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Abstract. Experimentalists frequently claim that human subjects in
the laboratory violate such game-theoretic solutions as Nash equilibrium and
subgame perfect equilibrium. It is here argued that this claim is usually pre-
mature. What have been rejected are certain joint hypotheses concerning sub-
jects’ preferences, rationality and knowledge. This note discusses conceptual
and methodological aspects of non-cooperative game theory in its epistemic
interpretation. An alternative “empirical” interpretation is outlined, and an
associated empirical equilibrium hypothesis is formulated.
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[Incomplete and preliminary]

1. Introduction

An important current development in economics is the emergence of experimental
economics. Moving from arm-chair theorizing to controlled laboratory experiments
may be as important a step in the development of economic theory as it once was
for the natural sciences to move from Aristotelian scholastic speculation to modern
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empirical science.1 The first experiments in game theory were carried out in the early
fifties. A new wave of game experiments began in the mid seventies, and in the early
eighties Güth, Schmittberger and Schwarze (1982) pioneered experimental work on
ultimatum bargaining games. See Zamir (2000) for a recent discussion of such exper-
iments, and see e.g. Kagel and Roth (1995) for surveys of experimental game theory
more generally. The present note discusses some methodological and conceptual is-
sues when applying and experimentally testing non-cooperative game theory, viewed
as a positive model of human strategic interaction. The discussion suggests certain
weaknesses both in the current practice of experimentalists and in non-cooperative
game theory itself. A new experimental agenda, which emphasizes observability and
falsifiability, is outlined, leading to a falisifiable “empirical equilibrium hypothesis.”
In the experimental literature, it has many times been claimed that certain well-

known game-theoretic solutions, such as Nash equilibrium and subgame perfect equi-
librium, have been violated in laboratory experiments.2 While it may well be true
that human subjects actually do not behave according to these solutions in many sit-
uations, few experiments actually provide evidence for this. While experimentalists
usually make efforts to carefully specify to the subjects the game form or, as will be
defined below, the “game protocol” of the interaction in question, they usually do
not make much effort to find the subjects’ preferences, despite the fact that these
preferences constitute an integral part of the very definition of a game. Instead, it
is customary to simply hypothesize subjects’ preferences. In the early literature, it
was thus hypothesized that subjects care only about their own material gains and
losses. In later studies, subjects’ preferences were allowed to also depend on the
“fairness” of the resulting vector of material gains and losses to all subjects. How-
ever, recent experiments, discussed below, suggest that even this is sometimes too
restrictive. This narrow approach to preferences contrast with the formal machin-
ery of non-cooperative game theory which does not impose any such restrictions on
preferences.
In applications of non-cooperative game theory, the game is not only meant to

represent the strategic interaction as viewed by the analyst, but also as viewed by the
players (note assumptions like “the game is common knowledge to the players”). The
extent and exact form of the latter varies across game forms, solutions, and on the
interpretation or “meta model” in which the game is “embedded.” There seem to be
essentially two broad classes of such interpretations, one rationalistic and static, the
other boundedly rationalistic and dynamic/evolutionary. Already in his Ph.D. dis-

1The likelihood for success, however, may be smaller, in view of the complexity of human decision
making.

2The number of citations that could be made here is so large that any selection would be arbitrary.
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sertation, John Nash suggested two distinct interpretations of non-cooperative game
theory, along these same lines, see Nash (1950). In one interpretation, which for
many years has been standard, players are assumed to be “rational,” the game is
played exactly once, and all relevant aspects of the game, including other players’
preferences and rationality, are common or mutual knowledge among the players.
Nash did not specify the exact form of rationality and knowledge (or beliefs) that
would lead to a given Nash equilibrium. However, later research has provided exact
epistemic conditions which together are sufficient for Nash equilibrium play and for
subgame perfect equilibrium play, see e.g. Tan and Werlang (1988), Blume, Branden-
burger and Dekel (1991), Reny (1993), Aumann and Brandenburger (1995), Aumann
(1995), Ben-Porath (1997) and Asheim (2000). In general, these sufficient epistemic
conditions are tailored to a class of games and a solution concept.
The second interpretation, which Nash called the “mass-action interpretation,”

is close in spirit to current models of social learning and evolution in games. For
each of the n player roles in the game, there is a large population of individuals
with identical preferences. An n-tuple of individuals, one from each such player
population, is randomly and recurrently drawn to play the game. These individuals
are not necessarily well-informed about the game, but base their strategy choice on
observed past play.
These two interpretations, or “embedding models” can of course not be empiri-

cally falsified as such, only their assumptions, which we already from the outset know
are strong idealizations. So what can be tested? One can test whether the theoreti-
cal predictions are at least approximately correct in environments which approximate
the assumptions. Such testing is important, because this is how game theory is used
in economics and the other social sciences. In many cases it is not even possible to
assure that the exact theoretical assumptions hold. For instance, “players’ knowl-
edge” in practice usually has to be replaced by some form of “information provided
to the actors,” and “common knowledge among the players” by some form of “public
information provided to the actor” etc. Such “operational approximations” of course
fall short of the theoretical assumptions. Hence, there is indeed plenty of opportunity
for operationally approximated game-theoretic models to be empirically falsified.
Current evolutionary and learning models make weaker knowledge and rationality

assumptions than the epistemic ones. In particular, no knowledge about other players’
preferences is assumed. Instead, one usually assumes recurrent play and some form
of social learning or adaptation, based on empirical observations of behaviors and
outcomes. If such an evolutionary or learning model is to be tested empirically, then
the laboratory setting should approximate the setting in the particular model at hand.
However, a discussion of evolutionary and learning models falls outside the scope of
the present paper.
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Instead, the epistemic interpretation is here discussed at some length, and is con-
trasted with a new, still preliminary, “empirical” interpretation. Unlike the epistemic,
but like the evolutionary interpretation, this interpretation imagines a finite popu-
lation of individuals (laboratory subjects), one for each player role, and the game
protocol is played recurrently between randomly matched individuals, one from each
population. However, unlike standard evolutionary and learning models, individuals
in the same player population may here differ with respect to preferences, beliefs and
expectations. The accompanying equilibrium concept, called empirical equilibrium, is
not a property of a strategy profile but of an outcome of play - a frequency distribution
over the set of plays.
The rest of the paper is organized as follows. Section 2 provides some termi-

nology, notation and definitions. Section 3 presents a simple example. Section 4
concerns backward induction, and section 5 discusses the possibility that one player’s
preferences may depend on (knowledge or beliefs about) another player’s preferences.
Section 6 suggests some experimental procedures in connection with testing of the
epistemic approach. Section 7 develops the above-mentioned “empirical” interpreta-
tion, and section 8 concludes with a discussion of avenues for further research, and
gives a brief discussion of the difference between empirical equilibrium and Eyster’s
and Rabin’s (2000) “cursed” equilibrium.

