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Abstract. The revealed preference approach in economics is central to the em-
pirical analysis of consumer behavior. This paper introduces the Stata commands
checkax, aei, and powerps as a bundle within the package rpaxioms. The first
command allows a user to test whether consumer expenditure data satisfy a num-
ber of revealed preference axioms; the second command calculates measures of
goodness-of-fit when the data violate these axioms; and the third command cal-
culates power against uniformly random behavior as well as predictive success for
each axiom. The commands are illustrated using individual-level experimental
data and household-level aggregate consumption data.
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1 Introduction
The econometrics of consumer demand is central to economic analysis—it involves test-
ing economic theories, making out-of-sample predictions, and drawing welfare compar-
isons across different environments and policy regimes. As such, the research program
on empirical consumer demand has held a central position within the economics litera-
ture for many decades (see, for example, McFadden (1973) and Deaton and Muellbauer
(1980)). Much of the emphasis within this literature has been on consistently esti-
mating consumer preferences, the inherently unobservable primitive from which tests,
predictions, and welfare statements can be derived.

The analogue to this research program within the context of finite data is known
as revealed preference. The revealed preference approach involves checking whether a
finite set of price and demand observations made on an individual consumer is compat-
ible with economic rationality, i.e., rationalizable by some form of utility maximization.
Revealed preference is fully nonparametric, in the sense that it does not impose any aux-
iliary functional form or distributional assumptions, only the basic primitives of utility
maximization. Famously, Afriat’s (1967) theorem states that a data set is rationalizable
by the maximization of a well-behaved utility function if and only if it obeys an intuitive
no-cycling condition on the data. This property is more commonly referred to as the
generalized axiom of revealed preference (GARP), and there are efficient algorithms for
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checking this axiom in empirical practice (Varian 1982). Other notions (special cases)
of rationalizability can also be characterized in terms of observables, and the approach
has given rise to a suite of revealed preference tests in the tradition of Afriat (1967)
that can be used in applied empirical work.

In general, revealed preference tests are “sharp”, in the sense that they deliver a
binary response as to whether observed expenditure data are compatible with an un-
derlying behavioral model. However, given sufficiently rich data, an outright failure of
even fairly permissive notions of rationalizability should not come as unexpected, and
it may well be that the data are in fact very close to rationalizability. As Varian (1990)
notes, “for most purposes, ‘nearly optimizing’ behavior’ is just as good as ‘optimizing’
behavior”. Afriat (1973) proposes to test for nearly optimizing behavior by allowing a
part of the consumer’s expenditure to be “wasted”. The fraction of expenditure that is
not being wasted by the consumer is usually referred to as the efficiency level of the test.
Varian’s (1982) original formulation of GARP implicitly assumes an efficiency level of
1, i.e., the consumer is not allowed to waste any part of her expenditure.

Varian (1982) introduces a simple combinatorial algorithm to test whether consumer
expenditure data obey GARP. This algorithm can be easily adapted to test GARP at
any efficiency level. Our first command, checkax, implements Varian’s algorithm to
test whether a data set satisfies GARP at any efficiency level specified by the user. The
command also allows a user to test whether the data obey the following revealed prefer-
ence axioms at any efficiency level: the strong axiom of revealed preference (SARP), the
weak generalized axiom of revealed preference (WGARP), the weak axiom of revealed
preference (WARP), the symmetric generalized axiom of revealed preference (SGARP),
the homothetic axiom of revealed preference (HARP), and cyclical monotonicity (CM).
These axioms and their behavioral implications are described in detail in Section 2.5.

Afriat (1973) proposes an upper limit on the efficiency level at which a data set
satisfies GARP, or the critical cost efficiency, as a measure of approximate rationaliz-
ability. Hence, this index, called the Afriat efficiency index (AEI, also known as the
critical cost efficiency index, CCEI), measures the severity of violations as the minimal
expenditure adjustment that is required in order for the data to comply with GARP. As
such, Varian (1990) interprets (and extends) this measure as a “goodness-of-fit” crite-
rion. The approach can also be applied to other axioms, and our second command, aei,
implements the AEI for each of the following seven axioms: GARP, SARP, WGARP,
WARP, SGARP, HARP, and CM. The AEI is discussed in more detail in Section 2.3.

In addition to goodness-of-fit, the outcome of a revealed preference test in many
empirical applications is often reported alongside some measure of power. The power
of a revealed preference test, say for GARP, is defined as the probability of rejecting
GARP, given that the data were generated from some type of “irrational” consumption
behavior. Bronars (1987) proposes a power index where the irrational behavior is based
on Becker’s (1962) uniformly random consumption model. Thus, for this widely used
power index, the choices generated by an irrational consumer are uniformly distributed
on the frontiers of the budget sets. Our third command, powerps, implements the
Bronars power index for any of the axioms above at any efficiency level. This command
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also reports a measure of “predictive success” originally introduced by Selten (1991) and
adapted to the revealed preference framework by Beatty and Crawford (2011). This
measure is motivated by the idea that if the data satisfy a given revealed preference
axiom, then any robust conclusion on rationalizability should, at a minimum, require
the test to have high power against uniformly random behavior. As such, the predictive
success measure combines the pass rate of the revealed preference test with Bronars
power index. Power and predictive success are further discussed in Section 2.4.

