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1 Introduction

The analysis in Tangerås (2023) is conducted under the assumption that generation owners

supply their capacity to the local real-time (flexi) market at marginal production cost. This

appendix considers exercise of market power in electricity production in Section 2.

The fixed fees and market shares of aggregators in the market for flexible distribution re-

sources (FDRs) are treated as exogenous and symmetric in Tangerås (2023). Section 3 of this

appendix derives such fees as an equilibrium outcome of a multi-stage model. Horizontally dif-

ferentiated aggregators first compete for market shares in the FDR market in a pre-stage and

thereafter purchase electricity in the real-time market.

Section 4 draws conclusions about the robustness of the results in Tangerås (2023) concerning

the assumptions of strategic interaction in the real-time market.

2 Market power in generation

This section considers exercise of market power in the production of flexible generation. The first

subsection presents the theoretical model with producer market power. It also characterizes the

effi cient consumption that goes into the production of the household energy service, conditional

on generator market power. The second subsection characterizes the equilibrium with A ≥ 1

independent aggregators. The third subsection analyzes the mixed market structure with one

integrated DSO/aggregator that controls dispatch and A−1 ≥ 1 independent aggregators. The

fourth subsection considers the case with one integrated generator/aggregator that exercises

market power one both sides of the market.

2.1 Effi cient consumption

The model Consider a two-period model of consumption and production within a local dis-

tribution area. In each period i = 1, 2, there is exogenous demand for xi > 0 megawatt hours

(MWh) electricity that is entirely unresponsive to price changes. Period 1 is the peak demand

period and 2 the off-peak demand period if x1 > x2. The peak and off-peak definitions are

reversed if x2 > x1. Both x1 and x2 are known entities at the start of period 1. There is a

continuum of households of measure one that consumes an energy service in amount s̄ > 0.

The energy service is produced by withdrawing s1 = s ∈ [0, s̄] MWh electricity from the grid in

period 1 and s2 = s̄− s MWh in period 2.

The total demand x1 + s in period 1 and x2 + s̄ − s in period 2 must be covered by local

electricity production. One large firm produces y1 ≥ 0 in period 1 and y2 ≥ 0 in period 2. The

cost function Ψ(y) of this producer is the same in both periods, smooth and strictly increasing

and weakly convex.

The residual demand qi = xi + si − yi is supplied at marginal cost by a competitive fringe.
The cost function C(q) of the competitive fringe is the same in both periods, smooth and strictly

increasing. The marginal cost function C ′(q) is strictly increasing and weakly convex. The price

of electricity in period i is pi = P (qi) = C ′(qi).
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I assume that the share of total electricity consumption that goes into the production of

the energy service is small, in the sense that s̄ < min{x1;x2}, Ψ′(s̄) < min{P (x1);P (x2)} and
P (s̄) < min{Ψ′(x1); Ψ′(x2)}. To ensure that the model is well-behaved, I also impose a regularity
condition on the cost function C(q):

If α > θ ≥ 0 and
C ′′(α− θ)θ
C ′(α− θ) < 1, then

C ′′′(α− θ)θ
C ′′(α− θ) < 1 + min{C

′′′′(α− θ)θ
C ′′′(α− θ) ; 0}. (1)

The cost function C(q) = bq2+σ, b > 0, σ ≥ 0 is smooth, strictly increasing, strictly convex

and has non-negative third derivative. It also meets condition (1). Substituting

1− C ′′(α− θ)θ
C ′(α− θ) = 1− (1 + σ)

θ

α− θ

into (1) yields

1− C ′′′(q)θ

C ′′(q)
= 1− C ′′(α− θ)θ

C ′(α− θ) +
θ

α− θ > 0,

and

1− C ′′′(α− θ)θ
C ′′(α− θ) +

C ′′′′(α− θ)θ
C ′′′(α− θ) = 1− C ′′(α− θ)θ

C ′(α− θ) + σ
θ

α− θ > 0.

Condition (1) implies that the profit function

U(xi + si, yi) = P (xi + si − yi)yi −Ψ(yi)

of the large firm is strictly quasi-concave. The unique optimum Y (xi + si) > 0 is characterized

by

P (xi + si − Y (xi + si)))− P ′(xi + si − Y (xi + si))Y (xi + si) = Ψ′(Y (xi + si)). (2)

The optimum satisfies Y (xi + si) < xi because the marginal profit evaluated at yi = xi is

negative: P (si)− P ′(si)xi −Ψ′(xi) < 0.

I let Q(xi + si) = xi + si − Y (xi + si) > 0 be the residual supply of the competitive fringe.

The supply Yi = Y (xi + si) of the flexible generator with market power and the competitive

supply Qi = Q(xi + si) are both strictly increasing in total demand:

Y ′(xi+si) =
C ′′(Qi)− C ′′′(Qi)Yi

Ψ′′(Yi) + 2C ′′(Qi)− C ′′′(Qi)Yi
> 0, Q′(xi+si) =

Ψ′′(Yi) + C ′′(Qi)

Ψ′′(Yi) + 2C ′′(Qi)− C ′′′(Qi)Yi
> 0.

System cost The total system cost equals

Sys(s) = Ψ(Y (x1 + s)) + C(Q(x1 + s)) + Ψ(Y (x2 + s̄− s)) + C(Q(x2 + s̄− s)) (3)

as a function of the amount s of electricity withdrawn from the grid in the first period to produce

the energy service. A small marginal increase in the amount of electricity s withdrawn in the

first period has the following effect on total system cost

Sys′(s) = Ψ′(Y1)Y ′1 + C ′(Q1)Q′1 −Ψ′(Y2)Y ′2 − C ′(Q2)Q′2,
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where Y ′i = Y ′(xi + si), and Q′i = Q′(xi + si), i = 1, 2.

Assume that total demand in period 2 initially is larger than total demand in period 1,

z2 = x2 + s̄ − s > x1 + s = z1. This condition is equivalent to s < 1
2(x2 + s̄ − x1) = s∗.

A marginal increase in s shifts demand from period 2 to period 1. The resulting reallocation

appears to be effi cient because generators initially produce less electricity in period 1, Y1 < Y2

and Q1 < Q2. However, it is also necessary to account for the marginal effect on output to

gauge the overall effect on system cost. In principle, the marginal effects Q′1 and Y
′

2 could be

close to one, and C ′(Q1) > Ψ′(Y2), in which case the marginal effect on the system cost would

be positive. Still, the direct effect dominates by way of assumption (1). To see this, rewrite

Ψ′(Y )Y ′ + C ′(Q)Q′ = Ψ′(Y )[Y ′ +Q′] + [C ′(Q)−Ψ′(Y )]Q′

= Ψ′(Y ) + [P (Q)−Ψ′(Y )]Q′

= Ψ′(Y ) + C ′′(Q)Y Q′.

On the second row, I have used Q′ = 1 − Y ′ and P = C ′. On the third row, I have used the

first-order condition (2) and P ′ = C ′′. Define

H(z) = C ′′(Q(z))Y (z)Q′(z).

Substitute
Q′′

Q′
=

Ψ′′′Y ′ + C ′′′Q′

Ψ′′ + C ′′
− Ψ′′′Y ′ + 2C ′′′Q′ − C ′′′′Y Q′ − C ′′′Y ′

Ψ′′ + 2C ′′ − C ′′′Y
into

H ′

H
=
C ′′′

C ′′
Q′ +

Y ′

Y
+
Q′′

Q′

and rearrange expressions to get

H ′

H
= [1− (

C ′′′

C ′′
− C ′′′′

C ′′′
)Y +

Ψ′′

C ′′
+

C ′′

Ψ′′ + C ′′
]
C ′′′(Q′)2

Ψ′′ + C ′′

+[
1

Y
+

C ′′′Q′

Ψ′′ + C ′′
+

Ψ′′′ + C ′′′Q′

Ψ′′ + C ′′
Y ′]Y ′.

By the assumptions on the cost functions, each term on the right-hand side is non-negative, and

some are strictly positive. Hence, H ′(z) > 0, and therefore [H(z1)−H(z2)][z1 − z2] > 0 for all

z1 6= z2. It then follows that Sys′(s)(s∗ − s) < 0 for all s 6= s∗. Strict quasi-convexity of Sys(s)

implies:

Proposition 1 The most effi cient way to allocate consumption s is to equalize total demand
across periods, if possible. If price equalization is not possible, then all electricity consumed in

the production of the energy service should be withdrawn in the off-peak demand period. Hence,

the effi cient consumption satisfies s = sfb.

The electricity used in the production of the energy service is withdrawn from the grid in

such a way as to smooth out all variations in marginal production costs across periods if the
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local distribution area is resource unconstrained, |x1 − x2| ≤ s̄. If the local distribution area is

resource constrained, |x1 − x2| > s̄, then the generator with market power and the competitive

fringe both produce more output in the peak than the off-peak period. First,

[Y (x1 + sfb)− Y (x2 + s̄− sfb)](x1 − x2) ≥ 0

follows from

(x1 + sfb − x2 − s̄+ sfb)(x1 − x2) = 2(sfb − s∗)(x1 − x2) ≥ 0

and Y ′ > 0. The inequalities are strict if x1 − x2 > s̄ because then s∗ < 0 and if x2 − x1 > s̄

because then s∗ > s̄.