2. Preliminaries

2.1. Extensive forms and protocols. The present discussion is focused on fi-
nite games in extensive form, as defined in Kuhn (1950,1953). Such a game is a
mathematical object that contains as its basic building block a directed tree. A play
τ of the game is a “route” through the tree, starting at its initial node (or “root”)
and ending at exactly one of the (finitely many) end nodes ω (or “leaves”). The finite
set of intermediate nodes is partitioned into player subsets, and each player subset is
partitioned into information sets for that player. One of the players may be “nature,”
and all information sets for this “non-personal” player are singleton sets with proba-
bilities attached to each outgoing branch from the node in question. Probabilities are
assigned to all nature’s moves. There is a one-to-one relation between plays τ and
end-nodes ω: each end-node is reached by exactly one play of the game, and each
play reaches exactly one end-node. Letting Ω denote the set of end-nodes and T the
set of plays, we thus have |Ω| = |T | < +∞.
The ingredients described so far belong to what is usually called the game form

of a game. A game form becomes an extensive-form game if one attaches a vector of
real numbers to each end-node of the tree, each such vector containing n components,
one for each of the n personal players. These vectors are called the payoff vectors,
and the collection of all the i’th components, one from each of the |T | end-nodes,
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together are supposed to represent the i’th player’s preferences. More exactly, each
player is assumed to have complete and transitive preferences over the unit simplex

∆ (Ω) =

(
p ∈ R|Ω|+ :

X
ω∈Ω

pω = 1

)
= ∆ (T ) =

(
p ∈ R|T |+ :

X
τ∈T

pτ = 1

)
of lotteries over end-nodes, or, equivalently, over plays. These preferences are assumed
to satisfy the von Neumann-Morgenstern axioms, implying the existence of a player-
specific real-valued function πi with domain Ω, or T , for each personal player i, such
that player i prefers one lottery over another if and only if the first lottery gives a
higher expected value to the function πi than the second.
For definiteness, and without loss of generality, the domain of πi will be taken to

be the set T of plays - rather than the set Ω of end-nodes (which is usually taken to
be the domain). The function πi : T → R will be called the Bernoulli function (or
von Neumann-Morgenstern function) of player i. If Φ is a game form, then the pair
Γ = (Φ,π), where π denotes the combined Bernoulli function π : T → Rn, constitutes
an extensive-form game.
Let Si denote the set of pure strategies for player role i, with S = ×iSi denoting

the set of pure-strategy profiles. Likewise, ∆ (Si) denotes the unit simplex of mixed
strategies for player i, and¤ (S) = ×i∆ (Si) denotes the polyhedron of mixed-strategy
profiles. The path induced in the tree by a mixed-strategy profile σ is the subset of
nodes which are reached with positive probability when σ is played, and an informa-
tion set h is said to be on the path of a strategy profile σ if some node x ∈ h is reached
with positive probability under σ. Likewise, the probability distribution induced on
the set Ω of end-nodes, or; equivalently over the set T of plays, by a strategy profile σ
will be called its outcome. Hence, and outcome is a point p ∈ ∆ (T ). Moreover, since
each mixed-strategy profile induces an outcome, one may compute the expected value
of each player’s Bernoulli function under any mixed-strategy profile. This defines the
player’s payoff function ui : ¤ (S) → R, which maps each mixed-strategy profile to
the associated mathematical expectation of the player’s Bernoulli function.
Not every analysis of a game requires preferences over lotteries. It is sometimes

sufficient to assume that every player i has a complete and transitive binary preference
ordering ºi defined directly on the finite set T of plays, rather on the infinite set∆ (T )
of lotteries over plays.3 This defines what one could call an ordinal game.4 The binary
relation ºi will here be called the i’th player’s ordinal preferences over plays.

3This ordinal approach is insufficient, though, for analyses involving players’ subjective uncer-
tainty about other players’ unobserved moves - even if all players use pure strategies and there
are no random moves by “nature.” However, an ordinal approach can be extended to handle such
uncertainty without necessarily invoking the von Neumann-Morgenstern axioms.

4Osborne and Rubinstein (1994) develop such an approach.
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In virtually all applications of game theory, including laboratory experiments,
players (or subjects) receive material, usually monetary, gains and losses after each
play of the game. A game form Φ, with specified such material consequences, will
here be called a game protocol. Since some experiments keep the game form constant
while varying these consequences of play, the following terminology and notation
is sometimes convenient. A game protocol is a pair (Φ, γ), where γ : T → C, for
some set C of material consequences. Clearly the material consequences of play in
a game form Φ influence the players’ (subjects’) preferences over plays. Hence, we
will here depart formally, though not substantially, from traditional non-cooperative
game theory by viewing preferences as defined for a game protocol rather than for a
game form. Consequently, we will here think of a game as a triplet (Φ, γ,π), where
Φ is a game form, γ a consequence mapping, and π as a combined Bernoulli function
for the personal players in the game form Φ.
The formal machinery of non-cooperative game theory does not require that a

player’s payoff value at an end node depend only on the material consequences. In-
deed, two plays resulting in the same vector of material consequence may well differ in
terms of information sets reached, choices made etc., aspects that may be relevant for
players’ preferences.5 The formal machinery only requires the existence of a Bernoulli
function πi with domain T (or, more conventionally, Ω) for each player i.
Indeed, a large number of experiments have convincingly - though perhaps not

surprisingly for the non-economist - shown that human subjects are not solely moti-
vated by their own monetary gains.6 This led researchers to postulate payoff functions
which allow for a trade-off between own material gains and “fairness”, see e.g. Fehr
and Schmidt (1999) and Bolton and Ockenfels (2000a). However, even these more
general payoff function forms are sometimes still too special, since they require that
each payoff value depend only on the vector of material consequences at that end node.
Falk et al (1999), Binmore et al (1999), Bolton and Ockenfels (2000b) and Brandts
and Solà (2000) give experimental evidence that human subjects also care about the
choices made along a play up to the end node, see below.7 This last observation has
implications for backward induction arguments, see below.8

5For example, you may not want to accept stolen money offered to you, or money offered by
someone who in other ways has harmed another person or violated your moral norms.

6For early contributions, see e.g. Roth, Malouf and Murnigham (1981), Güth, Schmittberger and
Schwarze (1982), Binmore, Shaked and Sutton (1985), and Ochs and Roth (1989).

7While psychological game-theory (see Geanakoplos, Pearce and Stacchetti (1989), Rabin (1993)
and Dufwenberg and Gneezy (2000)) generalizes the notion of a game by explicitly allowing play-
ers’ preferences to also depend on their expectations, the present discussion sticks to the classical
approach in game theory in which preferences are defined over the set of plays, or, equivalently, the
set of end-nodes.

8I am grateful to Sylvain Sorin for pointing this out.
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2.2. Epistemic interpretations. At least two notions of “rationality” are used
in non-cooperative game theory. The most common , which here will be called
rationality1 (or “Savage rationality”), dictates avoidance of strategies that are not
the best reply to any strategy profile in the game. By contrast, rationality2 (or
“strict dominance rationality”) dictates avoidance of strictly dominated strategies.
Evidently rationality1 implies rationality2. As is well known, the converse is generally
true only in two-player games, see Pearce (1984). Common knowledge of rationality1

implies play of rationalizable strategies (Pearce (1984)), while common knowledge of
rationality2 implies play of strategies that are not iteratively strictly dominated. Ra-
tionalizability is a coarsening of Nash equilibrium. Non-cooperative game theory also
provides many refinements of Nash equilibrium. The most commonly used refinement
in extensive-form games being subgame perfection (Selten (1965)). For precise suf-
ficient epistemic conditions for Nash equilibrium and subgame equilibrium, see e.g.
Tan and Werlang (1988), Reny (1993), Aumann (1995), Brandenburger and Aumann
(1995), Ben-Porath (1997) and Asheim (2000).9

3. Example

A class of game protocols that have been much studied in the laboratory are those
associated with the so-called ultimatum bargaining game - though this is not a game in
the theoretical sense. These two-player game protocols represent strategic interactions
where the subject in role A, the proposer, makes a suggestion to the subject in role B,
the responder, for how to split a given and known sum of money. The responder may
accept or reject the proposal. If accepted, the sum is split as proposed. If rejected,
both subjects receive nothing. Figure 1 shows the extensive form of a simple such
strategic interaction, a mini ultimatum-game protocol, where the proposer has only
two choices, either to offer the responder 50% (and keep 50% for himself), or to offer
the responder 10% (and keep 90% for himself). The responder does not have the
possibility to reject the 50/50 split in this game protocol, but she can choose whether
to accept or reject the 90/10 split, if proposed. Hence, each player role has two pure
strategies. This game form has three plays: T = {τ1, τ2, τ3}. In play τ1, player A
proposes the equal split, and play stops at end node ω1. In play τ2, A proposes the
90/10 split, B accepts this, and play stops at end node ω2. In play τ3, finally, A
proposes the 90/10 split, B rejects this, and play stops at end node ω3.