Finally, for applied practitioners it is imperative for revealed preference methods
to be easily implementable and reproducible. To this end, we present the Stata pack-
age rpaxioms. We illustrate our three commands—checkax, aei, and powerps—on
two types of data that are commonly used in empirical applications of revealed prefer-
ence. First, using experimental data collected by Andreoni and Miller (2002), we test
whether the social allocations selected by individual subjects are compatible with utility
maximization taking a number of different forms. Second, using aggregate household
consumption data on four food categories from Poi (2002), we test whether these data
can be rationalized by preferences that are common across all households.1

2 Revealed preference
Suppose that there are T observations of the prices and quantities of K goods. At each
observation t = 1, . . . , T , the price vector is denoted by pt = (pt1, . . . , p

t
K) ≫ 0 and

the quantity bundle by xt = (xt
1, . . . , x

t
K) ⩾ 0. We assume that all prices are strictly

positive, and that all quantities are non-negative (note that some but not all quantities
at any given observation may be equal to zero, i.e., all expenditures are strictly positive).
The T observations of (pt,xt) then form the finite data set D = {(pt,xt)}Tt=1.

2.1 Rationalizability
The data set D = {(pt,xt)}Tt=1 is said to be rationalizable by utility maximization if
there is a utility function U : RK

+ → R, such that, at every observation t = 1, . . . , T ,

U(xt) ⩾ U(x) for any x ∈ {x ∈ RK
+ : pt · x ⩽ pt · xt}.

In words, rationalizability means that we can find a utility function defined on the
consumption space which assigns (weakly) higher utility to the quantity bundle xt than
to any other bundle x which is affordable at the prevailing prices pt. Without any
further restrictions on U , any data set D is rationalizable since U could simply assign
the same level of utility to every bundle in the consumption space. For the question to
be meaningful, we require further structure on the utility function U .

Afriat (1967) was the first to show that a finite data set D = {(pt,xt)}Tt=1 is ratio-
nalizable by a locally nonsatiated utility function U if and only if it obeys an intuitive

1. Poi (2002) uses the same data to illustrate the estimation of parametric demand systems in Stata.
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property now known as the generalized axiom of revealed preference (GARP).2 A data
set D = {(pt,xt)}Tt=1 obeys GARP so long as the preference cycles it reveals are weak
rather than strict, i.e., for any cycle represented by

pt · xt ⩾ pt · xu, pu · xu ⩾ pu · xv, . . . , pw · xw ⩾ pw · xt,

the inequalities cannot be strict. The intuition of GARP as a no-cycling condition on
the data ought to be strong, and it should also come as no surprise that GARP is
necessary (or implied by) the maximization of a locally nonsatiated utility function.
Afriat’s (1967) theorem shows that GARP is also sufficient for rationalizability by a
locally nonsatiated utility function U .3 The importance of the result is that GARP
completely characterizes the content of utility maximization in terms of observables,
and can therefore be used as an empirical test for rationalizability.

2.2 Approximate rationalizability
In a sufficiently rich empirical setting, it is unlikely that any data set is exactly ra-
tionalizable, and so we require some notion of its distance to or departure from exact
rationalizability. Loosely speaking, one could think of this as allowing for “error”, which
has long been the convention in the econometrics of consumer demand (see, for example,
Deaton and Muellbauer (1980) and McFadden (1973)). To this end, the convention in
the revealed preference literature is to accommodate error through cost inefficiency, an
idea first developed by Afriat (1972, 1973).

According to Afriat’s (1973) formulation, the consumer “has a definite structure of
wants” and “programs at a level of cost-efficiency e”, which is tantamount to relaxing
the definition of rationalizability. Consider any efficiency level e ∈ (0, 1]. The data set
D = {(pt,xt)}Tt=1 is said to be rationalizable at efficiency level e if there is a utility
function U : RK

+ → R, such that, at every observation t = 1, . . . , T ,

U(xt) ⩾ U(x) for any x ∈ {x ∈ RK
+ : pt · x ⩽ ept · xt}.

When e = 1, this definition corresponds to exact rationalizability, and for any e < 1, to
approximate rationalizability. Afriat (1973) shows that a data set D = {(pt,xt)}Tt=1 is
rationalizable at efficiency level e if and only if, for any cycle represented by

ept · xt ⩾ pt · xu, epu · xu ⩾ pu · xv, . . . , epw · xw ⩾ pw · xt,

the inequalities cannot be strict. The equivalent condition known as eGARP is necessary
and sufficient for approximate rationalizability by a locally nonsatiated utility function
U .4 When e = 1, eGARP and GARP coincide.
2. To be precise, Afriat (1967) refers to this property as cyclical consistency, which Varian (1982)

shows is equivalent to GARP.
3. Furthermore, Afriat (1967) shows that such a U can be chosen to be continuous, strictly increasing,

and concave; these properties, within the current context, have no empirical content. See also
Diewert (1973) and Varian (1982) for proofs of this seminal result.

4. Once again, U can be chosen to be continuous, strictly increasing, and concave. See also Halevy
et al. (2018) for a proof of this result.
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The operationalization of eGARP as an empirical test is straightforward. Consider
any efficiency level e ∈ (0, 1]. For any pair of observations (t, s), we say that xt is directly
revealed preferred to xs at efficiency level e, written xtRD

e xs, if ept · xt ⩾ pt · xs. This
means that xt is chosen even though the cost of the bundle xs (at the prevailing prices
pt) does not exceed ept · xt. Analogously, we say that xt is strictly directly revealed
preferred to xs at efficiency level e, written xtPD

e xs, if ept ·xt > pt ·xs. We say that xt

is revealed preferred to xs at efficiency level e, written xtRex
s, if there exists a sequence

of observations (t, u, v, . . . , w, s) such that xtRD
e xu,xuRD

e xv, . . . ,xwRD
e xs. Hence, Re

is the transitive closure of RD
e . When e = 1, these relations reduce to the usual revealed

preference relations (Varian 1982).

