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l. Homogeneous scalar valued productian functions have played

an important role in econo~etric studies of production for esti­
mating returns to scale. But since this class of functions moaels
very simple technologies, others have be~n de'v'eloped. Shephard
[ 1953], [1970] i ntroduced the el ass of homotheti c functions, i n '
which returns to scale can vary with o~tput but ~ot with the in­
put mix. Eichhorn [1969], [1970] derived the class öf ray~homo­

geneous functions by solving a multiplicati~e Cauchy functional
equation. For such a class returns to scale ca'n vary with th'e
input mix, but not with output, The homothetic ~nd ray-homogeneous
classes were combined by Färe [1973], who'solved a trans1ation
functional equation to obtain the class of ray-homotheti-c func­

tions. Such functions are homothetic along each ray in input
space, but possibly in different ways for different rays. As
a result, returns to scale can vary both with output and with
the input mix. It naturally follows that technically optimal
(i.e., cost minimizing) output can vary both with output and
with the input mix when the production function is ray-homothetic.

Homothetic production functions have been estimated by Ze11ner
and Revankar [1966] among many others, but to the best of our
know1edge neither ray-homogeneous nor ray-homothetic production
functions have ever been estimated. The present paper represents
an attempt to fill that gap by specifying and providing estimates
Df a ray-homothetic production function. We also demonstrate that
the implications of ray-homotheticity for returns to scale, and

~ Sponsored by Anders Otto Swärds stiftelse.



hence for technically optimal: o~tput, differ substantially from

those of homot~ettci~y and ray-h~mogeneity.

2. Let ~:R~ ~ R+ be a production function with properties: 1

~.l ~(O) = O, and ~(x) > O for some x ~ 0. 2

~.2 ~ is bounded for bounded' input vectors x.
~.3 ~(A.X) ~ ~(x) for A ~ l.

~.4 For any x ~ O such that ~(A.X) > O for same scalar
A > O, ~ (A· x) ~ + (X) as A~ + 00.

~.5 ~ 1S upper semi-continuous.

Also, .cohsider thefunctions F:R+ -+ R.j.and H: {x/lxi \x.::. O} .... R+

with.the properties

F.l F(O):d O.

F~2 F(v) is bounded for lvi < + 00.

F.3· F is strictly increasing.
F.4 F(v) ~I+ ~'as v ~ ~ 00.

F~'5 F i s cont; nuous .

, -H '. H(xl IxI» O'and bo'unded.

A production function ~ is ray-homothetic if

(l) ~(A.X) = F(AH(x/1x l). G(x)), A > O,

where G(x) = F-l(~(x)). If F is the identity function, then
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(2-) A > 0,

and .'~ '; s ray-homogeneous .. 'On the other hand, i f H(x/ Ix,l) ; s a

positive'constant a, theri

(3) A > O,

1 These properties are adapted from Shephard [1974], who a1so
assumes thctt the efficient subsets are bounded.

2 x ~ O' means x ~ O but x * o.



230

lnd ~ is homothetic. Thus the ray:homoth.etic function (1) provides
i straightforward genera1ization of the functions of Eichhorn:and
;hephard. Finally, if F is the identity function and H(x/lxl) is a
)ositive constant, then

lnd ~ is homogeneous.

;oldman and Shephard [1972] have proved that th~ ray-homogeneous
function (2) satisfies (global) strong disposability of inputs
(Xl ~ X = > ~(X.I) ~ ~(x)) or (global) quasiconcavity if and on1y. if
1(x/lxl) is a positive constant, in which case it is homogeneous.
~äre [1975] has proved a similar theorem stating that· the ray-homo­
thetic function (l) satisfies the same two (global) properties if

lnd only if H(x/lxl) is a positive constant, in which case it is
10mothetic. Although neither of these·two strong'properties is
imposed globa11y by the ray-homothetic function,. they may be satis­
Fied loca1ly (i.e., for some neighborhood of a point xsR~) even if

1(x/lxl) is not a positive constant.