9Sufficient conditions for equilibrium play in epistemic models of games of imperfect information
are typically based some form of mutually known “recommendation” or “expectation.” In order to
test the predictions of these models, the experimentalist thus needs some mechanism that makes a
“recommendation” or “expectation” publicly known to the subjects. Brandts and MacLeod (1995)
report results from experiments with recommended play. An alternative, “subjectivistic,” approach
is suggested in Kalai and Leherer (1995).
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50/50

90/10

accept

reject
A B

ω1 ω2

ω3

Figure 1: A mini ultimatum-game form.

In the early experimental literature it was presumed that the payoff values to the
subjects are their own monetary gains. Hence, in strategic interactions like this, play
τ2 was predicted, i.e., that A proposes the 90/10 split and B accepts. This is of course
the unique subgame-perfect equilibrium of the game that results if preferences are
such. The implicit hypothesis in this early literature is fivefold:10

(H1) the responder prefers play τ2 over play τ3,

(H2) the responder is rational in the sense of playing according to his or
her preferences,

(H3) the proposer role knows that H1 and H2 hold (or at least believes
that they hold with a sufficiently high probability),

(H4) the proposer prefers τ2 over τ1, and

(H5) the proposer is rational in the sense of acting in accordance with his
or her knowledge and preferences.

A large number of laboratory experiments with ultimatum bargaining have shown
that many proposer subjects instead offer a sizable share to the responder, and that
many responder subjects reject small shares. In the present mini ultimatum-game
form, this corresponds to play τ1. Such findings were initially interpreted as rejec-
tions of the subgame perfection solution concept. What was rejected was the com-
bined preference-cum-knowledge hypothesis H1-5 given above. But since hypothesis

10In more complex games, hypotheses H2 and H5, which here seem innocuous, may actually be
highly implausible. For example, in chess we know that H2 and H5 do not hold: no human player
knows how to play optimally (presuming a strict preference for winning) from all game positions on
the board.



Testing game theory 9

H1 is not generally true, the combined hypothesis must be false, and the whole exer-
cise seems superfluous. From the viewpoint of game theory, it would have been more
interesting to see experimental findings concerning subjects’ preferences, thereby sug-
gesting what the game played might be.
In the present example, let ºA be a proposer subject’s preferences over the set

T , and let ºB be a responder subject’s preferences over the same set. Associated
with this simple game form, and assuming strict preferences, there are potentially
as many as 36 ordinal games.11 For example, a subject in player role A may have
the preference τ2 ÂA τ1 ÂA τ3, and the subject in role B may have the preference
τ1 ÂB τ3 ÂB τ2.

12 The associated ordinal game would have the 50/50 split as its
unique subgame perfect outcome, and hence play τ1 would not be evidence against
subgame perfection but for subgame perfection. Another possibility is that A has
preferences τ1 ÂA τ2 ÂA τ3. Irrespective of B’s preferences, the unique subgame
perfect outcome would again be the play τ1, etc.
In an experimental study of a “mini ultimatum-game” protocol not very different

from the one in Figure 1, Falk et al (1999) found evidence in support of the hypoth-
esis that the recipient’s rejection rate depends on the alternative choices available to
the proposer along the play in question. In the present example, this means that
B’s relative ranking of plays τ2 and τ3 may depend on the material consequence of
play τ1.

13 If the alternative choice available to the proposer instead had been, say, a
100/0 split, then the evidence in Falk et al (1999) suggests an increase in the popu-
lation share of responder subjects who would prefer τ2 over τ3.

14 As indicated above,
this observation has far-reaching implications for backward induction arguments: for
many subjects in roles A and B in the game protocol in Figure 1, the subgame be-
ginning at B’s node is not independent of the full game protocol: a change of the
material consequences of play τ1 may affect the preferences of player B. Hence, the
usual practice in game theory of analyzing a subgame as if were independent of its
context (the remaining truncated, or ”pruned” tree) is erroneous: the subgame may
change if the something in the rest of the game is changed. The backward induction
argument has to be made with reference to a fixed and given context game.

11More exactly, there are 6 complete, transitive and irreflexive orderings of the three plays, and
hence 36 = 62 ordinal strict preference profiles in this game form.
12There is experimental evidence that many subjects have such preferences.
13This raises an interesting issue of whether such responder behavior violates independence of

irrelevant alternatives. This is a subtle question because of the interlinkage between choices in
games: the choice not to offer the equal split is part of both play τ2 and play τ3.
14Such evidence can also be viewed as a violation of subgame consistency, see Binmore et al (1999).
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4. Backward induction

In a given game form Φ, let X0 be the subset of nodes x in Φ such that x either
is a move by nature, or {x} is an information set of a personal player such that no
information set in Φ contains both a successor node x0 and a non-successor node x00

to x. For the purpose of this discussion, let us call this (non-empty) subset X0 the
set of clean branching points, and the part of the game form that begins at such a
node x the subform with root x. Likewise, let a subgame protocol be defined as the
game protocol (Φx, γx) obtained from (Φ, γ) when play starts at a clean branching
point x of Φ. Suppose the number of personal players in Φ is n, and suppose that
π : T → Rn is their joint Bernoulli function. A subgame of the game Γ = (Φ, γ,π) is a
game Γx = (Φx, γx,π

x), where πx is the restriction of π to the subset Tx ⊂ T of (full)
plays τ ∈ T that contain x.15 In particular, πx does not, as is usual assumed, have as
its domain the set of plays beginning at the root x of the subform Φx - these truncated
plays start at x, and thus do not contain the (shared) history leading up to x from
the root of the full tree. Since players’ preferences πx in the subgame may depend on
the choices made along the way up to its initial node x, the subgame Γx is in general
not identical with the game Γ0 = (Φx, γx,π0) that is obtained if the subgame protocol
is played in isolation, that is beginning at node x without the “history” in Φ leading
up to x.
The observations in Falk et al (1999) show that this distinction is sometimes cru-

cial. However, a restricted form of backward induction is still sound. One simply
has to first define the full game protocol and all players’ preferences in this protocol.
Once this has been done, one may formally define, for instance, subgame perfect
equilibrium as a strategy profile σ that induces a Nash equilibrium on every subgame
Γx = (Φx, γx,π

x), for all x ∈ X0, where πx : Tx → Rn is the restriction of π, the com-
bined Bernoulli function in the full game Γ (and not the combined Bernoulli function
in the game that is obtained by starting play with x as the initial node). It is an
empirical question whether “Kuhn’s algorithm” is valid: Are players’ preferences un-
affected if a subgame protocol (Φx, γx) is replaced by an end node to which is assigned
the material consequences, or a lottery over such, of one of the Nash equilibria of the
subgame Γx = (Φx, γx,π