A data set D = {(pt,xt)}Tt=1 satisfies eGARP if xtRex
s implies eps · xs ⩽ ps · xt.

The eGARP condition can be tested at any efficiency level e by slightly modifying
the algorithm proposed by Varian (1982). First, the relations RD

e and PD
e are formed by

constructing the T × T matrices RD and PD, where the elements RDts and PDts are
equal to 1 if ept ·xt ⩾ pt ·xs and ept ·xt > pt ·xs, respectively, and 0 otherwise. Second,
the relation Re is formed by calculating the transitive closure of the matrix RD, which
gives a T×T matrix RT with element RTts equal to 1 if xtRex

s, and 0 otherwise. Varian
(1982) suggests calculating RT using Warshall’s (1962) algorithm. Finally, eGARP is
violated whenever RTts = 1 and PDst = 1 for any pair of observations (t, s). The
total number of violations is given by the number of pairs (t, s), with t ̸= s, such that
RTts = 1 and PDst = 1. Therefore, with T observations, the total possible number of
eGARP violations is T (T − 1), and the fraction of violations is given by the ratio of the
number of violations to T (T − 1).

Our first command, checkax, constructs RD, PD, and RT at any efficiency level e
specified by the user. The latter is constructed using a vectorized version of Warshall’s
algorithm. The command checkax then reports to the user whether or not the data
satisfy eGARP, as well as the number and fraction of violations.5

2.3 The Afriat efficiency index
It is clear that any data set is approximately rationalizable at some sufficiently small
efficiency level e ∈ (0, 1]. Afriat (1973) defines the critical cost efficiency index (CCEI)
or the Afriat efficiency index (AEI) as the maximal value of e (the supremum, to be
precise) such that a data set obeys eGARP.6 Varian (1990) interprets the AEI as a
measure of “goodness-of-fit” in terms of wasted expenditure: if a consumer has an AEI
of e∗ < 1, then she could have obtained the same level of utility by spending only
the fraction e∗ of what she actually spent. This is the sense in which the consumer is

5. Swofford and Whitney (1987) originally suggests using the number of violations as a goodness-of-fit
measure, while Famulari (1995) proposes a related metric, which can roughly be interpreted as the
fraction of violations.

6. Note that Varian (1990) extends Afriat’s (1973) approach by allowing the amount of cost inefficiency
to vary across observations, so that e = (e1, . . . , eT ) ∈ (0, 1]T represents a vector of efficiency levels;
Halevy et al. (2018) discusses the different aggregators of e, which include the Afriat (1973), Varian
(1990), and Houtman and Maks (1985) indices.
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exhibiting cost inefficiency, and in many applications the AEI is interpreted as a measure
of “rationality” or “decision making quality” (see, for example, Choi et al. (2014)).7

Our second command, aei, calculates the AEI by implementing the binary search
algorithm described in Varian (1990).

2.4 Power and predictive success
Within applications of revealed preference, alongside goodness-of-fit it is important to
know something about the power of the test/empirical environment. To this end, the
convention in the applied revealed preference literature is to test against an alternative
behavioral model, which is typically random choice and interpreted as “naive” or “irra-
tional”. The notion of “irrationality” which underpins the Bronars (1987) power index is
based on a model of uniformly random consumption, in which all feasible consumption
allocations (i.e., frontier bundles) are equally likely to be chosen.

Bronars (1987) suggests implementing the index using Monte Carlo methods. The
first step consists of generating artificial budget shares that are consistent with uni-
formly random consumption. At each observation, this involves generating K random
variables drawn from the Dirichlet distribution with all parameters (characterizing this
distribution) set equal to one. By construction, at each observation, these random
variables are uniformly distributed on the (K − 1)-dimensional unit simplex, and con-
sequently, can be interpreted as budget shares in the uniformly random model. The
second step solves for each uniformly random consumption quantity (denoted by qtk)
from the budget share equation given by wt

k = ptkq
t
k/p

t · xt, where each wt
k denotes an

artificial budget share generated in the first step. (Notice that pt and xt are given in
the original data set). Thus, the first two steps generate a synthetic data set across
K goods and T observations that is compatible with uniformly random behavior. The
third step repeats the first two steps many times, and for each repetition checks whether
the synthetic data set of prices and uniformly random quantities satisfy eGARP at a
given efficiency level e. The power measure is the fraction of these synthetic data sets
which would then violate eGARP.

Our third command, powerps, calculates power at any efficiency level e and for
any number of repetitions specified by the user. Moreover, the command allows the
user to set the random seed in the generation of the Dirichlet random variables (in
the first step of the procedure) in order to ensure that power calculations are perfectly
replicable. The command powerps also reports Beatty and Crawford’s (2011) revealed
preference measure of “predictive success”. For a given data set, this measure is defined
as the difference between the pass/fail indicator and one minus the Bronars’ power
index, where the pass/fail indicator takes the value 1 if the original data obey eGARP
at a given efficiency level e, and 0 otherwise, and where the power index corresponding
eGARP is calculated at the same efficiency level e. This measure of predictive success
can then be straightforwardly aggregated across individual data sets.

