E-08 

-0.2524264E-Ol -0.6155986E+01 -0.6713585E+00 
0 .4 850337E+01 

-0.1836182E+Ol 0.1029954E+Ol 0.4133154E+00 
0 .11 34171E+01 

-0.3661181E-01 - 0.1253157E+01 -0.4981456E-0l 
0.5727773E+00 

-0.1844010E+Ol 0.1030866E+01 0.4094975E+00 
0 .1129240E+01 
0.2855870E-03 -0.2952027E-02 - 0 . 2763452E-03 

-0.3729842E-02 

-0.1844085E+01 0 . 1030875E+Ol 0.4094735E+00 
0 . 1129218E+01 
0.2605563E-07 0 . 2146736E-05 -0.2923256E-06 
0.2375873E-05 

-0.1844085E+01 0.1030875E+01 0 . 4094735E+00 
0 .1129218E+01 
0 . 1549682E-07 0 . 6223280E-06 0.2658621E-07 

-0.2476716E-06 

The number of function evaluations thus amounted to 57, 

quite far from the set limit of 100. 
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As suggested in Section 5.4, the final output file, 

RESF4.DAT, will be used to provide starting values for 

the second estimation. 

RESF4.DAT 

8 
0 .4 30083 

- 3 .482521 
-1.844085 
1. 030875 
0.409474 

-3.988291 
7.544305 
1.129218 

l 
2 
3 
4 
5 
6 
7 
8 

l 
o 
o 
o 
l 
o 
o 
o 

/ 
/ 
/ 

/ 
/ 
/ 

0.10 

0.10 

Accordingly, this file will be renarned to PARIC.DAT. 

Further, LP, MXFN and IFO in GICOF.DAT are changed from 

O, 100 and 2 to 1, O and 1, respectively. 

Execution of CONRAD now yields a new RESF1.DAT file. To 

save space, the specifications of the equality con­

straints have not been reproduced. 

RESFl.DAT <second estimation) 

/
==========================================================================\ 

EXPORT SYSTEM ACC . TO GOLDSTEIN & KHAN (1978). ESTIMATlON PERIOD 1960-80 
========================================================================== 

Y-MATRIX 

LOGX LOGPX 

0 .593 330 4.342510 
0 .722710 4.364370 
0 . 819780 4.374500 
0 . 920280 4.374500 
1. 000630 4.394450 
1.108560 4.406720 
1.181730 4.430820 
1. 269760 4.454350 
1. 319090 4.488640 
1. 393770 4.488640 
1. 536870 4.521790 
1. 652500 4.605170 
1. 706560 4.653960 
1. 735190 4.787490 
1. 885550 4.962840 
1. 954450 5.153290 
1. 885550 5.347110 
1. 906580 5.389070 
1. 899120 5.451040 
1.953030 5.537330 
2.013570 5.697090 
1. 969910 5.840640 
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Z-MATRIX 