x)?16

15The set of players in the subgame should be the same as in the full game, even if not all players
have a move in the subgame, since otherwise preferences may be affected. Hence, the notion of a
game has to be extended so as to include ”passive” players if needed.
16Actually, Kuhn’s algorithm can be interpreted in a more abstract sense: the initial node x of

a subgame is replaced by a terminal node which has such material consequences that all players’
preferences in the remaining (”pruned”) game form can be represented by the same payoff values
as before, at all end nodes not following x, and by the payoff value that correspond to a Nash
equilibrium in the subgame. It is an open question, however, if this is possible.
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For the sake of illustration, consider the unique proper subform of the game form
in figure 1. This subform begins at the node x where player B has to accept or reject
the proposal 90/10. Viewed in isolation, this is a one-player game protocol, where
the unique player (B) has a binary choice of either (a) receiving 10 dollars and the
remaining 90 dollars be given to a passive player A, or (b) receiving 0 dollars and no
money is given to the passive player A. I guess most subjects in this one-player game
protocol will choose the first option. However, we also know that many subjects in
player role B in the full game protocol in figure 1 choose the second option. Suppose,
moreover, that the preferences of player B in the full game protocol ranks play τ3
(reject) before τ2 (accept). Kuhn’s algorithm presumes that, without affecting A’s
preferences, we may replace B’s decision node by a terminal node with material
consequences 0/0.
A distinct, but for analytical and predictive purposes related issue is whether hu-

man decision makers’ preferences meet the dynamic consistency requirement implicit
in the very definition of an extensive-form game. Do individuals rank the plays in a
game protocol in the same way at each of their (individual) information sets? Cer-
tain experimental evidence suggests a negative answer, see Ainslie (1992) for a survey
over empirical evidence that many subjects have hyperbolic rather than exponential
time preferences, and thus rank future options differently depending on the date at
which they make their ranking. In this case, one can construct extensive-form game
protocols in which subjects’s preferences will depend on the current information set
at which they are. For example in a game protocol concerning savings decisions, it
may well be that many subjects will at their first decision node prefer more savings
at later decision nodes, but when one of these later decision nodes have been reached
will prefer less savings at that node, see e.g. Laibson (1997) and Harris and Laibson
(2001). This calls for a revision of the notion of an extensive-form game, allowing for
the possibility that a player’s preferences depend on the information set.17

At an even more basic level, one may ask if human subject reason in a way that
is consistent with backward induction. Johnson et al (2000) give “hard” empirical
laboratory evidence that suggest a negative answer in many game protocol. By way
of cleverly designed software, these researchers were able to show that many subjects
in certain sequential bargaining protocols do not even consider later decision nodes
when making decisions at earlier decision nodes.

17Theoretical possibilities to relax this and certain other limitations of the current definition of
the extensive form are being investigated in a joint research project with Alos Carlos-Ferrer and
Klaus Ritzberger.



Testing game theory 12

5. Interpersonal preference dependence

Even if we correctly identify the game associated with the game protocol in figure 1,
for a particular pair of subjects, and this game indeed has a unique subgame-perfect
equilibrium, non-cooperative game theory does still not provide any prediction. Em-
bedded in an epistemic model, such a prediction assumes (at least) that player A
knows (or has almost correct beliefs about) B’s ranking of plays τ2 and τ3.
The identification of players’ preferences raises a fundamental issue in the very

definition of a game, namely whether a player’s preferences may depend on (knowledge
of, or beliefs about) another player’s preferences, which in its turn may depend on
(knowledge of, or beliefs about) the first player’s preferences etc. Such potential
interpersonal preference dependence is theoretically disturbing since it makes the
domain of preferences unclear, and yet such interdependence might realistically exist
in some interactions. This is the case, if, for instance, a subject’s ranking of plays in
a game protocol with monetary payoffs depends on whether or not another subject
is (known or believed to) be “generous” or “cheap.” One subject, I, may be willing
to share money with another subject, J , if I knows that J would (prefer to) share
money with I at a similar decision node for J , while I may not be willing to share
money with J if I would know that J had preferred not to share money with I. If
the subjects’ preferences are mutually dependent in this way, then we face a problem
of self-reference in the very definition of a game.
From a theoretical viewpoint, such potential preference-interdependence calls for

a representation in the style of the usual Harsanyi transformation of a game of in-
complete information into a game of incomplete but imperfect information. In order
to handle interpersonal preference dependence in this way, the type space has to be
chosen rich enough so that a type can be identified as a combination of a preference
in the game protocol, and a belief about others’ preferences in the protocol. From
a predictive viewpoint this approach meets certain difficulties, however. First, the
resulting game might have a large set of equilibria. Second, the game may become
so abstract that human subjects would find it hard to state their preferences in that
“meta game.” Moreover, it does not seem clear that one can guarantee that the pref-
erences in the so constructed meta game do not exhibit interpersonal dependencies,
hence potentially leading to an infinite regress of meta games with higher and higher
type spaces. This route of investigation has substantial theoretical interest, I think,
but falls outside the scope of the present investigation.
Instead, a partial analysis of interpersonal preference dependence is here sketched,

not in order to “solve” this problem, but rather in terms of a given game protocol
associated with a given game form or game protocol. For this limited purpose, con-
sider a finite game protocol (Φ, γ) with n personal players. Let ∆ = ∆ (T ) as before
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denote the set of lotteries over the plays in Φ. Without loss of generality, normalize
all Bernoulli functions to take non-negative values summing to one; πi(τ) ≥ 0 for all
τ ∈ T , and Pτ∈T πi(τ) = 1. We may thus identify each Bernoulli function πi with a
point in the same unit simplex ∆ in R|T |. Suppose each player i has von Neumann-
Morgenstern preferences over the set ∆ of lotteries over T , given any (hypothetical)
profile π0−i = (π0j)j 6=i ∈ ∆n−1 of normalized Bernoulli functions πj : T → R for all
other players j. Let πi ∈ ∆ be the normalized Bernoulli function for player i’s von
Neumann-Morgenstern preferences, given π0−i. This defines a function ϕi : ∆

n−1 → ∆,
where the Bernoulli function πi = ϕi

¡
π0−i
¢
represents player i’s preferences over plays

when faced with other players with Bernoulli functions π0−i.
18 For any given hypo-

thetical preference profile π0 ∈ ∆n, let π = ϕ(π0) ∈ ∆n, where ϕ : ∆n → ∆n is
defined by combining the player-specific mappings ϕi.

19 If this combined mapping
ϕ is continuous, then, by Brouwer’s fixed-point theorem, there exists at least one
Bernoulli-function profile π∗ ∈ ∆n such that π∗ = ϕ (π∗). Such a function profile will
be called interpersonally consistent. For each player i, π∗i is a Bernoulli function for
that player, when facing other players with Bernoulli functions π∗j , for all j 6= i. The
triplet (Φ, γ,π∗) constitutes an extensive-form game with interpersonally consistent
payoffs. Such a game, and only such a game, can be common knowledge among the
players. We have established the following proposition.

Proposition 1. Let (Φ, γ) be a game protocol, and suppose i’s preferences in this
protocol are given by πi = ϕi

¡
π0−i
¢
, for all π0−i ∈ ∆n−1, where ϕi : ∆

n−1 → ∆ is
continuous. Then there exists at least one game (Φ, γ,π∗) where the payoff profile
π∗ : T → Rn is interpersonally consistent.