7. For a precise description of the relationship between (approximate) rationalizability and (approxi-
mate) cost-rationalizability, which in turn motivates the AEI, see Polisson and Quah (2022).
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2.5 Other axioms
Our commands are also implementable for other revealed preference axioms that charac-
terize a number of the common special cases of utility maximization. The default axiom
in every command is eGARP (with e = 1), but each command can also be executed for
six other revealed preference axioms any efficiency level e specified by the user.

• (Strong axiom of revealed preference) A data set D = {(pt,xt)}Tt=1 satisfies the
strong axiom of revealed preference at efficiency level e, abbreviated eSARP, if
xtRex

s implies eps · xs < ps · xt whenever xt ̸= xs. Matzkin and Richter (1991)
shows that SARP (e = 1) is necessary and sufficient for rationalizability by a
continuous, strictly increasing, and strictly concave utility function. Notice that
the difference between GARP and SARP is that GARP allows for “flat spots”
of indifference (demand correspondences versus demand functions). Like eGARP,
there can be up to T (T − 1) violations of eSARP.

• (Weak generalized axiom of revealed preference) A data set D = {(pt,xt)}Tt=1

satisfies the weak generalized axiom of revealed preference at efficiency level e,
abbreviated eWGARP, if xtRD

e xs implies eps · xs ⩽ ps · xt. Aguiar et al. (2020)
shows that WGARP (e = 1) is necessary and sufficient for rationalizability by a
continuous, strictly increasing, piecewise concave, and skew-symmetric preference
function (see Aguiar et al. (2020) for the definition of a preference function and
its properties). Banerjee and Murphy (2006) shows that WGARP and GARP are
equivalent when K = 2 (when there are two goods). The total possible number
of violations of eWGARP is T (T − 1)/2.

• (Weak axiom of revealed preference) A data set D = {(pt,xt)}Tt=1 satisfies the
weak axiom of revealed preference at efficiency level e, abbreviated eWARP, if
xtRD

e xs implies eps · xs < ps · xt whenever xt ̸= xs. Aguiar et al. (2020) shows
that WARP (e = 1) is necessary and sufficient for rationalizability by a continu-
ous, strictly increasing, piecewise strictly concave, and skew-symmetric preference
function. The difference between WARP and WGARP is analogous to the differ-
ence between SARP and GARP. Furthermore, Rose (1958) shows that WARP and
SARP are equivalent when K = 2. Like eWGARP, there can be up to T (T −1)/2
violations of eWARP.

• (Symmetric generalized axiom of revealed preference) For any (t, s), we can mod-
ify the definition of RD

e so that xtRD
e xs if ept · xt ⩾ pt · ys, where ys is any

permutation of xs,8 and where the transitive closure Re of RD
e follows accord-

ingly. A data set D = {(pt,xt)}Tt=1 satisfies the symmetric generalized axiom of
revealed preference at efficiency level e, abbreviated eSGARP, if xtRex

s implies
eps · xs ⩽ ps · yt (where yt is any permutation of xt). Nishimura et al. (2017)
shows that eSGARP is necessary and sufficient for rationalizability by a contin-
uous, strictly increasing, concave, and symmetric utility function. Polisson et al.

8. For example, if xs = (3, 1, 2), then there are six permutations of xs: (1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2), and (3, 2, 1).
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(2020) implements eSGARP in the context of symmetric risk, i.e., the utility func-
tion must also obey first order stochastic dominance (FOSD). The total possible
number of violations of eSGARP is T 2.

• (Homothetic axiom of revealed preference) A data set D = {(pt,xt)}Tt=1 satis-
fies the homothetic axiom of revealed preference at efficiency level e, abbreviated
eHARP, if for all distinct sequences of observations (s, t, u, . . . , v), it must be the
case that (pt · xs)(ps · xu) · · · (pv · xt) ⩾ (ept · xt)(eps · xs) · · · (epv · xv). Varian
(1983) shows that HARP (e = 1) is necessary and sufficient for rationalizability by
a continuous, strictly increasing, concave, and homothetic utility function. Heufer
and Hjertstrand (2019) provide a more general characterization (e < 1), and refer
to e∗ in this case as the homothetic efficiency index (HEI). The command checkax
implements eHARP as described in Varian (1983) using the Floyd-Warshall algo-
rithm. The total possible number of violations of eHARP is T .

• (Cyclical monotonicity) A data set D = {(pt,xt)}Tt=1 satisfies a cyclical mono-
tonicity condition at efficiency level e, abbreviated eCM, if for all distinct se-
quences of observations (s, t, u, . . . , v), it must be the case that pt · (xs − ext) +
ps ·(xu−exs)+· · ·+pv ·(xt−exv) ⩾ 0. Brown and Calsamiglia (2007) shows that
CM (e = 1) is necessary and sufficient for rationalizability by a continuous, strictly
increasing, concave, and quasilinear utility function. The command checkax im-
plements eCM in a similar manner to eHARP using the Floyd-Warshall algorithm.
Like eHARP, there can be up to T violations of eCM.

We conclude this section with two comments.

First, notice that in general a data set is approximately rationalizable if it could have
arisen from the maximization of some utility/preference function subject to a modified
budget set. Explicit theoretical support for these notions of rationalizability have been
developed in the case of eGARP, eSGARP, and eHARP, but not for the other axioms.