A comparison between production under effi cient withdrawal sfb relative to passive con-

sumption 1
2 s̄ yields

[Y (x1 +
1

2
s̄)− Y (x1 + sfb)](x1 − x2) > 0 for all x1 6= x2

because (1
2 s̄− s

fb)(x1 − x2) for all x1 6= x2. Likewise

[Y (x2 +
1

2
s̄)− Y (x2 + s̄− sfb)](x2 − x1) > 0 for all x1 6= x2

Analogous arguments can be used to establish the properties of Q(x1+sfb) versus Q(x2+s̄−sfb),
Q(x1 + 1

2 s̄) versus Q(x1 + sfb) and Q(x2 + 1
2 s̄) versus Q(x2 + s̄− sfb).

Proposition 1 and the properties of flexible generation under effi cient electricity withdrawal

sfb imply that Lemma 1 and Proposition 1 of Tangerås (2023) extend to the case where one

large generator exercises market power in the real-time market.

2.2 Independent aggregators

Assume that A ≥ 1 independent aggregators supply the energy service to all households by

purchasing electricity in the real-time (flexi) market. Let all aggregators have the same market

share 1
A . Each aggregator a supplies a price-independent bid to purchase sa ∈ [0, 1

A s̄] in period

1 and 1
A s̄−sa in period 2. The large generator simultaneously and independently submits price-

independent bids to supply y1 in period 1 and y2 in period 2. The competitive fringe bids its

marginal cost curve in both periods.

The first period joint electricity consumption sA by the A aggregators is characterized by

−P (Q(x1+sA))− 1

A
P ′(Q(x1+sA))sA+P (Q(x2+s̄−sA))+

1

A
P ′(Q(x2+s̄−sA))(s̄−sA) = 0 (4)

in interior equilibrium, sA ∈ (0, s̄). Differentiation of this equilibrium condition yields the

marginal effect

∂sA

∂x1
=

−(C ′′1A+ C ′′′1 s
A)Q′1

C ′′1 (1 +AQ′1) + C ′′′1 s
AQ′1 + C ′′2 (1 +AQ′2) + C ′′′2 (s̄− sA)Q′2

< 0
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of an increase in first-period demand x1 = x1 on the aggregators’first-period consumption sA.

Seeing as sA = 1
2 s̄ if x1 = x2, it follows that (1

2 s̄ − s
A)(x1 − x2) > 0 for all x1 6= x2. Hence,

aggregators allocate most of their consumption to the off-peak demand period.

Evaluated at sA = s∗ = 1
2(s̄+ x2 − x1), the left-hand side of (4) simplifies to

1

A
C ′′(Q(

1

2
(s̄+ x1 + x2)))(x1 − x2).

By implication, (sA − sfb)(x1 − x2) ≥ 0, with strict inequality for all sfb ∈ (0, 1) and x1 6= x2.

Hence, aggregators allocate too much of their consumption to the peak demand period.

Next,

∂sA

∂A
=

pA2 − pA1
C ′′1 (1 +AQ′1) + C ′′′1 s

AQ′1 + C ′′2 (1 +AQ′2) + C ′′′2 (s̄− sA)
, sA ∈ (0, 1)

implies that electricity consumption is closer to sfb when there are more aggregators.

I finally demonstrate that sA converges to sfb as the number of aggregators becomes large.

Assume that x1 > x2 and sA > sfb. I can then write the equilibrium condition for aggregation

as

1

A
[P ′(Q(x2 + s̄− sA))(s̄− sA)− P ′(Q(x1 + sA))sA] = P (Q(x1 + sA))− P (Q(x2 + s̄− sA))

The term in square brackets on the left-hand side of this expression is bounded, so the left-hand

side converges to zero when A goes to infinity. If limA→∞ s
A > sfb, then the right-hand side is

strictly positive in the limit, which is a contradiction. By a similar argument limA→∞ s
A < sfb

is a contradiction if x1 < x2. It is straightforward to verify that sA = s∗ = sfb if x1 = x2. I

summarize these results as:

Proposition 2 A ≥ 1 independent aggregators with symmetric market shares withdraw more

electricity from the grid in the off-peak than the peak demand period, but withdraw too much

electricity in the off-peak period from an effi ciency viewpoint. Effi ciency increases if the number

of aggregators increases, and the ineffi ciency vanishes in the limit.

An integrated DSO/aggregator behaves equivalently to one single independent aggregator.

Based on the above analysis, I therefore conclude that Proposition 2 and Proposition 3 in

Tangerås (2023) extend to the case where a large generator exercises market power in the real-

time market.

The total system cost equals Sys(1
2 s̄) in the benchmark case of passive consumers. Quasi-

convexity of Sys(s) implies that it is then effi cient to reallocate consumption from the peak

demand to the off-peak demand period. Such intertemporal substitution of demand is precisely

what occurs when independent aggregators activate flexible distribution resources, and more so

when there are more aggregators. The total system cost therefore is smaller compared to when

there is no market for FDRs and consumers are passive, Sys(1
2 s̄) > Sys(sA). The effi ciency

ranking (i) versus (ii) and (ii) versus (iv) in Proposition 6 therefore still are valid even under

imperfect competition in the production of electricity.
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2.3 Mixed market structure

Assume that aggregators bid their capacity s̄, the large producer bids capacity ȳ and that

the competitive fringe bids the marginal cost curve C ′(q) into the market prior to period 1.

The DSO then allocates this consumption and production capacity across the two periods to

maximize the joint profit of its DSO and aggregator operations. The DSO withdraws electricity

s̃DSO ∈ [0, s̄DSO] from the grid in period 1 and s̄DSO− s̄DSO in period 2 to satisfy the electricity

demand of the own aggregator, where s̄DSO = LDSOs̄. It withdraws s̃A ∈ [0, s̄A] from the

grid in period 1 and s̄A − s̃A in period 2 to satisfy the electricity demand of the independent

aggregators, where s̄A = s̄ − s̄DSO. The DSO allocates ỹ ∈ [0, ȳ] of the capacity supplied

by the large generator to period 1 and the rest, ȳ − ỹ to period 2. The DSO covers residual

demand, q1 = x1 + s̃DSO + s̃A − ỹ in period 1 and q2 = x2 + s̄ − s̃DSO − s̃A − ȳ + ỹ in

period 2, by the production of the competitive fringe. Hence, the real-time price of electricity

in period i equals pi = P (qi) = C ′(qi). The profit of the integrated DSO/aggregator equals

F + LDSOtDSO + Ω̃(s̃DSO, s̃A − ỹ), where

Ω̃(s̃DSO, s̃A− ỹ, ȳ) = −P (x1 + s̃DSO+ s̃A− ỹ)s̃DSO−P (x2 + s̄− s̃DSO− s̃A− ȳ+ ỹ)(s̄DSO− s̃DSO).

I impose the regularity assumption

C ′′′(qi)sDSOi

C ′′(qi)
< 1 +

C ′′′(q1)sDSO1 + C ′′′(q2)sDSO2

C ′′(q1) + C ′′(q2)
, ∀sAi ∈ [0, s̄A], sDSOi ∈ [0, s̄DSO], i = 1, 2 (5)

on the cost function. For instance, C(q) = 1
2φq

2 satisfies this assumption. The proof of the

following result is in the Appendix:

Proposition 3 Consider a mixed market structure in which a DSO/aggregator and A−1 inde-

pendent aggregators compete in the market for flexible distribution resources. Assume that the

DSO allocates (s̄A, s̄DSO, ȳ) across the two periods to maximize the DSO/aggregator profit.

(i) The DSO allocates all electricity consumption of the independent aggregators to the peak

demand period and all production of the large generator to the off-peak demand period [sA = s̄A

and y = 0 if x1 > x2, sA = 0 and y = ȳ if x1 < x2].

(ii) More electricity is withdrawn from the grid in the peak relative to the off-peak demand period

to produce the household energy service if the DSO controls half or less of the market for flexible

distribution resources [(sDSO + sA − 1
2 s̄)(x1 − x2) ≥ 0 if LDSO ≤ 1

2 ].

By pursuing this strategy, the integrated DSO/aggregator can minimize the cost of electricity

by allocating most of its electricity consumption to the off-peak demand period.

The marginal profit

∂Ω̃(s̃DSO, s̄A, ȳ)

∂s̃DSO
|s̃DSO= 1

2
s̄DSO = −[P (x1 +

1

2
s̄DSO + s̄A)− P (x2 +

1

2
s̄DSO − ȳ)]

−[P ′(x1 +
1

2
s̄DSO + s̄A)− P ′(x2 +

1

2
s̄DSO − ȳ)]

1

2
s̄DSO.
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of the integrated DSO/aggregator is negative if x1 > x2 by x1 + s̄A > x2 − ȳ. Hence, the

integrated DSO/aggregator aggregates most of its own consumption to the off-peak demand

period, (1
2 s̄
DSO −SDSO(sA, ȳ))(x1− x2) > 0 for all x1 6= x2. Proposition 3 and the result about

SDSO(sA, ȳ) thus confirm that Proposition 4 in Tangerås (2023) also holds under the assumption

of market power in generation.

