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Abstract

This online appendix solves the model of personalized advertising described in Natvik and

Tangerås (2023). It does so for the advertising profile that maximizes expected advertising

profit and the one that maximizes the expected welfare of advertising. The two solutions are

comparedso as to identify distortions associated with equilibrium personalized advertising.
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1 Introduction

This online appendix solves the model of personalized advertising described in Section 4 of

Natvik and Tangerås (2023). Section 2 below presents the model of personalized advertising.

We solve for the advertising profile that maximizes the expected advertising profit in Section

3. Section 4 characterizes the advertising profile that maximizes expected welfare. We then

compare the different solutions in Section 5 to identify effi ciency distortions of personalized

advertising.
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2 The model

The consumer has a type i ∈ I where I is a circle with unit circumference. The type determines
the consumer’s preferences over a set of differentiated goods also located on the circle. The

consumer derives net utility v̄ − pn − 1
σ |i− ln| from purchasing one unit of variety n located at

ln ∈ I when the price of that variety is pn. The parameter v̄ represents the maximal willingness
to pay for any good on the platform. The parameter σ is a measure of horizontal product

differentiation, a higher σ meaning less differentiation. The consumer buys at most one variety

if there are multiple varieties to choose from, and at most one unit of the good. The utility of

not buying any item is zero. We assume that v̄ > 1
2σ so that the consumer always acquires some

variety if one of them is free.

The platform has prior knowledge that i is uniformly distributed on I, but the actual type is
the consumer’s private information. However, the platform receives an informative signal (z, φ)

about the consumer’s type, where z ∈ I and φ ≥ 1. Specifically, the density function m(i|z, φ)

of the consumer’s type contingent on the signal equals m(i|z, φ) = φ for all i ∈ [z − 1
2φ , z + 1

2φ ]

and m(i|z, φ) = 0 for all types outside this confidence interval. The variable z represents the

expected type of the consumer, whereas φ signifies the precision with which the type is measured.

Denote the nonempty set of advertised products by N ∈ {1, ..., n, ..., N}. Let l ={ln}n∈N be
the vector of product characteristics, and let p ={pn}n∈N be the price vector of those products.
All product varieties are at strictly different locations in product space because no consumer

would ever buy the product with the highest price if two products had exactly the same location.

If N ≥ 2, we rank product characteristics clockwise in product space I, so that ln < ln+1 for

all n ∈ {1, ..., N − 1}. We also define the profile (l−n,p−n) of advertised varieties other than

(ln, pn) if the platform advertises multiple varieties.

Define two boundary types

γ−n = ln − σ(v̄ − pn), γ+
n = ln + σ(v̄ − pn) (1)

For pn ≤ v̄, the variable γ−n [γ+
n ] defines the consumer type to the left [right] of ln who is

indifferent between buying variety n and not buying any product. The property γ−n+γ+n
2 = ln will

be used repeatedly below. All consumer types that demand variety n are contained in [γ−n , γ
+
n ]

because any consumer type outside this interval strictly prefers not to buy any advertised product

instead of buying variety n. Assume that the consumer makes a purchase if there exists at least

one variety that yields non-negative net utility. Assume also that all consumer types i ≤ ln

[i ≥ ln] select variety n over variety m > n [m < n] if indifferent between the two. We will

repeatedly utilize the characterization

v̄ − pn −
1

σ
|ln − i| =

{
1
σ (i− γ−n ), i ≤ ln
1
σ (γ+

n − i), i ≥ ln
(2)

of the net utility of consumer type i of purchasing variety n.

Advertising each variety costs the platform f > 0 regardless of whether the consumer buys
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the product. The consumer experiences a nuisance h > 0 for each advertised variety.

3 Profit-maximizing personalized advertising

The platform must decide how many different varieties N ≥ 0 to advertise to the user, the

location ln ∈ I in product space and the price pn ≥ 0 of each variety n. We assume that the

production cost of advertised goods is zero.1 Denote the expected demand for variety n by Dn.

The expected advertising profit equals R(l,p)− fN , where

R(l,p) =
N∑
n=1

Dnpn

measures the expected advertising revenue. Because of the advertising cost f > 0, the platform

will only advertise varieties with positive expected demand Dn > 0. Our first result establishes

necessary conditions for the advertising profile (l,p) to generate positive expected demand for

all offered varieties.

Claim 1 The advertising profile (l,p) yields positive expected demand for all N ≥ 1 advertised

varieties only if v̄ > pn for all n ∈ N , z − 1
2φ < γ+

1 and γ−N < z + 1
2φ . If N ≥ 2, then

additional necessary conditions are γ−n ≤ γ−n+1 and γ
+
n ≤ γ+

n+1 for all n ∈ {1, ..., N − 1}, as well

as z − 1
2φ <

γ+1 +γ−2
2 and

γ+N−1+γ−N
2 < z + 1

2φ . If N ≥ 3, then a further necessary condition is

γ+
n−1 + γ−n < γ+

n + γ−n+1 for all n ∈ {2, ..., N − 1}.

Proof Variety n has zero expected demand if v̄ ≤ pn because then v̄ − pn − 1
σ |ln − i| < 0 for

all i 6= ln. If v̄ > pn for all n ∈ N , then the expected demand for variety 1 [N ] is still zero if

γ+
1 ≤ z − 1

2φ [γ
−
N ≥ z + 1

2φ ] because there are no consumer types to the left of z − 1
2φ [right of

z + 1
2φ ].