Second, we note that smoothness/differentiability has no material empirical content
once cost inefficiency has been taken into account. For example, Chiappori and Rochet
(1987) shows that Strong SARP (SSARP) is necessary and sufficient for rationalizability
by an infinitely differentiable, strictly increasing, and strictly concave utility function.
Suppose that a data set obeys SARP, but fails SSARP, which amounts to the same
consumption bundle being chosen at two or more distinct price vectors. If we set the
efficiency level to 1 − ε, for some ε > 0 arbitrarily small, then we could always find a
smooth rationalization. Since the CCEI is defined as a supremum, the CCEI for SSARP
would still be equal to 1. In other words, smoothness/differentiability are “untestable”
in a meaningful way. See also the discussion in Polisson et al. (2020).

3 Stata commands
Our commands checkax, aei, and powerps do not require any additional Stata pack-
ages. The commands are freely available as a bundle within the package rpaxioms on
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SSC (Statistical Software Components) provided through Boston College and RePEc
(Research Papers in Economics), and can be installed by entering “ssc install rpax-
ioms” in the Stata command prompt. The example dataset used in this section can be
downloaded by entering “net get rpaxioms”. Note that this downloads the dataset to
your current working directory. All three commands take as their two main (required)
arguments the T ×K price and quantity matrices:

price(string) specifies a T×K price matrix, where each row corresponds to an observa-
tion t and each column to a good k. All prices are required to be strictly positive. If
any of the elements in the price matrix are non-positive (or if the price and quantity
matrices have different dimensions), the commands return an error message.

quantity(string) specifies a T × K quantity matrix, where each row corresponds to
an observation t and each column to a good k. All quantities are required to be
non-negative. Some (but not all) quantities at a given observation may be equal to
zero. If the quantity matrix violates these conditions (or if the price and quantity
matrices have different dimensions), the commands return an error message.

3.1 checkax
The syntax of checkax is:

checkax, price(string) quantity(string)
[

axiom(string) efficiency(#)
]

Options

axiom(string) specifies the axiom(s) that the user would like to test. The default option
is axiom(eGARP). There are seven axioms that can be tested: eGARP, eSARP, eWGARP,
eWARP, eSGARP, eHARP, and eCM. The user may also test all axioms simultaneously
by specifying axiom(all).

efficiency(#) specifies the efficiency level at which the user would like to test the
axiom(s). The default option is efficiency(1). The efficiency level must be strictly
positive, and no greater than one.

Output and stored results

Running checkax produces a table with the following entries and return list:

Axiom returns the axiom(s) being tested. Given as the macro r(AXIOM) in return list.

Pass is a binary number indicating whether the data satisfy the axiom or not: Pass=1
if the data satisfy the axiom and Pass=0 if the data do not satisfy the axiom. Given
as the scalar r(PASS_axiom) in return list.

#vio is the number of violations. Note that #vio>0 if Pass=0, and #vio=0 if Pass=1.
Given as the scalar r(NUM_VIO_axiom) in return list.
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%vio is the fraction of violations. Note that %vio>0 if Pass=0, and %vio=0 if Pass=1.
Given as the scalar r(FRAC_VIO_axiom) in return list.

Goods is the number of goods. Given as the scalar r(GOODS) in return list.

Obs is the number of observations. Given as the scalar r(OBS) in return list.

Eff is the efficiency level of the test. Given as the scalar r(EFF) in return list.

Examples

The following examples illustrate the command checkax using a data set of 20 obser-
vations on the prices and quantities of five goods. The prices of goods 1 to 5 are p1,
p2, p3, p4, and p5. The quantities are x1, x2, x3, x4, and x5. The price and quantity
matrices are P and X, respectively. The first example runs checkax using its default
options, i.e., for eGARP at the efficiency level e = 1. The second example runs checkax
for eGARP and eHARP at the efficiency level e = 0.95.

. net get rpaxioms

. use rpaxioms_example_data.dta, clear

. mkmat p1-p5, matrix(P)

. mkmat x1-x5, matrix(X)

. checkax, price(P) quantity(X)
Number of obs = 20
Number of goods = 5
Efficiency level = 1

Axiom Pass #vio %vio

eGARP 0 161 .4237

. checkax, price(P) quantity(X) axiom(eGARP eHARP) efficiency(0.95)
Number of obs = 20
Number of goods = 5
Efficiency level = .95

Axiom Pass #vio %vio

eGARP 0 104 .2737
eHARP 0 20 1

3.2 aei
The syntax of aei is:

aei, price(string) quantity(string)
[

axiom(string) tolerance(#)
]
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Options

axiom(string) is the same as in the command checkax.

tolerance(#) sets the tolerance level of the termination criterion 10−n by specifying
the integer n. For example, tolerance(10) sets the tolerance level to 10−10. The
default option is tolerance(6), which gives the default tolerance level 10−6. The
integer n in the termination criterion 10−n cannot be less than 1 or greater than 18.

Output and stored results

Running aei produces a table with the following entries and return list:

Axiom, Goods, and Obs are the same as in the command checkax.

AEI is the AEI. Given as the scalar r(AEI_axiom) in return list.

Tol is the tolerance level of the termination criterion for the AEI calculation. Given as
the scalar r(TOL) in return list.

Examples

The following examples illustrate the command aei using the same data as above. The
first example runs aei using its default options, i.e., for eGARP with a tolerance level
of 10−6. The second example runs aei for eGARP and eHARP with the tolerance level
set to 10−10, and shows that the command quietly can be used to suppress the output.