Note that the proposition does not exclude the possibility of multiple games as-
sociated with one and the same game protocol. In order to illustrate this possibility,
consider the game protocol in Figure 2 below.20 There, a mini “dictator game” form
is played after the tossing of a coin deciding who of the two players should be the
“dictator.” The game form has four plays: τ1, where A is the dictator and proposes
50/50; τ2, where A is the dictator and proposes 90 for herself and 10 for B; τ3, where
B is the dictator and proposes 50/50; and, finally, τ4, where B is the dictator and

18This approach short-cuts the potential infinite regress that may arise if a player i does not only
care about player j’s Bernoulli function πj , but also about how j arrived at his or her Bernoulli
function, i.e. if i cares about the whole mapping gj , not only its current value ϕj (π−j), see remark
below.
19Expand the domain of each ϕi to ∆

n by letting ϕi (π
0
1, ..,π

0
n) depend only on π0−i.

20I am grateful to Alvin Roth for suggesting this game protocol, which is simpler than the one I
originally suggested.
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proposes 90 for herself and 10 for B (”90/10” in the diagram thus refers to 90 to the
proposer, who may be A or B, and 10 to the responder).

50/50

90/10
A

ω1

50/50

90/10
B

ω3

[.5]

[.5]

0

ω4

ω2

50/50

90/10
A

ω1ω1

50/50

90/10
B

ω3

[.5]

[.5]

[.5]

[.5]

0

ω4ω4

ω2ω2

Figure 2: A mini dictator-game form with randomly assigned dictator.

Suppose the subject in player role A ranks highest the play τ1 (A being the
dictator and proposing fair division) if and only if B’s most preferred play is τ3 (B
being the dictator and proposing fair division). Suppose also that A ranks highest
the play τ2 (maximal monetary gain for A) if and only if B’ most preferred play is τ4
(maximal monetary gain for B). In other words, each subject is generous if the other
is generous and selfish if the other is selfish. With such subjects, this game protocol
has (at least) two games, each with interpersonally consistent preferences. In the
first game, the unique subgame perfect outcome is the monetary outcome (50, 50) for
sure, while in the second the unique subgame perfect equilibrium outcome is a two
point probability distribution, yielding monetary consequences (90, 10) or (10, 90),
with equal probability.
In order to illustrate the opposite possibility, that of non-existence of a game,

consider any two-player game protocol where the two players as siblings, with player
1 being older than player 2, and where 2 admires 1, but 1 wants to differ from 2. If
told player 2’s preference ordering, player 1 always has another preference ordering,
while if told player 1’s preference ordering, player 2 has the same ordering as player
1. In such a situation it is possible that no game exists.
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Remark 1: Continuity of the mapping ϕ was seen to be sufficient for the exis-
tence, but not uniqueness, of interpersonally consistent preferences. By the contrac-
tion mapping theorem, uniqueness is guaranteed if ϕ : ∆n → ∆n is a contraction.

Remark 2: The present approach sidesteps the potential infinite regress in pref-
erence formation, mentioned above. For it assumes that i’s Bernoulli function be a
function of j’s Bernoulli function πj, not of j’s preference formation rule ϕj leading
to πj. For example, suppose the subject in player role A in the game form in figure
2 is asked to state his ranking of the four plays, not given B’s (hypothetical) ranking
of plays, but given B’s (hypothetical) conditional ranking rule ϕB of plays. One of
B’s many (hypothetical) conditional rankings places τ3 in top if A places τ1 in top,
and otherwise B places τ2 in top. This defines πA as a function ψA of ϕB. Next,
suppose B would know ψA, potentially leading to πB as a function χB of ψA, etc. ad
infinitum. A theoretically satisfactory treatment of this problem might be found in
the style of the Harsanyi approach mentioned above.

Interpersonal preference dependence is an empirical question, in principle open
to testing. I expect that in many, if not most, game protocols relevant for economic
analysis, preferences are not interpersonally dependent. In this respect, ultimatum
bargaining and dictator game protocols, which are popular for laboratory experi-
ments, seem to constitute “worst case scenarios” for controlled testing of standard
epistemic non-cooperative game theory.

6. Testing epistemic game theory

6.1. Identifying the game. If the experimentalist’s task is restricted to identi-
fying a game which represents the interaction of given human subjects in the player
roles of a given game protocol, without having the subjects play the game together,
then subjects do not have any incentives to misrepresent their true preferences.21

The experimentalist’s task is then to find an interpersonally consistent payoff profile
over the set of plays, or, alternatively, an interpersonally consistent profile of ordinal
preferences of the set of plays. In principle, this can be done by means of an extension
of the usual revealed-preference approach. Instead of asking subjects which play they
would choose out of any subset of plays (like choosing among consumption baskets),
the experimentalist has to ask which play the subject would prefer to happen - since
a play in general also depends on other subjects’ choices.
In practice, how can this be done? Suppose we have an extensive game form Φ

with n player roles, and with material consequences γ : T → C. The analyst may

21Even if subjects do not have any incentives to misrepresent their preferences, it may easily be the
case that they also lack incentives to truthfully report their preferences. An important challenge for
the experimentalist is thus to provide subjects with incentives to truthfully report their preferences.
Here lessons from experimental psychology seem relevant.
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then elicit the ordinal preference ordering <i over T , of each subject, in his or her
player role i, for i = 1, 2, ..., n, given any hypothetical preference profile <−i for the
subjects in the other player roles. There are finitely many such hypothetical profiles.
This way, the analyst can identify each subject’s ordinal preference ranking, for each
possible preference ordering that the subjects in the other player roles might have.
If there exists a preference profile <∗ such that each subject i has preferences <∗i
over T , given <∗−i, then (Φ,<∗) constitutes an ordinal game. It may be harder to
find Bernoulli functions, though, since the set of potential such profiles constitutes
a continuum. An alternative, less theoretically stringent but in many cases perhaps
sufficient approach, would be to first ask each subject to rank the plays, with no
information about the other subject’s ranking, then make these rankings public to
all subjects, and then ask the subjects if their rankings have changed in the light of
this information. If no subject changes his or her ranking, then these are (at least
approximately) interpersonally consistent preferences for those subjects in that game
protocol. If at least one of the subject changes his or her ranking when informed
about the others’ rankings, then this is empirical evidence for the hypothesis that
preferences in games may be interdependent. The experimentalist could then make
the subjects’ new rankings public, and ask them if they now want to change their
rankings, etc. until no change occurs (or give up if rankings keep changing).22

There is yet another difficulty in identifying preferences. Subjects’ preferences may
depend on what they know or believe about the other subjects’ personality, income,
gender etc. For example, if the proposer subject in Figure 1 would know that the
responder subject is a criminal, a hero, a close relative, a wealthy or poor person,
a man or woman, old or young, then this could influence the subject’s preferences
over plays (even if the other subject’s preferences were known and kept constant).
If this is possibly the case, then such background information should be part of the
information provided to the subjects, if the game is intended for predictions in such
environments. Indeed, this seems to be done in part in many experiments by way of
telling the subjects from what population pool the subjects have been drawn.
If a player role has multiple information sets in the game form, then one needs

to test for dynamic consistency of the subject’s preferences. More precisely, for the
subject in such a player role, and for each of his or her information sets in the game,
one should test whether the subject, once one of his or her information sets has been
reached by play, ranks the plays through the information set in the same way as the
subject ranked them before play (at the initial node of the game form).
If the game has been successfully identified, and no dynamic inconsistency found,

22In case the game is to be played after this identification, then the analyst faces the issue of
subjects’ strategic misrepresentation of their own preferences, see next section.
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then the experimentalist has found a game that represents the interaction at hand.
In this case, the analyst may apply game-theoretic solution concepts to the identified
game.
As a first shot at the issue of game identification, it would be interesting if exper-

imentalists, after having made an experiment in the currently customary way, would
ask the subjects to rank all possible plays in the game form, ask them whether their
rankings depend on (their knowledge of or beliefs about) the rankings of the subjects
in the other player roles, why they have played the way they did, etc. This could
guide future experiments involving game identification and solution testing.