Assume thatN ≥ 2. If γ−n > γ−n+1 for some n ∈ {1, ..., N−1}, then all consumer types i ∈ [γ−n , ln]

strictly prefer variety n+ 1 to n by

(i− γ−n+1)− (i− γ−n ) = γ−n − γ−n+1; (3)

see (2). Consumer type i ∈ (ln, ln+1] strictly prefers variety n+ 1 to n if

(i− γ−n+1)− (γ+
n − i) = 2i− γ−n+1 − γ+

n > 0. (4)

If γ−n ≥ γ−n+1, then the strict inequality holds for all i ∈ (ln, ln+1] by

2i− γ−n+1 − γ+
n > 2ln − γ−n+1 − γ+

n = γ−n − γ−n+1, (5)

1An equivalent assumption would be that the unit production cost ξ is the same for all goods and arises after
the consumer has submitted the purchase order. One can then subtract ξ from the consumer’s maximal valuation
ṽ to get the net valuation v̄ = ṽ − ξ and then proceed as in the main text.
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where we have used γ−n+γ+n
2 = ln. If γ+

n > ln+1 and γ−n ≥ γ−n+1, then all consumer types

i ∈ (ln+1, γ
+
n ] strictly prefer variety n+ 1 to n by

(γ+
n+1 − i)− (γ+

n − i) = 2(ln+1 − ln) + γ−n − γ−n+1. (6)

This completes the proof that γ−n ≤ γ−n+1 is necessary. All consumer types i ∈ [γ−n+1, γ
+
n+1]

strictly prefer variety n to n+ 1 if γ+
n > γ+

n+1. The proof follows along the same lines as above

and is therefore omitted.

Suppose γ+1 +γ−2
2 ≤ z − 1

2φ , in which case l1 ≤ z − 1
2φ by γ

−
1 ≤ γ−2 . The demand for variety 1 is

zero for all consumer types i ≥ l2 because (γ+
2 − i)− (γ+

1 − i) = γ+
2 −γ

+
1 ≥ 0. All these consumer

types are located to the right of l2 and therefore select 2 over 1 even if indifferent between the

two varieties. The proof of this part of the claim is done if l2 ≤ z − 1
2φ . Assume therefore that

z − 1
2φ < l2. In this case, consumer type i ∈ (z − 1

2φ ,min{l2; γ+
1 }] strictly prefers variety 2 to

variety 1 if

(i− γ−2 )− (γ+
1 − i) = 2i− γ−2 − γ

+
1 > 0.

The right-hand side of this expression is strictly positive for all i ∈ (z − 1
2φ ,min{l2; γ+

1 }] by

2i− γ+
1 − γ

−
2 > 2(z − 1

2φ
)− γ+

1 − γ
−
2 ≥ 0.

Hence, the expected demand for variety 1 is zero if γ
+
1 +γ−2

2 ≤ z− 1
2φ . By a similar argument, the

expected demand for variety N is zero if z + 1
2φ ≤

γ+N−1+γ−N
2 .

Assume that N ≥ 3. Let n ∈ {2, N − 1}. Suppose γ+
n−1 = γ+

n and γ
−
n = γ−n+1. If γ

−
n < ln−1,

then all consumer types i ∈ [γ−n , ln−1] strictly prefer variety n− 1 to n by

(i− γ−n−1)− (i− γ−n ) = γ−n − γ−n−1 = 2(ln − ln−1) + γ+
n−1 − γ+

n .

Consumer type i ∈ (ln−1, ln) strictly prefers variety n− 1 to n if

(γ+
n−1 − i)− (i− γ−n ) = γ+

n−1 + γ−n − 2i > 0.

This inequality is satisfied for all i ∈ (ln−1, ln) by

γ+
n−1 + γ−n − 2i > γ+

n−1 + γ−n − 2ln = γ+
n−1 − γ+

n .

All consumer types i ∈ (ln, γ
+
n ] strictly prefer variety n+1 over n by (4)-(6). Hence, all consumer

types i 6= ln, n ∈ {2, N−1}, strictly prefer some other variety that n if γ+
n−1 = γ+

n and γ
−
n = γ−n+1.

Seeing as γ+
n−1 ≤ γ+

n and γ
−
n ≤ γ−n+1 are necessary conditions for all advertised products to have

positive expected demand, it follows that γ+
n−1 + γ−n < γ+

n + γ−n+1 is also necessary.�

Claim 1 shows that the variables γ−n and γ
+
n are crucial for determining the demand for product

varieties. On the basis of those results, we can calculate expressions for the expected demand
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for each variety.

Claim 2 Under the conditions of Claim 1, the expected demand for each variety n ∈ N satisfies

Dn = φ(s+
n − s−n ) > 0, where

s−1 = max{γ−1 ; z − 1

2φ
}, s+

N = min{γ+
N ; z +

1

2φ
}.

If N ≥ 2, then

s−n =
γ−n + max{γ+

n−1; γ−n }
2

, ∀n ∈ {2, ...N}, s+
n =

γ+
n + min{γ+

n ; γ−n+1}
2

, ∀n ∈ {1, ...N − 1}.

Proof We first show that γ−n ≤ s−n and s+
n ≤ γ+

n for all n ∈ N . This result follows from

s−1 − γ
−
1 = max{0; z − 1

2φ
− γ−1 }, γ

+
N − s

+
N = max{0; γ+

N − z −
1

2φ
}

and

s−n −γ−n =
max{γ+

n−1 − γ−n ; 0}
2

∀n ∈ {2, ...N}, γ+
n −s+

n =
max{0; γ+

n − γ−n+1}
2

∀n ∈ {1, ...N−1}

if N ≥ 2.

We next show that s−n < s+
n for all n ∈ N . If N = 1, then

s+
1 − s

−
1 = min{γ+

1 ; z +
1

2φ
} −max{γ−1 ; z − 1

2φ
} > 0

by γ−1 < γ+
1 , z − 1

2φ < γ+
1 , γ

−
1 < z + 1

2φ and z −
1

2φ < z + 1
2φ . If N ≥ 2, then

s+
1 − s

−
1 =

γ+
1 + min{γ+

1 ; γ−2 }
2

−max{γ−1 ; z − 1

2φ
}.