CONST. LOGPXW LOGYW LOGP YSTAR LOGX-1 LOGPX-1 

1.000000 4 . 420040 4 . 039540 4.301360 4.089330 0.506820 4.342510 
1 . 000000 4.440300 4.157790 4.324130 4.162000 0 . 593330 4.342510 
1.000000 4.450850 4.191920 4 . 359270 4 . 229750 0.722710 4.364370 
1.000000 4.449690 4.257310 4.369450 4.294560 0.819780 4.374500 
1.000000 4 . 457830 4.327440 4 . 374500 4.355430 0.920280 4.374500 
1.000000 4 . 470500 4.445240 4 . 417640 4.411590 1. 000630 4.394450 
1.000000 4.485260 4.542870 4.458990 4.465910 1.108560 4.406720 
1 . 000000 4.507560 4.633370 4.473920 4.517430 1.181730 4 . 430820 
1.000000 4.513050 4 . 695830 4.467060 4 . 565390 1. 269760 4 . 454350 
1.000000 4 . 509760 4.839610 4.452020 4.611150 1. 319090 4.488640 
1.000000 4.544360 4.963750 4.514150 4.655869 1. 393770 4.488640 
1.000000 4.605170 5 . 043490 4.605170 4.698660 1. 536870 4.521790 
1.000000 4.651100 5 . 118830 4.652050 4.738830 1. 652500 4 . 605170 
1.000000 4.731800 5.203510 4.775760 4.778280 1. 706560 4.653960 
1.000000 4.894850 5 . 333830 4.979490 4.816240 1. 735190 4.787490 
1 . 000000 5 . 090060 5 . 431490 5.181220 4 . 852030 1 . 885550 4 . 962840 
1.000000 5 . 204830 5.385640 5.345680 4.887340 1.954450 5.153290 
1.000000 5 . 213300 5.489350 5.363170 4 . 920710 1. 885550 5 . 347110 
1.000000 5 . 290790 5 . 548690 5.424950 4 . 953710 1. 906580 5 . 389070 
1. 000000 5 . 444150 5.589530 5 . 514230 4.984980 1. 899120 5.451040 
1. 000000 5.574050 5.636790 5.673320 5.015950 1. 953030 5.537330 
1.000000 5.671950 5 . 692350 5.823930 5 . 046000 2 . 013570 5.697090 

22 OBSERVATIONS ON THE VARIABLES : NUMBER 1 TO 22 , 
CORRESPONDIKG TO 21 OBSERVATIONS ON THE AUTOREGRESSIVE MODEL 

PARAMETERS, INEQUALITY CONSTRAINTS 

INIT . VALUES INDEX TRANSF . BOUND 
0 . 430094 l l 0 . 10 

- 3 . 482521 2 O 
-1. 844085 3 O 
1. 030875 4 O 
0.409488 5 l 0 . 10 

- 3 . 988291 6 O 
7 . 544305 7 O 
1. 129218 8 O 

REQUIRED ACCURACY I N THE ESTIMATES : . 10E- 08 

Notice the remark below the Z matrix . Regarding the 

small differences between the initial values for 8 1 and 

8 5 here and in RESF4.DAT, see the comments above to the 

file RESFl . DAT generated in the first estimation . 

The actual estimation required only 35 % more CPU time 

than the first, considerably less complicated one . Of 

course, to a large extent this can be explained by the 

use of good starting values . According to RESF3.DAT 

(not reproducedl the number of function evaluations was 

only 47, i . e . fewer than in the first estimation. How­

ever, that CONRAD computes the derivatives of the 

log-likelihood function analytically instead of approx­

imating them numerically also keeps down the increase 

in execution time. With more parameters to estimate 

this advantage would become even more pronounced. 
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RESF2 . DAT (second estimation) 

1
==========================================================================\ 

EXPORT SYSTEM ACC . TO GOLDSTEIN & KHAN (1978) . ESTIKATION PERIOD 1960-80 
=====_= __ =====_=s========= __ ============================================== 

IEXIT= l COND= 0 . 00338 

F= - 0 . 17113 45E+03 LNDET(B) = 0 . 1601129E+00 LNDET(SIGKA)= - 0 . 1597830E+02 

LNDET«Y-YBAR) I (Y- YBAR))= 0 . 1638678E+01 

YBAR 

1. 5160 4. 8 44 0 

MINIMUM AT 

0 . 425316 -3 . 00692 4 - 1 . 408521 0.933795 1. 356911 - 4.591157 2 . 71311 4 

1. 293 7 01 

GRADI ENT 

0 . 691E-07 0 . 897E- 07 - 0 . 101E- 07 0 . 391E- 06 0 .215E-08 - 0 . 390E- 07 0 . 54 2E-10 

- 0 . 160E- 06 

STD . DEV . 