. aei, price(P) quantity(X)
Number of obs = 20
Number of goods = 5
Tolerance level = 1.0e-06

Axiom AEI

eGARP .9055848

. quietly aei, price(P) quantity(X) axiom(eGARP eHARP) tolerance(10)

3.3 powerps
The syntax of powerps is:

powerps, price(string) quantity(string)
[

axiom(string) efficiency(#)
simulations(#) seed(#) aei tolerance(#) progressbar

]
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Options

axiom(string) and efficiency(#) are the same as in the command checkax.

simulations(#) specifies the number of repetitions of the simulated uniformly random
data. The default number of repetitions is simulations(1000).

seed(#) specifies the random seed in the generation of the Dirichlet random numbers.
The default random seed is seed(12345).

aei specifies whether the user wants to compute the AEI for each simulated data set
and specified axiom. The default option is that aei is not specified. Note that
including this option may increase computation times substantially.

tolerance(#) sets the tolerance level of the termination criterion 10−n by specifying
the integer n when computing the AEI. See Section 3.2 for a more detailed descrip-
tion. This option is only useful in combination with the aei option.

progressbar specifies if the user wants to display the number of repetitions that have
been executed. The default is that progressbar is not specified.

Output and stored results

Running powerps produces tables with the following entries and return list:

Axiom, Goods, and Obs are the same as in the command checkax.

Power is the power. Given as the scalar r(POWER_axiom) in return list.

PS is the predictive success. Given as the scalar r(PS_axiom) in return list.

PASS is a binary number indicating whether the actual data satisfy the axiom or not:
Pass=1 if the actual data satisfy the axiom and Pass=0 if the actual data do not
satisfy the axiom. Given as the scalar r(PASS_axiom) in return list.

AEI is the AEI corresponding to the actual data. Given as the scalar r(AEI_axiom) in
return list.

Sim is the number of repetitions of the simulated uniformly random data. Given as the
scalar r(SIM) in return list.

Eff is the efficiency level at which power and predictive success are computed. Given
as the scalar r(EFF) in return list.

For each axiom being tested, the command also produces a table containing summary
statistics over all simulated data with the following entries and return list:

#vio gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the
number of violations. Given as the matrix r(SUMSTATS_axiom) in return list.

%vio gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the
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fraction of violations. Given as the matrix r(SUMSTATS_axiom) in return list.

AEI gives the mean (Mean), standard deviation (Std. Dev.), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) of the AEI.
Given as the matrix r(SUMSTATS_axiom) in return list. This is only displayed if
the option aei is specified. The tolerance level of the termination criterion in the
AEI calculation is given as the scalar r(TOL_axiom) in return list.

For each axiom being tested, the matrix r(SIMRESULTS_axiom) in return list con-
tains, for every simulated uniformly random data set, the number of violations, the
fraction of violations, and the AEI (only if the option aei is specified).

Examples

The following examples illustrate the command powerps using the same data as above.
The first example runs powerps for the axioms eGARP and eHARP. All other options
are set to their defaults. The second example also runs powerps for the axioms eGARP
and eHARP but now includes the option aei, which calculates the AEI for both axioms
for each of the 1,000 simulated data sets. Note that including the aei option increases
computation time substantially.

. powerps, price(P) quantity(X) axiom(eGARP eHARP)
Number of obs = 20
Number of goods = 5
Simulations = 1000
Efficiency level = 1

Axioms Power PS Pass AEI

eGARP .995 -.005 0 .9055848
eHARP 1 0 0 .8449683

Summary statistics for simulations:

eGARP #vio %vio

Mean 47.339 .1245762
Std. Dev. 29.45589 .0775135

Min 0 0
Q1 24 .0632

Median 45 .1184
Q3 68.5 .18025
Max 143 .3763

eHARP #vio %vio

Mean 20 1
Std. Dev. 0 0

Min 20 1
Q1 20 1
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Median 20 1
Q3 20 1
Max 20 1

. powerps, price(P) quantity(X) axiom(eGARP eHARP) aei
Number of obs = 20
Number of goods = 5
Simulations = 1000
Efficiency level = 1

Axioms Power PS Pass AEI

eGARP .995 -.005 0 .9055848
eHARP 1 0 0 .8449683

Summary statistics for simulations:

eGARP #vio %vio AEI

Mean 47.339 .1245762 .842074
Std. Dev. 29.45589 .0775135 .0814885

Min 0 0 .5616641
Q1 24 .0632 .7924724

Median 45 .1184 .8516641
Q3 68.5 .18025 .9015746
Max 143 .3763 1

eHARP #vio %vio AEI

Mean 20 1 .7268926
Std. Dev. 0 0 .0760639

Min 20 1 .4819741
Q1 20 1 .6767941

Median 20 1 .7307339
Q3 20 1 .7845821
Max 20 1 .8955998

4 Empirical illustrations
This section illustrates how to implement our commands using two types of data that are
common in many revealed preference applications. The first type of data set contains the
individual choices of experimental subjects. Such controlled environments are desirable
from the perspective of empirical testing because relative prices can be calibrated across
observations in order to engineer a sufficiently powerful test of, say, utility maximization.
In our empirical illustration, we analyze the budgetary data collected in Andreoni and
Miller (2002); other prominent examples of experiments involving budgetary designs
include Choi et al. (2007, 2014), Andreoni and Sprenger (2012), and Halevy et al. (2018).
The second type of data set contains annual household food consumption within broad
categories. Aggregate household-level data have long been used to estimate parametric
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demands systems (see, e.g., Deaton and Muellbauer (1980), Banks et al. (1997), and
Lewbel and Pendakur (2009)), and moreover, Poi (2002) makes use of the same data
set in order to illustrate the estimation of parametric demand systems in Stata.

