
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Local and Consistent Centrality Measures in 
Parameterized Networks 

 

 

Vianney Dequiedt and Yves Zenou 
 
 
 
 
 
 
 

This is an author-produced version of a paper accepted for 
publication in the Mathematical Social Sciences. The paper 
has been peer-reviewed but does not include the final proof 
corrections or pagination.  License information. 

 

 

DOI/Link: https://doi.org/10.1016/j.mathsocsci.2017.04.002 
 

 

Reference:  Dequiedt,Vianney and Yves Zenou (2017). 
"Local and Consistent Centrality Measures in Parameterized 
Networks". Mathematical Social Sciences, 88(July), 28–36. 

 
 
 
 
 
 
 
 

Research Institute of Industrial Economics 

P.O. Box 55665 

SE-102 15 Stockholm, Sweden 

info@ifn.se 

www.ifn.se 

http://creativecommons.org/licenses/by/4.0
mailto:info@ifn.se
mailto:info@ifn.se
http://www.ifn.se/
http://www.ifn.se/


Mathematical Social Sciences 88 (2017) 28–36
Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/econbase

Local and consistent centrality measures in parameterized networks✩

Vianney Dequiedt a, Yves Zenou b,c,∗

a Université Clermont Auvergne, CNRS, CERDI, F-63000 Clermont-Ferrand, France
b Department of Economics, Monash University, Australia
c IFN, Sweden

h i g h l i g h t s

• Axiomatic approach to characterize centrality measures.
• Only recursive centrality measures.
• Use consistency axiom.
• Our axiomatic characterization highlights the conceptual similarities among recursive centrality measures.

a r t i c l e i n f o

Article history:
Received 9 September 2016
Received in revised form
11 April 2017
Accepted 13 April 2017
Available online 4 May 2017

a b s t r a c t

Wepropose an axiomatic approach to characterize centralitymeasures forwhich the centrality of an agent
is recursively related to the centralities of the agents she is connected to. This includes the Katz–Bonacich
and the eigenvector centrality. The core of our argument hinges on the power of the consistency axiom,
which relates the properties of the measure for a given network to its properties for a reduced problem.
In our case, the reduced problem only keeps track of local and parsimonious information. Our axiomatic
characterization highlights the conceptual similarities among those measures.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Centrality is a fundamental concept in network analysis. Bave-
las (1948) and Leavitt (1951) were among the first to use central-
ity to explain differential performance of communication networks
and network members on a host of variables including time to
problem solution, number of errors, perception of leadership, ef-
ficiency, and job satisfaction.

Following their work, many researchers have investigated the
importance of the centrality of agents on different outcomes.
Indeed, it has been shown that centrality is important in ex-
plaining employment opportunities (Granovetter, 1974), exchange
networks (Cook et al., 1983; Marsden, 1982), peer effects in
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education and crime (Calvó-Armengol et al., 2009; Haynie, 2001;
Hahn et al., 2015), power in organizations (Brass, 1984), the
adoption of innovation (Coleman et al., 1966), the creativity of
workers (Perry-Smith and Shalley, 2003), the diffusion of micro-
finance programs (Banerjee et al., 2013), the flow of information
(Borgatti, 2005; Stephenson and Zelen, 1989), the formation and
performance of R&D collaborating firms and inter-organizational
networks (Boje andWhetten, 1981; Powell et al., 1996; Uzzi, 1997),
the success of open-source projects (Grewal et al., 2006) as well as
workers’ performance (Mehra et al., 2001).

While many measures of centrality have been proposed,1 the
category itself is not well defined beyond general descriptors such
as node prominence or structural importance. There is a class of
centrality measures, called prestige measures of centrality, where
the centralities or statuses of positions are recursively related to
the centralities or statuses of the positions to which they are
connected. Being chosen by a popular individual should add more
to one’s popularity. Being nominated as powerful by someone seen
by others as powerful should contribute more to one’s perceived

1 See Wasserman and Faust (1994) and Jackson (2008) for an introduction and
survey.
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power. Having power over someone who in turn has power over
others makes one more powerful. This is the type of centrality
measure that will be the focus of this paper.

It includes the degree centrality, the Katz–Bonacich centrality
(due to Katz, 1953, and Bonacich, 1987) and the eigenvector
centrality. Take, for example, the Katz–Bonacich centrality of a
particular node. It counts the total number of paths that start
from this node in the graph, weighted by a decay factor based
on path length. This means that the paths are weighted inversely
by their length so that long, highly indirect paths count for little,
while short, direct paths count for a great deal. Another way of
interpreting this path-based measure is in terms of an intuitive
notion that a person’s centrality should be a function of the
centrality of the people he or she is associatedwith. In otherwords,
rather than measure the extent to which a given actor ‘‘knows
everybody’’, we should measure the extent to which the actor
‘‘knows everybody who is anybody’’.

While there is a very large literature in mathematical sociol-
ogy on centrality measures (see e.g. Borgatti and Everett, 2006;
Bonacich and Lloyd, 2001; Wasserman and Faust, 1994), little is
known about the foundation of centrality measures from a behav-
ioral viewpoint.2 Ballester et al. (2006) were the first to provide a
microfoundation for the Katz–Bonacich centrality. They show that,
if the utility of each agent is linear–quadratic, then, under some
condition, the uniqueNash equilibrium in pure strategies of a game
where n agents embedded in a network simultaneously choose
their effort level is such that the equilibrium effort is equal to the
Katz–Bonacich centrality of each agent. This result is true for any
possible connected network of n agents. In other words, Nash is
Katz–Bonacich and the position of each agent in a network fully
explains her behavior in terms of effort level.

In the present paper, we investigate further the importance
of centrality measures in economics by adopting an axiomatic
approach. We derive characterization results not only for the
Katz–Bonacich centrality but also for two other centrality mea-
sures, namely the degree centrality and the eigenvector centrality,
which all have the properties that one’s centrality can be deduced
from one’s set of neighbors and their centralities.

Our characterization results are based on three key ingredients,
namely the definitions of a parameterized network, of a reduced
parameterized network and the consistency property.

A parameterized network is defined as a set of vertices and
edges for which some of the vertices, that we call terminal
vertices, are assigned a positive real number. Conceptually, one
can interpret a parameterized network as a set of regular vertices
and their neighbors such that the centrality of those neighbors, the
terminal vertices, has been parameterized and no longer needs to
be determined. In the context of social networks, parameterized
networks correspond towhat Banerjee et al. (unpublished) study in
Indian rural communities: the centrality of prominent individuals
in villages (here the terminal nodes) is public knowledge and can
be considered as a parameter.

