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Abstract

The integration of electricity markets around the world has increased the impor-
tance of congestion between countries/states and has initiated a discussion of how
to harmonize network tariffs. This paper analyzes how the transmission capacity
and the transmission cost, such as a transmission tariff, influence bidding behav-
ior in electricity markets. It is shown that transmission costs can have seemingly
counter-intuitive effects. Normally, more transmission capacity would improve com-
petition, but this is not necessarily the case when one considers transmission costs.
The paper also illustrates that there are cases where increasing transmission costs
could have a pro-competitive effect and benefit consumers. In contrast, point of
connection tariffs, which are used in the majority of the European countries, always
push up electricity prices and always hurt consumers.
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1 Introduction

The integration of electricity markets around the world has increased the importance of
congestion between countries/states and has initiated a discussion of how to harmonize
network tariffs. In general, transmission from regions with low prices to regions with high
prices benefits social welfare. In deregulated electricity markets, more transmission would,
in addition, normally improve the market competitiveness. However, it is very costly to
expand transmission capacity. In order to focus investments to points in the grid where
the gains in terms of enhanced market performance will be the largest, one needs a bet-
ter understanding of how transmission capacity influences competition between spatially
distributed producers. The contribution of this paper is to characterize the outcome of
an electricity market auction and how it depends on transmission constraints and trans-
mission costs.

The analysis employs a simple duopoly model similar to that in Fabra et al. (2006).
In the basic set up, the two suppliers have symmetric production capacities and marginal
costs, but are located in two different markets ("North" and "South") that are connected
through a transmission line with a limited transmission capacity.1 Each firm faces a per-
fectly inelastic demand in each market that is known with certainty when suppliers submit
their offer prices. Each supplier must submit a single price offer for its entire capacity2
in a discriminatory price auction such as those used in the UK wholesale electricity mar-
ket. The assumption of price-inelastic demand can be justified by the fact that the vast
majority of consumers purchase electricity under regulated tariffs that are independent
of the prices set in the wholesale market, at least in the short run. The assumption that
suppliers have perfect information concerning market demand is reasonable when applied
to markets where offers are "short lived", such as in Spain, where there are 24 hourly
day-ahead markets each day.

Suppliers pay a monetary charge (tariff) to the network owner when using the grid.
The charge is linear and it depends on how much power the suppliers inject into the grid
(point of connection tariff ) or transmit through the grid (transmission tariff ). The ma-
jority of European countries (ENTSO-E, 2013) have point of connection tariffs. With the
point of connection tariffs scheme, suppliers pay a linear tariff for the electricity injected
into the grid, i.e., the electricity sold in their own market and the one sold in the other
market. From the suppliers’ point of view, a connection tariff is equivalent to an increase
in generation costs. Given that electricity demand is very inelastic, an increase in gener-
ation costs is passed through to consumers that face an increase in equilibrium prices in
both markets. This is in line with the pass-through literature (Marion and Muehlegger
2011; Fabra and Reguant 2014). For transmission tariffs, electricity suppliers would only
pay a linear tariff for the electricity sold to the other market. Hence, similar to a trade
model, firms only pay a transport cost for the goods sold in the other market. The analy-
sis indicates that transmission tariffs are better than point of connection tariffs from the
consumers’ perspective.

1 The term "transmission capacity constraint" is used throughout this article in the electrical engi-
neering sense: a transmission line is constrained when the flow of power is equal to the capacity of the
line, as determined by engineering standards.

2Fabra et al. (2006) show that the equilibrium outcome allocation does not change when firms submit
single price offers for their entire capacity and when they submit a set of price-quantity offers.
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When there are constraints on the possibility to export electricity to another mar-
ket, the effective size of the market differs for the suppliers. The supplier located in the
high-demand market faces a higher residual demand, while the supplier located in the
low-demand market cannot sell its entire generation capacity. Therefore, the supplier
located in the high-demand market has incentives to submit higher bids than the one
located in the low-demand market (size effect). Hence, due to the limited transmission
capacity, the equilibrium is asymmetric even if suppliers have identical production costs
and production capacities.

Transmission costs also introduce an asymmetry. The supplier located in the low-
demand market has to sell a large part of its generation capacity into the other market
and thus, it faces a high transmission cost and has incentives to increase its bid. The
transmission cost makes the supplier in the high-demand market more efficient in relative
terms. In order to exploit its efficiency rent, it has incentives to submit lower bids and,
for a sufficiently high transmission cost, the efficient supplier will even try to undercut
the exporting supplier (cost effect). Hence, the introduction of transmission tariffs could
reduce the bid of the supplier in the high-demand market and there are even cases where
consumers would, on average, gain from the introduction of a transmission cost. Point of
connection tariffs do not have the pro-competitive cost effect. This suggests that trans-
mission tariffs would, in most cases, be better for market performance and consumers in
comparison to point of connection tariffs.

With low transmission tariffs, an increase in the transmission capacity increases the
competition between suppliers and the expected bids for both firms decrease. This re-
duces the profit for the supplier in the high demand market. The profit for the exporting
supplier first increases when the transmission capacity increases, because it can export
more. But for a sufficiently large transmission capacity, increased competition will dom-
inate and more capacity will reduce the profit also for the exporting supplier. A third
effect is that transmission payments will increase if exports increase. If the transmission
costs are sufficiently high and fixed per unit exported, an increase in the transmission
capacity will increase the bids. Therefore, an increase in transmission capacity could be
anti-competitive if the transmission costs are sufficiently high.

A methodological contribution is that this paper is the first to introduce transmission
constraints in models with Bertrand competition and capacity constrained production.
Kreps and Scheinkman (1983) and Osborne and Pitchik (1986) characterize the equilib-
rium in a duopoly with production capacity constraints. Deneckere and Kovenock (1996)
and Fabra et al. (2006) extend the analysis to include asymmetries in generation capac-
ity and production costs. Hu et al. (2010) extend the analysis to multiple firms, but
they have only found a close form solution for the equilibrium when the suppliers are
symmetric. Rosenthal (1980) and Janseen and Moraga-González (2004) applied similar
techniques to extend the analysis to multiple firms in different sales models. Transmis-
sion constraints have been considered in other types of oligopoly models. Borenstein et
al. (2000) characterize the equilibrium in an electricity network where suppliers compete
in quantities as in a Cournot game. Holmberg and Philpott (2012) solve for symmetric
supply function equilibria in electricity networks when demand is uncertain ex-ante, but
they do not consider any transmission costs. Escobar and Jofré (2010) analyze the effect
of transmission losses, a transmission cost, on equilibrium outcome allocations, but they
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neglect transmission constraints. Hence, this paper is the first to characterize equilibrium
outcomes in networks with both transmission constraints and transmission costs. The
paper also shows that the interaction between transmission costs and transmission con-
straints is non-straightforward.

The results of this paper could also be of relevance for the trade literature. For in-
stance, Krugman (1980), Flam and Helpman (1987), Brezis et al. (1993) and Motta et
al. (1997) explain differences in prices and profits in international trade models based on
product differentiation or product cost advantages. By introducing transport costs and
transport constraints, this paper finds related results, even if the product is homogeneous
and suppliers have identical production technologies.

The article proceeds as follows. Section 2 describes the model and characterizes the
equilibrium in the presence of transmission capacity constraints. Section 3 characterizes
the equilibrium in the presence of transmission capacity constraints and transmission
tariffs. Section 4 concludes the paper. The analysis of point of connection tariffs and all
proofs are found in the Appendix.

2 The model

Set up of the model. There exist two electricity markets, market North and market
South, that are connected by a transmission line with capacity T . When firms transmit
electricity through the grid from one market to the other, they face a symmetric linear3
transmission tariff t. In order to reduce transmission losses,4 the transmission tariffs in
the majority of European countries have a locational and a seasonal component.5

There exist two duopolists with capacities kn and ks, where subscript n means that the
supplier is located in market North and subscript s means that the supplier is located in
market South. The suppliers’ marginal costs of production are cn and cs. In this paper,
I analyze the effect of transmission capacity constraints and transmission costs on the
equilibrium. In order to focus on this effect, I assume that suppliers are symmetric in
capacity kn = ks = k > 0 and symmetric in costs cn = cs = c = 0. The level of demand in
any period, θn in market North and θs in market South, is a random variable uniformly
distributed that is independent across markets6 and independent of market price, i.e.,

3The transmission tariffs are linear in electricity markets. However, the model can be modified to as-
sume convex costs. When the transmission costs are convex, the existence of the equilibrium is guaranteed
by Dixon (1984).

4Electricity suppliers pay a linear tariff that depends on the location and the season/period-of-day. The
locational component of the tariff penalizes the injection of electricity in points of the grid that generate
high flows of electricity. The seasonal/period-of-day component of the tariff penalizes the transmission
of electricity when the losses are larger. For a complete analysis of losses in Europe and a complete
description of the algorithm implemented to work out power losses, consult the document "ENTSO-E
ITC Transit Losses Data Report 2013".

5The locational and seasonal component implies that suppliers face asymmetric linear tariffs. However,
the model can easily be modified to introduce this type of asymmetries. For a comparison of European
tariff systems, check out the document "ENTSO-E Overview of transmission tariffs in Europe: Synthesis
2014".

6In the majority of electricity markets, demand in one market is higher than demand in the other
market. Moreover, there exists the possibility of some type of correlation between demands across mar-
kets. In this paper, I assume uniform distribution and independence of demand. However, the model
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perfectly inelastic. In particular, θi ∈ [θi, θi] ⊆ [0, k + T ] is distributed according to some
known distribution function G(θi), i = n, s, i 6= j.

The capacity of the transmission line can be lower than the installed capacity in each
market T ≤ k, i.e. the transmission line could be congested for some realization of de-
mands (θs, θn).