Let x1 > x2, and consider the optimal allocation of the consumption of the integrated

DSO/aggregator in more detail. If

P (x1 + s̄A) ≥ P (x2 + s̄DSO) + P ′(x2 + s̄DSO)s̄DSO,

then SDSO(sA, ȳ) = 0 for all ȳ. The above inequality is met, for instance, if s̄DSO is suffi ciently

small. Let ŷ = 0 in that case. Otherwise, define ŷ > 0 by

P (x1 + s̄A) = P (x2 + s̄DSO − ŷ) + P ′(x2 + s̄DSO − ŷ)s̄DSO.

By way of this definition, Ω̃(s̃DSO,s̄A,ȳ)
∂s̃DSO

|s̃DSO=0 ≤ 0 and therefore SDSO(sA, ȳ) = 0 for all ȳ ≥ ŷ.

If ŷ > 0, then

P (x1 + SDSO + s̄A) + P ′(x1 + SDSO + s̄A)SDSO

= P (x2 + s̄DSO − SDSO − ȳ) + P ′(x2 + s̄DSO − SDSO − ȳ)(s̄DSO − SDSO)

characterizes SDSO(sA, ȳ) ∈ (0, 1
2 s̄
DSO) for all ȳ ∈ [0, ŷ). In interior optimum, the integrated

DSO/aggregator allocates more consumption to the off-peak demand period when flexible gen-

eration capacity is larger:

∂SDSO(s̄A, ȳ)

∂ȳ
= − C ′′(QDSO2 ) + C ′′′(QDSO2 )(s̄DSO − SDSO)

2C ′′(QDSO1 ) + C ′′′(QDSO1 )SDSO + 2C ′′(QDSO2 ) + C ′′′(QDSO2 )(s̄DSO − SDSO)
< 0,

where QDSO1 = x1 +SDSO + s̄A and QDSO2 = x2 + s̄DSO −SDSO − ȳ measure production by the
competitive fringe in each period.

Generator market power The DSO exacerbates the resource constraints by allocating all

generation capacity bid into the market by the large generator to the off-peak demand period.

This aspect of centralized dispatch affects the incentives for the generator to supply capacity to

the real-time market. In particular, the large generator takes into account the effect of capacity

ȳ on SDSO(sA, ȳ). The large generator has profit

P (x2 + s̄DSO − SDSO(s̄A, ȳ)− ȳ)ȳ −Ψ(ȳ)

if x1 > x2 because the DSO dispatches ȳ in the off-peak demand period.

Let ȳM be the equilibrium dispatch by the large generation owner. The aggregator profit

equals U(x2 + s̄DSO, ȳM ) if ȳM ≥ ŷ because then SDSO(s̄A, ȳ) = 0. Optimal production in

this case equals ȳM = Y (x2 + s̄DSO). If ȳM < ŷ, then the generator accounts for the effect on
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SDSO(sA, ȳ), in which case ȳM > 0 solves

P (qM2 )− P ′(qM2 )ȳM (1 +
∂SDSO(s̄A, ȳM )

∂ȳ
)−Ψ′(ȳM ) = 0,

where qM2 = x2 + s̄DSO−SDSO(s̄A, ȳM )− ȳM . The marginal profit of an independent monopoly
aggregator is negative evaluated at y2 = ȳM ,

∂U(x2 + s̄DSO − SDSO(s̄A, ȳM ), ȳ)

∂ȳ
|ȳ=ȳM = P ′(qM2 )ȳM

∂SDSO(s̄A, ȳM )

∂ȳ
< 0,

and therefore Y (x2 + s̄DSO − SDSO(s̄A, ȳM )) < ȳM for all SDSO(s̄A, ȳM ) > 0. The explanation

is that an increase in ȳ increases demand for electricity in the off-peak period, a strategic effect

which drives up supply in the off-peak demand period. Since ∂SDSO(s̄A, ȳ)/∂ȳ > −1, it also

follows that ȳM < Y ∗(x2 + s̄DSO), where Y ∗(z) defines the dispatch that equates marginal

generation costs at demand z: C ′(z − Y ∗(z)) = Ψ′(Y ∗(z)).

Under robust assumptions, it is also the case that ȳM < 2Y (x2 + s̄DSO − SDSO(s̄A, ȳM )).

This always holds if ȳM ≥ ŷ. Assume that ȳM < ŷ, and consider the quadratic cost functions,

C(q) = 1
2φq

2, φ > 0, Ψ(y) = 1
2ψy

2, ψ > 0. In his case, ∂S
DSO(s̄A,ȳ)
∂ȳ = −1

4 yields

ȳM =
4φ

7φ+ 4ψ
(x2 + s̄DSO − SDSO),

whereas

Y (x2 + s̄DSO − SDSO) =
φ

2φ+ ψ
(x2 + s̄DSO − SDSO).

Hence,

2Y (x2 + s̄DSO − SDSO)− ȳM =
2φ(3φ+ 2ψ)

(2φ+ ψ)(7φ+ 4ψ)
(x2 + s̄DSO − SDSO) > 0.

System costs The system cost in period i equals

Sysi(xi + si, yi) = Ψ(yi) + C(xi + si − yi),

which is strictly convex in yi. Then Y ∗(xi + si) defined above measures the effi cient production

by the large generator in period i given total demand xi + si. Observe that

∂Sysi(xi + si, yi)

∂yi
|yi=si = Ψ′(si)− C ′(xi) < 0

by the assumption that Ψ′(s̄) < min{C ′(x1);C ′(x2)}. Hence, Y ∗(xi + si) > si. Observe also

that
∂Sysi(xi + si, yi)

∂yi
|yi=xi = Ψ′(xi)− C ′(si) > 0

by the assumption that C ′(s̄) < min{Ψ′(x1); Ψ′(x2)}. Hence, Y ∗(xi + si) < xi.
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The total system cost under the mixed market structure is given by

SysM = Sys1(x1 + sA + sDSO, yM ) + Sys2(x2 + s̄− sA − sDSO, ȳM − yM )

if the DSO dispatches yM ∈ [0, ȳM ] of the generation capacity in period 1 and the rest, ȳM−yM ,
in period 2.

The corresponding system cost equals

Sys(sA+sDSO) = Sys1(x1+sA+sDSO, Y (x1+sA+sDSO))+Sys2(x2+s̄−sA−sDSO, Y (x2+s̄−sA−sDSO))

if there is one single independent aggregator who allocates the same amount sA + sDSO of the

total consumption to period 1 and the rest to period 2.

The difference in system cost between a market structure where an integrated DSO/aggregator

dispatches all capacity and a situation without any FDR market and passive consumers, can be

written as

SysM − Sys(1

2
s̄) = SysM − Sys(sA + sDSO) + Sys(sA + sDSO)− Sys(1

2
s̄)

Assume throughout that LDSO ≤ 1
2 , so that s̄

DSO ≤ s̄A. The term Sys(sA+sDSO)−Sys(1
2 s̄) ≥ 0

measures the distortion associated with ineffi cient use of the flexible distribution resource because

(sDSO+sA− 1
2 s̄)(x1−x2) ≥ 0 if LDSO ≤ 1

2 . Specifically, the DSO allocates to much consumption

to the peak demand period.

The term SysM − Sys(sA + sDSO) measures the effect on system cost associated with DSO

dispatch of the generation capacity of the large producer. Assume from now on that x1 > x2;

the case with x1 < x2 is analogous and omitted. If x1 > x2, then sA = s̄A and yM = 0 by

Proposition 3. Hence,

SysM = Sys1(z1, 0) + Sys2(z2, ȳ
M ),

whre z1 = x1 + s̄A + SDSO, z2 = x2 + s̄DSO − SDSO, and z1 > z2 by the assumption that

s̄A ≥ s̄DSO. The difference in system cost can be written as

SysM − Sys(s̄A + SDSO) =

∫ ȳM−Y2

0

∫ ,θ+Y2

θ

∂2Sys2(z2, y)

∂y2
dydθ

−
∫ ȳM−Y2

0

∫ z1

z2

∂2Sys1(z, y)

∂z∂y
dzdy

−
∫ Y1

ȳM−Y2

∂Sys1(z1, y)

∂y
dy

The term on the first row of the right-hand side is strictly positive by ȳM > Y2 and convexity
∂2Sys2
∂y2

= Ψ′′(y2) + C ′′(z2 − y2) > 0. The term on the second row is strictly positive by z1 > z2

and ∂2Sys1
∂z∂y = −C ′′(z1 − y1) < 0. The term on the third row is non-negative if Y1 ≥ ȳM − Y2

because ∂Sys1(z1,y)
∂y < 0 for all y ≤ Y1 < Y ∗1 . Seeing as Y1 > Y2 by z1 > z2, the inequality is

fulfilled if ȳM ≤ 2Y2. I demonstrated above that this inequality holds for robust specifications
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of the cost function. Hence, DSO control of the dispatch of the capacity of the large generator

can by itself distort effi ciency.

Since SysM > Sys(1
2 s̄) if L

DSO ≤ 1
2 in the above analysis, I conclude that the effi ciency

ranking (iv) versus (v) in Proposition 6 of Tangerås (2023) is valid in robust circumstances also

under imperfect competition in the production of electricity.

2.4 Integrated generator/aggregator

Assume that the large generator also is a monopoly aggregator in the market for flexible dis-

tribution resources. This integrated generator/aggregator supplies (y1, y2, s) to maximize its

profit

Π̃I(y1, y2, s) = t̄+ P (x1 + s− y1)(y1 − s) + P (x2 + s̄− s− y2)(y2 − s̄+ s)−Ψ(y1)−Ψ(y2).