6.2. Solution concepts. Suppose that the experimentalist wants to test a given
game-theoretic solution in a game that represents the interaction of given human
subjects in the player roles of a given game form. If the subjects in the identification
phase expect the game to be played by themselves in the player roles they have, and
against “opponent subjects” who have been informed about their preferences, then
they may have incentives to misrepresent their true preferences. In order to test game
theoretic solutions, the experimentalist thus has to find some incentive-compatible
scheme for preference revelation in the game protocol, such that the game can be
made publicly known to the subjects without giving them incentives to misrepresent
their preferences in the preceding game identification. Some approaches to counter
this potential source of preference distortion will be briefly discussed. Note, however,
that in some interactions such incentives may be insignificant or absent, in which case
the following suggestions are unnecessarily cautious; the experimentalist can then just
go ahead along the lines suggested in the preceding subsection.
Hypothetical play. Present a game protocol to one subject and assign a player

role to this subject. Assign hypothetical payoff (Bernoulli function) values to each
play (or end node) of the game, for all other player roles. Then identify the subject’s
preferences, given this game protocol and hypothetical preference profile for the other
players. This defines a game, and hence allows the application of game-theoretic so-
lution concepts. In the spirit of Selten’s so-called strategy method (Selten (1967), one
could ask the subject questions, at each of his or her information sets, such as: “If
play would reach this information set, and the other players had the preferences rep-
resented by their payoff values, what choice would you then make?” Anticipation in
the game identification stage of such “hypothetical play” should not have a distorting
effect on the subject’s incentives to truthfully report his or her preferences.
Play against computerized clones.23 Allocate one subject to each player role in

a given game form. Inform each subject that he or she will not play against the

23This approach seems less suitable for game protocols where subjects have interdependent
preferences.
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other subjects, but against computer “clones” on their behalf. Each clone will be
programmed according to the “parent” subjects’ preferences, that the experimental-
ist has elicited, but independently of all other subject’s stated preferences. Hence,
each clone’s play will be independent of the subject’s stated preferences in the game
identification phase. This way, a game can been identified, and game-theoretic so-
lutions may be applied. The analyst may let each subject play in his or her player
role, against these computer clones replacing the other subjects, and let the “parent”
subjects obtain the material rewards stipulated in the game protocol. It is possible
that subjects’ preferences will be different when they know that they will play against
computers rather than human subjects - even if they know that the. However, note
that unlike some such experiments, subjects will receive material rewards from their
clones’ play, and this will be known by the subjects.
Play under incomplete information. A third approach, does not lead to a test of

solutions in the same game as before, but avoids the potential incentive to misrep-
resent one’s preferences. This approach is restrictive, it presumes that all subjects’
preferences are interpersonally independent (which can be empirically tested). Take
m > 1 subjects for each of the n player roles in a given game form. Identify each
subject’s preferences over the plays of the game. Then draw at random one subject
from each of the n groups to his or her player role. Inform each of the drawn subjects
of the preference distribution in each of the other groups, excluding the subject drawn
to play the role in question (hence, a distribution over m− 1 subjects in each of the
other player populations). This way, no playing subject’s preferences is revealed to
the other playing subjects. Therefore, subjects should not have incentives to misrep-
resent their preferences (just as in the Clark-Groves mechanism) and yet each subject
obtains relevant statistical information about the likely preferences of each opponent
subject (the “type” distribution), more relevant the larger m is and the more homo-
geneous each group is. In the most fortunate case for the experimenter, all subjects
in each player subpopulation have the same preferences (or sufficiently close to induce
the same behavior). In this case, we in practice have obtained a publicly known game
of complete information, without incentives for untruthful preference announcements.
With heterogeneous preferences, this kind of experiment can be used as a test of solu-
tion concepts for the corresponding game of incomplete information. For example, in
the game protocol in Figure 1, standard epistemic game theory models would predict
that the responder subject will play optimally according to his or her preferences,
while the proposer subject will maximize his or her expected payoff (Bernoulli func-
tion), subject to the inferred distribution of optimal responses for a randomly drawn
responder subject.24

24Falk et al (1999) find evidence pointing in the direction of such optimizing behavior.
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6.3. Conjectures. The author’s conjecture is that, if a game has been identified
and made publicly known to all subjects, then a vast majority of these subjects
will play the subgame perfection equilibrium in such simple game forms as the one
in figure 1. In slightly more complex game forms, however, violation of subgame
perfection and also of weaker solution concepts will presumable not be infrequent.
For instance, experimentalists have presented large groups of subjects - the readers of
a certain newspaper - with the following “beauty-contest game protocol.” Without
observing each others’ choices, each subject has to choose a nonnegative number
not exceeding 100. The subject(s) with the number closest to 2/3 of the average of
all chosen numbers share a pre-specified monetary prize (by means of a fair lottery
among the winners), and the other subjects receive nothing, see e.g. Nagel (1995)
and Bosch et al (2000). Let us say that individuals with the best guess “win.” It turns
out that subjects’ choices vary over a wide range of numbers, despite the fact that
the number zero is the unique Nash equilibrium strategy in the game that results if
every subject prefers “winning alone” over “shared winning” over “not winning”.25

Indeed, some subjects reported that they had come to the conclusion that zero is
the unique “equilibrium guess” but had nevertheless chosen a positive number, since
they (correctly) believed that not all others will play the equilibrium strategy. (The
equilibrium strategy was not a winning strategy in any of these experiments.)
Suppose that the above experiment would be carried out in the laboratory, but

with a fixed and known number n > 2 of subjects, and with all subjects’ preferences
identified. Suppose moreover that the resulting game were made public information to
all the n subjects. Suppose that the experimentalist found that every subject prefers
winning alone over shared winning over not winning. Then the game’s unique Nash
equilibrium would be that everybody chooses the number zero. However, in view of
Nagel’s et al’s findings, one can expect that in the first few rounds of recurrent play
of such a game form, subjects’ guesses are far off the Nash equilibrium (given the
expected preferences), while their guesses tend to converge to Nash equilibrium over
time. Nagel has also carried out the above experiment, with similar results, in the
case n = 2, although that game, with the same preferences as mentioned above, has
exactly one dominant strategy for each player, namely the number zero. This number
is a best reply to all choices of one’s opponent. To choose a positive number thus
violates cautious rationality1, but not rationality1.26

25The question of preferences is an empirical question also in this game form. The stated pref-
erence hypothesis is violated if, for example, some subject prefers that another subject wins. Such
preferences have been observed in these experiments - the subjects in question were close relatives
(Nagel, personal communication).
26In a similar spirit, Søvik (2000) gives experimental evidence concerning human subjects’ “depth

of reasoning” in the sense of the number of iterated eliminations of strictly dominated strategies.
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Many experiments concern ultimatum game forms, but also many other game
forms have been studied in the laboratory, such as so-called dictator “games” and
trust “games” (see e.g. Glaser et al (2000)). The methodological critique raised here
applies also to those experiments. Another popular probing stone for game theory has
been the repeated play of the prisoners’ dilemma. In this case, the present critique
applies at two levels. First, it is an empirical question whether the stage game indeed
is of the prisoners’ dilemma variety. Do all subjects in player role 1, say, prefer the
play (D,C) over the play (C,C) in the one-shot interaction? Second, it is an empirical
question if the repetition of this interaction represents a repeated game in the usual
game-theoretic sense. The latter requires, among other things, that preferences over
plays are additive functions of the monetary gains in all rounds. In particular, this
precludes the possibility that players’ preferences also depends on the sequencing per
se of “defections”, “retaliations”, “punishments” etc.