Timing of the game. Having observed the realization of demands θ ≡ (θs, θn), each
supplier simultaneously and independently submits a bid specifying the minimum price
at which it is willing to supply up to its capacity, bi ≤ P , i = n, s, where P denotes
the "market reserve price", possibly determined by regulation.7 Let b ≡ (bs, bn) denote
a bid profile. On basis of this profile, the auctioneer calls suppliers into operation. If
suppliers submit different bids, the capacity of the lower-bidding supplier is dispatched
first. Without lost of generality, assume that bn < bs. If the capacity of supplier n is
not sufficient to satisfy total demand (θs + θn) in the case of the transmission line not
being congested, or (θn + T ) in the case of the transmission line being congested,8 the
higher-bidding supplier’s capacity, supplier s, is then dispatched to serve residual demand,
(θs + θn − k) if the transmission line is not congested, or (θs − T ) if the transmission line
is congested. If the two suppliers submit equal bids, then supplier i is ranked first with

probability ρi, where ρn + ρs = 1, ρi = 1 if θi > θj, and ρi =
1

2
if θi = θj, i = n, s, i 6= j.

The implemented tie breaking rule is such that if the bids of both suppliers are equal and
demand in market i is larger than demand in region j, the auctioneer first dispatches the
supplier located in market i.

The output allocated to supplier i, i = n, s, denoted by qi(θ, b), is given by

qi(b; θ, T ) =


min {θi + θj, θi + T, ki} if bi < bj

ρimin {θi + θj, θi + T, ki}+
[1− ρi]max {0, θi − T, θi + θj − kj} if bi = bj

max {0, θi − T, θi + θj − kj} if bi > bj

(1)

The output function has an important role in determining the equilibrium and thus, it
is explained in detail. Below, I describe the construction of supplier n’s output function;
the one for supplier s is symmetric.

The total demand that can be satisfied by supplier n when it submits the lower bid
(bn < bs) is defined by min {θn + θs, θn + T, k}. The realization of (θs, θn) determines
three different areas (left-hand panel in figure 1).

can easily be modified to introduce different distributions of demand and correlation between demands
across markets.

7P can be interpreted as the price at which all consumers are indifferent between consuming and not
consuming, or a price cap imposed by the regulatory authorities. See von der Fehr and Harbord (1993,
1998).

8When the demand in market South is larger than the transmission line capacity θs > T , supplier n
can only satisfy the demand in its own region and T units of demand in region South (θn + T ). Below in
this section, I explain in detail the total demand and the residual demand that can be satisfied by each
supplier.
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Figure 1: Output function for supplier n. (kn = ks = 60, T = 40)
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min {θn + θs, θn + T, k} =


θs + θn if θn ≤ k − θs and θs < T

θn + T if θn < k − T and θs > T

k if θn > k − θs; θs ∈ [0, T ]

or if θn > k − T ; θs ∈ [T, k + T ]

When demand in both markets is low, supplier n can satisfy total demand (θs+θn). If
the demand in market South is larger than the transmission capacity θs > T , supplier n
cannot satisfy the demand in market South, even when it has enough generation capacity
for this; therefore, the total demand that supplier n can satisfy is (θn+T ). Finally, if the
demand is large enough, the total demand that supplier n can satisfy is its own generation
capacity.

The residual demand that supplier n satisfies when it submits the higher bid (bn > bs)
is defined by max {0, θn − T, θs + θn − k}. The realization of (θs, θn) determines three
different cases (right-hand panel in figure 1).

max {0, θn − T, θs + θn − k} =


0 if θn < T ; θs ∈ [0, k − T ]

or θn < k − θs; θs ∈ [k − T, k]
θn − T if θn > T and θs ∈ [0, k − T ]
θs + θn − k if θn > k − θs; θs ∈ [k − T, T + k]

When demand in both markets is low, supplier s satisfies total demand and there-
fore, the residual demand that remains for supplier n is zero. The total demand that
supplier s can satisfy diminishes due to the transmission constraint. As soon as demand
in market North is larger than the transmission capacity (θn > T ), it cannot be satisfied
by supplier s and thus, some residual demand (θn − T ) remains for supplier n. When
total demand is large enough, supplier s cannot satisfy total demand and some residual
demand (θs + θn − k) remains for supplier n.

Finally, the payments are worked out by the auctioneer. When the auctioneer runs a
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Figure 2: Profit function for supplier n. (kn = ks = 60, T = 40, t > 0)
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discriminatory price auction,9 the price received by a supplier for any positive quantity
dispatched by the auctioneer is equal to its own bid. Hence, for a given realization of
demands θ ≡ (θs, θn) and a bid profile b ≡ (bs, bn), supplier n’s profits, i = n, s, can be
expressed as

πdi (b; θ, T, t) =


(bi − ci)min {θi + θj, θi + T, k}−
tmax {0,min {θj, T, k − θi}} if bi ≤ bj and θi > θj

(bi − ci)max {0, θi − T, θi + θj − k}−
tmax {0, θj − k} otherwise

If bn ≤ bs and θn ≥ θs, supplier n’s payoff function is πdn(b; θ, T ) = (bn − cn)
min {θn + θs, θn + T, k}. In addition to this expression, due to the transmission costs,
supplier n is charged a transmission cost t for the power sold in market South. The trans-
mission costs have four different possible values: tθs when the realization of demand in
market North is low and the transmission line is not congested; tT when the realization
of demand in market North is low and the transmission line is congested; when the re-
alization of demand in market North is high but lower than its generation capacity, the
transmission costs are t(k − θn); finally, when demand in market North is larger than
the generation capacity k, supplier n cannot sell any electricity in market South and the
transmission costs are zero. Hence, after adding the transmission costs, supplier n’s payoff
is equal to πdn(b; θ, T, t) = (bn−cn)min {θn + θs, θn + T, k}− tmax {0,min {θs, T, k − θn}}
(left-hand panel, figure 2).

In the rest of the cases, supplier n is dispatched last and satisfies the residual de-
mand. Supplier n’s payoff function is πdn(b; θ, T, t) = (bn − cn)min {θs + θn, θn + T, k}.

9The aim of this paper is to characterize the equilibrium in an electricity auction in the presence of
transmission constraints and transmission costs. I have decided to focus on discriminatory auctions be-
cause the equilibrium is unique and therefore, it is easier to make a comparative static analysis. However,
using the approach presented in Fabra et al. (2006) and taking into account the allocation of transmission
rights (Blázquez, 2014), it is simple to characterize the equilibrium when the auction is uniform.
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In addition to this expression, due to the transmission costs, supplier n is charged a
transmission cost t for the residual demand satisfied in market South. Therefore, af-
ter adding the transmission costs, supplier n’s payoff is equal to πdn(b; θ, T ) = (bn −
cn)max {0, θn − T, θs + θn − k} − tmax {0, θs − k} (right-hand panel, figure 2).

3 Effect of transmission capacity constraints

In the presence of transmission capacity constraints, the size of the market differs for both
suppliers. The supplier located in the high-demand market faces a higher residual de-
mand and the supplier located in the low-demand market cannot sell its entire generation
capacity. In this section, I characterize the equilibrium in the presence of transmission
capacity constraints and zero transmission costs and then I analyze the effect of an in-
crease in transmission capacity.

Lemma 1. When the realization of demands (θs, θn) is low (area A), the equilibrium is in
pure strategies. When the realization of demands (θs, θn) is intermediate (areas A1, B1)
or high (area B2), a pure strategy equilibrium does not exist (figure 3).

Proof. When the realization of demands (θs, θn) is low (area A), both suppliers have
enough capacity to satisfy total demand in both markets and the transmission line is not
congested. Therefore, they compete fiercely to be dispatched first in the auction. Hence,
the equilibrium is the typical Bertrand equilibrium where both suppliers submit bids equal
to their marginal cost.

When the realization of demands (θs, θn) is intermediate (areas A1, B1) or high (area
B2), at least one of the suppliers faces a positive residual demand. Therefore, a pure
strategy equilibrium does not exist. First, an equilibrium such that bi = bj = c does
not exist because at least one supplier has an incentive to increase its bid and satisfy the
residual demand. Second, an equilibrium such that bi = bj > c does not exist because at
least one supplier has the incentive to undercut the other to be dispatched first. Finally,
an equilibrium such that bj > bi > c does not exist because supplier i has the incentive
to shade the bid submitted by supplier j.

When the realization of demands (θs, θn) is intermediate or high, a pure strategy
equilibrium does not exist. However, the model satisfies the properties10 established by
Dasgupta and Maskin (1986) which guarantee that a mixed strategies equilibrium exists.

Lemma 2. In the presence of transmission constraints. In a mixed strategy equilib-
rium, no supplier submits a bid lower than bid (bi) such that bimin {θi + θj, θi + T, k} =
Pmax {0, θi − T, θi + θj − k}. Moreover, the support of the mixed strategy equilibrium
for both suppliers is S =

[
max

{
bi, bj

}
, P
]
.

Proof. Each supplier can guarantee for itself the payoff Pmax {0, θi − T, θi + θj − k}, be-
cause each supplier can always submit the highest bid and satisfy the residual demand.
Therefore, in a mixed strategy equilibrium, no supplier submits a bid that generates a pay-
off equilibrium lower than Pmax {0, θi − T, θi + θj − k}. Hence, no supplier submits a bid

10In annex one, proposition one, I prove that the model satisfies the properties established by Dasgupta
and Maskin which guarantee that a mixed strategy equilibrium exists.
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Figure 3: Equilibrium areas (kn = ks = k = 60, T = 40, c = 0)
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lower than bi, where bi solves bimin {θi + θj, θi + T, k} = Pmax {0, θi − T, θi + θj − k}.

No supplier can rationalize submitting a bid lower than bi, i = n, s. In the case when
bi = bj, the mixed strategy equilibrium and the support are symmetric. In the case when
bi < bj, supplier i knows that supplier j never submits a bid lower than bj. Therefore,
in a mixed strategy equilibrium, supplier i never submits a bid bi such that bi ∈

(
bi, bj

)
,

because supplier i can increase its expected payoff choosing a bid bi such that bi ∈
[
bj, P

]
.

Hence, the equilibrium strategy support for both suppliers is S =
[
max

{
bi, bj

}
, P
]

Using Lemmas one and two, I characterize the equilibrium.