0 .10112 4 0.423575 0 .465504 0 . 0898 44 

0 . 170235 

HESIAN( -l ) 

A 

0.102261E- 01 
0 . 212683E- 01 
0 . 398629E- 01 

- 0 . 519384E- 02 
- 0 . 24 4 534E- 01 

0 . 336090E- 01 
0 . 105815E- 01 

- 0.737732E- 02 

0 . 336090E- 01 
0.261204E+00 
0 . 145956E+00 

- 0 . 547172E-01 
- 0 . 524644E-01 

0 . 643171E+00 
0 . 404799E-01 

-0 . 136253E+00 

0 . 212683E- 01 
0 . 17941 6E+00 
0 . 145183E+00 

- 0 . 378404E- 01 
0 . 312150E- 01 
0 . 261204E+00 

-O . 116237E+00 
- 0 . 544858E- 0 1 

0 . 105815E-01 
-0 . 1l6237E+00 
-0 . 1l6139E-0l 

0 . 223394E- 01 
- O. 367713E+00 

0 . 404799E-01 
0 . 127597E+01 

- 0.146168E- 01 

0 . 398629E- Ol 
0 .145183E+00 
0 . 216694E+00 

- 0 . 330075E- 01 
- 0 . 600220E- Ol 

0 . 145956E+00 
- O • 116139E- 0l 
- 0 . 314483E- 0l 

- 0 . 737732E- 02 
- 0 . 544858E-01 
- 0 . 314483E-01 

0 . 1l4841E-Ol 
0.147412E-Ol 

- 0 . 136253E+00 
- 0 . 146168E-01 

0.289800E- 0l 

-1. 000000 - 0 . 59908 4 - 1 . 278929 
0 . 289848 - 1 . 000000 1 . 330739 

0 . 59908 4 
0 . 000000 

0 . 574672 
0 . 000000 

0 . 000000 
0 . 213609 

0 . 550841 0 . 801980 1.129590 

-0 . 51938 4E- 02 
- 0 . 378404E- 01 
- 0 . 330075E- 01 

0 . 807187E- 02 
- 0 .406066E- 02 
- 0 . 547172E- 01 

0 . 223394E- 01 
0 . 1l4841E- Ol 

- 0 . 244534E- Ol 
0 . 312150E-01 

- 0 . 600220E- 01 
-0 . 406066E-02 

0 . 303425E+00 
- 0 . 524644E- 01 
- 0 . 367713E+00 

0 . 147412E- 01 

0 . 397169 
0 . 000000 

0 . 000000 0 . 000000 
0 . 786391 - 0 . 374977 



H 

0.084911 -0.265410 
-0.461199 0.220157 

HA 
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-0.161839 
0.525011 

0.214541 -0.461786 0 . 050869 0.033724 -0.208716 0.099523 
0 . 056139 0 . 882812 -0.276297 -0.183174 0.173130 - 0 . 082554 

0 . 048796 -0.056694 
-0.265038 0.047028 

SIGMA 

0.000918 -0.000492 
- 0 . 000492 0 . 000389 

STRUCTURAL FORM EQ ., 

OBS . Y 
2 0 . 72271 
3 0 . 81978 
4 0.92028 
5 1 . 00063 
6 1.10856 
7 1.18173 
8 1. 26976 
9 1. 31909 

10 1. 39377 
11 1. 53687 
12 1. 65250 
13 1. 70656 
14 1.73519 
15 1. 88555 
16 1.95445 
17 1.88555 
18 1.90658 
19 1. 89912 
20 1. 95303 
21 2 . 01357 
22 1. 96991 

(COS(P» **2 

NR. : l 

YP 
0.73621 
0.82890 
0 . 91733 
1. 00149 
1.09073 
1.19678 
1. 27531 
1. 33425 
1. 40681 
1. 49915 
1. 61451 
1. 71384 
1.74517 
1. 79706 
1. 94405 
1. 91629 
1. 87904 
1. 92915 
1.97178 
2.00407 
2 . 03329 