4.1 Experimental data
Andreoni and Miller (2002) tests whether the social choices of experimental subjects
are rational, employing a dictator game in which one subject (the dictator) allocates
token endowments between himself and another subject (the beneficiary) according to
some rate of transfer. The payoffs of the dictator and the beneficiary are essentially two
distinct goods and the transfer rates are the price ratios. The experiment contains two
parts, where 142 subjects (Group 1) face T = 8 decision rounds, and where 34 subjects
(Group 2) face T = 11 rounds. In this illustration, we focus on subjects in Group 1.

Andreoni and Miller (2002) finds that 13 subjects in Group 1 violate rationality, and
for each of these 13 subjects reports the AEI (for GARP) and the number of violations
of eGARP, eSARP, and eWARP at the efficiency level e = 1 (see Table II in Andreoni
and Miller (2002)). Banerjee and Murphy (2006) complements this analysis and reports
the number of violations of eWGARP at the efficiency level e = 1 (see Table 1 in
Banerjee and Murphy (2006)). Using the commands checkax and aei, the following
code replicates these results:

. local axioms eGARP eWGARP eSARP eWARP

.

. forvalues subject = 1/142 {

. foreach axiom of local axioms {

. checkax, price(P) quantity(Q s̀ubject )́ axiom( àxiom )́

. }

. aei, price(P) quantity(Q s̀ubject ́) axiom(eGARP)
}

(output omitted )

The results from the preceding code are reported in Table 1. In Figure 1, we plot the
fraction of the 142 subjects satisfying eGARP, eSGARP, eHARP, and eCM for values of
e between 0.85 and 1 in an equally spaced grid with increments of 0.01. The results used
to generate Figure 1 are obtained by looping over all subjects, axioms, and efficiency
levels in the grid, and evaluating the command checkax for each subject, axiom, and
efficiency level. The following line of code illustrates one such evaluation:

checkax, price(P) quantity(Q ̀subject ́) efficiency(0.85)
(output omitted )

Since subjects are choosing from among bundles of two goods, eGARP (eSARP) and
eWGARP (eWARP) are equivalent, and must by construction deliver identical results
in terms of pass rates (but not in terms of the number and fraction of violations).
Furthermore, while theoretically possible, the empirical differences between eGARP
(eWGARP) and eSARP (eWARP) are negligible, implying that distinctions between
demand correspondences and demand functions are not of first order importance within
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Table 1: Replication of results in Andreoni and Miller (2002, Table II) and Banerjee
and Murphy (2006, Table 1)†

Number (fraction) of violations
Subject eGARP eWGARP eSARP eWARP AEI (GARP)

3 2 (0.036) 1 (0.036) 4 (0.071) 1 (0.036) 1.000∗

38 8 (0.143) 2 (0.071) 9 (0.161) 2 (0.071) 0.917

40 8 (0.143) 3 (0.107) 11 (0.196) 3 (0.107) 0.833

41 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

47 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

61 4 (0.071) 1 (0.036) 5 (0.089) 1 (0.036) 0.917

72 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

87 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

90 2 (0.036) 1 (0.036) 2 (0.036) 1 (0.036) 0.975

104 1 (0.018) 1 (0.036) 3 (0.054) 1 (0.036) 1.000∗

126 1 (0.018) 1 (0.036) 4 (0.071) 1 (0.036) 1.000∗

137 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

139 1 (0.018) 1 (0.036) 2 (0.036) 1 (0.036) 1.000∗

† The number (and fraction) of violations are reported at the efficiency level e = 1. The
symbol (∗) indicates that an ε-change in choices eliminates all GARP violations.
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Figure 1: AEI distributions for eGARP, eSGARP, eHARP, and eCM
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Table 2: Summary statistics for eSGARP, eHARP, and eCM†

Number (fraction) of violations AEI
Statistic eSGARP eHARP eCM SGARP HARP CM
Mean 16.47 (0.257) 6.29 (0.789) 7.68 (0.960) 0.745 0.976 0.935

Std. dev. 16.80 (0.262) 2.90 (0.362) 1.03 (0.129) 0.288 0.049 0.035

Min 0 (0.000) 0 (0.000) 0 (0.000) 0.333 0.707 0.800

Q1 0 (0.000) 5 (0.625) 8 (1.000) 0.333 0.966 0.905

Median 8 (0.125) 8 (1.000) 8 (1.000) 0.875 1.000 0.957

Q3 37 (0.578) 8 (1.000) 8 (1.000) 1.000 1.000 0.957

Max 41 (0.641) 8 (1.000) 8 (1.000) 1.000 1.000 1.000

† The number (and fraction) of violations are reported at the efficiency level e = 1.

Table 3: Power summary statistics for eSGARP, eHARP, and eCM†

Number (fraction) of violations AEI
Statistic eSGARP eHARP eCM SGARP HARP CM
Mean 17.53 (0.274) 7.96 (0.995) 7.93 (0.992) 0.693 0.763 0.761

Std. dev. 12.29 (0.192) 0.47 (0.0583) 0.65 (0.081) 0.181 0.120 0.124

Min 0 (0.000) 0 (0.000) 0 (0.000) 0.335 0.358 0.358

Q1 8 (0.125) 8 (1.000) 8 (1.000) 0.551 0.684 0.675

Median 15 (0.234) 8 (1.000) 8 (1.000) 0.667 0.773 0.769

Q3 27 (0.422) 8 (1.000) 8 (1.000) 0.840 0.856 0.859

Max 53 (0.828) 8 (1.000) 8 (1.000) 1.000 1.000 1.000

† The number (and fraction) of violations are reported at the efficiency level e = 1.

these data. Since neither Andreoni and Miller (2002) nor Banerjee and Murphy (2006)
reports any results for eSGARP, eHARP, or eCM, we give these axioms more attention:
we calculate the mean, standard deviation, minimum, first quartile (Q1), median, third
quartile (Q3), and maximum of the number (and fraction) of violations and of the AEIs
corresponding to SGARP, HARP, and CM. The results are displayed in Table 2.