Specifically,

s+
1 − s

−
1 =

γ+
1 − γ

−
1 + min{γ+

1 − γ
−
1 ; γ−2 − γ

−
1 }

2
> 0 if γ−1 ≥ z −

1

2φ

by γ−1 < γ+
1 and γ

−
1 ≤ γ

−
2 . Furthermore,

s+
1 − s

−
1 = min{γ+

1 − γ
−
1 ; γ+

2 − z +
1

2φ
} > 0 if γ+

1 ≤ γ
−
2

by γ−1 < γ+
1 and z − 1

2φ < γ+
2 . Finally,

s+
1 − s

−
1 =

γ+
1 + γ−2

2
− z +

1

2φ
> 0 if γ−1 < z − 1

2φ
and γ+

1 > γ−2
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by z − 1
2φ <

γ+1 +γ−2
2 . Similar comparisons yield

s+
N − s

−
N = min{γ+

N ; z +
1

2φ
} −

γ−N + max{γ+
N−1; γ−N}

2
> 0

for N ≥ 2. If N ≥ 3, then

ln−s−n =
max{γ+

n − γ+
n−1; γ+

n − γ−n }
2

≥ 0, s+
n−ln =

min{γ+
n − γ−n ; γ−n+1 − γ−n }

2
≥ 0 ∀n ∈ {2, ...N−1}

by γ−n < γ+
n , γ

+
n−1 ≤ γ+

n and γ
−
n ≤ γ−n+1. At least one of the inequalities is strict by γ

+
n−1 +γ−n <

γ+
n + γ−n+1.

We then show that the demand for variety n is zero outside [s−n , s
+
n ]. Either there are no

consumer types to the left of s−1 [right of s+
N ] or all consumer types i < s−1 [i > s+

N ] strictly

prefer not to buy anything rather than buying variety 1 [N ]. The proof of this part is complete

if N = 1. Assume that N ≥ 2. All consumer types i < min{γ−n ; s−n }, and i > max{γ+
n ; s+

n },
n ∈ {1, ...N − 1}, strictly prefer not to buy anything rather than buying variety n. Let γ+

n−1 ∈
(γ−n , γ

+
n ] for some arbitrary variety n ∈ {2, ...N}. For this variety, γ−n < s−n ≤ ln, ln−1 ≤ s−n and

ln−1 − γ−n =
γ+n−1−γ−n

2 > 0. Then

v̄ − pn−1 −
1

σ
|ln−1 − i| − (v̄ − pn −

1

σ
|ln − i|) =

1

σ
(γ−n − γ−n−1) ≥ 0 ∀i ∈ [γ−n , ln−1).

These consumer types are located to the left of ln−1 and therefore select n − 1 over n even if

indifferent between n− 1 and n. For any other consumer types

v̄ − pn−1 −
1

σ
|ln−1 − i| − (v̄ − pn −

1

σ
|ln − i|) =

2

σ
(s−n − i) > 0 ∀i ∈ [ln−1, s

−
n ) and ln−1 < s−n .

These results show that no consumer types i < s−n buy variety n. Let γ
−
n+1 ∈ [γ−n , γ

+
n ) for some

arbitrary variety n ∈ {1, ...N − 1}. For this variety, s+
n = ln, ln+1 − s+

n =
γ+n+1−γ+n

2 ≥ 0, and

γ+
n − ln+1 =

γ+n−1−γ−n
2 > 0. Then

v̄ − pn+1 −
1

σ
|ln+1 − i| − (v̄ − pn −

1

σ
|ln − i|) =

1

σ
(γ+
n+1 − γ+

n ) ≥ 0 ∀i ∈ (ln+1, γ
+
n ].

These consumer types are located to the right of ln+1 and therefore select n + 1 over n even if

indifferent between n and n+ 1. For any other consumer types

v̄ − pn+1 −
1

σ
|ln+1 − i| − (v̄ − pn −

1

σ
|ln − i|) =

2

σ
(i− s+

n ) > 0 ∀i ∈ (s+
n , ln+1] and s+

n < ln+1.

These results show that no consumer types s+
n < i buy variety n.

We finally establish that all consumer types i ∈ (s−n , s
+
n ) buy variety n. These consumer types

strictly prefer variety n to not buying any product at all because γ−n ≤ s−n < s+
n ≤ γ+

n for all
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n ∈ N . Let N ≥ 2, and compare variety n to the other varieties m. All consumer types located

at i ∈ (s−n , ln] select variety n over any variety m ≥ n+ 1 by (i− γ−n )− (i− γ−m) = γ−m− γ−n ≥ 0.

For all varieties m ≤ n− 1, we have lm ≤ ln−1 ≤ s−n . All consumer types located at i ∈ (s−n , ln]

strictly prefer variety n over any variety m ≤ n− 1 by

(i− γ−n )− (γ+
m − i) = 2(i− s−n ) + γ+

n − γ+
m > 0.

All consumer types located at i ∈ [ln, s
+
n ) select variety n over any variety m ≤ n − 1 by

(γ+
n − i) − (γ+

m − i) = γ+
n − γ+

m ≥ 0. For all varieties m ≥ n + 1 we have s+
n ≤ ln+1 ≤ lm. All

consumer types located at i ∈ [ln, s
+
n ) strictly prefer variety n over any variety m ≥ n+ 1 by

(γ+
n − i)− (i− γ−m) = 2(s+

n − i) + γ−m − γ−n > 0.

The uniform distribution of consumer types on [z− 1
2φ , z+ 1

2φ ] implies that the expected demand

for variety n is Dn = φ(s+
n − s−n ) > 0.�

Claim 2 shows that the lower [upper] boundary of the demand for interior variety n ≥ 2 [n ≤
N − 1] is either found at the point at which the consumer is indifferent between buying this

variety or no variety at all or at the point at which the consumer is indifferent between variety

n or the closest neighbor n− 1 [n+ 1]. The expected advertising revenue equals

R(l,p) =
N∑
n=1

φ(s+
n − s−n )pn (7)

for any advertising profile (l,p) that generates positive expected demand for all N advertised

varieties. A deviation in variety n from (ln, pn) to (l̃n, p̃n) that maintains positive expected

demand for all advertised varieties induces a change in profit equal to

R(l̃n, l−n, p̃n,p−n)−R(l,p) = φ[s+
n − s−n ][p̃n − pn] + φ[s̃+

n − s̃−n − s+
n + s−n ]p̃n

+Γn−1φ[s̃+
n−1 − s

+
n−1]pn−1 + Γn+1φ[s−n+1 − s̃

−
n+1]pn+1,

where Γn = 1 for all n ∈ {1, ..., N} and Γ0 = ΓN+1 = 0. The first term on the right-hand side

is the direct effect associated with the change in the price of variety n. The second effect is the

change in the demand for variety n. The two final effects are the changes in the demand for

varieties n− 1 and n+ 1 if such varieties exist.