A reduced parameterized network is defined from an initial
parameterized network together with a vector of centralities. It is
a small world that consists in a subset of regular vertices of the
initial parameterized network and their neighbors. The terminal
vertices in the reduced network are assigned a positive number,
which is either taken from the initial network or from the vector of
centralities.

These two definitions are instrumental in order to characterize
centralitymeasureswhen combinedwith the consistency property.
This property requires that the centralities in the initial network

2 For surveys of the literature on networks in economics, see Jackson (2008,
2014), Ioannides (2012), Jackson and Zenou (2015) and Jackson et al. (2017).
are also the centralities in the reduced networks constructed from
the initial network and its vector of centralities.

As stressed by Aumann (1987), consistency is a standard prop-
erty in cooperative game as well as noncooperative game theory.
It has been used to characterize the Nash equilibrium correspon-
dence (Peleg and Tijs, 1996), the Nash bargaining solution (Lens-
berg, 1988), the core (Peleg, 1985) and the Shapley value (Hart and
Mas-Colell, 1989; Maschler and Owen, 1989), to name a few. As
nicely exposed by Thomson (2011), consistency expresses the fol-
lowing idea. A measure is consistent if, for any network in the do-
main and the ‘‘solution’’, it proposes, for this network, the ‘‘solu-
tion’’ for the reduced network obtained by envisioning the depar-
ture of a subset of regular vertices with their component of the so-
lution is precisely the restriction of the initial solution to the sub-
set of remaining regular vertices. Consistency can be seen as a ro-
bustness principle, it requires that the measure gives coherent at-
tributes to vertices as the network varies.

The usefulness of the consistency property for characterization
purposes depends on how a reduced problem is defined. In our
case, it is very powerful since a reduced problem only keeps track
of local and parsimonious information, namely the set of neighbors
and the centrality of those neighbors.

Contrary to the Nash equilibrium approach (Ballester et al.,
2006), we believe that our axiomatic approach allows us to un-
derstand the relationship between different centrality measures,
i.e. the degree, the Katz–Bonacich and the eigenvector centrality
measure. This is important because as stated above, different types
of centralities can explain different behaviors and outcomes. For
example, the eigenvector centrality seems to be important in the
diffusion of amicrofinance program in India (Banerjee et al., 2013).
On the contrary, the Katz–Bonacich centrality seems to be cru-
cial in explaining educational and crime outcomes (Haynie, 2001;
Calvó-Armengol et al., 2009) and, more generally, outcomes for
which complementarity in efforts matter. The degree centrality is
also important. For example, Christakis and Fowler (2010) combine
Facebook data with observations of a flu contagion, showing that
individuals with more friends were significantly more likely to be
infected at an earlier time than less connected individuals.

The axiomatic approach is a standard approach in the cooper-
ative games and social choice literature but axiomatic characteri-
zations of centrality measures are scarce. Boldi and Vigna (2014)
propose a set of three axioms, namely size, density and score
monotonicity axioms, and check whether they are satisfied by
eleven standard centrality measures but do not provide char-
acterization results. Garg (2009) characterizes some centrality
measures based on shortest paths. Kitti (2016) provides a char-
acterization of eigenvector centrality without using consistency.
There is also a literature in economics and computer science that
provides axiomatic foundations for ranking systems, see e.g. Alt-
man and Tennenholtz (2008), Demange (2014), Henriet (1985), Ru-
binstein (1980) and van den Brink and Gilles (2000). This literature
does not use the consistency property.

The closest paper to ours is Palacios-Huerta and Volij (2004),
who have used an axiomatic approach, and in particular a version
of the consistency property, to measure the intellectual influence
based on data on citations between scholarly publications. They
find that the properties of invariance to reference intensity, weak
homogeneity, weak consistency, and invariance to splitting of
journals characterize a unique ranking method for the journals.
Interestingly, this method, which they call the invariant method
(Pinski andNarin, 1976) is also at the core of themethodology used
by Google to rank web sites (Page et al., 1998). Themain difference
with our approach is the way Palacios-Huerta and Volij (2004)
define a reducedproblem. In their paper, a reducedproblem is non-
parameterized in the sense that it only contains vertices and edges.
As a consequence, they need to impose an ad hoc formula to split
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withdrawn initial edges among the set of remaining vertices in the
reduced problem. By contrast, the way we define a parameterized
and a reduced parameterized network allows us to stick to a
simpler and more common notion of reduction and to keep the
same notion across characterizations.

Our focus on local centrality measures bears some resemblance
with Echenique and Fryer’s (2007) emphasis on segregation indices
that relate the segregation of an individual to the segregation
of the individuals she interacts with. These authors propose a
characterization of the ‘‘spectral segregation index’’ based on a
linearity axiom that requires that one individual’s segregation is
a linear combination of her neighbors’ segregation.

Finally, by providing an axiomatic characterization of Katz–
Bonacich centrality, our paper complements Ballester et al. (2006)
who provide its behavioral foundations. It makes Katz–Bonacich
centrality one of the few economic concepts that possess both
behavioral and axiomatic foundations.

The paper is organized as follows. In Section 2, we recall some
standard definitions related to networks and expose the new con-
cepts of parameterized and reduced parameterized networks. In Sec-
tion 3,we present our fourmain axioms. The first three, namely the
normalization, additivity and linearity axioms, deal with behavior of
the measure on very simple networks that we call one-vertex pa-
rameterized networks. Those networks are star-networks and pos-
sess only one regular vertex. The fourth axiom is the consistency
property. In Section 4, we focus on the Katz–Bonacich centrality
and prove our main characterization result (Proposition 1). In Sec-
tion 5, we present related axioms and extend the characterization
result to degree centrality and eigenvector centrality. Finally, Sec-
tion 6 concludes.

2. Definitions

2.1. Networks and Katz–Bonacich centrality

We consider a finite set of vertices N = {1, . . . , n}. A network
defined on N is a pair (K , g) where g is an undirected graph
on the set of vertices K ⊆ N . We adopt the adjacency matrix
representation where g is a k × k matrix (k = |K |) with entry gij
denoting whether vertex i is linked to vertex j. When vertex i is
linked to vertex j in the network, gij = 1, otherwise gij = 0. The
adjacencymatrix is symmetric sincewe consider undirected edges.
Let N denote the finite set of networks defined on N .

The set of neighbors of a vertex i in network (K , g) is the set of
vertices j such that gij = 1; it is denoted by Vi(g). If we consider
a subset of vertices A ⊆ K , the set VA(g) is the set of neighbors
of the vertices in A that are not themselves in A, i.e. VA(g) =

i∈A Vi(g) ∩ ¬A.
When we consider a network (K , g), the k-square adjacency

matrix g keeps track of the direct connections in the network. As it
is well known, the matrix gp, the pth power of g, with coefficient
g [p]
ij , keeps track of the indirect connections in (K , g): g [p]

ij ≥ 0
measures the number of paths3 of length p ≥ 1 that go from i to j.