)efining the elasticity of scale c as

)ne can easily ca1culate this elasticity, assuming sufficient regulari­
ty, for the above functions. C1early E:.=c:1(x/lxl, ~'(x)) for the ray­
10mothetic function, E:. = E:.2(x/lxl) for the ray-homogeneous function,
~ = E:.3(~(x)) for the homothetic function, and E:. = E:.4 = cr, aconstant~

For the homogeneous function. Technically optimal output is obtained
For the ray-homothetic and homothetic functions by setting E:.. = 1,

~

i = 1,3. Technically optimal output is zero, indeterminate or infini-
te for the ray-homogeneous and homogen~ous functions.

3. In their article on generalized production funct~ons, Zellner and
Revankar [1966] discuss various properties of homothetic pro~uction

functions. They also provide an econometric example showing how a
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parametric homothetic production function can be estimated. However

a simple inspection of a plot of their data, along lines suggested
by Hanoch and Rothschi l d [1972], l ed us to concl ude that the data.

need not necessarily have been generated from a technology satis­

fJing (global) st~ong disposabil~ty of inputs or (global) "quasi

concavity. "For that reason we demonstrate how a par~metric ray­
homotheiic' productionfunction-can be estimated and interpreted.

We borrow the data~ and a" portion "of the parametric specification,

from Zellner"and Revankar." The functional specification is

(5)

. - . . -l
wl t h e, ycR, A," a, B, cS cR+' and [~ + y (\<1 L + <5 LI K) ] > O,

[B + y ( Kl L + oLI K)-l J > O, f or a11 Kl L• I f y = O t hen ("5) i s t he

homothetic Cobb-Douglas function used by Ze1lner and Revankar. If

G = b then (5) is ray~homogeneous, and if e = y = O then (5) is a

homogeneous Cobb-Doug1as function.

For the statistical model we fol1ow the methodology of Zellner,

Kmenta and Dreze [1969] "byassuming that the data were generated

by a process consistent with the maximization of the mathematica1

expectation of profits.

Introducing a multiplicative random error term in (5) and taking

natural logarithms gives the estimati~g equation

[
" -l l

(6) lnV i "+ eV i = lnA + a +y((Ki/L i ) + cS(Li/Ki )) J lnK i

+ [6 +y«K/Lil +6{L/KJIJlnL i + )li '

where i 1, ... ,25 indexes observations. The variables, V, K, L

refer to per-establishmen~ means of value added, capital and labor

for each of 25 states in the U.S. Tran~portation Equipment In­

dustry in 1957, and are described in greater detail by Zellner

and Revankar. It is assumed that ~.~ NID(O,o2), and that E(~.~.) = O,
" " . ~ ~ J

i * j . ".. Under these assumption? the parameters of (6) may be estimated

by ma ximum l i kel i hood me t hods. The re su1t s are present ed i n Tab.l e l;
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column.(l) contains estimates of ·the ray-homothetic function (5),

\tJh i l e .co l umns (.2) and. (3) .. conta i n es ti ma tes of the ray-homogeneous
and homothetic versions of (5) respectively.

All three specifications provide.excellent fits. to the data, although

the least restrictive of the three, the ray-homothetic function, is
clearly to be.preferred. Estimates of all parameters of the .ray-ho-:
mothetic function are highly significant. The estimated value of e
is significantly greater than zero, suggesting that technology is
not ray~homogeneous; and the estimat~d value of y is significantly
less than zero, suggesting that technology is not homothetic.either.
The estimated.·ray-homothetic function is depicted by·a series of
isoquants in Figure l. The single dashed isoquant belongs to the
estimated homothetic function.