I solve the problem in two stages. The firm first maximizes profit over y1 and y2 for given

s ∈ [0, s̄]. It then maximizes profit over s.

Profit-maximizing generation Maximizing Π̃I(y1, y2, s) over yi returns the production Y I(xi, si)

of the large firm in period i as a solution to the first-order condition

P (QI(xi, si))− P ′(QI(xi, si))(Y I(xi, si)− si) = Ψ′(Y I(xi, si)). (6)

In this expression, QI(xi, si) = xi + si − Y I(xi, si) measures the production of the competitive

fringe. The marginal profit

∂Π̃I

∂yi
= P (xi + si − yi)− P (xi) + P ′(xi + si − yi)(si − yi) + Ψ′(s̄)−Ψ′(yi) + P (xi)−Ψ′(s̄)

is strictly positive for all yi ≤ si by the assumption that P (xi) > Ψ′(s̄). Hence, Y I(xi, si) > si.

Moreover,

∂Π̃I

∂yi
= P (xi + si − yi)− P (si)− P ′(xi + si − yi)(yi − si) + Ψ′(xi)−Ψ′(yi) + P (si)−Ψ′(xi)

is strictly negative for all yi ≥ xi by the assumption that xi > si and P (s̄) < Ψ′(xi). Hence,

Y I(xi, si) < xi. Condition (1) guarantees that the first-order condition (6) has a unique solution

and that the supply Y I(xi, si) of the integrated generator/aggregator is strictly increasing in xi
and si:

∂Y I
i

∂xi
=

C ′′(QIi )− C ′′′(QIi )(Y I
i − si)

Ψ′′(Y I
i ) + 2C ′′(QIi )− C ′′′(QIi )(Y I

i − si)
> 0,

∂Y I
i

∂si
=

2C ′′(QIi )− C ′′′(QIi )(Y I
i − si)

Ψ′′(Y I
i ) + 2C ′′(QIi )− C ′′′(QIi )(Y I

i − si)
> 0.

In this expression, Y I
i = Y I(xi, si) and QIi = QI(xi, si).

An integrated generator/aggregator has a stronger incentive to supply generation to the
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market than an independent generator because the associated reduction in the price of electricity

reduces the aggregator’s cost of supplying the energy service to households. This mechanism

is formally equivalent to the well-known pro-competitive effect of producers selling forward

contracts (e.g. Wolak, 2007) or when there is vertical integration between generation and retail

(Bushnell et al., 2008). Formally, Y I(xi, si) ≥ Y (xi + si), with strict inequality if si > 0. To

establish this result, notice first that profit is strictly larger if the generator/aggregator produces

Y1 = Y (x1 + s) compared to y < Y1 in period 1:

Π̃I(Y1, y2, s)− Π̃I(y, y2, s) = P (x1 + s− Y1)Y1 −Ψ(Y1)− P (x1 + s− y)y

+Ψ(y) + [P (x1 + s− y)− P (x1 + s− Y1)]s

> 0.

This is because Y1 uniquely maximizes P (x1 + s− y1)y1 −Ψ(y1), and because P (x1 + s− y) >

P (x1 + s−Y1) if y < Y1. Hence, Y I(x1, s) ≥ Y (x1 + s). The inequality is strict if s > 0 because

then ∂ΠI

∂y1
|y1=Y1 = P ′(x1 + s − Y1)s > 0. By an analogous argument, Y I(x2, s̄ − s) ≥ Y2, with

strict inequality if s < s̄.

Profit-maximizing consumption Consider next the optimal choice of s. Define the profit

of the integrated generator/aggregator

ΠI(s) = Π̃I(Y I(x1, s), Y
I(x2, s̄− s), s).

The marginal profit of increasing s equals

ΠI′(s) = P (QI(x2, s̄− s))− P ′(QI(x2, s̄− s))(Y I(x2, s̄− s)− s̄+ s)

−P (QI(x1, s)) + P ′(QI(x1, s))(Y
I(x1, s)− s)

The indirect effects working through the changes to production Y I(x1, s) and Y I(x2, s̄− s) are
of second-order importance. Rewrite the marginal profit expression as

ΠI′(s) = Ψ′(Y I(x2, s̄− s))−Ψ′(Y I(x1, s))

by invoking (6). The corresponding second-derivative of the profit function is

ΠI′′(s) = −Ψ′′(Y I
2 )
∂Y I

2

∂s2
−Ψ′′(Y I

1 )
∂Y I

1

∂s1
< 0.

Hence, the solution to the first-order condition identifies the profit-maximizing consumption sI .

The integrated generator/aggregator chooses flexible production y1 and y2 to maximize its profit

in the flexi market and then allocates s across periods to minimize its total production cost.

Next, I derive the properties of sI . Compare first sI with 1
2 s̄. By ∂Y

I
i /∂xi > 0, [Y I(x1,

1
2 s̄)−
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Y I(x2,
1
2 s̄)](x1 − x2) > 0 for all x1 6= x2. Hence,

(x1 − x2)ΠI′(s)|s= 1
2
s̄ = −[Ψ′(Y I(x1,

1

2
s̄))−Ψ′(Y I(x2,

1

2
s̄))](x1 − x2) < 0

if x1 6= x2. The integrated generator/aggregator therefore withdraws more electricity from the

grid in the off-peak than the peak demand period, (1
2 s̄− s

I)(x1 − x2) > 0 if x1 6= x2.

Second, compare sI with sfb. If x1 ≥ s̄+x2, then sfb = 0, in which case (sI−sfb)(x1−x2) =

sI(x1−x2) ≥ 0. If x2 ≥ s̄+x1, then sfb = s̄, in which case (sI−sfb)(x1−x2) = (s̄−sI)(x2−x1) ≥
0. If |x1 − x2| < s̄, then sfb = s∗ ∈ (0, s̄). Observe that

(x1 − x2)
∂Π̃I(y1, y2, s

∗)

∂y1
|y1=Y I(x2,s̄−s∗) = −P ′(QI(x2, s̄− s∗))(x1 − x2)2 < 0 for all x1 6= x2.

Hence, [Y I(x2, s̄− s∗)− Y I(x1, s
∗)](x1 − x2) > 0 if x1 6= x2. By implication,

(x1 − x2)ΠI′(s)|s=s∗ = [Ψ′(Y I(x2, s̄− s∗))−Ψ′(Y I(x1, s
∗))](x1 − x2) > 0

if s∗ ∈ (0, s̄) and x1 6= x2. It then follows that (sI − sfb)(x1 − x2) > 0 if sfb ∈ (0, 1) and

x1 6= x2. The integrated generator/aggregator generally withdraws too much electricity in the

peak demand period compared to the effi cient withdrawal sfb. I summarize these results as

follows

Proposition 4 An integrated generator/aggregator that has market power in generation and a
monopoly in the market for flexible distribution resources, withdraws more electricity from the

grid in the off-peak relative to the peak demand period, but withdraws too much electricity in the

off-peak period from an effi ciency viewpoint.

The comparison with a market structure in which one independent aggregator has a monopoly

in the market for flexible distribution resources (A = 1) is less straightforward. To gain some in-

sights, I add more structure to the model. Specifically, cost functions are quadratic: C(q) = 1
2φq

2

and Ψ(y) = 1
2ψy

2, where φ > 0 and ψ > 0.

If sI = 0, then x1 > x2, in which case (sA − sI)(x1 − x2) = sA(x1 − x2) ≥ 0. If sI = s̄, then

x2 > x1, in which case (sA − sI)(x1 − x2) = (s̄ − sA)(x2 − x1) ≥ 0. If sI ∈ (0, s̄), then I first

apply the functional form assumptions to (6) and solve for the optimal production

Y I(xi, si) =
φ

2φ+ ψ
(xi + 2si), QI(xi, si) =

(φ+ ψ)xi + ψsi
2φ+ ψ

of the integrated generator/aggregator. Armed with these expressions, I use ΠI′(sI) = 0 to solve

for

sI =
1

2
s̄+

x2 − x1

4
.

Consider now the incentives of an independent aggregator. Apply the functional form assump-
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tions to (2) and solve for production

Y (xi + si) =
φ

2φ+ ψ
(xi + si), Q(xi + si) =

φ+ ψ

2φ+ ψ
(xi + si)

when generation and aggregation are bid independently into the market. The marginal profit of

the independent aggregator then equals

P (Q(x2 + s̄− sI)) + P ′(Q(x2 + s̄− sI))(s̄− sI)− P (Q(x1 + sI))− P ′(Q(x1 + sI))sI

=
φ

2φ+ ψ
[
φ+ ψ

3φ+ 2ψ
(x2 − x1) + s̄− 2sI ] =

1

2

φ

2φ+ ψ

φ

3φ+ 2ψ
(x1 − x2)

evaluated at s = sI . By implication, (sA − sI)(x1 − x2) ≥ 0 also for sI ∈ (0, 1), with strict

inequality if x1 6= x2.