Proposition 1. In the presence of transmission constraints, the characterization of the
equilibrium falls into one of the next two categories.

i Low demand (area A). The equilibrium strategy pair is in pure strategies.

ii Intermediate demand (areas A1, B1) and high demand (area B2). The equilibrium
strategy pair is in mixed strategies.

When the realization of demands (θs, θn) is low, suppliers compete fiercely to be dis-
patched first in the auction and the equilibrium is the typical Bertrand equilibrium in
which both suppliers submit bids equal to their marginal cost. When the realization of
demands (θs, θn) is intermediate, due to the scarcity of transmission capacity, the sup-
plier located in the high-demand market faces a higher residual demand and the supplier
located in the low-demand market cannot sell its entire generation capacity. Therefore,
the equilibrium is an asymmetric mixed strategy equilibrium where the supplier located
in the high-demand market randomizes submitting higher bids with a higher probability,
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Figure 4: Discriminatory auction. Mixed strategy equilibrium
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i.e., its cumulative distribution function stochastically dominates the cumulative distri-
bution function of the supplier located in the low-demand market (left-hand panel, figure
4). Finally, when the realization of demands (θs, θn) is high, the transmission capacity
is not binding, but the generation capacity is. Therefore, both suppliers face the same
residual and total demand and the equilibrium constitute a symmetric mixed strategy
equilibrium in which both suppliers randomize using the same cumulative distribution
function (right-hand panel, figure 4).

In the presence of transmission constraints, there are two relevant constraints that
explain the results. When the generation capacity is binding, even when the realization
of demands is asymmetric, the equilibrium is symmetric.11 When the transmission capac-
ity is binding, even when the firms are symmetric in generation capacity and production
costs, the equilibrium is asymmetric.

To conclude this section, I analyze the effect of an increase in transmission capacity
on equilibrium outcome allocations.

Proposition 2. In the presence of transmission constraints. An increase in transmission
capacity (4T ) reduces the lower bound of support b and reduces the expected bids for
both suppliers (an increase in transmission capacity is pro-competitive). Moreover, an
increase in transmission capacity reduces the profit of the supplier located in the high-
demand market. However, an increase in transmission capacity modifies the profit of the
supplier located in the low-demand market in a non monotonic pattern (table 1 and fig-
ures 5 and 6).

An increase in transmission capacity modifies the market size as does suppliers’ strate-
gies. When the transmission capacity is very low, the supplier located in the high-demand
market faces a high residual demand and the supplier located in the low-demand market
cannot sell its entire generation capacity. Therefore, the supplier located in the high-
demand market submits higher bids than the one located in the low-demand market and

11In the next section, I introduce transmission tariffs. In the presence of transmission costs, the
realization of demands becomes very relevant because the transmission costs are larger for the supplier
located in the low-demand market and the equilibrium is asymmetric.
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Figure 5: Increase in transmission capacity 4T . Cumulative Distribution Function
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the cumulative distribution function of the supplier located in the high-demand market
stochastically dominates that of the supplier located in the low-demand market (top-left
panel, figure 5). When the transmission capacity increases, the supplier located in the
high-demand market faces a reduction in its residual demand and the supplier located in
the low-demand market faces an increase in the demand that it can satisfy. Therefore,
the cumulative distribution function becomes more symmetric (top-right and bottom-left
panels). When the transmission capacity is high enough, the transmission line is not
congested and the residual and the total demand that both suppliers face are equal; in
that case, the equilibrium is symmetric and both suppliers assign probability one to the
lower bid (bottom-right panel).

The change in suppliers’ strategies induced by an increase in transmission capacity
modifies the main variables of the model. An increase in transmission capacity reduces
the residual demand and according to lemma two, the lower bound of the support de-
creases (left-hand panel, figure 6; column two of table 1). A decrease in the lower bound
of the support implies that both suppliers randomize submitting lower bids and therefore,
the expected bid decreases for both suppliers (right-hand panel, figure 6; columns five and
seven of table 1). Finally, an increase in transmission capacity reduces the expected bid
and the residual demand of the supplier located in the high-demand market as does its
expected profit. In contrast, an increase in transmission capacity reduces the expected
bid and increases the total demand of the supplier located in the low-demand market.
When the transmission capacity is low, the increase in demand dominates the decrease
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Figure 6: Increase in transmission capacity 4T . Main variables
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Table 1: Increase in transmission capacity 4T . Main variables. (θs = 5, θn = 55, k = 60,
c = 0, P = 7)

T b πn πs En(b) Ana. En(b) Sim. Es(b) Ana. Es(b) Sim.

0 − 385.07 35 7 7 7 7
5 5.835 350.1 58.35 6.8971 6.8963 6.3795 6.3830
15 4.668 280.08 93.36 6.5592 6.5587 5.6770 5.6780
25 3.501 210.06 105.03 5.9264 5.9261 4.8530 4.8532
35 2.335 140.1 93.4 4.8981 4.8981 3.8464 3.8476
45 1.168 70.08 58.4 3.2587 3.2589 2.5102 2.5109
55 0.001 0.06 0.06 0.0089 0.0093 0.0087 0.0093

En(b) Ana. and Es(b) Ana. are the expected values obtained using the analytical expressions presented in

proposition one and En(b) Sim. and Es(b) Sim. are the expected values obtained using the simulation explained

in detail in Annex 3.

I have assumed that demand in market North (θn) is equal to 55.01 to avoid computational problems. This is the

reason why the variables in the last row are not exactly equal to zero.

in the expected bid and its expected profit increases. However, when the transmission
capacity is large enough, the decrease in bids dominates and its expected profit decreases
(central panel, figure 6; columns three and four, table 1.)

Increases in transmission capacity have historically been justified as a way of enhancing
competition between markets. However, as I have shown in proposition two, an increase in
transmission capacity modifies the profit of the supplier located in the low-demand market
and this might increase the competition within a market. For the sake of the argument,
imagine that a small hydro-power plant that faces a fixed entry cost would like to install
some generation capacity in the low-demand market. When there is no transmission
capacity between markets, due to the reduced size of the market, the supplier cannot
cover its fixed entry cost. However, if the transmission line increases, the size of the
market increases and the supplier could enter the low-demand market. This entry might
increase the competition within the low-demand market.
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4 Effect of transmission capacity constraints and transmission
costs

In the presence of transmission capacity constraints, the size of the market differs for
both suppliers. In the presence of transmission costs, the transmission cost differs for
both suppliers depending on the realization of the demand. The supplier located in the
low-demand market must sell a large part of its generation capacity into the other market
and thus, it faces a larger transmission cost than the supplier located in the high-demand
market. In this section, I characterize the equilibrium in the presence of transmission
capacity constraints and positive transmission costs.

Lemma 3. When the realization of demands (θs, θn) is low (area A) the equilibrium is
in pure strategies. When the realization of demands (θs, θn) is intermediate (area A1)
and the transmission costs are high, the equilibrium is in pure strategies; otherwise, a
pure strategies equilibrium does not exist. When the realization of demands (θs, θn) is
intermediate (areas B1a,B1b) or high (area B2a,B2b), a pure strategy equilibrium does
not exist (figure 7). Moreover, due to the presence of transmission costs, the pure strategy
equilibria are asymmetric.

Proof. When the realization of demands (θs, θn) is low (area A), both suppliers have
enough capacity to satisfy total demand and the transmission line is not congested. There-
fore, the competition to be dispatched first is fierce. Moreover, the supplier located in the
high-demand market (supplier j) faces lower transmission costs. Hence, the equilibrium
is the typical Bertrand equilibrium with asymmetries in "costs" 12 where the supplier
located in the high-demand market extracts the efficiency rents. The pure strategies equi-

librium is bi = bj =
tθj

θi + θj
.

The equilibrium profit is:

πi = (θi + θj)
tθj

θi + θj
− tθj = 0; πj = (θi + θj)

tθj
θi + θj

− tθi = t(θj − θi) > 0

The equilibrium price is
tθj

θi + θj

Electricity flows from the high-demand market to the low-demand market.

When the demand belongs to area A1 (figure 7), the transmission constraint binds for
the supplier located in the low-demand market (supplier i); therefore, only the supplier
located in the high-demand market can satisfy total demand. The supplier located in the
high-demand market prefers to submit a low bid and extract the efficiency rent instead of

submitting a high bid and satisfying the residual demand if (θi+θj)
tT

θi + T
−tθi ≥ P (θi−T ).

In such a case, the pure strategies equilibrium is bi = bj =
tT

θi + T
.

The equilibrium profit is:
12It is important to emphasize that the generation costs are symmetric and equal to zero. In this

model, the asymmetries in costs are due to the transmission costs.
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Figure 7: Equilibrium areas (kn = ks = k = 60, T = 40, c = 0, t > 0)
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πi = (θi + T )
tT

θi + T
− tT = 0; πj = (θi + θj)

tT

θi + T
− tθi > 0

The equilibrium price is
tT

θi + T

The electricity flows from the high-demand market to the low-demand market.

In the rest of the cases, a pure strategies equilibrium does not exist and the proof
proceeds as in lemma one

When the realization of demands (θs, θn) is intermediate or high and the auction is
discriminatory, a pure strategy equilibrium does not exist. However, the model satisfies
the properties established by Dasgupta and Maskin (1986) which guarantee that a mixed
strategy equilibrium exists.

Lemma 4. In the presence of transmission constraints and positive transmission costs. In
a mixed strategy equilibrium, no supplier submits a bid lower than bid (bi) such that

bimin {θi + θj, θi + T, k} − tmax {0,min {θj, T, k − θi}} =
Pmax {0, θi − T, θi + θj − k} − tmax {0, θj − k} .

Moreover, the support for the mixed strategy equilibrium for both suppliers is S =[
max

{
bi, bj

}
, P
]
.

Proof. The proof proceeds as in lemma two.
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Using lemmas three and four, I characterize the equilibrium.