Claim 3 Consider an advertising profile (l,p) that yields positive expected demand for all N ≥ 1

advertised varieties. This profile maximizes expected advertising revenue only if z − 1
2φ ≤ γ−1

and γ+
N ≤ z − 1

2φ . If N ≥ 2, then an additional necessary condition is γ+
n ≤ γ−n+1 for all

n ∈ {1, ..., N − 1}.

Proof Suppose γ−1 < z − 1
2φ . Let l̃1 = l1 + ε and p̃1 = p1 + ε

σ , where ε ∈ (0, 1
2(z − 1

2φ − γ
−
1 )].

By construction, γ̃−1 ≤ z − 1
2φ and γ̃

+
1 = γ+

1 , so that the expected demand for all varieties is
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preserved. The deviation profit

R(l̃1, l−1, p̃1,p−1)−R(l,p) = φ(s+
1 − s

−
1 )(p̃1 − p1) = φε(s+

1 − s
−
1 )

is strictly positive by the increase in the price of variety 1. Hence, γ−1 ≥ z − 1
2φ , which implies

s−1 = γ−1 . By a symmetric argument, γ
+
N ≤ z + 1

2φ because the platform could otherwise move

variety N to the left and simultaneously increase its price to achieve an increase in the expected

advertising revenue.

Assume that N ≥ 2. Suppose γ+
n > γ−n+1 and pn+1 ≥ pn for some n ∈ {1, ..., N − 1}. Consider

a deviation (l̃n, p̃n) where l̃n = ln − ε, p̃n = pn + ε
σ and ε ∈ (0,min{s+

n − s−n ;
γ+n−γ

−
n+1

2 }). By
construction, γ̃−n = γ−n and γ̃+

n = γ+
n − 2ε > γ−n+1. We then get s̃−n = s−n , s̃

+
n = s+

n − ε,

s̃−n+1 = s−n+1 − ε and s̃
+
n+1 = s+

n+1. All (s−m, s
+
m), m 6= n, n + 1, remain unchanged. Using these

properties, we get the deviation profit

R(l̃n, l−n, p̃n,p−n)−R(l,p) =
φ

σ
(s+
n − s−n − ε)ε+ φ(pn+1 − pn)ε > 0.

which contradicts the assumption that (l,p) maximizes advertising revenue. Suppose γ+
n > γ−n+1

and pn+1 < pn for some n ∈ {1, ..., N − 1}. Consider a deviation (l̃n+1, p̃n+1) where l̃n+1 =

ln+1 +ε, p̃n+1 = pn+1 + ε
σ and ε ∈ (0,min{s+

n+1−s
−
n+1;

γ+n−γ
−
n+1

2 }). Then, γ̃−n+1 = γ−n+1 +2ε < γ+
n

and γ̃+
n+1 = γ+

n+1 by construction. By implication, s̃
−
n = s−n , s̃

+
n = s+

n + ε, s̃−n+1 = s−n+1 + ε and

s̃+
n+1 = s+

n+1. All (s−m, s
+
m), m 6= n, n+ 1, remain unchanged. The deviation profit is

R(l̃n+1, l−(n+1), p̃n+1,p−(n+1))−R(l,p) = φ(s̃+
n − s+

n )pn + φ(s+
n+1 − s

−
n+1)(p̃n+1 − pn+1)

+φ(s̃+
n+1 − s̃

−
n+1 − s

+
n+1 + s−n+1)p̃n+1

= φ(pn − pn+1)ε+
φ

σ
(s+
n+1 − s

−
n+1 − ε)ε > 0.

Seeing as there exists a strictly profitable deviation if there exists some γ+
n > γ−n+1, it follows

that (l,p) maximizes advertising revenue only if γ+
n ≤ γ−n+1.�

The platform leaves positive rent to consumer types on the lower [upper] boundary if γ−1 < z− 1
2φ

[z − 1
2φ < γ+

N ]. In this case, it can increase advertising revenue by raising the price of the

boundary variety. The platform leaves positive rent to consumer types on intermediary varieties

if γ+
n > γ−n+1 because the two varieties then compete against one another. The platform can then

adjust prices of the two varieties in such a way as to reduce competition. Under the condition

γ+
n ≤ γ−n+1 the market for advertised products is segmented.

By way of the above claims, the expected demand for variety n equals Dn = φ(γ+
n − γ−n ) >

0 for any profile that maximizes advertising revenue. If N ≥ 2 and γ+
n < γ−n+1 for some

n ∈ {2, ..., N}, the platform can move all varieties m ∈ {1, ..., n − 1} to the right by the
same distance l̃m − lm = ε = γ−n+1 − γ+

n , leaving everything else unchanged. By the uniform

distribution of consumer types, this relocation of product varieties leaves expected demand for

each variety unchanged and equal to φ(γ+
n − γ−n ). Seeing as prices also remain the same, the
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expected advertising revenue is the same for both profiles. Moving varieties uniformly to the

right convexifies the set of consumer types that purchase a good to [γ−1 , γ
+
N ] ⊂ [z − 1

2φ , z + 1
2φ ].

From now on, we assume that γ+
n = γ−n+1 for all n ∈ {1, ..., N − 1} if N ≥ 2.

Claim 4 Consider an advertising profile (l,p) for which v̄ > pn for all n ∈ N , z− 1
2φ ≤ γ

−
1 and

γ+
N ≤ z + 1

2φ . In addition, γ
+
n = γ−n+1 for all n ∈ {1, ..., N − 1} if N ≥ 2. For any such profile

there exists an alternative advertising profile (̃l, p̃) such that R(̃l, p̃) ≥R(l,p). This profile has

the following properties:

l̃n = γ−1 + (2n− 1)
γ+
N − γ

−
1

2N
, p̃n = v̄ − γ+

N − γ
−
1

2σN
∀n ∈ N .