The integrated generator/aggregator withdraws electricity more effi ciently from the grid

that an independent aggregator under a quadratic parametrization of cost functions. A market

structure with one independent aggregator is formally equivalent to one with an integrated

DSO/aggregator. Hence, the comparison between an integrated generator/aggregator and an

integrated DSO/aggregator becomes (sDSO − sI)(x1 − x2) ≥ 0 in the parametric case.

System costs Despite the pro-competitive effect of vertical integration between production

and aggregation, market power still distorts flexible generation downwards:

∂Π̃I

∂yi
|yi=Y ∗(xi+si) = −P ′(xi + si − Y ∗(xi + si))(Y

∗(xi + si)− si) < 0

implies Y I(xi, si) < Y ∗(xi + si).

The total system cost with an integrated generator/aggregator is SysI(sI), where

SysI(s) = Ψ(Y I(x1, s)) + C(QI(x1, s)) + Ψ(Y I(x2, s̄− s)) + C(QI(x2, s̄− s)). (7)

A comparison with the benchmark case of passive consumption yields

Sys(
1

2
s̄)− SysI(sI) = Sys(

1

2
s̄)− Sys(sI) + Sys(sI)− SysI(sI).

The Sys(1
2 s̄) − Sys(sI) term measures the effect on system cost of the activation of flexible

distribution resources for balancing purposes. It is positive by strict quasi-concavity of Sys(s)

and because sI is closer than 1
2 s̄ to s

fb. The Sys(sI)− SysI(sI) term measures the competitive

effect of vertical integration. More generally,

Sys(s)− SysI(s) =
∑
i=1,2

[Sysi(xi + si, Y (xi + si))− Sysi(xi + si, Y
I(xi, si))]

= −
∑
i=1,2

∫ Y I(xi,si)

Y (xi+si)

∂Sysi(xi + si, yi)

∂yi
dyi > 0.
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Either Y I(x1, s) > Y (x1 + s) or Y I(x2, s̄ − s) > Y (x2 + s̄ − s) because of the positive effect of
aggregation on output. Moreover, ∂Sysi∂yi

< 0 for all yi ≤ Y I(xi, si) because of convexity of Sysi
in yi, and Y I(xi, si) < Y ∗(xi + si).

A market structure with an integrated generator/aggregator has a double effi ciency benefit

compared to a structure without any market for FDR resources and passive consumption. First,

the household energy service is produced more effi ciently because the aggregator allocates more

consumption to the off-peak demand period. Second, aggregation increases production effi ciency

by replacing high-cost generation of the competitive fringe with low cost production of the

generator with market power. Hence, the effi ciency ranking (iii) versus (iv) in Proposition 6 is

valid even under imperfect competition in the production of electricity.

The comparison with system costs in a market structure with an independent aggregator

(A = 1) is more complicated:

Sys(sA)− SysI(sI) = Sys(sA)− Sys(sI) + Sys(sI)− SysI(sI).

It still holds that Sys(sI) > SysI(sI), but sI is ambiguous compared to sA. However, (sA −
sI)(x1 − x2) ≥ 0 under quadratic production costs, in which case Sys(sA) ≥ Sys(sI). The

effi ciency ranking (ii) versus (iii) in Proposition 6 of Tangerås (2023) can therefore be reversed

under imperfect competition in the production of electricity.

3 Aggregator competition in the FDR market

The fixed fees and market shares of aggregators in the FDR market are treated as exogenous

and symmetric in Tangerås (2023). This section derives such fees as an equilibrium outcome of

a multi-stage model. Horizontally differentiated aggregators first compete for market shares in

the FDR market in a pre-stage (period 0) before demand (x1, x2) is known. Thereafter, they

purchase electricity in the real-time market in periods 1 and 2 after demand (x1, x2) has been

realized. The first subsection considers competition between A ≥ 2 independent aggregators, the

second subsection considers competition between an integrated DSO/aggregator and A− 1 ≥ 1

independent aggregators.

3.1 Independent aggregators

There are A ≥ 2 independent aggregators, indexed by a ∈ {1, ..., A}.

The demand for household energy services Assume that household i receives random

utility s̄−ρta+εia from purchasing the energy service from aggregator a. In the utility expression,

ρ > 0 is the price response parameter, and εia measures household i’s idiosyncratic preference for

purchasing the energy service from aggregator a. Each household i draws εia from an extreme

value distribution with location parameter 0 and scale parameter 1. If all aggregators set fees

equal to or below some upper threshold t̄A > 0, to be specified, then the market is fully covered.
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The market share of aggregator a is then given by

La =
exp−ρta∑
a′ exp−ρta′

,
∂La
∂ta

= −ρLa(1− La),

see e.g., Besanko et al. (1998). The parameter ρ is a measure of the degree of horizontal

differentiation. The larger is ρ, the more important is the price for the choice of aggregator. To

derive closed-form solutions, I also assume that a quadratic cost function C(q) = φ
2 q

2, φ > 0,

holds for flexible generation.

Competition in the flexi market The profit of aggregator a equals

ΠA(ta, sa) = Lata − P (x1 + s)sa − P (x2 + s̄− s)(Las̄− sa). (8)

in the flexi (real-time) market as a function of the aggregator’s market share La and the amount

sa ∈ [0, Las̄] of electricity it purchases in the first period to supply the energy service to its

customers. The aggregator consumes Las̄− sa in period 2. Under the assumption that aggrega-

tors compete in quantities in the flexi market, the marginal profit of this aggregator in the flexi

market equals

∂ΠA(ta, sa)

∂sa
= P (x2 + s̄− s)− P (x1 + s)− P ′(x1 + s)sa + P ′(x2 + s̄− s)(Las̄− sa)

= φ(x2 + s̄− s)− φ(x1 + s)− φsa + φ(Las̄− sa),

where I have applied the functional form assumption for C(q) on the second row.

Assume that all aggregators except a have charged the same fee tA ≤ t̄A in the first period,
whereas a has charged ta ≤ t̄A. All aggregators a′ 6= a then have the same market share 1−La

A−1 in

the FDR market. Aggregator a withdraws Sa(x, La) from the grid in period 1, whereas each of

the other aggregators withdraws SA(x,La)
A−1 in the same period, where x = (x1, x2). We can apply

the above marginal profit expression to solve for the period 1 electricity withdrawals:

Sa(x, La) =
1

2
[Las̄+

x2 − x1

A+ 1
] ∈ (0, Las̄), SA(x, La) =

1

2
[(1−La)s̄+

A− 1

A+ 1
(x2−x1)] ∈ (0, (1−La)s̄)

Sa(x, La) = 0, SA(x, La) =
1

2
[
A− La
A

s̄+
A− 1

A
(x2 − x1)] ∈ (0, (1− La)s̄)

Sa(x, La) = Las̄, SA(x, La) =
1

2
[
A− 1

A
(x2 − x1) +

A− 2ALa + La
A

s̄] ∈ (0, (1− La)s̄)

Competition for household consumers Assume that aggregators set their fixed fees in

period 0 before demand is known in period 1 and 2. Let x have joint cumulative distribution

function H(x) on X = [0, x̄]2. The cumulative distribution function and the joint density

function h(x) > 0 are both continuous. The period 0 expected profit of aggregator a then equals

πA(ta) = Lata−
∫
x∈X

[P (x1 +S(x, La))Sa(x, La)+P (x2 + s̄−S(x, La))(Las̄−Sa(x, La))]dH(x),
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where S(x, La) = Sa(x, La) + SA(x, La) measures the total withdrawal of electricity in period 1

to supply the household energy service. The marginal expected profit of aggregator a equals:

πA′(ta) = La + [ta −
∫
x∈X

P (x2 + s̄− S(x, La))s̄dH(x)]
∂La
∂ta
−
∫
x∈X

[P ′(x1 + S(x, La))Sa(x, La)

−P ′(x2 + s̄− S(x, La))(Las̄− Sa(x, La))]
∂SA(x, La)

∂La
dH(x)

∂La
∂ta

.

The sum of the first two expressions on the first row represents the direct effect on aggregator

a’s profit of a marginal increase in ta. The second expression in square brackets measures a

strategic effect that arises because a marginal reduction in a’s market share in the FDR market

has a non-negative effect on the amount of electricity that all other aggregators purchase in the

flexi market.

Characterization of the equilibrium fees Using the functional form expressions, and

πA′(tA) = 0, it is straightforward to solve for the symmetric equilibrium candidate

tA = min{1

ρ

A

A− 1
+

∫
x∈X1

φ(x2+s̄)s̄dH(x)+

∫
x∈X2

φx2s̄dH(x)+

∫
x∈X3

φ
x1 + x2 + s̄

2
s̄dH(x); t̄A}.