Proposition 3. In the presence of transmission constraints and transmission costs, the
characterization of the equilibrium falls into one of the next three categories.

i Low demand (area A). The equilibrium strategy pair is in pure strategies.

ii Intermediate demand (area A1). When the transmission cost is high, the equilibrium
strategy pair is in pure strategies. In contrast, when the transmission cost is low,
the equilibrium strategy pair is in mixed strategies.

iii Intermediate demand (areas B1a, B1b) and high demand (areas B2a, B2b). The
equilibrium strategy pair is in mixed strategies.

When the realization of demands (θs, θn) is low, suppliers compete fiercely to be dis-
patched first in the auction and the equilibrium is the typical Bertrand equilibrium with
asymmetries in costs where the supplier located in the high-demand market extracts the
efficiency rents.

When the realization of demands (θs, θn) belongs to area A1 the transmission con-
straint binds for the supplier located in the low-demand market (supplier i); therefore, only
the supplier located in the high-demand market can satisfy total demand. If the trans-
mission costs are high enough, the supplier located in the high-demand market prefers to
submit a low bid to extract the efficiency rents. In contrast, when realization of demands
(θs, θn) belongs to area A1 and the transmission costs are high or when the realization of
demands (θs, θn) belongs to areas B1a or B1b, due to the scarcity of transmission capac-
ity, the supplier located in the high-demand market faces a higher residual demand and
the supplier located in the low-demand market cannot sell its entire generation capacity.
Therefore, the supplier located in the high-demand market has higher incentives to submit
high bids than the one located in the low-demand market (size effect). However, due to
the presence of transmission costs, the supplier located in the high-demand market faces
lower transmission costs and to exploit its efficiency rents, it has higher incentives than
the supplier located in the low-demand market to submit low bids (cost effect). The cost
and size effects work in the opposite direction and no stochastic dominance range can
be established between the cumulative distribution functions of both suppliers (left-hand
panel, figure 8). This is in contrast to the zero transmission costs case where only the size
effect drives the results and the cumulative distribution function of the supplier located
in the high-demand region stochastically dominates the cumulative distribution function
of the supplier located in the low-demand market (left-hand panel, figure 4).

When the realization of demands (θs, θn) is high, the transmission capacity is not
binding, but the generation capacity is. Therefore, both suppliers face the same demand.
However, due to the transmission costs, the supplier located in the high-demand market
faces lower transmission costs and submits lower bids (cost effect). Hence, the cumula-
tive distribution function of the supplier located in the low-demand market stochastically
dominates the cumulative distribution function of the supplier located in the high-demand
market (right-hand panel, figure 8). This is in contrast to the zero transmission costs case
where both suppliers randomize using the same cumulative distribution function (right-
hand panel, figure 4).
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Figure 8: Discriminatory auction. Mixed strategy equilibrium
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Finally, when the realization of demands (θs, θn) is in the diagonal, both suppliers
face the same demand and transmission costs. Therefore, the equilibrium is a symmetric
mixed strategy equilibrium.

In the rest of this section, I analyze the effect of an increase in transmission capacity
on the size and cost effects and thus, on equilibrium outcome allocations (as in the rest
of the section, I assume that the suppliers pay a linear tariff only for the electricity sold
in the other market).

Proposition 4. An increase in transmission capacity (4T ) reduces the lower bound of the
support of the supplier located in the high-demand market and increases the lower bound
of the support of the supplier located in the low-demand market (left-hand panel, figure
10).

• When the lower bound of the support of the supplier located in the high-demand
market is larger than the lower bound of the support of the supplier located in the
low-demand market. An increase in transmission capacity reduces the expected bids
of both suppliers (an increase in transmission capacity is pro-competitive), reduces
the profit of the firm located in the high-demand market and modifies the profit of
the supplier located in the low-demand market in a non-monotonic pattern.

• Otherwise, an increase in transmission capacity increases the expected bids of both
suppliers (an increase in transmission capacity is anti-competitive), increases the
expected profit of the supplier located in the high-demand market and does not
modify the expected profit of the supplier located in the low-demand market (table
2; figures 9 and 10).

An increase in transmission capacity modifies the market size and the transmission
costs and thus also suppliers’ strategies. When the transmission capacity is very low,
the size effect dominates and the cumulative distribution function of the supplier located
in the high-demand market stochastically dominates that of the supplier located in the
low-demand market (top-left panel, figure 9). When there is an increase in the trans-
mission capacity, no cumulative distribution function stochastically dominates the other
(top-right panel, figure 9). When there is a substantial increase in transmission capacity,
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Figure 9: Increase in transmission capacity 4T . Cumulative Distribution Function
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there is also an increase in transmission costs, especially for the supplier located in the
low-demand market. In that case, the supplier located in the high-demand market sub-
mits lower bids than the one located in the low-demand market to extract the efficiency
rents and the cumulative distribution function of the supplier located in the low-demand
market stochastically dominates that of the supplier located in the high-demand market
(bottom-left and bottom-right panels, figure 9).

The change in suppliers’ strategies induced by an increase in transmission capacity
modifies the main variables of the model. When the transmission capacity is sufficiently
low (T ≤ 44 for the numerical examples in table 2 and figures 9 and 10), the size effect
dominates and an increase in transmission capacity induces the same changes in the vari-
ables as when the transmission costs are null (proposition two). Hence, an increase in
transmission capacity decreases the lower bound of the support and therefore, decreases
the expected bid for both suppliers. Hence, an increase in transmission capacity is pro-
competitive (right-hand panel, figure 10; columns five and seven, table 2); reduces the
expected profit of the supplier located in the high-demand market and modifies in a non-
monotonic pattern the profit of the supplier located in the low-demand market (central
panel, figure 10; columns three and four, table 2).

When the transmission capacity is high enough (T > 44), the cost effect dominates
and an increase in transmission capacity increases the lower bound of the support (left-
hand panel, figure 10). An increase in the lower bound of the support entailed that both
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Figure 10: Increase in transmission capacity 4T . Main variables
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Table 2: Increase transmission capacity 4T . Main variables. (θs = 5, θn = 55, k = 60,
c = 0, t = 1.5, P = 7)

T b πn πs En(b) Ana. En(b) Sim. Es(b) Ana. Es(b) Sim.

0 − 385.07 35 7 7 7 7
5 5.959 350.05 52.09 6.9079 6.9072 6.4495 6.4483
15 4.793 280.09 73.36 6.5206 6.5201 5.7472 5.7490
25 3.626 210.07 71.28 5.7253 5.7252 4.9294 4.9301
35 2.459 140.05 45.86 4.2942 4.2944 3.9306 3.9307
45 1.351 73.575 0 1.3569 1.3570 2.7299 2.7304
55 1.376 75.075 0 1.3821 1.3825 3.5073 3.5075

Here En(b) Ana. and Es(b) Ana. constitute the expected values obtained using the analytical expressions presented in

proposition one and En(b) Sim. and Es(b) Sim. constitute the expected values obtained using the simulation explained

in detail in Annex 3.

suppliers randomize submitting higher bids and therefore, the expected bid increases for
both suppliers. Hence, an increase in transmission capacity is anti-competitive (right-hand
panel, figure 10; columns five and seven, table 2). Finally, an increase in transmission
capacity increases the expected profit of the supplier located in the high-demand mar-
ket because it can exploit the efficiency rents more; in contrast, the expected profit of
the supplier located in the low-demand market does not change because the increase in
profits derived from an increase in the expected bid is compensated by the increase in
transmission costs (central panel, figure 10; columns three and four, table 2).

5 Model comparison and consumer welfare.

As I have shown in the two previous sections, transmission constraints and transmission
tariffs have important implications for strategies and equilibrium outcomes. In this sec-
tion, I compare equilibrium outcome allocations and their effects on consumer welfare in
the presence of transmission constraints when the transmission costs are zero and when
the suppliers pay a linear transmission tariff. I also compare these results with the equi-
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Table 3: Effect of transmission constraint and transmission costs on equilibrium outcome
(θs = 5, θn = 55, k = 60, c = 0, P = 7)

T b πn πs π = πn + πs En(b) Es(b) θnEn(b) + θsEs(b)

Model I 40 1.75 105 184 289 4.2 3.2 247
Model II 40 1.87 105 24 129 3.1 3.3 187
Model III 40 2.87 82.5 62 144.5 4.8 4 284

Model I: zero transmission costs. Model II: transmission tariff. Model III: point of connection tariff

librium in the presence of transmission constraints and the point of connection tariffs
worked out in annex four.

When the transmission costs are zero and the transmission line is congested (Model
I), the supplier located in the high-demand market faces a higher residual demand, while
the supplier located in the low-demand market cannot sell its entire generation capacity
(size effect). Therefore, the supplier located in the high-demand market has incentives
to submit higher bids than the one located in the low-demand market. Given that the
majority of consumers are located in the high-demand market, the aggregate cost for
consumers is large (second row, column nine; table 3).

When transmission tariffs are implemented (Model II), the supplier located in the
low-demand market faces a large increase in transmission costs and thus, its expected
bid increases. In contrast, the supplier located in the high-demand market faces a small
increase in transmission costs and for high enough transmission tariffs, it can be more
profitable to extract the efficiency rents undercutting (in expectation) the supplier lo-
cated in the low-demand market (cost effect). These changes in equilibrium prices induce
a drastic decrease in the total cost that consumers pay for the purchase of electricity13
(third row, column nine; table 3). Moreover, the presence of transmission costs induces a
change in the flow of electricity.

When the suppliers face a point of connection tariff (Model III), they pay the same
transmission tariff for the electricity sold in their own market and the one sold in the other
market. Therefore, the competitive advantage (cost effect) derived from the location in
the high-demand market disappears and equilibrium market outcomes exclusively depend
on the size effect. Moreover, given that electricity demand is very inelastic, an increase
in generation costs is passed through to consumers that face an increase in equilibrium
prices in both markets. Hence, there is a decrease in consumer welfare (row four, column
nine; table 3).

The comparison between the three models suggests that the introduction of transmis-
sion tariffs increases aggregate consumer welfare. In contrast, the point of connection
tariffs always decrease aggregate consumer welfare.