Given a sufficiently small scalar a ≥ 0 and a network (K , g), we
define the matrix

M(g, a) ≡ [Ik − ag]−1
=

+∞
p=0

apgp.

The parameter a is a decay factor that reduces the weight of longer
paths in the right-hand-side sum. The coefficients mij(g, a) =

3 A path in a network (K , g) refers to a sequence of vertices, i1, i2, i3, . . . , iL−1, iL
such that ilil+1 ∈ g for each l from 1 to L − 1. The length of the path is the number
of links in it, or L− 1. Contrary to an elementary path, vertices in a path need not be
distinct so they can be repeated.

+∞

p=0 a
pg [p]

ij count the number of paths from i to j where paths
of length p are discounted by ap. Let also 1k be the k-dimensional
vector of ones.

Definition 1. The Katz–Bonacich centrality (Bonacich, 1987;
Katz, 1953) is a function defined on N that assigns to every
network (K , g) ∈ N the k-dimensional vector of centralities
defined as

b(g, a) ≡ M(g, a)1k, (1)

where 0 ≤ a < 1
n−1 for the matrix M(g, a) ≡ [Ik − ag]−1 to be

well-defined and nonnegative everywhere on N .4

The Katz–Bonacich centrality of vertex i in (K , g) is bi(g, a) =
j∈K mij(g, a). It counts the number of paths from i to itself and

the number of paths from i to any other vertex j. It is positive and
takes values bigger than 1. Notice that, by a simplemanipulation of
Eq. (1), it is possible to define the vector of Katz–Bonacich centrality
as a fixed point. For a in the relevant domain, it is the unique
solution to the equation
b(g, a) = 1k + a g b(g, a). (2)
According to this fixed-point formulation, the Katz–Bonacich
centrality of vertex i depends exclusively on the centrality of its
neighbors in (K , g),
bi(g, a) = 1 + a


j∈K

gijbj(g, a) = 1 + a


j∈Vi(g)

bj(g, a).

2.2. Parameterized networks and parameterized reduced networks

The following definitions are instrumental in the characteriza-
tion of Katz–Bonacich centrality. We still consider a finite set of
verticesN . An independent set relative to network (K , g) is a subset
of vertices A ⊆ K for which no two vertices are linked. A dominat-
ing set relative to network (K , g) is a set of vertices A ⊆ K such
that every vertex not in A is linked to at least one vertex in A.

Definition 2. A parameterized network defined on N is a
network in which its vertices belong to one of two sets: the set
of terminal vertices T and the set of regular vertices R, with R ∩

T = ∅ and R ∪ T ⊆ N . The set of terminal vertices T forms an
independent set and a positive real number xt ∈ R+ is assigned
to each terminal vertex t ∈ T . The set of regular vertices R forms
a dominating set in R ∪ T . A parameterized network is therefore
given by ((R ∪ T , g), {xt}t∈T ), with gtt ′ = 0 whenever t, t ′ ∈ T and
for all t ∈ T , gtr = 1 for at least one r ∈ R. Let N̄ denote the set of
parameterized networks defined on N .
To illustrate this definition, consider the parameterized network
of Fig. 1, which has five regular vertices and two terminal vertices.
The terminal vertex t1 is linked to three regular vertices, r1, r2 and
r4 and is assigned the positive number 1.4558. The terminal vertex
t2 is linked to a single regular vertex, r1 and is assigned the positive
number 1.1682.

Standard networks (K , g) are parameterized networks with
T = ∅ and N ⊂ N̄ . A one-vertex parameterized network is a
parameterized network that possesses exactly one regular vertex.
Because terminal nodes forman independent set, it is a star-shaped
network in which all vertices except the center are assigned a
real number. A one-vertex network is a one-vertex parameterized
network with T = ∅, it is therefore an isolated vertex. Fig. 2
illustrates those two types of networks.

4 Following Perron (1907) and Frobenius (1908, 1909) early works, Theorems
I∗ and III∗ in Debreu and Herstein (1953) ensure that [Ik − ag]−1 exists and is
nonnegative if and only if a < 1

λmax
where λmax is the largest eigenvalue of g.

Moreover, λmax increases with the number of edges in g and is maximal on N for
the complete graph with n vertices where it takes value n − 1.
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Fig. 1. Aparameterizednetwork (({r1, r2, r3, r4, r5}∪{t1, t2}, g), {1.4558, 1.1682}).

Fig. 2. Aone-vertex parameterizednetwork (left) and a one-vertex network (right).

Fig. 3. A reduced parameterized network obtained from Fig. 1.

Definition 3. Given anyparameterizednetwork ((R∪T , g), {xt}t∈T )

and any vector of positive real numbers (y1, . . . , yr), r = |R|,
a reduced parameterized network is a parameterized network
((R′

∪ T ′, g′), {x′
t}t∈T ′) where R′

⊂ R, T ′
= VR′(g), g ′

ij = gij when
i ∈ R′ or j ∈ R′ and g ′

ij = 0 when i, j ∈ T ′, and x′
t = xt when t ∈ T

and x′
t = yt when t ∈ R.

A reduced parameterized network is constructed from an initial
parameterized network and a vector of positive real numbers.
It keeps a subset of regular vertices in the initial parameterized
network together with their edges. The new terminal vertices are
the neighbors of this subset and they are assigned the real number
they were assigned in the initial parameterized network either via
the vector x or the vector y.
To illustrate this definition, the reduced parameterized network
represented in Fig. 3 is obtained from the network represented
in Fig. 1 together with the vector y = (1.6824, 1.3138, 1.3244,
1.5619, 1.1562) of positive numbers assigned respectively to
(r1, r2, r3, r4, r5). In this reduced network, R′

= {r1, r3} so that the
new terminal vertices are t1, t2, r2 = t3 and r4 = t4, i.e. T ′

=

{t1, t2, t3 = r2, t4 = r4}. The real numbers assigned to terminal
vertices t1 and t2 come from the initial parameterized network
while the real numbers assigned to terminal vertices t3 and t4 come
from the vector (1.6824, 1.3138, 1.3244, 1.5619, 1.1562).

