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1. Homogeneous scalar valued production functions have played

an important role in econometric studies of production for esti-
mating returns to scale. But since this class of functions models
very simple technologies, others have been developed. Shephard
[1953], [1970] introduced the class of homothetic functions, in
which returns to scale can vary with output but not with the in-
put mix. Eichhorn [1969], [1970] derived the class of ray-homo-
geneous functions by solving a multiplicative Cauchy functional
equation. For such a class returns to scale can vary with the
input mix, but not with outputs The homothetic and ray-homogeneous
classes were combined by Fare [1973], who solved a translation
functional equation to obtain the class of ray-homothetic func-
tions. Such functions are homothetic along each ray in input
space, but possibly in different ways for different rays. As

a result, returns to scale can vary both with output and with

the input mix. It naturally follows that technically optimal
(i.e., cost minimizing) output can vary both with output and

with the input mix when the production function is ray-homothetic.

Homothetic production functions have been estimated by Zellner
and Revankar [1966] among many others, but to the best of our
knowledge neithermray-homogeneous nor ray-homothetic production
functions have ever been estimated. The present paper represents
an attempt to fill that gap by specifying and providing estimates
of a ray-homothetic production function. We also demonstrate that
the implications of ray-homotheticity for returns to scale, and
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hence for technically optimal output, differ substantially from
those of homotheticity and ray-homogeneity.

2. Let ¢:R2 > R, be a production function with properties:1

¢.1 ¢(0) =0, and ¢(x) > O for some x > 0.2

$.2 ¢ is bounded for bounded input vectors x.

6.3 ¢(rex) 2 o(x) for a2 1,

¢.4 For any x > 0 such that ¢(Ar-x) > O for some scalar
A > 0, ¢(XeX) > + @ a8SA > + o,

$.5 ¢ is upper semi-continuous.

Also, consider the functions F:R, - R, and H: {x/|x||x > 0} > R,
with the properties

F.1 F(0) = 0.

F.2 F(v) is bounded for |v| < + =,

F.3 F is strictly increasing.

F.4 F(V) >+ » as v » + o,

F.5 F is continuous.

“H.  H(x/|x|) > 0 and bounded.

A production function ¢ is ray-homothetic if
M) e0ex) = FOEE XD gy, a0,
where G(x) = F_1(¢(x)). If F is the identity function, then
@ s0ex) =Dy,

and ¢ is ray-homogeneous. On the other hand, if H(x/|x|) is a
positive constant «, then '

(3) + o(xx) = F(* G(x)), 1 >0,

1 These properties are adapted from Shephard [1974], who also
assumes that the efficient subsets are bounded.

inO‘ means x 2 0 but x # 0.
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ind ¢ is homothetic. Thus the ray-homothetic function (1) provides
1 straightforward generalization of the functions of Eichhorn and
shephard. Finally, if F is the identity function and H(x/|x|) is a
)ositive constant, then

4y e(aex) =A% ¢(x), A >0,

ind ¢ is homogeneous.

s0ldman and Shephard [1972] have proved that the ray-homogeneous
function (2) satisfies (global) strong disposability of inputs

(x" 2 x = > ¢(x") > ¢(x)) or (global) quasiconcavity if and only if
1(x/|x]|) is a positive constant, in which case it is homogeneous.
“dre [1975] has proved a similar theorem stating that the ray-homo-
thetic function (1) satisfies the same two (global) properties if
and only if H(x/|x|) is a positive constant, in which case it is
tomothetic., Although neither of these . two strong properties is
imposed globally by the ray-homothetic function, they may be satis-
fied Tocally (i.e., for some neighborhood of a point xeRi) even if

1(x/|x|) is not a positive constant.
Jefining the elasticity of scale ¢ as

. fas(aex) A ]
€= 1im |t )
x+1L o e(x) )
me can easily calculate this elasticity, assuming sufficient regulari-
ty, for the above functions. Clearly =51(x/|x|, ¢(x)) for the ray-
tomothetic function, ¢ = az(x/|x|) for the ray-homogeneous function,

Po= 83(¢(x)) for the homothetic function, and ¢ = ¢, = o, a constant,

4
for the homogeneous function. Technically optimal output is obtained
for the ray-homothetic and homothetic functions by setting e, = 1,

i =1,3. Technically optimal output is zero, indeterminate or infini-

te for the ray-homogeneous and homogeneous functions.