(9)

In the above expression, Xi = {x ∈ X : xi − x−i > A+1
A s̄}, i = 1, 2, whereas X3 = {x ∈ X :

|x1 − x2| ≤ A+1
A s̄}. The first [second] period demand is so large for all x ∈ X1 [x ∈ X2] that

all electricity is withdrawn in period 2 [1]. The strategic effect vanishes in X1 and X2 since in

this domain SA(x, La) = 0 [SA(x, La) = s̄] in a neighborhood of La around 1
A . For intermediary

x ∈ X3, there is a strategic effect
∂SA(x,La)

∂La
= −1

2 s̄ in the withdrawal of electricity, which yields

electricity withdrawal SA(x, 1
A) = 1

2( A
A+1(x2 − x1) + s̄) from the solution to the first-order

condition ∂ΠA(tA,sa)
∂sa

= 0. The aggregator profit equals

πA(tA) =
1

A
tA − φ

A

∫
x∈X1

(x2 + s̄)s̄dH(x)− φ

A

∫
x∈X2

(x1 + s̄)s̄dH(x)

+
φ

2A

∫
x∈X3

[
A

(A+ 1)2
(x1 − x2)2 − (x1 + x2)s̄− s̄2]dH(x)

in symmetric equilibrium. If tA < t̄A, then we can plug in the equilibrium from (9) to get

πA(tA) =
1

ρ

1

A− 1
+
φs̄

A

∫
x∈X2

(x2 − x1 − s̄)dH(x) +
φ

2(A+ 1)2

∫
x∈X3

(x1 − x2)2dH(x) > 0

after simplification.

If tA = t̄A, then I need to derive an expression for the outside option t̄A. I assume that

this outside option is given by the expected cost of purchasing the energy service at the average

flexi price when all other households purchase the energy service from an aggregator, but the

deviating consumer uses the same amount of electricity 1
2 s̄ in both periods to produce the energy
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service. Specifically:

t̄A = v +
1

2

∫
x∈X

[P (x1 + S(x,
1

A
)) + P (x2 + s̄− S(x,

1

A
))]s̄dH(x) (10)

In the above expression, v ≥ 0 represents an incremental cost above the price of electricity

associated with purchasing the good at the average real time price instead of from an aggregator.

Households do not trade electricity directly in the market, but use an intermediary, usually a

retailer. One can think of v as the incremental marginal cost or profit margin of this retailer.

Substituting t̄A into πA(tA) yields:

πA(t̄A) =
v

A
+
φs̄

2A

∫
x∈X1

(x1−x2−s̄)dH(x)+
φs̄

2A

∫
x∈X2

(x2−x1−s̄)dH(x)+
φ

2(A+ 1)2

∫
x∈X3

(x1−x2)2dH(x).

This expression is strictly positive for all v ≥ 0. The above results demonstrate the business

case for entering into the FDR market, even if entry is somewhat costly.

Equilibrium existence I now derive a suffi cient condition for when ta = tA represents a

profit-maximizing fee if all other aggregators a′ 6= a choose ta′ = tA. Specifically, ta = tA

uniquely maximizes πA(ta) if φρ > 0 is suffi ciently close to zero. Deviations by a to ta ≤ 0 or

ta > t̄A are strictly unprofitable because aggregator a earns πA(ta) ≤ 0 for all such ta, whereas

πA(tA) > 0, as established above. Hence, all potentially profitable deviations lie in the interval

(0, t̄A]. The proof is complicated by the fact that Sa(x, La) and SA(x, La) are kinked in La. The

six demand thresholds

X21(x1, La) = max{x1 − (A+ 1)Las̄; 0}, X22(x1, La) = min{x1 + (A+ 1)Las̄; x̄},

X23(x1, La) = max{x1 −
A+ 1

A− 1
(1− La)s̄; 0}, X24(x1, La) = min{x1 +

A+ 1

A− 1
(1− La)s̄; x̄},

X25(x1, La) = max{x1 −
A− La
A− 1

s̄; 0}, X26(x1, La) = min{x1 +
A− La
A− 1

s̄; x̄},

are relevant for the existence proof. By way of these thresholds

Sa(x1, X21(x1, La), La) = 0, SA(x1, X21(x1, La), La) =
1

2
(1−ALa)s̄

Sa(x1, X22(x1, La), La) = Las̄, SA(x1, X22(x1, La), La) =
1

2
[1 +ALa]s̄

Sa(x1, X23(x1, La), La) =
1

2

ALa − 1

A− 1
s̄, SA(x1, X23(x1, La), La) = 0

Sa(x1, X24(x1, La), La) =
1

2

ALa + 1− 2La
A− 1

s̄, SA(x1, X24(x1, La), La) = (1− La)s̄

Sa(x1, X25(x1, La), La) = 0, SA(x1, X25(x1, La), La) = 0

Sa(x1, X26(x1, La), La) = Las̄, SA(x1, X26(x1, La), La) = (1− La)s̄

17



in interior domain.

Assume first that tA < t̄A, and consider an upward deviation ta ∈ (tA, t̄A]. In this case,

La <
1
A . We can then write

πA′(ta)

La
= 1− ρ(1− La)ta

+φρ(1− La)
∫ x̄

0

[∫ X25

0
((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)

∂SA
∂La

)h(x1, x2)dx2

+

∫ X21

X25

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ X22

X21

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ X26

X22

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ x̄

X26

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

]
dx1,

Taking the second-derivative of the profit function yields

πA′′(ta)

ρLa
= −1 +

2La − 1

La
πA′(ta)

+φρLa(1− La)2

∫
x∈X

[s̄
∂S

∂La
+ (s̄− 2

∂Sa
∂La

)
∂SA
∂La

]dH(x)

+
1

2
φρL2

a(1− La)2s̄2A− 1

A

∫ x̄

0

[
1

A− 1
h(x1, X25(x1, La))

∂X25

∂La

+h(x1, X21(x1, La))
∂X21

∂La
− h(x1, X22(x1, La))

∂X22

∂La

+
2A− 1

A− 1
h(x1, X26(x1, La))

∂X26

∂La

]
dx1

after simplification. The right-hand side is strictly negative for all ta ∈ (tA, t̄A] such that

πA′(ta) = 0 if φρ > 0 is suffi ciently close to zero. If so, then πA(ta) is strictly quasi-concave in

the domain ta ∈ [tA, t̄]. It follows that ta = tA is the unique-best reply in ta ∈ [tA, t̄] if φρ > 0 is

suffi ciently close to zero.
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Consider next a downward deviation ta ∈ (0, tA), so that La > 1
A . In this case, we can write

πA′(ta)

La
= 1− ρ(1− La)ta

+φρ(1− La)
∫ x̄

0
[

∫ X25

0
((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)

∂SA
∂La

)h(x1, x2)dx2

+

∫ X23

X25

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ X24

X23

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ X26

X24

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2

+

∫ x̄

X26

((x2 + s̄− S(x, La))s̄+ (2Sa(x, La)− Las̄)
∂SA
∂La

)h(x1, x2)dx2]dx1,

Taking the second-derivative of this profit function yields

πA′′(ta)

ρLa
= −1 +

2La − 1

La
πA′(ta)

+φρLa(1− La)2

∫
x∈X

[s̄
∂S

∂La
+ (s̄− 2

∂Sa
∂La

)
∂SA
∂La

]dH(x)

+
1

2
φρs̄2La(1− La)3 1

A− 1

∫ x̄

0
[h(x1, X23(x1, La))

∂X23

∂La
+ h(x1, X24(x1, La))

∂X24

∂La
]dx1

after simplification. By an analogous argument as above, ta = tA is the unique-best reply in

ta ∈ (0, tA] for φρ > 0 suffi ciently close to zero. These results complete the proof that tA is a

symmetric equilibrium for φρ > 0 suffi ciently close to zero. I summarize these results as:

Proposition 5 Assume that A ≥ 2 independent, symmetric and horizontally differentiated ag-

gregators compete for flexible distribution resources in period 0. If φρ > 0 is suffi ciently small,

then there exists a symmetric equilibrium in which all aggregators charge the same fee tA and

have the same market share 1
A . Aggregators earn strictly positive profit in equilibrium.

3.2 Mixed market structure

Assume that there are A ≥ 2 aggregators. One is a subsidiary of a parent company that owns

also the DSO, and the other A − 1 aggregators are independent. To simplify the analysis, I

assume that the demand for the energy service is not too large relative to other consumption,

s̄ < 3
2 x̄.

Competition in the flexi market The DSO maximizes

Π(s̃DSO, s̃A,x) = F+LDSOtDSO−P (x1+sDSO+sA)sDSO−P (x2+s̄−sDSO−sA)(LDSOs̄−sDSO)

(11)

19



over (s̃DSO, s̃A) ∈ [0, s̄DSO] × [0, s̄A] in the flexi market. Proposition 4 in Tangerås (2023)

establishes that the DSO chooses sA = s̄A = LAs̄ if x1 > x2 and sA = 0 if x1 < x2, where

LA = 1− LDSO is the collective market share of the A− 1 independent aggregators and LDSO

is the market share of the DSO/aggregator.

Optimization over Π(s̃DSO, sA,x) then yields the first-period electricity withdrawal of the

DSO/aggregator:

SDSO(x, LDSO) =


x2−x1+(1+LDSO)s̄

4 , x1 < x2

x2−x1+(3LDSO−1)s̄
4 , x1 ∈ [x2, x2 + max{3LDSO − 1; 0}s̄]

0 x1 > x2 + max{3LDSO − 1; 0}s̄.

The total electricity withdrawal by all aggregators in the first period is given by S(x, LDSO) =

SDSO(x, LDSO) if x1 < x2 and S(x, LDSO) = SDSO(x, LDSO) + (1− LDSO)s̄ if x1 > x2.