One may wonder in which context are the parameterized net-
works meaningful. We believe that they are meaningful in the
context of social networks. Indeed, parameterized networks are
networks composed of two sets: the set of regular vertices and
the set of terminal vertices, where we give real values to each ter-
minal vertex. In social networks, it has been shown that, individ-
uals in a network are able to identify central individuals within
their community even without knowing anything about the struc-
ture of the network. For example, using a unique dataset in rural
Karnataka (India), Banerjee et al. (unpublished) show that, when
asked to nominate the most central people in their community,
individuals do nominate the most highly central people in terms
of ‘‘diffusion centrality’’ (on average, slightly above the 75th per-
centile of centrality). They also show that the nominations are not
simply based on the nominee’s leadership status or geographic
position in the village, but are significantly correlated with diffu-
sion centrality even after controlling for these characteristics. In-
terestingly, Banerjee et al. (unpublished) prove that the diffusion
centrality nests three of the most prominent centrality measures:
degree centrality, eigenvector centrality and Katz–Bonacich cen-
trality. This is consistent with our concept of parameterized net-
work since we only impose that the centralities of the terminal
vertices are known and thus can justify the values assigned to the
terminal vertices.

2.3. Centrality measures

Definition 4. A centrality measure defined on N̄ is a corre-
spondence φ that assigns to each parameterized network ((R ∪

T , g), {xt}t∈T ) in N̄ a set of r-dimensional vectors of positive real
numbers c = (c1, . . . , cr) with ck being the centrality value of ver-
tex k, k ∈ R. The centrality measure φ is non-empty when for all
((R ∪ T , g), {xt}t∈T ) in N̄ , φ(((R ∪ T , g), {xt}t∈T )) is non-empty.

Observe that the centrality value is only assigned to the regular
vertices. Observe also that this definition extends the notion of
centrality to parameterized networks and that it does not impose
the uniqueness of the centrality values. It is now possible to extend
the definition of Katz–Bonacich centrality to any network in N̄ .

Definition 5. A centrality measure φ defined on N̄ is a
Katz–Bonacich centrality measure when there exists a positive
scalar a, 0 ≤ a < 1

n−1 , such that φ assigns to any parameterized
network ((R∪T , g), {xt}t∈T ) in N̄ the unique r-dimensional vector
b of positive real numbers that satisfy, for all i ∈ R,

bi = 1 + a


t∈Vi(g)∩T

xt + a


j∈Vi(g)∩R

bj.

The Katz–Bonacich centrality is a non-empty measure that
assigns to each vertex a unique value. According to this definition,
the Katz–Bonacich centrality of a vertex i is an affine combination
of the real numbers assigned to its neighbors, either by the
centrality measure itself or by the definition of the parameterized
network. When restricted to the domain N , this definition
coincides with the standard definition of Katz–Bonacich centrality
given in Section 2.1.

3. Axioms

We start by listing some properties for a centrality measure on
one-vertex parameterized networks.
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Axiom 1 ((α, a)-Normalization). A centrality measure φ is (α, a)-
normalized if and only if

1. for any one-vertex network (i),φ assigns a unique elementwith
the centrality of vertex i being ci = α.

2. for any one-vertex parameterized network (i ∪ j, gij = 1, xj =

1), φ assigns a unique element with the centrality of vertex i
being ci = α + a.

Vertices and edges are the building blocks of networks. The
normalization axiom provides information on the centrality of an
isolated vertex and on the centrality of a vertex linked to a single
terminal vertex to which is assigned the real number 1. It defines
the centrality obtained from being alone as well as the centrality
obtained from having one edge.

Denote by g+ g′ the network that possesses the edges of g and
the edges of g′.

Axiom 2 (Additivity). Consider two one-vertex parameterized
networks ((i ∪ T , g), {xt}t∈T ) and ((i ∪ T ′, g′), {xt}t∈T ′) with T ∩

T ′
= ∅. The centrality measure φ is additive if and only if φ((i ∪

(T ∪ T ′), g + g′), {xt}t∈T∪T ′) is the set of c such that there exist
c′

∈ φ((i ∪ T , g), {xt}t∈T ) and c′′
∈ φ((i ∪ T ′, g′), {xt}t∈T ′) that

verify ci = c ′

i + c ′′

i − α.

This axiom says that if we start from two different one-vertex
parameterized networks (i.e. two star-shapednetworks as in Fig. 2)
that have the same regular vertex (i.e. central vertex), then it
suffices to add the contributions to the centrality of the regular
vertex in each network to obtain the contribution to the centrality
of the regular vertex in the one-vertex parameterized network that
‘‘sums up’’ the two networks. Observe that the term ‘‘−α’’ in the
formula above corresponds to the centrality of an isolated vertex.
It is subtracted from the sum of centralities in order not to count
twice what vertex i brings in isolation. In the context of social
networks, additivity is a desirable property for a centralitymeasure
when the centrality of an individual can be obtained by summing
up the centrality it obtains from disconnected sets of relations.

Axiom 3 (Linearity). Consider a one-vertex parameterized net-
work ((i ∪ T , g), {xt}t∈T ). The centrality measure φ is linear if
and only if, for any γ > 0, φ((i ∪ T , g), {γ xt}t∈T ) is the set of
c such that there exists c′

∈ φ((i ∪ T , g), {xt}t∈T ) that verifies
ci = α + γ (c ′

i − α).

This axiom says that, if wemultiply by a positive parameter the
values given to terminal vertices in a one-vertex parameterized
network, then the contribution to the centrality of the regular
vertex (the central vertex) that comes from those terminal vertices
is also multiplied by this positive parameter. Indeed, in the above
formula, ci−α corresponds to what being linkedwith the terminal
vertices brings to the centrality of vertex i and α corresponds
to what vertex i brings in isolation. In the context of social
networks, this is a desirable property for a centralitymeasurewhen
the importance of an individual is somehow proportional to the
importance of individuals he is related to.

Axioms 1–3 deal with properties of networks that possess
exactly one regular vertex. Becausewe impose that terminal nodes
form an independent set, one-vertex parameterized networks
are necessarily star-shaped and those three axioms are sufficient
to characterize a centrality measure on those networks. They
are voluntarily simple and transparent so that they can easily
be modified when we relate Katz–Bonacich centrality to other
measures in subsequent sections. The next axiom is key in
extending the properties to any parameterized network in N̄ .

Axiom 4 (Consistency). A centrality measure defined on N̄ is
consistent if and only if, for any parameterized network ((R ∪
T , g), {xt}t∈T ) ∈ N̄ , any vector c ∈ φ(((R ∪ T , g), {xt}t∈T )), and
any reduced parameterized network ((R′

∪ T ′, g′), {x′
t}t∈T ′) where

R′
⊂ R, T ′

= VR′(g), and x′
t = xt when t ∈ T ∩ T ′ and x′

t = ct when
t ∈ R ∩ T ′, we have (ci)i∈R′ ∈ φ(((R′

∪ T ′, g′), {x′
t}t∈T ′)).