3. In their article on generalized production functions, Zellner and
Revankar [1966] discuss various properties of homothetic production

functions. They also provide an econometric example showing how a
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parametric homothetic production function can be estimated. However
a simple inspection of a plot of their data, along lines suggested
by Hanoch and Rothschild [1972], led us to conclude that the data .
need not necessarily have been generated from a technology satis-
fying (global) strong disposability of inputs or (global) quasi
concavity. For that reason we demonstrate how a parametric ray-
homothetic production function can be estimated and interpreted.

We borrow the data, and a portion of the parametric specification,
from Zellner and Revarkar.  The functional specification is

1

s

V -1 -
(5) veBV o ax@tY (K/L+SL/K) | B+Y (K/L+6L/K)

Wwith 6, yeR, A, a, &, 6eR,, and [a+yK/L + sL/K)™']1 > 0,

[8 + y(K/L + L/K)"*1 > 0, for all K/L. If v = 0 then (5) is the
homothetic Cobb-Douglas function used by Zellner and Revankar. If
6 = 0 then (5) is ray-homogeneous, and if 8 = y = 0 then (5) is a
homogeneous Cobb-Douglas function, )

For the statistical model we follow the methodology of Zellner,
Kmenta and Dréze [1969] by assuming that the data were generated
by a process consistent with the maximization of the mathematical

expectation of profits.

Introducing a multiplicative random error term in (5) and taking
natural Togarithms gives the estimating equation

(6) TV, + oV = InA+ [on +{(K /L) + 6(Li/Ki))—1} Tnk;

+ |8 +Y((Ki/|fvi) + S(Li/Ki))-lJ]nLi + ui s

where i = 1,...,25 indexes observations. The variables, V, K, L
refer to per-establishment means of value added, capital and labor
for eéch of 25 states in fhe U.s. Transportation Equipment In-
dustry in 1957, and are described in greater detail by Zellner

and Revankar, It is assumed that v NID(O,oZ), and that E(uiuj) = 0,
i # j. Under these assumptions the parameters of (6) may be estimated
by maximum likelihood methods. The results are presented in Table 1;
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column . (1) contains estimates of the ray-homothetic function (5),
while columns (2) and (3) contain estimates of the ray-homogeneous
and homothetic versions of (5) respectively.

ATl thfee‘specifications provide excellent fits to the data, although
the least restrictive of the three, the ray-homothetic function, 15‘
clearly to be preferred. Estimates of all parameters of the ray-ho-
mothetic function are highly significant. The estimated value of 6

is significantly greater than zero, suggesting that technology is
not ray-homogeneous; and the estimated value of y is significantly
less than zero, suggesting that technology is not homothetic either.
The estimated ray-homothetic function is depicted by a series of
isoquants in Figure 1. The single dashed isoquant belongs to the
estimated homothetic function.

4. The empirical estimates obtained above can be used to draw some
inferences for returns to scale and technically optimal output.
Applying the definition of ¢ to the parametric ray-homothetic
production function (5) gives

‘ _ a + B 2
(7) e (x/Ix]s 8(x) = Ty * (1+eV)(§/L+aL/K)'

At technically optimal output, sl(x/lxl,e(x)) = 1, and thus

o _a+ 8 -1 2
1 3 o (K/L+sL/K) *

Both el(x/lxl, 8(x)) and Vi can be computed for each observation,
using parameter estimates given in Table 1. Computed values of
sl(x/lx|, e(x» measure returns to scale at each observation, while
computed values of Vi can be compared with actual values of V for
each observation to determine the magnitude of the resulting devi-
ation of actual from technically optimal output. These results are
given in Table 2, along with analogous results for the ray-hom-
geneous and homothetic versions of (5). Table 2 emphasizes short-
comings of the latter two functions that are not otherwise apparent.
For the homothetic function returns to scale is a (monotonically
decreasing) function of output only, and so technically optimal out-
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put is the same constant for 'all observations. For the ray-homo-
geneous function returns to scale is a U-shaped function of the in-
put mix only, reaching a minimum at K/L = 61/2 = 0.844. Since this
minimum value exceeds unity, technically optimal output is infinite
for all observations. Neither of these scenarios is plausible.