40 The empirical estimates obtained above can be used to drawsome
inferences for returns to scale and technically optimal output.
Applying the definition of E to the parametric ray-homothetic
production function (5) ,gives

At technically optimal output, E1(x/lxl,s(x)) = l, and thus

(8) VO = a + 6 - 1 2y
. l e'+ e(k/L+oL/k)·

Both E1(X/lx!, e(x)) and V~ can be computed for each observation,
using parameter estimates given in Table l. Computed values of
E1(x/Ixl, e(x» measure returns to scale at each observation, while
computed values of V~ can be compared with actual values of V.for
each observation~ to determine the magnitude of the resulting devi­

ation of actual from technically optimal output. These results are
given in Table 2, along with analogou~ results for the ray-hom­
geneous and homothetic versions of (5). Table 2 emphasizes short­
comings of the latter two functions that are not otherwise apparent.
For the homothetic function returns to scale is a (monotonically
decreasing) function of output only, and so technically optimal out-
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put is the same constant for 'all' observations. For the ray-homo­
geneousfunction returns 'to scale is a U-shaped function of the in­
put mix only, reaching a minimum at K/L = 81}2 = 0.844. Since this

minimum value exceeds unity, technically optimal output is infinite
for all observations. Neither of these scenarios is plausible.

For the ray-homothetic function, ho~ever, returns to scale is a

monotonically decreasing function of output and a U-shaped function
of the input mix, reaching a minimum with respect to the latter at

K/L = 8
1

/
2 = 0.635. As a result, tethnically optimal output varies

across observati~ns, as one would expect. Despite this variation
the majority of production is carried out in the region of in­
creasing returns to scale and so actual output is on average only
65.5 %of technica~ly opti~al output.

5. The ray-homothetic function includes ray-homogeneous and homo­
thetic functions as special cases, and is considerably more flexible
than either. We have constructed and estimated a parametric version
of a ray-homothetic function, using a Cobb-Dougla~ function as a
base. Undoubtedly more complex bases can be used (e.g., the CES
function), but there seems to be no reason to do so. Our specifica­

tion is relatively easy to estimate, and it is sufficiently flexible
to permit returns to scale to attain a different value at every
point in input space. This flexibility of the elasticity of scale
in turn permits technically optimal output to vary with the input
mix, a desirable property that is absent in both the homothetic and
the ray-homogeneous functions.
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Tabl e l. Estimated Production Functi on Pa'rameters

Parameter Ray-HQmothetic Ray-Hornogeneous Homoth,etic
(l) (2) (3)

8 0.098 0.1,14
(0'.009) '(O .015)

A 14.941 : ' , 7.989 19.298
-'"

(1.007) (l .075) (l .891,)

a -0.330 0.221 0.355
(0.02~) (0.083) (0.026')

B 1.440 ; ,l .31 g ,: 1.104
(0.046) (O .186,) . (0.389) ,

Y -0.-2-59" :",0.403
(0.047) (O .351 )

cS 0.403 0.712
,(0.096)

; . i
(0.,.774 )

-2 . , ;0.969 .' 0.957 ,0.919,R "

l na 6.526
.,

6.323 5.633

Figures in pareritheses are 'asymptotic standard errors.



Table 2. Imp1ied Va1ues of Returns to Sea1e and Technical1y Optimal Output

Ray-Homothetic Ray-Homogeneous Homothetie

State V K/L €l(x/lxl,<p(x)) VO E2 (X/lx!) VO E
3

(<P(X)) VO
l 2 3

Florida 0.193 0.341 1.403 4.387 l .208 +cx:> 1.428 4.026
t~a i ne 0.364 0.304 1.402 4.617 l .215 II 1.401
Iowa 0.477 -0.337 1.368 4.415 l .211 It 1.383
Louisiana 0.638 0.237 l .414 5.135 l .291 1.340
~·1assaehusetts 1.404 0.389 l .236 4.149 1.176. 1.258
West Virginia 1.513 0.380 l .228 4.192 1. 182 1.244
Texas 1. 712 0.207 1.310 5.405 l .318 l .221
Alabama l .855 O. 121 l .371 6.335 l .405 l .204
New York 2.040 0.384 l .174 4.173 l .179 l .184
Virginia 2.052 0.229 l a 257 5.202 l .298 l .182
California 2.333 0.410 l . 138 4.067 1.164 1. 152
vJi seans i n 2.463 0.417 l .124 4.041 l .160 l . 139
Illinois 2.629 0.667 1.084 3.702 l .075. l .122
Pennsylvania 2.651 0.350 l .. 131 4.34-1 l .201 l . 121
New Jersey 2.701 0.401 l . 108 4. l 01 1.169 1. 115
Maryland 3.219 0.253 l ~ 132 4.997 l .. 277 l .067
Washington 3.558 0.350 1.057 4 .. 339 l .. 201 1.038
Indiana 3.816 0.760 0.996 3 .. 764 l .065 l .017
Kentucky 4.031 0.434 0.996 3~979 1 .. 151 1.000
Georgi a 4.289 0.253 l .04·9 4.995 1.277 0.980
Ohio 4.440 0.608 0.. 950 3.701 1.086 0.. 969
Connecticut 4.485 0.320 l .002 4.,513 1.223 0.966
Mi ssouri 5.217 0.,387 0.931 4.159 l . 178 0.915
Ka nsas 6.507 0.120 0.990 6.339 1.406 0.838
r~i ch i gan 7.182 0.887 0.813 3.920 1.063 0.802