The consistency property expresses the following idea. Suppose
thatwe start froman initial network and a vector of centralities and
want to have a closer look at the centralities of a subset of vertices.
We select this subset of vertices and compute again the centralities
of the vertices in the reduced problem built from this subset of
vertices and the initial vector of centralities. The centralitymeasure
is then consistent if this computation leads to the same values of
centralities as in the initial network.

Let us illustrate the consistency property with the networks of
Figs. 1 and 3. We need to assume that a < 1/6 = 0.167. Take, for
example, a = 0.1. Consider the parameterized network of Fig. 1
where we assumed that xt1 = 1.4558 and xt2 = 1.1682. If we
calculate the Katz–Bonacich centralities of all regular vertices, we
easily obtain:
br1
br2
br3
br4
br5

 =


1.6824
1.3138
1.3244
1.5619
1.1562

 .

Let us now calculate the Katz–Bonacich centralities of vertices 1
and 3 in the reduced parameterized network (Fig. 3). Assume y =

{1.6824, 1.3138, 1.3244, 1.5619, 1.1562}, which corresponds to
the Katz–Bonacich centralitymeasures of vertices 1, 2, 3, 4 and 5 in
Fig. 1. Let us now check the consistency property, that is let us show
that the Katz–Bonacich centralities of vertices 1 and 3 are the same
in the parameterized network and in the reduced parameterized
network. In the latter, we have:

br1 = 1 + 0.1

xt1 + xt2 + xt3 + xt4


+ 0.1 × br3

= 1 + 0.1 (1.4558 + 1.1682 + 1.3138 + 1.5619) + 0.1 × br3
= 1.55 + 0.1 × br3

and

br3 = 1 + 0.1 × xt4 + 0.1 × br1
= 1 + 0.1 × 1.5619 + 0.1 × br1
= 1.1562 + 0.1 × br1 .

By combining these two equations, it is straightforward to show
that br1 = 1.6824 and br3 = 1.3244 and thus the Katz–Bonacich
centralities are the same in both networks. This is because, in y, we
have chosen xt3 = br2 = 1.3138 and xt4 = br4 = 1.5619,where br2
and br4 have been calculated in the parameterized network (Fig. 1).
Then it is clear that the Katz–Bonacich centralities of vertices 1 and
3will be the same in the reducedparameterizednetwork and in the
parameterized network.

Consistency is a key property verified by several centrality
measures. However, for our first characterization purposes, a
weaker notion, consistency for one-vertex reductions, is sufficient.

Axiom 5 (Consistency for One-Vertex Reductions). A centrality
measure defined on N̄ is consistent for one-vertex reductions if
and only if, for any parameterized network ((R ∪ T , g), {xt}t∈T ) ∈

N̄ , any vector c ∈ φ(((R ∪ T , g), {xt}t∈T )), and any reduced
parameterized one-vertex network ((i ∪ T ′, g′), {x′

t}t∈T ′) where
i ∈ R, T ′

= Vi(g), and x′
t = xt when t ∈ T ∩ T ′ and x′

t = ct
when t ∈ R ∩ T ′, we have ci ∈ φ(((i ∪ T ′, g′), {x′

t}t∈T ′)).

Let us now go back to our example of social networks. Let us
start with an initial parameterized network. When a centrality
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measure satisfies the consistency axiomandwe can isolate a subset
of individuals in the initial network whose neighbors’ centralities
are known, it is possible to compute the centralities of everyone in
this subset. Such a computation will lead to the same result as if
we computed directly the centralities in the initial parameterized
network.

4. Characterization

We first exploit Axioms 1–3 to characterize measures that are
linear on one-vertex parameterized networks.

Lemma 1. A centrality measure φ defined on N̄ satisfies Ax-
iom 1 with α = 1 and 0 ≤ a < 1

n−1 , and Axioms 2 and 3 if and
only if for any one-vertex parameterized network ((i∪T , g), {xt}t∈T ),
we have φ((i ∪ T , g), {xt}t∈T ) = {ci} with ci = 1 + a


t∈T xt .

Proof. The if part of the proof is straightforward. For the
only if part, take any one-vertex parameterized network ((i ∪

T , g), {xl}l∈T ). Either T = ∅ and Axiom 1 ensures that the formula
applies, or it can be constructed from a set of |T | basic one-
vertex parameterized networks ((i ∪ j, gij = 1), 1), which possess
exactly one terminal vertex. In each of these basic networks, the
normalization axiom ensures that ci = 1 + a, the linearity axiom
ensures that in any one-vertex network ((i ∪ j, gij = 1), xj), ci =

1+ axj. Finally, by the additivity axiom, we know that in the initial
one-vertex parameterized network, ci = 1 + a


t∈T xt . �

We then use the consistency property to extend this character-
ization to measures that are recursive.

Proposition 1. A non-empty centrality measure defined on N̄
satisfies Axiom 1 with α = 1 and 0 ≤ a < 1

n−1 , and Axioms 2, 3
and 5 if and only if it is a Katz–Bonacich centrality measure.

Proof. (If part). It is straightforward to establish that a
Katz–Bonacich centrality measure according to Definition 5 satis-
fies Axiom 1 with α = 1 and 0 ≤ a < 1

n−1 , and Axioms 2, 3 and
5.

(Only if part). Non-emptiness, Axiom 5 and Lemma 1 imply
that for any parameterized network ((R ∪ T , g), {xt}t∈T ) ∈ N̄ , the
associated vector of centralities c satisfies, for all i ∈ R,

ci = 1 + a


t∈Vi(g)∩T

xt + a


j∈Vi(g)∩R

cj. (3)

When 0 ≤ a < 1
n−1 , the solution to this system is unique and

positive for all i. A centrality measure that satisfies Axiom 1 with
α = 1 and 0 ≤ a < 1

n−1 , and Axioms 2, 3 and 5 is therefore a
Katz–Bonacich centrality measure. �

It is straightforward to verify that the four Axioms are
independent, since dropping one of them would strictly enlarge
the set of admissible measures. Notice also that the Katz–Bonacich
centrality measures satisfy Axiom 4, which is stronger than
Axiom 5.

As shown by Ballester et al. (2006), the Katz–Bonacich
centrality is closely related to the Nash equilibrium. Indeed,
they show that in a game with quadratic payoffs and strategic
complementarities played by agents located at the vertices of a
network, the unique equilibrium actions are proportional to the
Katz–Bonacich centralities of those vertices. This highlights the fact
that Katz–Bonacich centrality is a fixed-point and consistency is
a natural property for fixed-point solutions. One can thus easily
understand why, in the same vein as Peleg and Tijs (1996) who
showed how consistency can be used to characterize the Nash
equilibrium correspondence, it is possible to invoke consistency
to characterize the Katz–Bonacich centrality measures. In our
case, characterization is further simplified because existence and
uniqueness of the vector of centralities are guaranteed.