13Downward et al. (2014) found that the introduction of a tax on suppliers’ profit induces an increase
in consumer welfare. However, in their analysis, the reduction in equilibrium prices is not induced by
some type of cost effect, but by a change in firms’ strategies to avoid the tax.
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6 Conclusion

Electricity markets are moving through integration processes around the world. In such
a context, there exists an intense debate to analyze the effect of transmission constraints
and transmission costs on suppliers’ strategies. The contribution of this paper is to char-
acterize the outcome of an electricity market auction and how it depends on transmission
constraints and transmission costs.

When there are constraints on the possibility to deliver electricity to a market, the
effective size of the market differs for the suppliers. The supplier located in the high-
demand market faces a higher residual demand and the one located in the low-demand
market cannot sell its entire generation capacity. Therefore, the supplier located in the
high-demand market has incentives to submit larger bids than the one located in the
low-demand market (size effect). Hence, due to the scarcity of transmission capacity, the
equilibrium is asymmetric even when the suppliers are symmetric in generation capacity
and costs.

When the suppliers are charged a linear transmission tariff, they face different trans-
mission costs depending on the realization of demand. The supplier located in the high-
demand market faces lower transmission costs than the one located in the low-demand
market and to exploit its efficiency rents, it has incentives to submit lower bids than the
one located in the low-demand market (cost effect). Hence, the introduction of transmis-
sion tariffs could lower the bid of the supplier in the high-demand market and there are
even cases where consumers would, on average, gain from the introduction of a transmis-
sion cost. Point of connection tariffs do not have the pro-competitive cost effect. This
suggests that transmission tariffs would, in most cases, be better for market performance
and consumers in comparison to point of connection tariffs.

An increase in transmission capacity induces non-monotonic changes in suppliers’
profits. The consequences of an increase in transmission capacity depend considerably
on whether there are any transmission costs. In the presence of transmission capacity
constraints and zero transmission costs, an increase in transmission capacity is always
pro-competitive. In the alternative scenario where suppliers pay a linear transmission
tariff for the electricity sold in the other market, an increase in transmission capacity
could be anti-competitive.

The characterization of the equilibrium in the presence of transmission constraints
and transmission costs gives us the opportunity to use the toolbox of the models of com-
petition with capacity constraints to best understand electricity markets. In particular,
the model that I have developed in this paper can be used to analyze mergers between
suppliers located in different markets and it can be used to analyze investment decisions
in generation capacity at different points of the electricity grid.

The size and cost effects described in the paper could appear in models of competi-
tion with capacity constraints when the firms face asymmetries in capital and costs as
in models presented in Kreps and Scheinkman (1983); Osborne and Pitchik (1986); De-
neckere and Kovenock (1996) Fabra et al. (2006). Moreover, due to the size and cost
effects, equilibrium firms’ cumulative distribution functions do not dominate each other.
This characteristic of the equilibrium has important implications for prices and consumer
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welfare. Our knowledge of these effects is still limited and thus, more study is required to
best characterize equilibrium outcome allocations in the presence of some type of "size"
and "cost" effects.

This basic model could also be useful to analyze new transmission tariff designs that
include seasonal or geographical components.
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Annex 1. The effect of transmission capacity constraints

Proposition 1. Characterization of the equilibrium in the presence of transmission con-
straints.

When demand is low (area A, figure 3): bn = bs = c = 0, the equilibrium profit is zero for
both firms. No electricity flows through the grid.

When demand is intermediate (areas A1 and B1, figure 3) or high (area B2, figure 3).
As I have proved in lemma one, a pure strategies equilibrium does not exist; however,
the model presented in section two satisfies the properties established by Dasgupta and
Maskin (1986) which guarantee that a mixed strategy equilibrium exists. In particular,
the discontinuities of πi,∀i, j are restricted to the strategies such that bi = bj. Further-
more, it is simple to confirm that by reducing its price from a position where bi = bj,
a firm discontinuously increases its profit. Therefore, πi(bi, bj) is everywhere left lower
semi-continuous in bi and hence, weakly lower semi-continuous. Obviously, πi(bi, bj) is
bounded. Finally, πi(bi, bj) + πj(bi, bj) is continuous because discontinuous shifts in clien-
tele from one firm to another only occur where both firms derive the same profit per
customer. Therefore, theorem five in Dasgupta and Maskin (1986) applies and hence, a
mixed strategy equilibrium exists.

The existence of the equilibrium is guaranteed by Dasgupta and Maskin (1986). How-
ever, they did not provide an algorithm to work out the equilibrium. Nevertheless, using
the approach proposed by Karlin (1959), Shapley (1957), Shilony (1977), Varian (1980),
Deneckere and Kovenock (1986), Osborne and Pitchik (1986) and Fabra et al. (2006), the
equilibrium characterization is guaranteed by construction. I use the approach proposed
by this branch of the literature to work out the mixed strategy equilibrium. In particular:
first, I work out the general formulas of the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit ; second, I work out the particular formulas associated with each
single area14 in figure 3.

Lower Bound of the Support. The lower bound of the support is defined according to
lemma two.

Cumulative Distribution Function.

In the first step, the payoff function for any firm is:

πi(b) = b [Fj(b)max {0, θi − T, θi + θj − k}+ (1− Fj(b))min {θi + θj, θi + T, k}] =
= −bFj(b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] + (2)

bmin {θi + θj, θi + T, k}

In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

14The general formulas that I will introduce below fully characterize the equilibrium. However, the
equilibrium presents specific characteristics in each single area. In order to fully characterize the equilib-
rium, I have decided to write down the formulas for each single area.
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πi = −bFj(b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] +
bmin {θi + θj, θi + T, k} ⇒

Fj(b) =
bmin {θi + θj, θi + T, k} − πi

b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]
(3)

The third step, at b, Fi(b) = 0∀i = n, s. Then,

πi = bmin {θi + θj, θi + T, k} (4)

In the fourth step, plugging 4 into 3, I obtain the mixed strategies for both firms.

Fj(b) =
bmin {θi + θj, θi + T, k} − bmin {θi + θj, θi + T, k}

b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]
=

=
min {θi + θj, θi + T, k}

min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}
b− b
b
∀i = n, s (5)

For further reference:
Li(b) = bmin {θi + θj, θi + T, k} and
Hi(b) = bmax {0, θi − T, θi + θj − k}.

It is easy to verify that equation Fj(b)∀i, j is indeed a cumulative distribution function.
First, in the third step, I have established that Fj(b) = 0. Second, Fj(b) is an increasing

function in b. At b, Li(b) = Hi(b), for any b > b, Li(b) < Hi(b); moreover,
∂Li(b)

∂b
> 0,

∂Li(b)

∂b
= 0 and

∂Hi(b)

∂b
> 0 , therefore,

∂ (Li(b)− Li(b))
∂b

>
∂ (Li(b)−Hi(b))

∂b
. Third,

Fj(b) ≤ 1∀b ∈ Si. Finally, Fj(b) is continuous in the support because Li(b) − Li(b) and
Li(b)−Hi(b) are continuous functions in the support.

Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
min {θi + θj, θi + T, k} b (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})

b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})2

=
min {θi + θj, θi + T, k} b

b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})
∀i = n, s (6)

Expected Equilibrium Bid.
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Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

bmin {θi + θj, θi + T, k} b
b2 (min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k})

∂b

+P (1− Fj(P ))

=
min {θi + θj, θi + T, k} b

min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}
[ln(b)]Pb

+P (1− Fj(P )) ∀i = n, s (7)

where (1− Fj(P )) in equation 7 is the probability assigned by firm j to the maximum
price allowed by the auctioneer.15

Expected Profit. The expected profit is defined by equation 4 and is equal to πi =
bmin {θi + θj, θi + T, k}.

In the rest of the proof, I will work out the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit for the different possible realization of demands (θs, θn).

Area A1.

First, I work out the lower bound of the support on the border between areas B1 and
B2, θs = k−T . On the border, bn solves bnmin {θn + θs, θn + T, k} = Pmax {0, θn − T, θs + θn − k},
therefore bn =

P (θn − T )
k

and bs solves bsmin {θn + θs, θs + T, k} = Pmax {0, θs − T, θs + θn − k},

therefore bs =
P (θn + θs − k)

θs + T
. Plugging the value of θs on the border between these areas

into bs formula, I obtain bs =
P (θn + k − T − k)

k − T + T
=
P (θn − T )

k
= bn. Therefore, on the

border between these areas, bs = bn =
P (θn − T )

k
.

In areasA1 andB1, bn > bs. In areaA1, taking partial derivatives
∂bn
∂θs

=
−P (θn − T )
(θn + θs)2

<

0 and
∂bs
∂θs

=
P (k + T − θn)

(θs + T )2
> 0. In area B1, taking partial derivatives

∂bn
∂θs

= 0

and
∂bs
∂θs

=
P (k + T − θn)

(θs + T )2
> 0. Therefore, in areas A1 and B1, bn > bs. Hence,

S = [max {bn, bs} , P ] = [bn, P ]. In particular, in area A1, S =

[
P (θn − T )
(θn + θs)

, P

]
and

15When the transmission line is congested, the mixed strategy equilibrium is asymmetric. In such
an equilibrium, the cumulative distribution function for the firm located in the low-demand market is
continuous in the upper bound of the support. In contrast, the cumulative distribution function of
the firm located in the high-demand region is discontinuous, which means that the firm located in the
high-demand market submits the maximum bid allowed by the auctioneer with a positive probability
(1− Fj(P )). Hence, in order to work out the expected value, in addition to the integral, it is necessary
to add the term P (1− Fj(P )). Figure 4 illustrates these characteristics.
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in area B1, S =

[
P (θn − T )

k
, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
θn + θs
θs + T

P − P (θn − T )
θn + θs
P

= 1

Fn(P ) =
θs + T

θs + T

P − P (θn − T )
θn + θs
P

=
(θs + T )

(θn + θs)
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
θn + θs
θs + T

b

b2

fn(b) =
∂Fn(b)

∂b
=
θs + T

θs + T

b

b2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

θn + θs
θs + T

b

b
∂b =

θn + θs
θs + T

b [ln(b)]Pb

En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b

b2
∂b =

θs + T

θs + T
b [ln(b)]Pb + (1− Fn(P ))P

Fifth, the expected profit is defined by equation 4 and is equal to πn = b(θs+ θn) and
πs = b(θs + T ).