Finally, we turn to power and predictive success. By looping over all subjects,
axioms, and values of e between 0.4 and 1.0, we calculate the power and predictive
success for every subject, axiom, and efficiency level in the grid. The following line of
code illustrates one such evaluation:

powerps, price(P) quantity(Q ̀subject ́) efficiency(0.4)
(output omitted )

We summarize the results in three different ways. First, Figure 2 plots the power of
eGARP, eSGARP, eHARP, and eCM for every efficiency level in the grid. Note that
since all subjects face the same budgets, the power of each test is identical across sub-
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Figure 2: Power of eGARP, eSGARP, eHARP, and eCM
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jects. Second, Table 3 gives the mean, standard deviation, minimum, first quartile (Q1),
median, third quartile (Q3), and maximum of the number (and fraction) of violations
and of the AEIs corresponding to SGARP, HARP, and CM, over all repetitions in the
simulated uniformly random data. Third, Figure 3(a) plots the mean predictive success
across all subjects at each efficiency level in the grid, and Figure 3(b) is a subject-level
scatterplot of eHARP versus eGARP at selected efficiency levels.

4.2 Aggregate household consumption data
In the second empirical illustration, we use aggregate household consumption data from
the 1987-1988 Nationwide Food Consumption Survey conducted by the United States
Department of Agriculture. This data set is used by Poi (2002) in order to illustrate
how Stata’s ml command can be used to fit the quadratic almost ideal demand system
(QUAIDS). This data set is named food.dta in the repository “data sets for Stata
Base Reference Manual, Release 16” (https://www.stata-press.com/data/r16/r.html),
and contains budget shares and prices for the following four aggregated food categories:
meats, fruits and vegetables, breads and cereals, and miscellaneous. As in Poi (2002),
we use a sample of 4,048 households.

To test whether the data can be rationalized by preferences that are common across
all households, we compute the AEI for GARP and WGARP:

. use http://www.stata-press.com/data/r16/food.dta, clear

. mkmat p1 p2 p3 p4, matrix(P)

. forvalues i = 1(1)4 {

. gen x ì ́ = w ì ́* expfd/p ì ́

. }

. mkmat x1 x2 x3 x4, matrix(X)

. aei, price(P) quantity(X)
Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI

eGARP .459821

. aei, price(P) quantity(X) axiom(eWGARP)
Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI

eWGARP .459821

We find that testing for eGARP takes considerably longer than testing for eWGARP,
which suggests that the main computational burden in testing for eGARP is associated
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with the calculation of the transitive closure of the revealed preference relation. Inter-
estingly, we find identical values of the AEI for GARP and WGARP, indicating that
none of the violations of GARP can be attributed to violations of transitivity.

Finally, because eWGARP is considerably faster to test than eGARP, we calculate
the power of eWGARP at an efficiency level equal to the AEI for WGARP:

. aei, price(P) quantity(X) axiom(eWGARP)
Number of obs = 4048
Number of goods = 4
Tolerance level = 1.0e-06

Axiom AEI

eWGARP .459821

. return list
scalars:

r(TOL) = 1.00000000000e-06
r(GOODS) = 4

r(OBS) = 4048
r(AEI_eWGARP) = .4598209857940674

macros:
r(AXIOM) : " eWGARP"

. powerps, price(P) quantity(X) axiom(eWGARP) efficiency( r̀(AEI_eWGARP) )́
Number of obs = 4048
Number of goods = 4
Simulations = 1000
Efficiency level = .46

Axioms Power PS Pass AEI

eWGARP .423 .423 1 .4598211

Summary statistics for simulations:

eWGARP #vio %vio

Mean .832 0
Std. Dev. 1.790246 0

Min 0 0
Q1 0 0

Median 0 0
Q3 1 0
Max 39 0

5 Conclusions
In this paper, we have presented new Stata commands to test whether observed data on
prices and quantities can be rationalized by different notions of utility maximization.
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The commands are implementations of nonparametric revealed preference restrictions
that can be formulated as combinatorial algorithms. An important property of such
algorithms is that they converge in a finite number of steps, and consequently, can be
implemented on rather large data sets. Although the commands are implementations
of characterizations that are intrinsically deterministic (in the sense that they lack
stochastic components), they also allow the user to calculate diagnostic measures such
as goodness-of-fit, power, and predictive success of the underlying behavioral model.

The package rpaxioms contains implementations of perhaps the most basic concepts
in the empirical revealed preference literature. Two natural extensions left for future
work come to mind. The first is to provide implementations of revealed preference char-
acterizations of other behavioral models, including special cases on preferences which
amount to different forms of separability (e.g., expected utility under risk and exponen-
tial discounted utility over time). The second is to provide implementations of more
disaggregated measures of goodness-of-fit and power. Although some of these models
and measures can be implemented by solving (mixed-integer) linear programming prob-
lems, this is not a trivial task and the computational complexity of doing so crucially
depends on the algorithms used to solve such problems.
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