Axioms 1–3 are cardinal in nature and may seem too close,
in a sense, to the linear formula for centrality in one-vertex
parameterized networks. It may be possible to replace them by
ordinal axioms together with a continuity property.5 Because our
aims are to emphasize the role of the consistency property and to
allow simple comparisons between different recursive centrality
measures, we nevertheless believe that our cardinal approach is
well suited.

5. Extensions

In this section, we extend our characterization results to
two other centrality measures, i.e. the degree centrality and the
eigenvector centrality.

5.1. Degree centrality

The degree centrality is one of the simplest centrality measures
on networks. It assigns to each vertex a positive integer, which
corresponds to the number of neighbors this vertex possesses in
the network. Formally, di(g) = |Vi(g)|. It is well defined on N̄ .
We can slightly adapt our axioms to provide a characterization of
degree centrality. Actually, the only changes concern the axioms
that refer to the one-vertex parameterized networks.

Axiom 6 (Invariance). Consider the one-vertex parameterized
network ((i∪ T , g), {xt}t∈T ). The centrality measure φ is invariant
if and only if, for any γ > 0, φ(((i ∪ T , g), {γ xt}t∈T )) = φ(((i ∪

T , g), {xt}t∈T )).

In the context of social networks, the invariance property is
desirable when the importance of an individual is not impacted
by the importance of the individuals he is connected to but only,
for instance, by the number of friends he possesses. This axiom
replaces the linearity axiom (Axiom 3) in the case of degree
centrality. Clearly, for degree centrality, it does not matter if one
multiplies by a positive parameter the positive values assigned to
the terminal vertices.

Proposition 2. A non-empty centrality measure defined on N̄
satisfies Axiom 1 with α = 0 and a = 1, and Axioms 2, 5 and 6 if
and only if it is the degree centrality measure.

Proof. (If part). It is straightforward to establish that degree
centrality is non-empty and satisfies those four Axioms.

(Only if part). Consider a centrality measure that satisfies
Axiom 1 with α = 0 and a = 1, and Axioms 2 and 6. Axiom 1 with
α = 0 ensures that it assigns to any one-vertex network the real
number 0, which is also its degree centrality. For any one-vertex
parameterized network that possess one terminal vertex and for
which the real number assigned to the terminal vertex is equal to
1, the same Axiom 1 with a = 1 ensures that the centrality of the
regular vertex is equal to its degree. Then, Axioms 2 and 6 ensure
that the centrality of any one-vertex parameterized network is
its degree centrality. Finally, non-emptiness and Axiom 5 imply
that, for any parameterized network in N̄ , the centrality measure
assigns to each regular vertex its degree centrality. �

Notice again that the degree centrality satisfies Axiom 4,
which is stronger than Axiom 5. The Katz–Bonacich and degree
centralities are conceptually very close. They measure the
centrality of one vertex by counting the paths that can be drawn
from that vertex. In the case of degree centrality, attention is

5 See e.g. Frankel and Volij (2011) for ordinal axioms characterizing segregation
indices.
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restricted to paths of length 1. In the case of the Katz–Bonacich
centrality, all paths are considered. It is therefore not a surprise
that their characterizations differ only marginally.

5.2. Eigenvector centrality

As highlighted in the introduction, the eigenvector centrality
has been shown to be crucial in explaining different outcomes. For
example, the paper by Banerjee et al. (2013) shows that targeting
individuals with the highest eigenvector centralities in a network
of relationships would increase the adoption of a microfinance
program by a substantial fraction of this population. Also, if we
consider a networkwhere journals are represented by vertices and
references by edges between those journals, then the eigenvector
centrality seems to be a good way of ranking journals. For
example, Pagerank (Brin and Page, 1998), which is closely related
to eigenvector centrality, is the founding algorithm used by Google
to sort its search results. Also, themeasure eigenfactor (Bergstrom,
2007) uses Pagerank in order to assign different weights to each
journal, and then it counts citations of each journalweighting them
by the Pagerank of the source.

More precisely, eigenvector centrality is a measure that builds
upon properties of nonnegative squarematrices. To each vertex i in
a network (K , g), the eigenvector centrality assigns a positive real
number ci that is proportional to the sum of the centralities of its
neighbors so that there exists a positive λ satisfying, for all i ∈ K ,

λci =


j∈Vi(g)

cj.

Written in matrix form and denoting c the k-dimensional vector of
centralities, we have:

λc = gc. (4)

This formula highlights the fact that λ is an eigenvalue of g, that
c is the corresponding eigenvector and therefore that the ci are
defined up to a multiplicative constant. The Perron–Frobenius
theorem ensures that all cis are positive when λ ≥ 0 is the largest
eigenvalue of g. Moreover, if (K , g) is a connected network, i.e. a
network such that all pairs of vertices are path-connected, then
requiring that all cis are positive implies that λ is necessarily the
largest eigenvalue of g.

Definition 6. The centrality correspondence φλ defined on N̄
assigns to any parameterized network ((R ∪ T , g), {xt}t∈T ) in N̄
the set of r-dimensional vectors of positive real numbers cλ that,
for all i ∈ R, satisfy

λcλ
i =


j∈Vi(g)∩R

cλ
j +


t∈Vi(g)∩T

xt .

Definition 7. The eigenvector centrality correspondence φe is
defined on N̄ by

φe(((R ∪ T , g), {xt}t∈T )) =


λ>0

φλ(((R ∪ T , g), {xt}t∈T )).

In the following, we characterize the φλ centrality measures.
Because the consistency property is written in terms of set inclu-
sions and themeasures we are working with do not systematically
assign a unique element to a parameterized network, our axioms
no longer characterize a unique centrality and we need to invoke
an additional property. Starting with a given centrality measure
φ, consider the correspondence φ̃ where, for any parameterized
network ((R ∪ T , g), {xt}t∈T ), φ̃(((R ∪ T , g), {xt}t∈T )) is defined
as the set of c such that, for any reduced parameterized network
((R′
∪ T ′, g′), {x′

t}t∈T ′) constructed from ((R ∪ T , g), {xt}t∈T ) and
that vector c, we have

(ci)i∈R′ ∈ φ(((R′
∪ T ′, g′), {x′

t}t∈T ′)).6 (5)

Axiom 7 (Converse Consistency). A centrality measure defined on
N̄ is converse consistent if and only if for any parameterized
network ((R ∪ T , g), {xt}t∈T ) ∈ N̄ ,

φ(((R ∪ T , g), {xt}t∈T )) ⊇ φ̃(((R ∪ T , g), {xt}t∈T )).