D-W 
0.9947 1. 9128 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

STRUCTURAL FORM EQ ., NR.: 2 

OBS . Y 
2 4.36437 
3 4.37450 
4 4.37450 
5 4.39445 
6 4.40672 
7 4.43082 
8 4 . 45435 
9 4.48864 

10 4.48864 
11 4.52179 
12 4 . 60517 
13 4.65396 
14 4.78749 
15 4 . 96284 
16 5 . 15329 
17 5 . 34711 
18 5 . 38907 
19 5.45104 
20 5 . 53733 
21 5.69709 
22 5.84064 

(COS(P»**2 
0.9985 

YP 
4.35370 
4.37183 
4.37723 
4.36940 
4.42039 
4 .44161 
4.47225 
4.46332 
4.47581 
4 . 55344 
4 . 61761 

D-W 
2 . 0761 

4.66305 
4.78156 
5.00879 
5.16075 
5 . 32214 
5 . 40323 
5.42653 
5.54222 
5.69064 
5 . 80832 

P=ANGLE BETWEEN (Y-YBAR) AND (YP-YPBAR) 

RES. 
- 0.01350 
-0.00912 

0 . 00295 
-0.00086 

0 . 01783 
- 0 . 01505 
-0.00555 
- 0 . 01516 
- 0 . 01304 

0.03772 
0.03799 

- 0.00728 
-0.00998 

0 . 08849 
0 . 01040 

-0. 03074 
0 . 02754 

- 0.03003 
- 0 . 01875 

0 . 00950 
-0.06338 

RES. 
0 . 01067 
0.00267 

-0.00273 
0 . 02505 

-0.01367 
-0.01079 
-0.01790 

0 . 02532 
0.01283 

-0.03165 
-0.01244 
-0.00909 

0 . 00593 
-0.04595 
-0 . 00746 

0.02497 
-0.01416 

0 . 02451 
-0.00489 

0.00645 
0.03232 
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-B(-1lC 

-1. 768981 0.510448 0 . 338407 -0.401412 0.191406 0 . 489648 -0.109036 
0.818003 0 .147952 0.098087 0.670043 - 0 . 319498 0.141924 0.182005 

B(-llHB 

0 . 405885 -0.154143 
-0.407366 -0.100817 

B( -l lHC 

0.84 4 093 -0.18437 7 -O .122235 0 . 266210 - 0 .126937 - 0 .176864 0 . 072311 
- 0 . 638153 0 . 222855 0 . 147744 -0 . 095969 0 . 045761 0 . 213774 -0.026068 

OMEGA 

0 . 001195 -0 . 000271 
- 0 . 000271 0 . 000131 

REDUCED FORM EQ., NR. : l 

OBS . Y YP RES. 
2 0.72271 0 . 73966 -0.01695 
3 0 . 81978 0 . 82892 - 0 . 009 14 
4 0 . 92028 0.91637 0.00391 
5 1.00063 1. 01415 -0. 01352 
6 1.10856 1. 08639 0.02217 
7 1.18173 1.18904 - 0 . 00731 
8 1. 26976 1. 26536 0 . 004 4 0 
9 1. 31909 1. 34493 -0.02584 

10 1. 39377 1.41143 - 0 . 01766 
11 1. 53687 1. 48857 0 . 0 483 0 
12 1. 65250 1. 61378 0 . 03872 
13 1. 70656 1. 70812 - 0.00156 
14 1. 73519 1.74672 - 0 . 01153 
15 1 . 88555 1. 78669 0.09886 
16 1. 95445 1.94178 0 . 01267 
17 1.88555 1. 92449 -0.03894 
18 1. 90658 1. 87589 0 . 03069 
19 1. 89912 1. 93721 -0.03809 
20 1. 95303 1. 96651 -0 . 01348 
21 2.01357 2.00877 0 . 00480 
22 1. 96991 2 . 04041 -0.07050 