Competition for household consumers The DSO/aggregator chooses the fixed fee t̃DSO

to maximize the expected profit

πDSO(t̃DSO) = LDSO t̃DSO −
∫
x∈X

[P (x1 + S(x, LDSO))SDSO(x, LDSO)

+P (x2 + s̄− S(x, LDSO))(LDSOs̄− SDSO(x, LDSO))]dH(x)

By way of the envelope theorem, the marginal expected profit in period 0 equals

πDSO′(t̃DSO) = LDSO + [t̃DSO −
∫
x∈X

φ(x2 + s̄− S(x, LDSO))s̄dH(x)]
∂LDSO

∂tDSO

+

∫ x̄

0

∫ x̄

x2

φ[2SDSO(x, LDSO)− LDSOs̄]s̄dH(x)
∂LDSO

∂tDSO
,

where I have used the linear marginal cost assumption P (q) = C ′(q) = φq to simplify. The

expression on the second row is the effect of a decrease in LDSO of a larger t̃DSO, which causes

the DSO to modify sA if x1 > x2.

The expected profit of aggregator a equals

πA(ta) = La[ta −
∫ x̄

0

∫ x2

0
P (x2 + s̄− SDSO(x, LDSO))s̄dH(x)

−
∫ x̄

0

∫ x̄

x2

P (x1 + SDSO(x, LDSO) + (1− LDSO)s̄)s̄dH(x)].

as a function of its fixed fee ta. In the above expression, I have used Sa(x, La) = 0 for x1 < x2

and Sa(x, La) = Las̄ for x1 > x2 by way of the profit-maximizing DSO dispatch. The marginal
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expected profit of aggregator a equals

πA′(ta) = La +
∂La
∂ta

πA(ta)

La
+ La

∫ x̄

0

∫ x2

0
P ′(x2 + s̄− SDSO(x, LDSO))s̄

∂SDSO(x, LDSO)

∂LDSO
dH(x)

∂LDSO

∂ta

+ La

∫ x̄

0

∫ x̄

x2

P ′(x1 + SDSO(x, LDSO) + (1− LDSO)s̄)s̄(s̄− ∂SDSO(x, LDSO)

∂LDSO
)dH(x)

∂LDSO

∂ta
.

(12)

Characterization of the equilibrium fees By solving the DSO/aggregator’s first order

condition, πDSO′(t̃DSO) = 0,

tDSO = min{1

ρ

1

1− LDSO +

∫ x̄

0

∫ x2

0
φ(x2 + s̄− SDSO(x, LDSO))s̄dH(x)

+

∫ x̄

0

∫ x̄

x2

φ(x2 + 2LDSOs̄− 3SDSO(x, LDSO))s̄dH(x); t̄}

follows directly. If tDSO < t̄M , then one can substitute the equilibrium fee into the profit function

to get:

πDSO(tDSO) =
1

ρ

LDSO

1− LDSO + φ

∫ x̄

0

∫ x2

0

x2 − x1 + (1− LDSO)s̄

2
SDSO(x, LDSO)dH(x)

+φ

∫ x̄

0

∫ x2+max{3LDSO−1;0}s̄

x2

x1 − x2 + (1− LDSO)s̄

2
[LDSOs̄− SDSO(x, LDSO)]dH(x)

+φs̄2(LDSO)2

∫ x̄

0

∫ x̄

x2+max{3LDSO−1;0}s̄
dH(x)

after simplification. This expression is strictly positive. If

tDSO = t̄M = v +
1

2

∫
x∈X

[P (x1 + S(x, LDSO)) + P (x2 + s̄− S(x, LDSO))]s̄dH(x),

then the DSO/aggregator still earns a positive profit:

πDSO(t̄M ) = LDSOv +
φ

8

∫ x̄

0

∫ x2

0
(x2 − x1 + (1− LDSO)s̄)2dH(x)

+
φ

8

∫ x̄

0

∫ x2+max{3LDSO−1;0}s̄

x2

(x1 − x2 + (1− LDSO)s̄)2dH(x)

+φ
LDSOs̄

2

∫ x̄

0

∫ x̄

x2+max{3LDSO−1;0}s̄
(x1 − x2 + (1− 2LDSO)s̄)dH(x).

Consider next aggregator a’s equilibrium fee. If tA < t̄M , then I can solve for the equilibrium

profit directly from the first-order condition πA′(tA) = 0:

πA(tA) =
1

ρ

LA

A− 1− LA [1 +
φρs̄2LALDSO

A− 1
(1− 3

4

∫ x̄

0

∫ x2+max{3LDSO−1;0}s̄

0
dH(x))] > 0.
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In the above expression, I have substituted in ∂LDSO

∂ta
= ρLaL

DSO, P ′(q) = φ and

∂SDSO(x, LDSO)

∂LDSO
=


1
4 s̄, x1 < x2

3
4 s̄, x1 ∈ (x2, x2 + max{3LDSO − 1; 0}s̄)
0 x1 > x2 + max{3LDSO − 1; 0}s̄.

If tA = t̄M , then

πA(t̄M )

La
= v − φs̄

4

∫ x̄

0

∫ x2

0
(x2 − x1 + (1− LDSO)s̄)dH(x)

−φs̄
4

∫ x̄

0

∫ x2+max{3LDSO−1;0}s̄

x2

(x1 − x2 + (1− LDSO)s̄)dH(x)

−φs̄
2

∫ x̄

0

∫ x̄

x2+max{3LDSO−1;0}s̄
(x1 − x2 + (1− 2LDSO)s̄)dH(x).

This expression is positive if and only if v is suffi ciently large, a property which has interesting

implications for the viability of a competitive FDR market. I return to this issue below. Propo-

sition 4 in Tangerås (2023) draws conclusions about the effi ciency of the mixed market solution

depending on the size of LDSO. If A ≥ 3 and the aggregators are suffi ciently differentiated, then

LDSO is close to 1
A < 1

2 . In this case, the mixed market equilibrium is less effi cient than no FDR

market.

Equilibrium existence Assume that v > 0 is suffi ciently large that πA(t̄M ) ≥ 0. If so, then

unilateral deviations to t̃DSO ≤ 0, t̃DSO > t̄M , ta ≤ 0 and ta > t̄M are unprofitable because these

deviations imply non-positive aggregator profits. Hence, all potentially profitable deviations lie

in the interval (0, t̄M ] for all aggregators. The second-derivative of the DSO/aggregator’s profit

function can be written as

πDSO′′(t̃DSO)

ρLDSO
=

2LDSO − 1

LDSO
πDSO′(t̃DSO)− 1 + φρLDSO(1− LDSO)

×[

∫
x∈X

∂S(x, LDSO)

∂LDSO
s̄dH(x) +

∫ x̄

0

∫ x̄

x2

(2
∂SDSO(x, LDSO)

∂LDSO
− s̄)s̄dH(x)]

after simplification. The second-derivative of the profit function is negative for all t̃DSO ∈ (0, t̄M ]

that solve the first-order condition πDSO′(t̃DSO) = 0, if φρ > 0 is suffi ciently small. Hence,

πDSO(t̃DSO) is strictly quasi-concave for all t̃DSO ∈ [0, t̄M ] if φρ > 0 is suffi ciently small.

The second-derivative of a’s profit function equals

πA′′(ta)

ρLa
=

2La − 1

La
πA′(ta)− 1

−2φρs̄2La(1− La)LDSO[1− 3

4

∫ x̄

0

∫ x2+{max{3LDSO−1;0}s̄

0
dH(x)]

−9

4
φρs̄3L2

a(L
DSO)2Z(LDSO)

∫ x̄

0
h(x2 + (3LDSO − 1)s̄, x2)dx2,
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where Z(LDSO) = 0 if LDSO < 1
3 and Z(LDSO) = 1 if LDSO > 1

3 . Any ta ∈ (0, t̄M ] that solves

the first-order condition πA′(ta) = 0 is a strict maximum. Hence, πA(ta) is strictly quasi-concave

in the domain [0, t̄M ]. I conclude that (tDSO, tA) represents an equilibrium of the mixed market

structure if v > 0 is suffi ciently large and φρ > 0 is suffi ciently small.

Proposition 6 Assume that an integrated DSO/aggregator competes with A − 1 ≥ 1 indepen-

dent, symmetric and horizontally differentiated aggregators in the market for flexible distribution

resources in period 0. If the disutility v > 0 of passive consumption is suffi ciently large and

φρ > 0 is suffi ciently small, then there exists an asymmetric equilibrium (tDSO, tA) in fixed fees.

Aggregators earn strictly positive profit in equilibrium.

Foreclosure An equilibrium with one DSO/aggregator and A − 1 structurally independent

aggregators exists if v > 0 is suffi ciently large and φρ > 0 is suffi ciently small. Assume instead

that v is so small that πA(t̄M ) < 0. From the marginal profit expression (12), πA′(t̄M ) > 0 in this

case. By strict quasi-concavity, ta = t̄M then maximizes πA(ta) over [0, t̄M ]. By implication,

πA(ta) < 0 for all ta ≤ t̄M . The optimal strategy for a is then to set ta > t̄M and earn

zero profit. Since this result holds for an aggregator with arbitrary market share La < 0, it is

impossible to sustain A− 1 ≥ 1 independent aggregators in a market where a DSO/aggregator

controls dispatch, if πA(t̄M ) < 0. In particular, it is impossible to uphold any market structure

with independent aggregators if v = 0 because then πA(t̄M ) < 0 for all A ≥ 2. The only viable

market structure then is the DSO/aggregator monopoly.