For the ray-homothetic function, however, returns to scale is a
monotonically decreasing function of output and a U-shaped function
of the input mix, reaching a minimum with respect to the latter at
K/L = 61/2 = 0.635. As a result, technically optimal output varies
across observations, as one would expect. Despite this variation
the majority of production is carried out in the region of in-
creasing returns to scale and so actual output is on average only
65.5 % of technically optimal output.

5. The ray-homothetic function includes ray-homogeneous and homo-
thetic functions as special cases, and is considerably more flexible
than either. We have constructed and estimated a parametric version
of a ray-homothetic function, using a Cobb-Douglas function as a
base. Undoubtedly more complex bases can be used (e.g., the CES
function), but there seems to be no reason to do so. Our specifica-
tion is relatively easy to estimate, and it is sufficiently flexible
to permit returns to scale to attain a different value at every
point in input space. This flexibility of the elasticity of scale

in turn permits technically optimal output to vary with the input
mix, a desirable property that is absent in both the homothetic and
the ray-homogeneous functions.
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Table 1. Estimated Production Function Parameters

Parameter Ray-Homothetic Ray-Homogeneous Homothetic

BN (2) (3)
o 0.098 - 0.114
. (0.009) ‘ (0.015)
A 14.941 _ 7.989 : 19.298
(1.007) - (1.075) (1.891)
a 10.330 0.221 0.355
(0.026) ~(0.083) (0.026)
B : 1.440 1.319 1.104
(0.046) ‘ (0.186) - (0.380)

¥ -0.259 -0.403 -

(0.047) (0.351) ‘
8 0.403 0.712 -
(0.096) . (0.774)

R? 0.969 ; . 0.957 . 0.919

Tna 6.526 ’ 6.323 5.633

Figures in parentheses are asymptotic standard errors.



Table 2. Implied Values of Returns to Scale and Technically Optimal Output
Ray-Homothetic Ray-Homogeneous Homothetic

State v K/L e (x/1x],9(x)) v e, (x/1x]) v; e4(6(x)) vg
Florida 0.193 0.341 1.403 4,387 1.208 +oo 1.428 4.026
Maine 0.364 0.304 1.402 4.617 1.215 " 1.401 "
Towa 0.477 0.337 1.368 4.415 1.211 " 1.383 !
Louisiana 0.638 0.237 1.414 5.135 1.291 " 1.340 "
Massachusetts  1.404 0.389 1.236 4.149 1.176. " 1.258 .
West Virginia 1.513 0.380 1.228 4,192 1.182 " 1.244 !
Texas 1.712 0.207 1.310 5.405 1.318 " 1.221 "
Alabama 1.855 0.121 1.371 6.335 1.405 " 1.204 "
New York 2.040 0.384 1.174 4.173 1.179 ! 1.184 !
Virginia 2.052 0.229 1.257 5.202 1.298 . 1.182 "
California 2.333 0.410 1.138 4.067 1.164 . 1.152 "
Wisconsin 2.463 0.417 1.124 4041 1.160 " 1.139 "
I11inois 2.629 0.667 1.084 3.702 1.075 " 1.122 "
Pennsylvania 2.651 0.350 1.131 4.341 1.201 " 1.121 "
New Jersey 2.701 0.401 1.108 4,101 1.169 " 1.115 !
Maryland 3.219 0.253 1.132 4.997 1.277 " 1.067 "
Washington 3.558 0.350 1.057 4.339 1.201 ! 1.038 y
Indiana 3.816 0.760 0.996 3.764 1.065 " 1.017 !
Kentucky 4.031 0.434 0.996 3.979 1.151 " 1.000 !
Georgia 4.289 0.253 1.049 4.995 1.277 ! 0.980 "
Ohio 4.440 0.608 0.950 3.701 1.086 " 0.969 "
Connecticut 4.485 0.320 1.002 4.513 1.223 " 0.966 "
Missouri 5.217 0.387 0.931 4.159 1.178 ! 0.915 "
Kansas 6.507 0.120 0.990 6.339 1.406 " 0.838 "
Michigan 7.182 0.887 0.813 3.920 1.063 " 0.802 "

§ge
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Figure 1
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