N
W
<..n
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Table l., Estimated Production Function P~rameters

Pa rameter Ray-HQmotheti c Ray-Homogeneous Homothetic
(l) (2 )' (3 )

G 0.098 0.114
(0'.009) '(0.015)

A 14.941 ' ' 7.989 19.298

"

(l .007) (l .075) (l .891J

a ' . '0.330 0.221 0 .. 355
(0.Ö2~) (0.083) (0.026')

B 1.440 ~ ,l .31 g, " 1.104
(0.046) '; (0.186) .' (O,.38P) ;

Y -o .,2-59 :-0.403
(0.047) (0.351 )

o 0.403 0.712
,,(0.096) , ! (0.774)

-2 , ;0.969 .' 0.957, , 0.919',R ,.

lna 6.526 6.323 '5.633

Figures in parentheses are::asymptotic standard errors.



Table 2. Imp1ied Va1ues of Returns to Scale and Technical1y Optimal Output

Ray-Homothetic Ray-Homogeneous Homothetic
-

State V K/L El (x/ Ix I, <P (x) ) VO E
2
(X/l x l) VO E

3
(<P(X)) VO

l 2 3

Florida 0.193 0.341 1.403 4.387 l .208 +00 1.428 4.026
Ma i ne 0.364 0.304 l .402 4.617 l .215 " l .401
Iowa 0.477 -0.337 l .368 4.415 l .211 It l .383
Louisiana 0.638 0.237 l .414 5.135 l .291 l .340
~-1a ssac hu se tts 1.404 0.389 l .236 4.149 l .176, l .258
West Virginia l .513 0.380 1.228 4.192 l .182 l .244
Texas l .712 0.207 l .310 5.405 l .318 l .221
Alabama l .855 ,0. 121 l .371 6.335 1.405 l .204
New York 2.040 0.384 l .174 4.173 l . 179 1.184
Virginia 2.052 0.229 1.257 5.202 l .298 1. 182
California 2.333 0.410 l .138 4.067 1.164 l . 152
Wisconsin 2.463 0.417 l .124 4.041 l .160 l .139
Illinois 2.629 0.667 l .084 3.702 l .075. l .122
Pennsylvania 2.651 0.350 l . 131 4.34'1 l .201 l . 121
New Jersey 2.701 0.401 1. l 08 4.101 l .169 l . 115
Maryl and 3.219 0.253 l .132 4.997 1.277 l .067
Washington 3.558 0.350 l .057 4.339 l .201 1.038
Indiana 3.816 0.760 0.996 3.764 l .065 I l .017
Kentucky 4.031 0.434 0.996 3.979 l . 151 II l .000
Georgia 4.289 0 .. 253 l .04-9 4.995 l .277 II 0.980
Ohio 4.440 0.. 608 0.950 3.70" 1.086 II 0.969
Connecticut 4.485 0.. 320 l .002 4~513 1.223 Il 0.966
Missouri 5.217 0.,387 0.931 4.159 l .178 Il 0.915
Kansas 6.507 0.120 0.990 6.. 339 l .406 " 0.838
r~i chi gan 7.182 0.. 887 0.813 3.920 l .063 II 0.802
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