7. Empirical game theory - a rough outline

An “empirical” interpretation of game theory is here outlined, an interpretation that
(a) does not presume that the players have any knowledge of unobservables (others’
preferences, knowledge or rationality), (b) allows preferences to depend on observa-
tions of others’ play, and (c) presumes a certain degree of rationality. The interpreta-
tion differs from both the rationalistic and the evolutionary interpretations in a few
respects. It takes as given a game protocol (Φ, γ), and it defines equilibrium as a
property of an outcome in such a protocol, not as a property of a strategy profile in
a game.
For each player role in the game form there is a finite population of individu-

als (in the laboratory: subjects). Unlike Nash’s mass action interpretation and the
evolutionary interpretation, each such player populations may be heterogeneous with
respect to preferences. Moreover, individuals’ preferences may depend both on the
game protocol at hand, and on observations of the outcome of others’ play (obser-
vations that may serve as a basis for beliefs about others’ preferences). The game
protocol is played recurrently between randomly matched individuals, and these are
informed of play in the recent past. When called upon to play, the individual commits
to a mixed strategy in the game form at hand, before play, and has to stick to that
strategy when the game is played.

7.1. Definition. Consider an n-player game protocol (Φ, γ), and, for each player
role i in Φ, a finite population Ai of individuals, where all populations are disjoint.
When the game is played, one individual is drawn at random from each population
i, with statistical independence and equal probability for all individuals within each
population. We call such a triplet Ψ = (Φ, γ, A), where A = (A1, A2, ..., An) a
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population game protocol.
Definition: For any ε > 0, an outcome p ∈ ∆ (T ) constitutes an ε-precise empirical

equilibrium of the population game protocol Ψ = (Φ, γ, A) if there for every player
role i and individual a ∈ Ai exists a mixed-strategy profile σa ∈ ¤ (S) such that:
(A) σai is a best reply for individual a in role i to σa,

σai ∈ arg max
σi∈∆(Si)

uai
¡
σi,σ

a
−i
¢
, (1)

(B) its outcome is within distance ε from p, and
(C) the induced aggregate behavior µ ∈ ¤ (S), defined by

µi =
1

|Ai|
X
a∈Ai

σai ∀i,

has its outcome within distance ε from p.
Here uai : ¤ (S) → R is the payoff function associated with a Bernoulli function

πai : T → R that represents a’s preferences, in his or her player role i in the game
protocol (Φ, γ), and given (some empirical observation of) p. The strategy profile
σa thus represents both a’s behavior, σai , and a rationalizing expectation of others’
behaviors (in a random matching), σa−i. In other words: the defining property of
an empirical equilibrium is that every individual should play a best reply, in his or
her player role, against some expectation of others’ behaviors which is approximately
consistent with the given outcome p, and the population aggregate of these best
replies should also be approximately consistent with the given outcome.
The concept of empirical equilibrium is closely related to that of Nash equilibrium.

Suppose p is the outcome of a Nash equilibrium σ∗ in a game Γ = (Φ, γ,π), then p is
a precise empirical equilibrium, that is, an ε-precise empirical equilibrium for ε = 0,
of the population game protocol Ψ = (Φ, γ, A), where all individuals in population i
have the same preferences πi, given Φ, γ and p (each population could, for instance,
consist of one individual).

7.2. Experimental testing. Here an experimental setting for testing of empirical
equilibrium is outlined.
Step 1. The experimentalist informs all subjects about the game protocol, in

such a way that it is clear to each subject that also the other subjects have been
likewise informed. The experimentalist divides the subject pool into equally large
subpopulations, say each of size m, and assigns each subpopulation to a player role
in the game form. The experimentalist informs each subject which player role that
subject will have in the game protocol, i.e., which player population the subject
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belongs. This should ensure that the game protocol is practically speaking ”common
knowledge” in the total population A of subjects.
Step 2. The game protocol is played with random matching in L+K rounds. In

each round, all mn subjects are randomly matched into m groups, where each group
consists of n subject, one subject from each player population. Each such group plays
the game protocol once. The numbers L and K are chosen beforehand by the experi-
mentalist. The first L rounds are “learning rounds,” and will not be used for testing,
and the subsequent K rounds are recorded for testing purposes. The matchings are
set up in such a way that all matchings in each round are equally probable, and such
that there is statistical independence between all matchings. Hence, during these
L+K rounds, each subject plays the game protocol exactly L+K times, each time
in the same player role, and against a randomly drawn (n− 1)-tuple of subjects in
the other player roles. After each round, each subject is informed about the full play
that he or she just took part in.
Step 3. After the L+K plays, the analysts makes a statistical test of the hypothesis

that aggregate play (suitably represented) in the last K rounds is stationary. If
stationarity is rejected, then that ends the experiment, and no testing is done. If,
by contrast, the stationarity hypothesis was not rejected, then testing proceeds as
outlined below, under the presumption that aggregate play in the last K rounds is
stationary.
Step 4. The experimentalist calculates the empirical distribution of play, or the

empirical outcome, p̃, in the last K rounds, informs each subject of p̃, and then asks
each subject to choose a strategy (mixed or pure) for one additional round of play,
against randomly drawn opponents, just as in the preceding L +K rounds. These
choices will be the strategies σai , and their aggregate defines µ ∈ ¤ (S) They will
be implemented (in order to make the subjects’ choices payoff relevant), one random
matching for each subject, executed as follows: for a given subject a ∈ Ai, play σai
against a (computer based) realization of µ.
Step 5. Elicit each subject’s preferences, directly or indirectly by way of restrict-

ing preferences to some pre-specified class. The first approach in principle allows for
testing of the empirical equilibrium hypothesis per se, while the second only allows
for testing the empirical equilibrium hypothesis in conjunction with some preference
hypothesis. More exactly, in the indirect approach, the experimentalist postulates
a (restrictive) candidate class of payoff functions. The test then consists of find-
ing (by way of computer calculations), for each subject a some payoff function in
the corresponding class such that the subject’s strategy choice σai is consistent with
maximization against some belief σa ∈ ¤ (S) which is consistent with the empirical
outcome. For falsification to be possible, it is necessary that there exist a non-empty
subset of outcomes P ⊂ ∆ (T ) which are incompatible with optimality in the class.



Testing game theory 23

The empirical equilibrium hypothesis EEH(ε, δ): The empirical
outcome p̃ constitutes an ε-precise empirical equilibrium for at least the
fraction δ of all subjects a.