Proof If N = 1, then l̃1 = l1 and p̃n = p1 by construction, in which case R(̃l, p̃) =R(l,p). We

use proof by induction to establish the result for the case with N ≥ 2 varieties. Assume that all

varieties m = {1, ..., n− 1}, n ∈ {2, ..., N}, are symmetrically located in [γ−1 , γ
+
n−1] and have the

same retial price

lm = γ−1 + (2m− 1)
γ+
n−1 − γ

−
1

2(n− 1)
, pm = v̄ −

γ+
n−1 − γ

−
1

2σ(n− 1)

We refer to pm defined above as the maximal retail price because it is the highest price the

platform can charge for its advertised products and ensure that all consumer types located

within [γ−1 , γ
+
n−1] have a non-negative net utility of purchasing one of the varieties under a

symmetric distribution of market shares. The associated advertising revenue equals

R(l,p) = φ(γ+
n−1 − γ

−
1 )pn−1 +

N∑
m=n

φ(γ+
m − γ−m)pm.

Notice that pn = v̄ − γ+n−ln
σ from the condition γ+

n = 0. Consider a modification (̃l, p̃) where all

varieties m = {1, ..., n} are symmetrically located within the interval [γ−1 , γ
+
n ] and the platform

chooses the maximal price for all those varieties:

l̃m = γ−1 + (2m− 1)
γ+
n − γ−1

2n
, p̃m = v̄ − γ+

n − γ−1
2σn

.

Then,

γ̃−m = γ−1 +
m− 1

n
(γ+
n − γ−1 ), γ+

m = γ−1 +
m

n
(γ+
n − γ−1 ) ∀m ∈ {1, ..., n}.

The expected advertising revenue for the first n varieties is equal to

n∑
m=1

φ(γ̃+
m − γ̃−m)p̃m = φ(γ+

n − γ−1 )p̃n

8



Any additional variety m > n yields expected revenue φ(γ+
m − γ−m)pm also under the modified

profile. The difference in expected advertising revenue equals

R(̃l, p̃)−R(l,p) = φ(γ+
n−1 − γ

−
1 )(p̃n − pn−1) + φ(γ+

n − γ−n )(p̃n − pn)

=
1

2n

φ

σ
[(γ+

n−1 − γ
−
1 )(

n

n− 1
(γ+
n−1 − γ

−
1 )− γ+

n + γ−1 )

+(γ+
n − γ−n )(2n(γ+

n − ln)− γ+
n + γ−1 )]

=
1

2n

1

n− 1

φ

σ
[2n(γ+

n − ln)− γ+
n + γ−1 ]2 ≥ 0.

We have first substituted in the prices p̃n, pn−1 and pn to get the expression on the second row.

We have then used γ+
n−1 = γ−n = 2ln − γ+

n and simplified to get the non-negative expression

on the third row. Hence, the platform can weakly increase advertising revenue by locating the

first n varieties symmetrically within [γ−1 , γ
+
n ] and charging the maximal price for all those n

varieties if the first n− 1 varieties are located symmetrically within [γ−1 , γ
+
n−1] and the platform

charges the maximal price for all those varieties. Seeing as variety 1 is located symmetrically

within [γ−1 , γ
+
n−1] and the platform charges the maximal price for that variety, the platform by

induction maximizes advertising revenue by locating all varieties symmetrically within [γ−1 , γ
+
N ]

and by charging the maximal price for all those N varieties.�

For a given degree of product variety γ+
N − γ

−
1 , the monopoly maximizes the net utility of the

consumer and thereby its own possibility to charge a high price, by placing varieties in such a

way as to minimize the consumer’s average distance to the different varieties. The producer then

sets the price to extract the full rent of the marginal consumer type. The maximal advertising

revenue

R(l,p) = φ(γ+
N − γ

−
1 )(v̄ − γ+

N − γ
−
1

2σN
)

only depends on γ+
N − γ

−
1 .

Define 1
K = γ+

N − γ
−
1 ≤ 1

φ , locate the N varieties symmetrically around z at and charge the

same retail price for all varieties:

l̃n = z +
2n− 1−N

2NK
, p̃n = v̄ − 1

2σNK
∀n ∈ N .

This strategy yields the same expected advertising revenue Λ̃(K,N, φ) as R(l,p):

Λ̃(K,N, φ) =
φ

K
(v̄ − 1

2σNK
)

Holding N constant, the next step is to maximize expected advertising revenue Λ̃(K,N, φ)

over the degree of product variety K ≥ φ. The marginal advertising revenue

Λ̃K(K,N, φ) = (
1

σNK
− v̄)

φ

K2
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is positive for all K < 1
σNv̄ and negative for all K > 1

σNv̄ . By implication, advertising revenue is

strictly quasi-concave in K. Hence K(N,φ) = φ maximizes advertising revenue if Λ̃K(φ,N, φ) ≤
0. This condition is equivalent toN ≥ 1

v̄σφ . For smallerN , the interior solution equalsK(N,φ) =
1

σNv̄ > φ. Plugging these expressions into Λ̃(K,N, φ) yields the expected advertising revenue

Λ(N,φ) = Λ̃(K(N,φ), N, φ) =

{
v̄2φσN

2 N < 1
v̄σφ

v̄ − 1
2σNφ N ≥ 1

v̄σφ

as a function of the number N of advertised varieties.

The final problem is to find the number of varieties that maximize the expected advertising

profit Λ(N,φ) − fN . For analytical reasons, we treat N as a continuous variable. In what

follows, let N ∈ R+ in Λ(N,φ) be the advertising intensity on the platform. Maximizing the

expected advertising profit yields the profit-maximizing advertising intensity N(φ) as a function

of signal precision φ.

Lemma 1 Advertising intensity

N(φ) =
1√

2σφf
(8)

maximizes the monopoly’s expected advertising profit if signal precision is suffi ciently large, φ ≥
2f
v̄2σ
. The monopoly does not engage in advertising on the platform if signal precision is too low,

N(φ) = 0 if φ < 2f
v̄2σ
.