The term converse consistency is easily understood when one
realizes that consistency is equivalent to φ(((R∪ T , g), {xt}t∈T )) ⊆

φ̃(((R ∪ T , g), {xt}t∈T )).

Proposition 3. A centrality correspondence defined on N̄ satis-
fies Axiom 1 with α = 0 and a =

1
λ
, and Axioms 2–4 and 7 if and

only if it is the φλ centrality correspondence.

Proof. (If part). Verifying that the centrality correspondence φλ

satisfies Axiom 1 with α = 0 and a =
1
λ
, and Axioms 2

and 3 is straightforward. Then, consider the correspondence φ̃λ.
By construction, it assigns to any parameterized network ((R ∪

T , g), {xt}t∈T ) the set of r-dimensional vectors of positive real
numbers c that satisfy for all i ∈ R

λci =


j∈Vi(g)∩R

cj +


t∈Vi(g)∩T

xt .

In other words, φ̃λ
= φλ and the eigenvector centrality

correspondence satisfies Axioms 4 and 7.
(Only if part). The proof is by induction on the number of regular

vertices.
Initializing: Consider a centrality correspondence φ that satis-

fies Axiom 1 with α = 0 and a =
1
λ
, and Axioms 2 and 3. For any

one-vertex network (i), φ(i) = {0} by Axiom 1. For any one-vertex
parameterized network ((i ∪ j, gij = 1), xj), Axioms 1 and 3 imply
that

φ(((i ∪ j, gij = 1), xj)) = {ci : λci = xj}.

Then, Axiom 2 implies that, for any one-vertex parameterized
network ((i ∪ T , g), {xt}t∈T ),

φ(((i ∪ T , g), {xt}t∈T )) =


ci : λci =


t∈T

xt


.

Therefore, φ(((i∪ T , g), {xt}t∈T )) = φλ(((i∪ T , g), {xt}t∈T )), and φ
coincides with the centrality correspondence φλ on the set of one-
vertex parameterized networks.

Induction hypothesis: A centrality correspondence φ that
satisfies Axiom 1 with α = 0 and a =

1
λ
, and Axioms 2–4

and 7 coincides with the centrality correspondence φλ for any
parameterized network that possesses at most r − 1 regular
vertices.

Induction step: Consider a parameterized network ((R ∪

T , g), {xt}t∈T ) that possesses r regular vertices and a centrality

6 Notice that the inclusion in (5) is set for reduced parameterized networks
((R′

∪ T ′, g′), {x′
t }t∈T ′ ). The correspondence φ̃ is therefore not necessarily a

subcorrespondence of φ. To illustrate this point, consider the centrality φ that
assigns 1 to each regular node in a parameterized network when the number
of regular nodes is above or equal to n and 0 otherwise. For any parameterized
network ((R∪T , g), {xt }t∈T )with exactly n regular nodes, φ̃(((R∪T , g), {xt }t∈T )) =

(0, 0, . . . , 0) and clearly for this parameterized network φ̃(((R ∪ T , g), {xt }t∈T )) ⊈

φ(((R ∪ T , g), {xt }t∈T )) = (1, 1, . . . , 1).
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correspondence φ that satisfies Axiom 1 with α = 0 and a =
1
λ
, and Axioms 2–4 and 7. Axiom 4 together with the induction

hypothesis implies that for any vector c ∈ φ(((R ∪ T , g), {xt}t∈T )),
and any vertex i ∈ R,

λci =


j∈Vi(g)∩R

cj +


t∈Vi(g)∩T

xt ,

i.e. imply that φ(((R ∪ T , g), {xt}t∈T )) ⊆ φλ(((R ∪ T , g), {xt}t∈T )).
The induction hypothesis implies that, for any parameterized

network ((R ∪ T , g), {xt}t∈T ), φ̃(((R ∪ T , g), {xt}t∈T )) is defined
as the set of c such that, for any reduced parameterized network
((R′

∪ T ′, g′), {x′
t}t∈T ′) constructed from ((R ∪ T , g), {xt}t∈T ), we

have

(ci)i∈R′ ∈ φλ(((R′
∪ T ′, g′), {x′

t}t∈T ′)).

This implies that φ̃(((R ∪ T , g), {xt}t∈T )) ⊇ φλ(((R ∪

T , g), {xt}t∈T )). ThenAxiom7 implies thatφ(((R∪T , g), {xt}t∈T )) ⊇

φλ(((R ∪ T , g), {xt}t∈T )).
Therefore we conclude that φ coincides with φλ on the set of

parameterized networks with at most r regular vertices. �

Despite the fact that the spectral properties of a network may
not be invariant under the reduction operation, we thus show that
it is possible to characterize φλ centralities with a small set of
simple axioms that includes the consistency property.

6. Conclusion

In this paper, we propose an axiomatic characterization of
three centrality measures, the Katz–Bonacich, the degree and the
eigenvector centrality. The core of our argument is based on the
consistency axiom, which relates the properties of themeasure for
a given network to its properties for a reduced problem. In our case,
the reduced problem only keeps track of local and parsimonious
information. This is possible because all the centrality measures
studied here are such that the centrality of an agent only depends
on the centrality of her neighbors.

Using the consistency property to characterize other centrality
measures is certainly possible. First, by modifying the axioms
on the one-vertex parameterized networks, it is easy to obtain
centralities that are non-linearly related to that of the neighbors.
Second, by keeping track of more complete information during
the reduction operation, it is possible to guarantee that many
centralities are local in the sense that centralities can be computed
within the reduced problem. For instance, it is clear that the list
of shortest paths from one vertex can be deduced from the lists
of shortest paths stemming from her neighbors. If the reduced
network keeps tracks of the lists of shortest paths, closeness
centrality could satisfy the consistency property.

Extending characterization results to nonlinear and/or more
complex local measures is clearly an interesting project that we
leave for future research.

References

Altman, A., Tennenholtz, M., 2008. Axiomatix foundations for ranking systems.
J. Artificial Intelligence Res. 31, 473–495.

Aumann, R., 1987. Game Theory. In: Eatwell, J., Milgate, M., Newman, P. (Eds.), The
New Palgrave: A Dictionary of Economics. Macmillan Press, London.

Ballester, C., Calvó-Armengol, A., Zenou, Y., 2006. Who’s who in network: wanted
the key player. Econometrica 74, 1403–1417.

Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O., 2013. The diffusion of
microfinance. Science 26 341, 6144.

Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O., 2016. Gossip: Identifying
central individuals in a social network, (unpublished manuscript), Standford
University, https://arxiv.org/pdf/1406.2293v5.pdf.