8. Concluding remarks

The outlined concept of empirical equilibrium differs from Eyster’s and Rabin’s (2000)
“cursed equilibrium” concept. The latter relaxes the standard notion of Bayesian
equilibrium in incomplete-information games by allowing for the possibility that play-
ers underestimate the informational content of other players’ actions. Their approach
maintains all other assumptions of the usual epistemic approach to game theory, and
therefore differs dramatically from the present approach.
The difference can be illustrated by means of their introductory example, where

a buyer may purchase a used car from a seller at a predetermined price of $1,000.
The seller knows whether the car is a “lemon” or not. If a lemon, then it is worth
$0 to both, while if not a lemon, then it is worth $2,000 to the seller and $3,000 to
the buyer, where both cases, lemon and non-lemon, are equally likely. The seller and
buyer are risk neutral and purely selfish. The two parties simultaneously announce
whether they want to trade or not, and the car is sold if and only if both parties
announce that they wish to trade. In this simultaneous-move incomplete-information
game, the seller has a weakly dominant strategy, namely to sell if and only if the car
is a lemon. If the seller uses this strategy, then the buyer should clearly not buy.
This is the unique perfect Nash equilibrium, and there exists no Nash equilibrium in
which trade takes place with positive probability. However, a sufficiently “cursed”
buyer may buy a lemon.27 A “fully cursed” buyer believes that a car for sale is a
lemon with probability 1/2, the prior probability for the car to be a lemon. Hence,
the payoff that the buyer (incorrectly) expects from announcing “buy” is $500, while
the buyer (correctly) expects a “pass” to result in $0 for sure. The fully cursed buyer
thus announces “buy,” and, in this cursed equilibrium, either gets nothing or a lemon.
This outcome is radically different from the Nash equilibrium outcome - no trade - and
it is also incompatible with empirical equilibrium. For the fully cursed equilibrium
induces two plays, namely τ1, “a lemon for sale, a willing buyer and trade,” and τ2,
“a non-lemon not for sale, a willing buyer and no trade,” respectively, each play with
probability 1/2. Given any outcome which assigns positive probability to the first
play, “buy” is a suboptimal strategy (given the presumed preferences), and hence no
such outcome is an empirical equilibrium.
The discussion in the preceding sections call for new experiments. In particular,

it would be valuable to see experiments where subjects’ preferences were identified -

27Eyster and Rabin (2000) parametrize the expectational cursing from “no curse” (Bayesian Nash
equilibrium) to “fully cursed equilibrium.”



Testing game theory 24

even without play of the resulting game. In the many game forms that have been used
in experiments up to date: how do subjects, when allocated to a particular player
role, information set etc., rank the set of plays? Do their rankings depend on their
beliefs or knowledge of the rankings of the other player subjects? If they do, can then
a game be identified, with preferences that are interpersonally compatible? If such a
game can be identified, and made public information to all subjects, do subjects play
according to standard game theoretic solution concepts?28 At a first stage in such
a research program, it might be advisable to at least initially restrict the domain of
game forms to such where subjects’ preferences are interpersonally independent.
More generally, it seems that standard epistemic game theory works best, as a

predictive tool, in game protocols where subjects’ preferences are interpersonally in-
dependent, and in that subclass of such games where subjects have no incentive to
strategically misrepresent their preferences. The first condition should be met in many
games of interest for economics, such as strategic market interactions. However, in
those settings, the second condition is usually not met; in many cases a subject does
have strategic incentives to misrepresent his or her preferences. For instance, in a
Cournot oligopoly interaction, it benefits a profit maximizing manager to make other
managers believe that he or she is not profit maximizing, but, say, sales maximizing.
However, in other cases, and in certain institutional settings for the Cournot interac-
tion, other players’ preferences can more or less be taken for granted. The empirical
equilibrium approach (as well as the evolutionary game theory approach) render both
these conditions irrelevant; other players’ preferences are simply not known.
An avenue for further theoretical elaboration of the empirical equilibrium concept

is to refine the belief requirements, to not only be, as here, consistent with observed
behaviors but also consistent with some general principles concerning others’ prefer-
ences and rationality.
It would also be interesting to see whether human subjects’ preferences in some

decision situations exhibit dynamic inconsistency. If this is the case, then the very
definition of an extensive form would need to be relaxed accordingly. Another aspect
of extensive-form games that could be tried empirically is simultaneity. In the formal
definition of a game, time per se is presumed to have no relevance. Is it indeed
the case that human subjects’ behavior are unaffected by temporal aspects that the
extensive form treat as irrelevant? For example, if subject A moves before subject
B in a “Battle-of-the-Sexes” interaction, but subject B is uninformed of A’s move,
will this not bias play towards the end-node with the highest monetary reward for

28A novel experimental approach is taken in Dufwenberg and Gneezy (2000). This study is focused
on subjects’ expectations about each other’s play and of the others’ expectations of play, in a given
game form.
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subject A, despite the fact that these decisions are modelled as simultaneous moves
in non-cooperative game theory?
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[22] Güth W., R. Schmittberger and B. Schwarze (1982): “An experimental analysis
of ultimatum bargaining”, Journal of Economic Behavior and Organization 3,
376-388.

[23] Harris C. and D. Laibson (2001): “Dynamic choices of hyperbolic consumers”,
Quarterly Journal of Economics 69, 935-958.

[24] Harsanyi J. (1967-8): “Games with incomplete information played by Bayesian
players”, Managemenent Science 14, 159-182, 320-334, 486-502.

[25] Johnson E., C. Camerer, S. Sen and T. Rymon: “Detecting failures of backward
induction: monitoring information search in sequential bargaining”, Columbia
School of Business, mimeo.

[26] Kagel J. and A. Roth (eds.) (1995): The Handbook of Experimental Economics,
Princeton University Press (Princeton, NJ).

[27] Kalai E. and E. Lehrer (1995): “Subjective games and equilibria”, Games and
Economic Behavior 8, 123-163.



Testing game theory 27

[28] Kuhn H. (1950): “Extensive games”, Proceedings of the National Academy of
Sciences 36, 570-576.

[29] Kuhn H. (1953): “Extensive games and the problem of information”, Annals of
Mathematics Studies 28193-216.

[30] Laibson D. (1997): “Golden eggs and hyperbolic discounting”, Quarterly Journal
of Economics 62, 443-479.

[31] Mitzkewitz M. and R. Nagel (1993): “Experimental results on ultimatum games
with incomplete information”, International Journal of Game Theory 22, 171-
198.

[32] Nagel R.-M. (1995): “Unraveling in guessing games: an experimental study”,
American Economic Review 85, 1313-1326.

[33] Nash J. (1950): “Non cooperative games”, PhD thesis, Department of Mathe-
matics, Princeton University.

[34] Ochs J. and A. Roth (1989): “An experimental study of sequential bargaining”,
American Economic Review 79, 355-384.

[35] Osborne M. and A. Rubinstein (1994): A Course in Game Theory. MIT Press
(Cambridge, MA).

[36] Pearce D. (1984): “Rationalizable strategic behavior and the problem of perfec-
tion”, Econometrica 52, 1029-1050.

[37] Rabin M. (1993): “Incorporating fairness into game theory and economics”,
American Economic Review 83, 1281-1302.

[38] Radner R. (1980): “Collusive behavior in noncooperative epsilon-equilibria of
oligopolies with long but finite lives”, Journal of Economic Theory 22, 136-154.

[39] Reny P. J. (1993): “Common belief and and the theory of games with perfect
information”, Journal of Economic Theory 59, 257-274.

[40] Roth A., M. Malouf and J. Murnighan (1981): “Sociological versus strategic
factors in bargaining”, Journal of Economic Behavior and Organization 2, 153-
177.

[41] Roth A. and I. Erev (1995): “Learning in extensive-form games: Experimental
data and simple dynamic models in the intermediate term”, Games and Eco-
nomic Behavior 8, 164-212.



Testing game theory 28

[42] Rubinstein A. (1991): “Comments on the interpretation of game theory”, Econo-
metrica 59, 909-924.

[43] Segal U. and J. Sobel (2001): “Tit for tat: Foundations of preferences for reci-
procity in strategic settings”, mimeo.

[44] Selten R. (1965): “Spieltheoretische Behandlung eines Oligopolmodells mit
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