Area B1.

First, the lower bound of the support is S =

[
P (θn − T )

k
, P

]
.

Second, I work out the cumulative distribution function.
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Fs(b) =


0 if b < b

k

T + k − θn
b− b
b

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

T + k − θn
b− b
b

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
k

T + k − θn
P − P (θn − T )

k
P

= 1

Fn(P ) =
θs + T

T + k − θn
P − P (θn − T )

k
P

=
θs + T

k
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

k

T + k − θn
b

b2

fn(b) =
∂Fn(b)

∂b
=

θs + T

T + k − θn
b

b2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

k

T + k − θn
b

b
∂b =

k

T + k − θn
b [ln(b)]Pb

En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

θs + T

T + k − θn
b

b
∂b+ (1− Fn(P ))P

=
θs + T

T + k − θn
b [ln(b)]Pb + (1− Fn(P ))P

Fifth, the expected profit is defined by equation 4 and is equal to πn = bk and
πs = b(θs + T ).

Area B2.

First, the lower bound of the support is S = [max {bn, bs} , P ] =
[
P (θs + θn − k)

k
, P

]
.

Second, I work out the cumulative distribution function.

Fi(b) =


0 if b < b

k

2k − θi − θj
b− b
b

if b ∈ (b, P ) ∀i = s, n

1 if b = P
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Third, the probability distribution function is equal to:

fi(b) =
∂Fi(b)

∂b
=

k

2k − θi − θj
b

b2
∀i = s, n

Fourth, the expected bid is determined by:

Ei(b) =

∫ P

b

bfi(bi)∂b =

∫ P

b

k

2k − θn − θs
b

b
∂b =

k

2k − θn − θs
b [ln(b)]Pb ∀i = s, n

Fifth, the expected profit is defined by equation 4 and is equal to πn = πs = bk.

Proposition 2. The effect of an increase in transmission capacity.

Area A1.

∂b

∂T
=

−P
(θs + θn)

< 0

∂Fn(P )

∂T
=

1

(θs + θn)
> 0

∂En(b)

∂T
=

∂b

∂T

[
ln

(
P

b

)]
+ b

 b
P

− ∂b
∂T

P

b2

− ∂Fn(P )

∂T

=
∂b

∂T

[
ln

(
P

b

)
− 1

]
− ∂Fn(P )

∂T
< 0⇔ ln

(
P

b

)
> 1

∂Es(b)

∂T
=

∂b

∂T

θs + θn
θs + T

[
ln

(
P

b

)]
− b θs + θn

(θs + T )2

[
ln

(
P

b

)]
+ b

θs + θn
θs + T

 b
P

− ∂b
∂T

P

b2


=

∂b

∂T

θs + θn
θs + T

[
ln

(
P

b

)
− 1

]
− b θs + θn

(θs + T )2

[
ln

(
P

b

)]
< 0⇔ ln

(
P

b

)
> 1

∂πn
∂T

= −P < 0

∂πs
∂T

=
−P

(θs + θn)
(θs + T ) +

P (θn − T )
(θs + θn)

=
P (θn − 2T − θs)

(θs + θn)
> 0⇔ θn > 2T + θs

Area B1.
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∂b

∂T
=
−P
k

< 0

∂Fn(P )

∂T
=

1

k
> 0

∂En(b)

∂T
=

∂b

∂T

θs + T

k + T − θn

[
ln

(
P

b

)]
+ b

k + T − θn − θs − T
(k + T − θn)2

[
ln

(
P

b

)]

+b
θs + T

k + T − θn

 b
P

− ∂b
∂T

P

b2

− ∂Fn(P )

∂T

=
∂b

∂T

θs + T

k + T − θn

[
ln

(
P

b

)
− 1

]
+ b

k − θs − θn
(k + T − θn)2

[
ln

(
P

b

)]
−∂Fn(P )

∂T
< 0⇔ ln

(
P

b

)
> 1

∂Es(b)

∂T
=

∂b

∂T

k

k + T − θn

[
ln

(
P

b

)]
− b k

(k + T − θn)2
[
ln

(
P

b

)]

+b
k

k + T − θn

 b
P

− ∂b
∂T

P

b2


=

∂b

∂T

k

k + T − θn

[
ln

(
P

b

)
− 1

]
−b k

(k + T − θn)2
[
ln

(
P

b

)]
< 0⇔ ln

(
P

b

)
> 1

∂πn
∂T

= −P < 0

∂πs
∂T

=
−P
k

(θs + T ) +
P (θn − T )

k
=
P (θn − 2T − θs)

k
> 0⇔ θn > 2T + θs
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Annex 2. The effect of transmission capacity constraints and trans-
mission losses

Proposition 3. Characterization of the equilibrium in the presence of transmission con-
straints and transmission costs.

For further reference:

Hi(θ, P, T, t) = max {0, θi − T, θj + θi − k}
Hti(θ, P, T, t) = max {0, θj − k}
Li(θ, P, T, t) = min {θi + θj, θi + T, k}
Lti(θ, P, T, t) = max {0,min {θi, T, k − θi}}

I proceed as in proposition one: first, I work out the general formulas of the lower bound
of the support, the cumulative distribution function, the probability distribution function,
the expected equilibrium price and the expected profit ; second, I work out the particular
formulas associated with each single area in figure 7.

Lower Bound of the Support. The lower bound of the support is defined according to
lemma four.

Cumulative Distribution Function.

In the first step, the payoff function for any firm is:

πi(b) = Fj(b) [b (Hi(θ, P, T, t))− t (Hti(θ, P, T, t))] +
(1− Fj(b)) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))] =

= −Fj(b) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− b (Hi(θ, P, T, t)) + t (Hti(θ, P, T, t))]

b (Li(θ, P, T, t))− t (Lti(θ, P, T, t)) (8)

In the second step, πi(b) = πi∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategy. Then,

= −Fj(b) [b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− b (Hi(θ, P, T, t)) + t (Hti(θ, P, T, t))]

b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))⇒

Fj(b) =
b (Li(θ, P, T, t))− t (Lti(θ, P, T, t))− πi

b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]
(9)

In the third step, at b, Fi(b) = 0∀i = n, s. Then,

πi = b (Li(θ, P, T, t))− t (Lti(θ, P, T, t)) (10)

Fourth step, plugging 10 into 9, I obtain the mixed strategies for both firms.

Fj(b) =
(b− b)Li(θ, P, T, t)

b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]
=

∀i = n, s (11)
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Probability Distribution Function.

fj(b) =
∂Fj(b)

∂b

=
Li(·) [b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]
[b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]2
∀i = n, s (12)

For further reference:

n(·) = Li(·) [b [Li(θ, P, T, t)−Hi(θ, P, T, t)]− t [Lti(θ, P, T, t)−Hti(θ, P, T, t)]]
d1(·) = [Li(θ, P, T, t)−Hi(θ, P, T, t)]

d2(·) = [Lti(θ, P, T, t)−Hti(θ, P, T, t)]

Expected Equilibrium Bid.

Ej(b) =

∫ P

b

bfj(b)∂b

=

∫ P

b

b (n(·))
[b (d1(·))− t (d2(·))]2

∂b+ P (1− Fj(P )) ∀i = n, s

I solve this equation by substitution of variables. In particular:

U = [b (d1(·))− t (d2(·))]⇒ b =
U + t (d2(·))

d1(·)
∂U

∂b
= d1 ⇒ ∂b =

∂U

∂d1

Therefore:

Ej(b) =

∫ P

b

(
U + t (d2(·))

d1(·)

)
n(·)

U2

∂U

d1(·)
+ P (1− Fj(P ))

=
n(·)
d1(·)

[∫ P

b

U∂U

U2
+

∫ P

b

t (d2(·)) ∂U
U2

]
+ P (1− Fj(P ))

=
n(·)
d1(·)2

[
ln(U)− t (d2(·))

U

]P
b

+ P (1− Fj(P ))

Substituting again:

Ej(b) =
n(·)
d1(·)2[
ln

(
P (d1(·))− t (d2(·))
b (d1(·))− t (d2(·))

)
− t (d2(·))
P (d1(·))− t (d2(·))

+
t (d2(·))

b (d1(·))− t (d2(·))

]
+P (1− Fj(P )) (13)
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In the rest of the proof, I will work out the lower bound of the support, the cumulative
distribution function, the probability distribution function, the expected equilibrium price
and the expected profit for the different possible realizations of demands (θs, θn) (figure
7).

Area A1.

First, the lower bound of the support is:

bnθn + bnθs − tθs = P (θn − T )⇒ bn =
P (θn − T ) + tθs

θn + θs

bsθs + bsT − tT = 0⇒ bs =
tT

θs + T

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)(θn + θs)

b [(θs + θn)− (θn − T )]− tmin {θs, k − θn}
if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(θs + T )− tT if b ∈ (b, P )

1 if b = P

Moreover,

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
(P (θs + T )− tθs)(θs + T )

(P (θs + T )− tT )(θs + θn)

If bn < bs ⇒ Fs(P ) =
(P (θs + T )− tT )(θs + θn)

(P (θs + T )− tθs)(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

(θn + θs)(b(θs + T )− tθs)
(b(θs + T )− tθs)2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

Fourth, the expected bid is determined by:
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Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
(θn + θs)(b(θs + T )− tθs)

(b(θs + T )− tθs)2
+ (1− Fs(P ))P

=
(θn + θs)(b(θs + T )− tθs)

(θs + T )2[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(θs + T )(b(θs + T )− tT )

(b(θs + T )− tT )2 + (1− Fn(P ))P

=
(b(θs + T )− tT )

(θs + T )[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT +
tT

b(θs + T )− tT

]
+(1− Fn(P ))P (14)

In equation 14, I have solved by substituting variables:

U = b(θs + T )− tθs ⇒ b =
U + tθs
θs + T

∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T
and

U = b(θs + T )− tT ⇒ b =
U + tT

θs + T
∂U

∂b
= θs + T ⇒ ∂b =

∂U

θs + T

Fifth, the expected profit is defined by equation 10 and is equal to πn = b(θs+θn)−tθs
and πs = b(θs + T )− tT .