Proof The expected advertising profit Λ(N,φ) − fN is continuous and differentiable. It is

also strictly quasi-concave if σφ 6= 2f
v̄2
. If σφ > 2f

v̄2
, then the expected advertising profit is

strictly increasing for all N ∈ [0, 1
v̄σφ ]. ΛN ( 1√

2σφf
, φ) = f then implies N(φ) = 1√

2σφf
> 1

v̄σφ . If

σφ < 2f
v̄2
, then N(φ) = 0 by ΛN (0, φ) < f . In the knife-edge case σφ = 2f

v̄2
, Λ(N,φ) < fN for

all N > 1
v̄σφ , whereas all N ∈ [0, 1

v̄σφ ] yield zero expected advertising profit and therefore are

optimal, including 1
v̄σφ = v̄

2f = 1√
2σφf

= N(φ).�

Notably, advertising intensity is nonlinear in the precision φ of the signal about the consumer’s

type. For φ < 2f
v̄2σ
, the signal is so imprecise relative to the advertising cost that it is not

worthwhile for the monopoly to advertise any products. The platform is a pure content provider

in this case. Above this threshold, the monopoly has suffi ciently precise information about the

consumer to engage in advertising on the platform. The monopoly exposes the user to a large

variety of offers to ensure that the consumer accepts at least one of them. The advertising

intensity decreases as precision improves because the platform can then target the user more

effi ciently with ads.

Signal precision φ and product differentiation σ are substitutes from the viewpoint of the

monopoly. Product varieties are closer substitutes from the consumer’s perspective if σ is larger

(the transportation cost is smaller). In that case, it is not necessary to know the consumer’s

type with any great precision to be able to sell the product. Precise prediction of the consumer’s

type is more important when products are differentiated because then there is a high likelihood

of failing to sell the product if the platform advertises the wrong product. Our model therefore
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predicts that firms with unsophisticated data processing tools will advertise homogeneous goods

(if any) through their platform to compensate for a lack of precision, whereas firms with more

sophisticated tools also can advertise differentiated high-valuation goods.

The model is static, but one can nevertheless envision different development phases of a

platform. In the start-up phase, where the information extraction technology, the prediction

machine, is primitive and the business model has not been suffi ciently developed, φ < 2f
v̄2σ
,

the firm does not offer any other products than usage of the platform itself. This is followed

by a "spam" phase where the firm starts to advertise products over the platform because of an

increased precision of the prediction machine and improvements in the business model (φ > 2f
v̄2σ
).

But the precision of the information about the consumer still is so low that the firm cannot

predict the consumer type with accuracy. Instead, the firm displays a large variety of offers on

the platform. The amount of spam decreases with further improvements in precision. Eventually,

the firm might reach a highly mature phase where it has developed sophisticated enough tools to

predict with great precision which type of product the consumer prefers (limφ−→∞N(φ) = 0).

A profit-maximizing monopoly that engages in personalized advertising cannot benefit from

using its market power to exclude consumer types. Instead, it offers enough product variety to

ensure that the consumer purchases at least one product. Formally, the advertising intensity

satisfies N(φ) ≥ 1
v̄σφ , and therefore K(N(φ), φ) = φ. Hence, all gains from trade are realized in

this advertising model.

The advertising revenue

R(φ) = Λ(N(φ), φ) = v̄ − 1

2σN(φ)φ
= v̄ −

√
f

2σφ

is strictly increasing in φ because increased precision allows the monopoly to offer better targeted

products for which it can charge higher prices. Notice also that R(φ)measures the price of selling

one unit of the good because the platform with probability one sells one variety of the good, all

varieties have the same price, and the consumer buys at most one unit.

We calculate next the expected consumer surplus CS(φ) of purchasing goods advertised on

the platform. The consumer buys one variety regardless of its type i. The price of all varieties

is the same and equal to R(φ). The consumer surplus of a consumer of type i then depends on

the distance to the closest variety offered on the platform. As varieties are uniformly distributed

around the consumer’s type, the expected consumer surplus can be calculated as

CS(φ) = 2N(φ)

∫ 1
2N(φ)φ

0
[v̄ −R(φ)− 1

σ
(

1

2N(φ)φ
− z)]φdz =

1

2

√
f

2σφ
.

An increase in signal precision φ has multiple effects on CS(φ). The user benefits from better

targeted varieties because the average transportation cost goes down. But the seller can also

charge higher prices for those varieties. The net effect is a reduction in consumer surplus. In

the limit as φ −→ ∞, the platform extracts the full surplus of advertised products. This is the

case of perfect price discrimination.
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The expected consumer surplus of purchasing goods advertised plus the advertising revenue

minus the sum of the consumer’s nuisance and the platform’s advertising cost form the total

expected advertising surplus

S(φ) = CS(φ) +R(φ)− (h+ f)N(φ) = v̄ −

√
f

2σφ

3f + 2h

2f

The total expected advertising surplus can be positive or negative, but is always strictly

increasing in signal precision φ, regardless of the nuisance and advertising cost.

4 Welfare-optimal advertising

Because of the nuisance cost h > 0 and advertising cost f > 0, a central planner implements

an advertising profile (l,p) with positive expected demand Dn > 0. By Claim 1 and Claim 2,

the expected demand for variety n equals φ(s+
n − s−n ) > 0 under such a profile. The consumer’s

expected net utility equals
N∑
n=1

∫ s+n

s−n

φ(v̄ − pn −
1

σ
|i− ln|)di.

Adding the expected advertising revenue in (7) to the consumer’s expected net utility yields the

gross advertising surplus

GS(l, s) =

N∑
n=1

∫ s+n

s−n

φ(v̄ − 1

σ
|i− ln|)di

as a function of the vector l of product characteristics and the vector s ={s−n , s+
n }n∈N of demand

characteristics. By Claim 1 and Claim 2, (l, s) has the following properties z − 1
2φ ≤ s−1 and

s+
N ≤ z + 1

2φ in addition to s
−
n < s+

n for all n ∈ N . If N ≥ 2, then s−n ≤ ln for all n ∈ {2, ...N}
and ln ≤ s+

n ≤ s−n+1 for all n ∈ {1, ...N − 1}. Below, we assume that (l, s) has these properties.

In what follows, we repeatedly use

∫ s+n

s−n

(v̄ − 1

σ
|i− ln|)di = (v̄ − s+

n − s−n
4σ

)(s+
n − s−n )− 1

σ
(ln −

s−n + s+
n

2
)2, ln ∈ [s−n , s

+
n ]. (9)

Each product variety should be placed at an equal distance from the lower and upper and

boundary (s−n , s
+
n ) to minimize the consumer’s expected distance to a product variety:

Claim 5 The advertising profile (l, s) maximizes the gross advertising surplus only if ln =
1
2(s−n + s+

n ) for all n ∈ N .