(COS(Pll* * 2 D-W 
0 . 9931 1.9295 

P=ANGLE BETWEEN (Y-YBARl AND (YP-YPBARl 
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REDUCED FORM EQ., NR. : 2 

OBS. Y YP 
2 4.36437 4.35861 
3 4.37450 4.37447 
4 4.37450 4.37610 
5 4.39445 4 . 37332 
6 4.40672 4.41396 
7 4.43082 4.44373 
8 4 . 45435 4.47097 
9 4 . 48864 4.47081 

10 4.48864 4.48093 
11 4 . 52179 4.53945 
12 4.60517 4.60638 
13 4.65396 4.66351 
14 4.78749 4.78490 
15 4.96284 4.98014 
16 5.15329 5.15707 
17 5.34711 5.33343 
18 5.38907 5.39433 
19 5.45104 5.43757 
20 5 . 53733 5.54613 
21 5 . 69709 5 . 68925 
22 5 . 84064 5.82875 

(COS(P»**2 D-W 
0 . 9995 2 . 2513 

P=ANGLE BETWEEN (Y- YBAR) AND (YP- YPBAR) 

EIGENVALUES OF 

REAL PART 
- 0 . 203808E+00 

0 . 508876E+00 

THE H MATRIX 

lMAGINARY 
O. OOOOOOE+OO 
O. OOOOOOE+OO 

RES. 
0 . 00576 
0.00003 

-0.00160 
0.02113 

-0.00724 
-0.01291 
-0.01662 

0 . 01783 
0.00771 

-0.01766 
-0.00121 
-0 . 00955 

0 . 00259 
-0 . 01730 
-0 . 00378 

0 . 01368 
-0.00526 

0.01347 
-0.00880 

0.00784 
0.01189 

As far as IEXIT, COND and the first order derivatives 

are concerned, the estimation looks very good, slightly 

better even than th.e first one. However, this time 

there is an additional characteristic of the solution 

which should be cheeked immediately, namely if the 

eigenvalues of the H matrix lie within the unit circle 

[eL ( 4), Section 2.1). That this is indeed the ca se 

can be seen from the very last lines on the printout. 

For this problem, the results produced by the PRIME 750 

eomputer were eloser to the DEC-lO results given here, 

than they were in the first estimation. For instanee, 

CON D was equal to 1 . 1 and so eame quite elose to sat­

isfy the requirement of being less than unity . 

By means of the F-values in this and the previous esti-



- 88 -

matian the LR test statistic for testing the hypothesis 

of no autocorrelation is found to be 

-2(163.9077 - 171.1345) ~ 14.45 

Since the critical vaIue at the l % significance level 

is 13.28 the hypothesis is decisively rejected. The 

Durbin-Watson statistics also look much better now. 

As this file is organized in the same way as the one 

obtained in the first estimation the output should not 

need to be commented upon . Besides the H matrix the 

only new information concerns the coefficient matrix HA 

of the lagged variables and the corresponding reduced 

form matrices B(-l)HB and B(-l)HC . 

The parameter estimates a r e all unchanged with respect 
~ ~ ~ ~ 

to sign . Two of them, 85(=~1 and 87(=P1', have changed 

dramatically in magnitude , however . 

From an economic viewpoint, the results seem quite 

plausible. The price elasticities of demand (83=~1' and 

supply (87=Jl1' lie between the estimates obtained by 

Ettlin (19771 and Lundborg (1981) . That the lncome 

elasticity of demand (84=~2) and the elasticity of 

supply with respect to capacity (8 8=Jl2) both are close 

to one seems reasonable . Regarding the adjustment pa­

rameters, it might weIl be that there is a mean time 

lag of slightly less than 2 1/2 years (1/8 1 ) in the ad­

justment of the export volumes to changes in excess 

demand. 

Of course, the fact that the estimates have sensible 

interpretations makes it all the more encouraging that 

they are all significantly different from zero . By 

means of the standard errors it can be seen that each 

of the t-ratios are at least 2.4 in absolute value. 
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