4 Conclusion

This appendix has shown that the findings in Tangerås (2023) do not depend fundamentally on

the assumption of competitive supply of generation capacity. Most of the results go through

also under the alternative assumption that one large generation owner behaves strategically by

withholding production from the real-time market. A main difference between the different

modeling assumptions occurs in a market structure where a large generation owner also has a

monopoly in the market for flexible distribution resources. Such vertical integration has a pro-

competitive effect that does not arise in a model with competitive supply of generation capacity.

Vertical integration between generation and aggregation can therefore be more effi cient than

a market structure in which generators and aggregators behave independently. This result is

opposite to the finding in Tangerås (2023). Hence, vertical integration between generation and

aggregation can be more or less effi cient than independent management of resources depending

on the competitiveness of the real-time market.
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Appendix

A.5 Proof of Proposition 3

For the purpose of this proof, define β̃ = s̃A − ỹ and β̄ = s̄ − ȳ. The DSO/aggregator then
maximizes the objective function

Ω(s̃DSO, β̃,x) = −P (x1 + s̃DSO + β̃)s̃DSO − P (x2 + β̄ − s̃DSO − β̃)(s̄DSO − s̃DSO). (13)

over s̃DSO ∈ [0, s̄DSO] and β̃ ∈ [−ȳ, s̄A]. Although (13) is strictly concave in each of its sepa-

rate arguments s̃DSO and β̃, its Hessian matrix has a strictly negative determinant −[C ′′(q1) +

C ′′(q2)]2, so all interior solutions are saddle points. By implication, the profit-maximizing elec-

tricity withdrawal (sDSO, β) features corner solutions. Let

SDSO(β̃,x) = arg max
s̃DSO∈[0,s̄DSO]

Ω(s̃DSO, β̃,x)

be the profit-maximizing consumption of the aggregator controlled by the DSO as a function of

the consumption s̃A by all other aggregators and demand x. Let ω(β̃,x) = Ω(SDSO(β̃,x), β̃,x)

be the resulting profit of the integrated DSO/aggregator. Then, β = s̄A for demand configuration

x if ω(s̄A,x) > ω(−ȳ,x), and sA = −ȳ if the strict inequality is reversed. I establish in three
claims that β = s̄A for all x1 > x2. By symmetric arguments, β = −ȳ for all x2 > x1. The claims

establish the profit-maximizing choice for the different possible signs of ∂Ω(s̃DSO,−ȳ,x)/∂s̃DSO

evaluated at s̃DSO = s̄DSO and x1 ≥ x2.

Claim 1 If ∂Ω(s̃DSO,−ȳ,x)
∂s̃DSO

|s̃DSO=s̄DSO ≥ 0 for all x1 ≥ x2, then sA = s̄A for all x1 > x2.

Proof: By this assumption, SDSO(−ȳ,x) = s̄DSO and therefore ω(−ȳ,x) = −P (x1 + s̄DSO −
ȳ)s̄DSO for all x1 ≥ x2. Then

ω(s̄A,x)−ω(−ȳ,x) ≥ Ω(0, s̄A,x)−ω(−ȳ,x) = [P (x1 + s̄DSO− ȳ)−P (x2 + s̄DSO− ȳ)]s̄DSO > 0

for all x1 > x2 by P ′ > 0.�

Claim 2 If ∂Ω(s̃DSO,−ȳ,x2,x2)
∂s̃DSO

|s̃DSO=s̄DSO ≤ 0, then sA = s̄A for all x1 > x2.

24



Proof: Seeing as ∂2Ω(s̃DSO,β̃,x)

∂s̃DSO∂β̃
< 0 and ∂2Ω(s̃DSO,β̃,x)

∂s̃DSO∂x1
< 0, it follows that

∂Ω(s̃DSO, β̃,x)

∂s̃DSO
|s̃DSO=s̄DSO < 0

under the assumptions of this claim, and therefore SDSO(β̃,x) < s̄DSO for all β̃ ∈ [−ȳ, s̄A].

Moreover,

∂Ω(s̃DSO,−ȳ, x2, x2)

∂s̃DSO
|s̃DSO=0 = P (x2 + s̄)− P (x2 − ȳ) + P ′(x2 + s̄)s̄DSO > 0

implies SDSO(−ȳ, x2, x2) > 0. By continuity, SDSO(β̃,x) > 0 for all (β̃, x1) ∈ [−ȳ, ε] × [x1, δ]

and some ε > −ȳ and δ > x1. If SDSO(β̃,x) = 0, then ω(β̃,x) = −P (x2 + β̄− β̃)s̄DSO, in which

case ∂2ω(β̃,x)

∂x1∂β̃
= 0. If SDSO(β̃,x) > 0, then

∂ω(β̃,x)

∂x1
= −C ′′(x1 + SDSO(β̃,x) + β̃)SDSO(β̃,x)

and
∂2ω(β̃,x)

∂x1∂β̃
= −C ′′(QDSO1 )

∂SDSO

∂β̃
− C ′′′(QDSO1 )SDSO(1 +

∂SDSO

∂β̃
)

Observe that ∂2ω(β̃,x)

∂x1∂β̃
> 0 if

C ′′′(QDSO1 )SDSO

C ′′(QDSO1 )
<
−∂SDSO

∂β̃

1 + ∂SDSO

∂β̃

. (14)

Differentiation of the first order condition ∂Ω(SDSO,β̃,x)
∂s̃DSO

= 0 yields

∂SDSO

∂β̃
= − C ′′(QDSO1 ) + C ′′′(QDSO1 )SDSO + C ′′(QDSO2 ) + C ′′′(QDSO2 )(s̄DSO −DDSO)

2C ′′(QDSO1 ) + C ′′′(QDSO1 )SDSO + 2C ′′(QDSO2 ) + C ′′′(QDSO2 )(s̄DSO − SDSO)
,

which I can use to obtain

−∂SDSO

∂β̃

1 + ∂SDSO

∂β̃

= 1 +
C ′′′(QDSO1 )SDSO + C ′′′(QDSO2 )(s̄DSO −DDSO)

C ′′(QDSO1 ) + C ′′(QDSO2 )

Hence, (14) holds by way of assumption (5). Hence, SDSO(β̃,x) > 0 implies ∂2ω(β̃,x)

∂x1∂β̃
> 0. By

implication

ω(s̄A,x)− ω(−ȳ,x)− [ω(s̄A, x2, x2)− ω(−ȳ, x2, x2)] =

∫ s̄A

−ȳ

∫ x1

x2

∂2ω(β̃, y, x2)

∂x1∂β̃
dydβ̃ > 0

for all x1 > x2. Finally,

ω(s̄A, x2, x2)− ω(−ȳ, x2, x2) ≥ Ω(s̄DSO − SDSO(−ȳ, x2, x2), s̄A, x2, x2)− ω(−ȳ, x2, x2) = 0
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completes the proof that ω(s̄A,x) > ω(−ȳ,x).�

Claim 3 If ∂Ω(s̃DSO,−ȳ,x2,x2)
∂s̃DSO

|s̃DSO=s̄DSO > 0 and ∂Ω(s̃DSO,−ȳ,x)
∂s̃DSO

|s̃DSO=s̄DSO < 0 for some x1 > x2,

then sA = s̄A for all x1 > x2.

Proof: By ∂Ω(s̃DSO,0,x)
∂s̃DSO∂x1

< 0 and continuity, there exists a unique xc1 > x2 such that
∂Ω(s̃DSO,−ȳ,xc1,x2)

∂s̃DSO
|s̃DSO=s̄DSO =

0. Hence SDSO(−ȳ,x) = s̄DSO for all x1 ∈ (x2, x
c
1]. A line of argument similar to the one used

to prove Claim 1, can then be applied to establish ω(s̄A,x) > ω(−ȳ,x) for all x1 ∈ (x2, x
c
1]. If

x1 > xc1, then

ω(s̄A,x)− ω(−ȳ,x)− [ω(s̄A, xc1, x2)− ω(−ȳ, xc1, x2)] =

∫ s̄A

−ȳ

∫ x1

xc1

∂2ω(β̃, y, x2)

∂β̃∂x1

dydβ̃ ≥ 0

because SDSO(β̃,x) < s̄DSO for all β̃ ∈ [−ȳ, s̄A] and x1 > xc1. Combining this inequality with

ω(s̄A, xc1, x2) > ω(−ȳ, xc1, x2) concludes the proof of the claim.�

Combining the above three claims yields sA = s̄A for all x1 > x2. By following qualitatively

similar steps as the above, it is straightforward to verify that sA = −ȳ for all x1 < x2.

Summarizing the above three claims yields sA = s̄A for all x1 > x2. If x1 > x2, then

sDSO + sA − 1
2 s̄ = sDSO + 1

2(s̄A − s̄DSO), which is non-negative if s̄DSO ≤ s̄A. If x1 < x2,

then sDSO+sA− 1
2 s̄ = sDSO− s̄DSO− 1

2(s̄A− s̄DSO), which is non-positive if s̄DSO ≤ s̄A. Hence,
s̄DSO ≤ s̄A implies (sDSO + sA − 1

2 s̄)(x1 − x2) ≥ 0 for all (x1, x2). s̄DSO ≤ s̄A is equivalent to

LDSO ≤ 1
2 .�
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