Proof Assume that (l, s) maximizes the gross advertising surplus. Suppose ln 6= 1
2(s−n + s+

n )

for some n ∈ N . Compare GS(l, s) to GS(l̃1, l−1, s) under the modified profile (̃l, s) where
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l̃n = 1
2(s−n + s+

n ). If ln < s−n , then∫ s+n

s−n

φ(v̄ − 1

σ
|i− ln|)di = φ(v̄ +

1

σ
(ln −

s+
n + s−n

2
))(s+

n − s−n ).

Under the modified profile (l̃1, l−1, s),∫ s+n

s−n

φ(v̄ − 1

σ
|i− l̃n|)di = φ(v̄ − s+

n − s−n
4σ

)(s+
n − s−n )

by (9). Everything else is the same under the two profiles (l, s) and (l̃n, l−n, s). Hence,

GS(l̃n, l−n, s)−GS(l, s) =

∫ s+n

s−n

φ(v̄− 1

σ
|i−l̃n|)di−

∫ s+n

s−n

φ(v̄− 1

σ
|i−ln|)di =

φ

σ
(
s+
n − s−n

4
+s−n−ln)(s+

n−s−n ) > 0.

If s+
n < ln, then

GS(l̃n, l−n, s)−GS(l, s) =
φ

σ
(ln − s+

n +
s+
n − s−n

4
)(s+

n − s−n ) > 0.

Finally,

GS(l̃1, l−1, s)−GS(l, s) =
1

σ
(ln −

s−n + s+
n

2
)2 > 0.

for all ln ∈ [s−n , s
+
n ] such that ln 6= 1

2(s−n + s+
n ) by (9). These results contradict the assumed

optimality of (l, s).�

Based on Claim 5 and (9), we can write

GS(l, s) =
N∑
n=1

(v̄ − s+
n − s−n

4σ
)(s+

n − s−n )

for any advertising profile (l, s) that maximizes the gross advertising surplus. If N ≥ 2 and

s+
n < s−n+1 for some n ∈ {1, ...N − 1}, we can construct an alternative profile (̃l, s̃) with the

properties (s̃−m, s̃
+
m) = (s−m+s−n+1−s+

n , s
+
m+s−n+1−s+

n ) and l̃m = 1
2(s̃−m+ s̃+

m) for allm ∈ {1, ..., n}.
Seeing as l̃m = 1

2(s̃−m + s̃+
m) and s̃+

m − s̃−m = s+
m − s−m for all m ∈ {1, ..., n}, it follows that

GS(̃l, s̃) = GS(l, s). By way of such adjustments, s+
n = s−n+1 for all n ∈ {1, ...N − 1} if N ≥ 2.

We can without any loss of gross advertising surplus let the set of types that consume some

variety under advertising profile (l, s) be convex and given by [s−1 , s
+
N ]. Our next result shows

that all product varieties should have the same expected demand within [s−1 , s
+
N ] to maximize

gross advertising surplus.

Claim 6 Consider an advertising profile (l, s) where ln = 1
2(s−n + s+

n ) for all n ∈ N , and
s+
n = s−n+1 for all n ∈ {1, ...N − 1} if N ≥ 2. This profile maximizes the gross advertising

surplus only if

s−n = s−1 + (n− 1)
s+
N − s

−
1

N
, s+

n = s−1 + n
s+
N − s

−
1

N
∀n ∈ N .
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Proof This property holds by construction for N = 1. Assume therefore that N ≥ 2. Let

n ∈ {2, ..., N}. Assume that

s−m = s−1 + (m− 1)
s+
n−1 − s

−
1

n− 1
, s+

m = s−1 +m
s+
n−1 − s

−
1

n− 1
∀m ∈ {1, ..., n− 1}.

This property holds by construction for n = 2. Then

GS(l, s) = φ(v̄ −
s+
n−1 − s

−
1

4σ(n− 1)
)(s+

n−1 − s
−
1 ) +

N∑
m=n

φ(v̄ − s+
m − s−m

4σ
)(s+

m − s−m).

Consider an alternative advertising profile (̃l, s̃) where l̃m = 1
2(s̃−m + s̃+

m) for all m ∈ {1, ..., n}
and

s̃−m = s−1 + (m− 1)
s+
n − s−1
n

, s̃+
m = s−1 +m

s+
n − s−1
n

.

The profile (̃l, s̃) yields the gross advertising surplus

GS(̃l, s̃) = φ(v̄− s
+
n − s−1
4σn

)(s+
n − s−1 )−φ(v̄− s

+
n − s−n

4σ
)(s+

n − s−n ) +
N∑

m=n

φ(v̄− s
+
m − s−m

4σ
)(s+

m− s−m).

The difference in gross advertising surplus between the two profiles equals

GS(̃l, s̃)−GS(l, s) = φ(v̄−s
+
n − s−1
4σn

)(s+
n−s−1 )−φ(v̄−s

+
n − s−n

4σ
)(s+

n−s−n )−φ(v̄−
s+
n−1 − s

−
1

4σ(n− 1)
)(s+

n−1−s
−
1 ).

Use s+
n−1 = s−n to obtain

GS(̃l, s̃)−GS(l, s) =
φ

4σ
(s+
n − s+

n−1)2 +
φ

4σ

(s+
n−1 − s

−
1 )2

n− 1
− φ

4σ

(s+
n − s−1 )2

n

=
n

n− 1

φ

4σ
(s+
n − s+

n−1 −
s+
n − s−1
n

)2 ≥ 0

after simplification. The expression on the right-hand side is strictly positive unless s+
n −s+

n−1 =
s+n−s−1
n . We have thus shown that the social planner can increase the gross advertising surplus

by distributing the first n ∈ {2, ..., N} varieties symmetrically across [s−1 , s
+
n ] if the first n − 1

varieties are symmetrically distributed across [s−1 , s
+
n−1]. Variety 1 is symmetrically distributed

across [s−1 , s
+
1 ] by construction. By induction, a symmetric distribution of the N varieties across

[s−1 , s
+
N ] maximizes the gross advertising surplus.�

Based on the above results, we can calculate an upper bound

N∑
n=1

∫ s+n

s−n

φ(v̄ − 1

σ
|i− ln|)di = φ(s+

N − s
−
1 )(v̄ − s+

N − s
−
1

4σN
)

to the gross advertising surplus which only depends on s+
N − s

−
1 . The social planner can achieve

this surplus through an advertising profile (l,p) where the N varieties are located symmetrically
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around z and the retail price is the same for all advertised products

ln = z +
2n− 1−N

2NK
, pn = v̄ − 1

2σNK
∀n ∈ N .