Area B1a.

First, the lower bound of the support is:

bnθn + bn(k − θn)− t(k − θn) = P (θn − T )⇒ bn =
P (θn − T ) + t(k − θn)

k

bsθs + bsT − tT = P (θs + θn − k)⇒ bs =
P (θs + θn − k) + tT

θs + T

Second, I work out the cumulative distribution function.

32



Fs(b) =


0 if b < b

(b− b)k
b(k + T − θn)− t(k − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
(b− b)(θs + T )

b(k + T − θn)− tT
if b ∈ (b, P )

1 if b = P

Moreover,

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
(P (k + T − θn)− t(k − θn))(θs + T )

(P (k + T − θn)− tT )k

If bn < bs ⇒ Fs(P ) =
(P (k + T − θn)− tT )k

(P (k + T − θn)− t(k − θn))(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
k(b(k + T − θn)− t(k − θn))
(b(k + T − θn)− t(k − θn))2

fn(b) =
∂Fn(b)

∂b
=

(θs + T )(b(θs + T )− tT )
(b(θs + T )− tT )2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
k(b(k + T − θn)− t(k − θn))
(b(k + T − θn)− t(k − θn))2

+ (1− Fs(P ))P

=
k(b(k + T − θn)− t(k − θn))

(k + T − θn)2[
ln

(
P (k + T − θn)− t(k − θn)
b(k + T − θn)− t(k − θn)

)]
[
− t(k − θn)
P (k + T − θn)− t(k − θn)

+
t(k − θn)

b(k + T − θn)− t(k − θn)

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(θs + T )(b(k + T − θn)− tT )

(b(k + T − θn)− tT )2
+ (1− Fn(P ))P

=
(θs + T )(b(k + T − θn)− tT )

(k + T − θn)2[
ln

(
P (k + T − θn)− tT
b(k + T − θn)− tT

)
− tT

P (k + T − θn)− tT
+

tT

b(k + T − θn)− tT

]
+(1− Fn(P ))P (15)
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In equations 15, I have solved by substituting variables:

U = b(k + T − θn)− t(k − θn)⇒ b =
U + t(k − θn)
k + T − θn

∂U

∂b
= k + T − θn ⇒ ∂b =

∂U

k + T − θn
and

U = b(k + T − θn)− tT ⇒ b =
U + tT

k + T − θn
∂U

∂b
= k + T − θn ⇒ ∂b =

∂U

k + T − θn

Fifth, the expected profit is defined by equation 10 and is equal to πn = bk− t(k− θn)
and πs = b(θs + T )− tT .

Area B1b.

First, the lower bound of the support is:

bnk = P (θn − T )⇒ bn =
P (θn − T )

k

bsθs + bsT − tT = P (θs + θn − k)− t(θn − k)⇒ bs =
P (θs + θn − k) + t(k + T − θn)

θs + T

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)k
b(k + T − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)(θs + T )

b(k + T − θn)− t(T + k − θn)
if b ∈ (b, P )

1 if b = P

Moreover,

If bn ≥ bs ⇒ Fs(P ) = 1

Fn(P ) =
P (k + T − θn)(θs + T )

(P − t)(k + T − θn)k

If bn < bs ⇒ Fs(P ) =
(P − t)(k + T − θn)k
P (k + T − θn)(θs + T )

Fn(P ) = 1

Third, the probability distribution function is equal to:
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fs(b) =
∂Fs(b)

∂b
=

bk

b2(k + T − θn)

fn(b) =
∂Fn(b)

∂b
=

(b− t)(θs + T )

(b− t)2(k + T − θn)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
bk

b2(k + T − θn)
+ (1− Fs(P ))P

=
bk

(k + T − θn)

[
ln

(
P

b

)]
+ (1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(b− t)(θs + T )

(b− t)2(k + T − θn)
+ (1− Fn(P ))P

=
(b− t)(θs + T )

(k + T − θn)

[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
+ (1− Fn(P ))P (16)

In equations 16, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

Fifth, the expected profit is defined by equation 10 and is equal to πn = bk and
πs = b(θs + T )− tT .

Area B2a.

First, the lower bound of the support is:

bnθn + bn(k − θn)− t(k − θn) = P (θs + θn − k)⇒ bn =
P (θs + θn − k) + t(k − θn)

k

bsθs + bs(k − θs)− t(k − θs) = P (θs + θn − k)⇒ bs =
P (θs + θn − k) + t(k − θs)

k

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)− t(k − θn)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)− t(k − θs)

if b ∈ (b, P )

1 if b = P
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Moreover,

Fs(P ) =
P (2k − θn − θs)− t(k − θs)
P (2k − θn − θs)− t(k − θn)

Fn(P ) = 1

Third, the probability distribution is equal to:

fs(b) =
∂Fs(b)

∂b
=
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2

fn(b) =
∂Fn(b)

∂b
=
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2

+ (1− Fs(P ))P

=
k(b(2k − θn − θs)− t(k − θn))
(b(2k − θn − θs)− t(k − θn))2[
ln

(
P (2k − θn − θs)− t(k − θn)
b(2k − θn − θs)− t(k − θn)

)]
[
− t(k − θn)
P (k + T − θn)− t(k − θn)

+
t(k − θn)

b(2k − θn − θs)− t(k − θn)

]
+(1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2

+ (1− Fn(P ))P

=
k(b(2k − θn − θs)− t(k − θs))
(b(2k − θn − θs)− t(k − θs))2[
ln

(
P (2k − θn − θs)− t(k − θs)
b(2k − θn − θs)− t(k − θs)

)]
[
− t(k − θs)
P (k + T − θn)− t(k − θs)

+
t(k − θs)

b(2k − θn − θs)− t(k − θs)

]
+(1− Fn(P ))P

(17)

where in equation 17, I have solved by substituting variables:

U = b(2k − θn − θs)− t(k − θn)⇒ b =
U + t(k − θn)
2k − θn − θs

∂U

∂b
= 2k − θn − θs ⇒ ∂b =

∂U

2k − θn − θs
and

U = b(2k − θn − θs)− t(k − θs)⇒ b =
U + t(k − θs)
2k − θn − θs

∂U

∂b
= 2k − θn − θs ⇒ ∂b =

∂U

2k − θn − θs
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Fifth, the expected profit is defined by equation 10 and is equal to πn = bk− t(k− θn)
and πs = bk − t(k − θs).

Area B2b.

First, the lower bound of the support is:

bnk = P (θs + θn − k)⇒ bn =
P (θs + θn − k)

k
bsθs + bs(k − θs)− t(k − θs) =

P (θs + θn − k)− t(θn − k)⇒ bs =
P (θs + θn − k) + t(2k − θn − θs)

k

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

(b− b)k
b(2k − θn − θs)

if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b

(b− b)k
(b− t)(2k − θn − θs)

if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
P (2k − θn − θs)− t(2k − θn − θs)

P (2k − θn − θs)
Fn(P ) = 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

bk

b2(2k − θn − θs)

fn(b) =
∂Fn(b)

∂b
=

(b− t)k
(b− t)2(2k − θn − θs)

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
bk

b2(2k − θn − θs)
+ (1− Fs(P ))P

=
bk

(2k − θn − θs)

[
ln

(
P

b

)]
+ (1− Fs(P ))P

En(b) =

∫ P

b

bfn(bs)∂b =

∫ P

b

b
(b− t)k

(b− t)2(2k − θn − θs)
+ (1− Fn(P ))P

=
(b− t)k

(2k − θn − θs)

[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
+ (1− Fn(P ))P (18)

37



where in equations 18, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

Fifth, the expected profit is defined by equation 10 and is equal to πn = bk and
πs = bk − t(k − θs).

Proposition 4. Effect of an increase in transmission capacity.

In the presence of transmission capacity constraints and transmission costs, the "size"
and "cost" mechanisms determine the equilibrium. These two mechanisms work in op-
posite directions which has important implications for equilibrium outcome allocations.
Hence, an increase in transmission capacity modifies the relevant model variables (lower
bound of the support, expected bids and expected profits) in a non-monotonic pattern.
Therefore, no clear conclusions can be obtained through the analysis of the partial deriva-
tives.

In this section, I present the static comparative in order to illustrate the difficulties to
obtain a formal analysis from the analytical solutions. I present the results for area A1,
the analysis is the same for the rest of the areas.

Area A1.

∂bn
∂T

=
−P

(θs + θn)
< 0

∂bs
∂T

=
t(θs + T )− tT

(θs + T )2
=

tθs
(θs + T )2

> 0

∂Fn(P )

∂T
=

(2P (θs + T )− tθs) ((P (θs + T )− tT )(θn + θs)))

((P (θs + T )− tT )(θn + θs))
2 +

t(θn + θs)(P (θs + T )− tθs)(θs + T )

((P (θs + T )− tT )(θn + θs))
2 > 0
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∂En(b)

∂T
=

∂b

∂T
(θs + T ) + (b− t)(θs + T )− b(θs + T ) + tT

(θs + T )2[
ln

(
P (θs + T )− tT
b(θs + T )− tT

)
− tT

P (θs + T )− tT +
tT

b(θs + T )− tT

]
+

b(θs + T )− tT
θs + T[

b(θs + T )− tT
P (θs + T )− tT

]
(P − t)(b(θs + T )− tT )−

(
∂b

∂T
(θs + T ) + b− t

)
(P (θs + T )− tT )

(b(θs + T )− tT )2

+

b(θs + T )− tT
θs + T

[
−t(P (θs + T )− tT )− (P − t)tT

(P (θs + T )− tT )2
]
+

b(θs + T )− tT
θs + T

t(b(θs + T )− tT )−
(
∂b

∂T
(θs + T ) + b− t

)
tT

(b(θs + T )− tT )2



∂Es(b)

∂T
=

∂b

∂T
(θs + T )3(θs + θn) + b(θn + θs)(θs + T )2 − 2(θs + T ) [(θs + θn)(b(θs + T )− tθs)]

(θs + T )4[
ln

(
P (θs + T )− tθs
b(θs + T )− tθs

)
− tθs
P (θs + T )− tθs

+
tθs

b(θs + T )− tθs

]
+

(θn + θs)(b(θs + T )− tT )
(θs + T )2[

(b(θs + T )− tθs)
P (θs + T )− tθs

]
P (b(θs + T )− tθs)−

(
∂b

∂T
(θs + T ) + b

)
(P (θs + T )− tθs)

(b(θs + T )− tθs)2

+

(θn + θs)(b(θs + T )− tθs)
(θs + T )2

[
− Ptθs
(P (θs + T )− tθs)2

]
+

(θn + θs)(b(θs + T )− tθs)
θs + T

−btθs −
(
∂b

∂T
(θs + T )tθs

)
(b(θs + T )− tθs)2


∂πn
∂T

= −P < 0
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∂πs
∂T

=
−P

(θs + θn)
(θs + T ) +

P (θn − T ) + tθs
(θs + θn)

− t

=
P (θn − 2T − θs)− tθn

(θs + θn)

Annex 3. Expected equilibrium price: Simulation

Propositions one and three fully characterize the equilibrium. However, due to the com-
plexity of calculations and to ensure that I did not make any algebra mistake, I work
out the expected bid for both firms using the algorithm presented in this annex. The
algorithm is based on the cumulative distribution function that is the mixed strategies
equilibrium from which the rest of the variables of the model are derived.

As can be observed in tables 1 and 2, the differences between the expected bid using
the analytical formulas from propositions one and three and using the algorithm proposed
here are almost null.16

Figure 11: Expected bid. Simulation.

b Pbk bk+ 1

θ
s
=15, θ

n
=50, k=60, T=40, c=0, t=0, P=7

0

1
Fi(bk+ 1)

Fi(bk)

bid

C
D

F

Fi(b)

Algorithm: (figure 11)

1. I split the support of the mixed strategies equilibrium into K grid values (where K
is a large number e.g., 5000 or 10000). I call each of these values bi(k) ∀i = s, n.

2. For each bi(k), I work out Fi(bi(k)) using the formulas obtained in propositions one
and three.

16I have applied this algorithm to work out the expected value for any realization of demand (all areas)
and I have compared this with the analytical values and the results are almost identical.
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3. The probability assigned to pi(bi(k)) equals the difference in the cumulative distri-
bution function between two consecutive values Fi(bi(k+1))−Fi(bi(k)). Therefore,
p(bi(k)) = Fi(bi(k + 1))− Fi(bi(k)). It is important to remark that one observation
is lost during the process to work out the probabilities.

4. The expected value is the sum of each single bid multiplied by its probability:
Ei(b) =

∑K−1
k=0 bi(k)pi(bi(k)) ∀i = s, n

Annex 4. Characterization of the Nash Equilibrium when firms
pay a point of connection tariff

In this paper, I assume that suppliers face transmission constraints and they are charged
by a linear transmission tariff for the electricity sold in the other market. Under this
assumption, I show that suppliers’ strategies are affected by the "size" and the "cost"
mechanisms that work in the opposite direction and determine equilibrium outcome al-
locations. However, when suppliers face transmission constraints and they are charged
on basis of the total electricity that they inject in the grid (point of connection tariff),
the suppliers pay the same transmission tariff for the electricity sold in their own market
and the one sold in the other market. Therefore, the competitive advantage (cost effect)
derived from the location in the high-demand market disappears and equilibrium market
outcomes exclusively depend on the size effect. Moreover, given that electricity demand is
very inelastic, an increase in generation costs is passed through to consumers that face an
increase in equilibrium prices in both markets. This result is in line with the pass through
literature (Marion and Muehlegger 2011; Fabra and Reguant 2014). Hence, a change in
the design of transmission tariffs from the one used in the majority of the countries to
the one proposed in this article could induce a large improvement in consumer welfare.

The general formulas of the lower bound of the support, the cumulative distribution
function, the probability distribution function, the expected equilibrium price and the ex-
pected profit can be worked out using the same approach as that in annexes one and
two. In this annex, I only work out the particular formulas associated with each single
area (figure 3). Once that I characterize the equilibrium, I analyze the effect of an in-
crease in transmission capacity on the main variables of the model. Finally, I compare
the equilibrium outcome of the three model specifications: transmission constraints and
zero transmission costs (model I); transmission constraints and positive transmission cost
for the electricity sold in the other market (model II) and finally transmission constraints
and positive transmission cost for the entire generation capacity (model III).

Area A1.

First, I work out the lower bound of the support. Using the same approach as in
annex one, it is straightforward to show that in areas A1 and B1, bn > bs. Hence,
S = [max {bn, bs} , P ] = [bn, P ]. Therefore, it is enough to work out bn. bn can be de-
rived from the next equation (bn − t)(θn + θs) = (P − t)(θn − T ). Therefore, in area A1,

S =

[
t+

(P − t)(θn − T )
(θn + θs)

, P

]
.

Second, I work out the cumulative distribution function.
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Fs(b) =


0 if b < b
θn + θs
θs + T

b− b
b− t if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

θs + T

b− b
b− t if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
θn + θs
θs + T

P − t− (P − t)(θn − T )
θn + θs

P − t = 1

Fn(P ) =
θs + T

θs + T

P − t− P − t(θn − T )
θn + θs

P − t =
(θs + T )

(θn + θs)
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=
θn + θs
θs + T

b− t
(b− t)2

fn(b) =
∂Fn(b)

∂b
=
θs + T

θs + T

b− t
(b− t)2

Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
θn + θs
θs + T

(b− t)
(b− t)2∂b =

θn + θs
θs + T

(b− t)
[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b
b− t

(b− t)2∂b+ (1− Fn(P ))P =

(b− t)
[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
+ (1− Fn(P ))P (19)

In equation 19, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

Fifth, the expected profit is defined by πn = (b− t)(θs + θn) and πs = (b− t)(θs + T ).
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Area B1.

First, the lower bound of the support is S =

[
t+

(P − t)(θn − T )
k

, P

]
.

Second, I work out the cumulative distribution function.

Fs(b) =


0 if b < b

k

T + k − θn
b− b
b− t if b ∈ (b, P )

1 if b = P

Fn(b) =


0 if b < b
θs + T

T + k − θn
b− b
b− t if b ∈ (b, P )

1 if b = P

Moreover,

Fs(P ) =
k

T + k − θn
(P − t)− (P − t)(θn − T )

k
P − t = 1

Fn(P ) =
θs + T

T + k − θn
(P − t)− (P − t)(θn − T )

k
P − t =

θs + T

k
< 1

Third, the probability distribution function is equal to:

fs(b) =
∂Fs(b)

∂b
=

k

T + k − θn
b− t

(b− t)2

fn(b) =
∂Fn(b)

∂b
=

θs + T

T + k − θn
b− t

(b− t)2
Fourth, the expected bid is determined by:

Es(b) =

∫ P

b

bfs(bs)∂b =

∫ P

b

b
k

T + k − θn
b− t

(b− t)2∂b =

k

T + k − θn
(b− t)

[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
En(b) =

∫ P

b

bfn(bn)∂b =

∫ P

b

b
θs + T

T + k − θn
b− t

(b− t)2∂b+ (1− Fn(P ))P

=
θs + T

T + k − θn
(b− t)

[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
+ (1− Fn(P ))P (20)

In equation 20, I have solved by substituting the variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U
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Table 4: Effect of transmission constraint and transmission costs on equilibrium outcome
(θs = 5, θn = 55, k = 60, c = 0, P = 7)

T b πn πs π En(b) Es(b) θnEn(b) + θsEs(b)

Model I 40 1.75 105 184 289 4.2 3.2 247
Model II 40 1.87 105 24 129 3.1 3.3 187
Model III 40 2.87 82.5 62 144.5 4.8 4 284

Fifth, the expected profit is defined by πn = (b− t)k and πs = (b− t)(θs + T ).

Area B2.

First, the lower bound of the support is S = [max {bn, bs} , P ] =
[
t+

(P − t)(θs + θn − k)
k

, P

]
.

Second, I work out the cumulative distribution function.

Fi(b) =


0 if b < b

k

2k − θi − θj
b− b
b− t if b ∈ (b, P ) ∀i = s, n

1 if b = P

Third, the probability distribution function is equal to:

fi(b) =
∂Fi(b)

∂b
=

k

2k − θi − θj
b− t

(b− t)2 ∀i = s, n

Fourth, the expected bid is determined by:

Ei(b) =

∫ P

b

bfi(bi)∂b =

∫ P

b

b
k

2k − θn − θs
b− t

(b− t)2∂b =

k

2k − θn − θs
(b− t)

[
ln

(
P − t
b− t

)
− t

P − t +
t

b− t

]
+ (1− Fn(P ))P (21)

In equation 21, I have solved by substituting variables:

U = b− t⇒ b = U + t
∂U

∂b
= 1⇒ ∂b = ∂U

Fifth, the expected profit is defined by πn = πs = (b− t)k.

It is straightforward to show that an increase in transmission capacity induces the same
changes in equilibrium outcome as when the transmission costs are zero (proposition two).
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Figure 12: Cumulative Distribution Functions of models I, II and III.
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Model comparison

In the last part of the annex, I compare the equilibrium outcome of the three dif-
ferent model specifications: transmission constraints and zero transmission costs (model
I); transmission constraints and positive transmission costs for the electricity sold in the
other market (model II) and, finally, transmission constraints and positive transmission
costs for the entire generation capacity (model III).

The tree different model specifications affect suppliers’ strategies in very different ways
as can be observed in figure 12. The diversity of strategies induces important changes on
the most relevant variables of the model (table 4).

I have discussed the three models in detail in section four (pages. 17-18). I refer the
reader to those pages to follow the analysis.
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