This advertising profile yields the gross advertising surplus

Ψ̃(K,N, φ) =
φ

K
(v̄ − 1

4σNK
),

1

K
= s+

N − s
−
1 ≤

1

φ
.

Holding N constant, the next step is to maximize Ψ̃(K,N, φ) over the degree of product

variety K. This function is strictly quasi-concave, same as Λ̃(K,N, φ). Hence K(N,φ) =

φ maximizes gross advertising surplus if Ψ̃K(φ,N, φ) ≤ 0. This condition is equivalent to

N ≥ 1
2v̄σφ . For smaller N , the interior solution equals K(N,φ) = 1

2σNv̄ > φ. Plugging these

expressions into Ψ̃(K,N, φ) yields the gross advertising surplus

Ψ(N,φ) = Ψ̃(K(N,φ), N, φ) =

{
v̄2σφN N < 1

2v̄σφ

v̄ − 1
4σφN N ≥ 1

2v̄σφ

(10)

as a function of the number N of advertised varieties. Maximization of the net advertising

surplus Ψ(N,φ)− (h+ f)N over advertising intensity N ∈ R+ yields:

Lemma 2 Advertising intensity

N∗(φ) =
1√

4σφ(h+ f)
(11)

maximizes the net advertising surplus if signal precision is suffi ciently large, φ ≥ h+f
v̄2σ
. Adver-

tising reduces welfare if signal precision is too low, N∗(φ) = 0 if φ < h+f
v̄2σ
.

Proof The net advertising surplus Ψ(N,φ) − (h + f)N is continuous and differentiable. It is

also strictly quasi-concave if σφ 6= h+f
v̄2
. If σφ > h+f

v̄2
, then the net advertising surplus is strictly

increasing for all N ∈ [0, 1
2v̄σφ ]. ΨN ( 1√

4σφ(h+f)
, φ) = h + f then implies N∗(φ) = 1√

4σφ(h+f)
>

1
v̄σφ . If σφ < h+f

v̄2
, then N∗(φ) = 0 by ΨN (0, φ) < h + f . In the knife-edge case σφ = h+f

v̄2
,

Ψ(N,φ) < (h+f)N for all N > 1
2v̄σφ , whereas all N ∈ [0, 1

2v̄σφ ] yield zero net advertising surplus

and therefore are optimal, including 1
2v̄σφ = 1

2
v̄

h+f = 1√
4σφ(h+f)

= N∗(φ).�
Effi cient advertising intensity N∗(φ) displays the same nonlinear pattern as a function of φ

as the profit-maximizing advertising intensity N(φ). Below a certain threshold, it is ineffi cient

to engage in advertising. Then it becomes optimal to submit a large variety of offers to the

user in a magnitude that is decreasing with further increases in signal precision. In particular,

"spamming" can be part of an effi cient advertising strategy. Precisely as in the case with

a profit-maximizing monopoly, all gains from trade are exploited under effi cient advertising:

K(N∗(φ), φ) = φ by N∗(φ) ≥ 1
2v̄σφ .
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5 Welfare effects of advertising

The full gains from trade are extracted in this model as long as the platform engages in adver-

tising. Hence, the only distortion can arise from too much or too little advertising. If signal

precision is low in the sense that φ < f+min{h;f}
v̄2σ

, then personalized advertising is neither socially

optimal nor privately profitable, N∗(φ) = N(φ) = 0. Personalized advertising is both socially

optimal and privately profitable if signal precision instead high in the sense that φ ≥ f+max{h;f}
v̄2σ

.

Then there is too much advertising in equilibrium by

N(φ)

N∗(φ)
=

√
2
h+ f

f
> 1.

There are two distortions, which we can identify by comparing the marginal net advertising

surplus to the marginal advertising profit:

ΨN (N,φ)− (h+ f)− ΛN (N,φ) + f = − 1

4σN2φ
− h < 0.

The profit-maximizing price of advertised goods extracts the rent of the marginal consumer,

whose willingness to pay for an advertised good is v̄− 1
2Nσφ . The relevant effi ciency benchmark

is the average consumer’s willingness to pay for an item, v̄ − 1
4Nσφ . Although the marginal

consumer has a smaller willingness to pay for an advertised good that the average consumer,

the marginal increase 1
2N2σφ

in the willingness to pay associated with an increase in advertising

intensity is larger than the marginal increase in the utility 1
4N2σφ

of the average consumer of an

increase in advertising intensity. Rent extraction from the marginal consumer leads to excessive

advertising. This distortion is similar to the distortions that can arise when a monopoly firm

chooses its optimal level of quality. Another factor that drives up advertising is the failure of

the platform to internalize the marginal nuisance cost h. This cost is sunk when the platform

decides on advertising.

For intermediary levels of signal precision, there can be too much or too little advertising

in equilibrium. If f < h, then N(φ) > 0 = N∗(φ) for all φ ∈ [ 2f
v̄2σ

, h+f
v̄2σ

) so advertising is still

excessive. However, h < f implies N(φ) = 0 < N∗(φ) for all φ ∈ [h+f
v̄2σ

, 2f
v̄2σ

). In this parameter

range, the nuisance cost of advertising is so low and the signal precision so high that advertising

is socially optimal. But the advertising cost is so large that advertising is not privately profitable.

The threshold of φ for launching advertising campaigns is ineffi ciently high in this particular

case. We summarize these results in the following proposition.

Proposition 1 A monopoly engaging in personalized advertising does so excessively, N(φ) > 0

implies N(φ) > N∗(φ). The monopoly may fail to engage in advertising even if advertising is

effi cient, N(φ) = 0 < N∗(φ). This occurs if the marginal nuisance of advertising is smaller than

the marginal advertising cost, h < f , and signal precision is intermediary, φ ∈ [h+f
v̄2σ

, 2f
v̄2σ

).
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