Bavelas, A., 1948. A mathematical model for group structures. Hum. Organ. 7,
16–30.
Bergstrom, C.T., 2007. Eigenfactor: Measuring the value and prestige of scholarly
journals. C&RL News 68 (5).

Boje, D.M., Whetten, D.A., 1981. Effects of organizational strategies and contextual
constraints on centrality and attributions of influence in interorganizational
networks. Adm. Sci. Quart. 26, 378–395.

Boldi, P., Vigna, S., 2014. Axioms for centrality. Internet Math. 10 (3–4), 222–262.
Bonacich, P., 1987. Power and centrality: a family of measures. Am. J. Sociol. 92,

1170–1182.
Bonacich, P., Lloyd, P., 2001. Eigenvector-likemeasures of centrality for asymmetric

relations. Social Networks 23, 191–201.
Borgatti, S.P., 2005. Centrality and network flow. Social Networks 27, 55–71.
Borgatti, S.P., Everett, M.G., 2006. A graph-theoretic framework for classifying

centrality measures. Social Networks 28, 466–484.
Brass, D.J., 1984. Being in the right place: A structural analysis of individual

influence in an organization. Adm. Sci. Quart. 29, 518–539.
Brin, S., Page, L., 1998. The anatomyof a large-scale hypertextualweb search engine.

Comput. Netw. ISDN Syst. 30, 107–117.
Calvó-Armengol, A., Patacchini, E., Zenou, Y., 2009. Peer effects and social networks

in education. Rev. Econom. Stud. 76, 1239–1267.
Christakis, N., Fowler, J.H., 2010. Social network sensors for early detection of

contagious outbreaks. PLoS One 5 (9), e12948.
Coleman, J.S., Katz, E., Menzel, H., 1966. Medical Innovation: A Diffusion Study.

Bobbs-Merrill, Indianapolis.
Cook, K.S., Emerson, R.M., Gillmore, M.R., Yamagishi, T., 1983. The distribution of

power in exchange networks: Theory and experimental results. Am. J. Sociol.
89, 275–305.

Debreu, G., Herstein, I., 1953. Nonnegative square matrices. Econometrica 21 (4),
597–607.

Demange, G., 2014. A ranking method based on handicaps. Theor. Econ. 9 (3),
915–942.

Echenique, F., Fryer, R., 2007. Ameasure of segregation based on social interactions.
Quart. J. Econ. 122 (2), 441–485.

Frankel, D., Volij, O., 2011. Measuring school segregation. J. Econom. Theory 146,
1–38.

Frobenius, G., 1908. Übermatrizen aus positiven elementen. Sitzungsber. K. Preuss.
Akad. Wiss. 471–476.

Frobenius, G., 1909. Über Matrizen aus positiven Elementen II. Sitzungsberichte
514–518.

Garg, M., 2009. Axiomatic Foundations of Centrality in Networks. Mimeo, Stanford
University.

Granovetter, M.S., 1974. Getting a Job: A Study in Contacts and Careers. Harvard
University Press, Cambridge, MA.

Grewal, R., Lilien, G.L., Mallapragada, G., 2006. Location, location, location: How
network embeddedness affects project success in open source systems.
Manage. Sci. 52, 1043–1056.

Hahn, Y., Islam, A., Patacchini, E., Zenou, Y., 2015. Teams, organization and education
outcomes: Evidence from a field experiment in Bangladesh, CEPR Discussion
Paper No. 10631.

Hart, S., Mas-Colell, A., 1989. Potential, value and consistency. Econometrica 57,
589–614.

Haynie, D., 2001. Delinquent peers revisited: Does network structure matter? Am.
J. Sociol. 106, 1013–1057.

Henriet, D., 1985. The Copeland choice function: an axiomatic characterization. Soc.
Choice Welf. 2 (1), 49–63.

Ioannides, Y.M., 2012. From Neighborhoods to Nations: The Economics of Social
Interactions. Princeton University Press, Princeton.

Jackson, M.O., 2008. Social and Economic Networks. Princeton University Press,
Princeton.

Jackson, M.O., 2014. Networks in the understanding of economic behaviors. J. Econ.
Perspect. 28, 3–22.

Jackson, M.O., Rogers, B.W., Zenou, Y., 2017. The economic consequences of social
network structure. J. Econ. Lit. 55, 49–95.

Jackson, M.O., Zenou, Y., 2015. Games on networks. In: Young, P., Zamir, S. (Eds.),
Handbook of Game Theory, Vol. 4. Elsevier, Amsterdam, pp. 91–157.

Katz, L., 1953. A new status index derived from sociometric analysis. Psychometrica
18, 39–43.

Kitti, M., 2016. Axioms for centrality scoring with principal eigenvectors. Soc.
Choice Welf. 46 (3), 639–653.

Leavitt, H.J., 1951. Some effects of certain communication patterns on group
performance. J. Abnorm. Soc. Psychol. 46, 38–50.

Lensberg, T., 1988. Stability and the Nash solution. J. Econom. Theory 45, 330–341.
Marsden, P.V., 1982. Brokerage behavior in restricted exchange networks.

In: Marsden, P.V., Lin, N. (Eds.), Social Structure and Network Analysis. Sage
Publications, Beverly Hills, pp. 201–218.

Maschler, M., Owen, G., 1989. The consistent Shapley value for hyperplane games.
Internat. J. Game Theory 18, 390–407.

Mehra, A., Kilduff, M., Brass, D.J., 2001. The social networks of high and low
self-monitors: Implications for workplace performance. Adm. Sci. Quart. 46,
121–146.

Page, L., Brin, S., Motwani, R., Winograd, T., 1998. The PageRank citation ranking:
Bringing order to the web, Technical Report. Stanford University.

Palacios-Huerta, I., Volij, O., 2004. The measurement of intellectual influence.
Econometrica 72, 963–977.

Peleg, B., 1985. An axiomatization of the core of cooperative games without side-
payments. J. Math. Econom. 14, 203–214.

Peleg, B., Tijs, S., 1996. The consistency principle for games in strategic form.
Internat. J. Game Theory 25, 13–34.

Perron, O., 1907. Theorie der Matrices. Math. Ann. 64, 248–263.

http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref1
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref2
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref3
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref4
http://arxiv.org//pdf/1406.2293v5.pdf
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref6
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref7
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref8
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref9
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref10
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref11
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref12
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref13
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref14
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref15
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref16
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref17
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref18
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref19
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref20
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref21
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref22
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref23
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref24
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref25
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref26
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref27
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref28
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref30
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref31
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref32
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref33
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref34
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref35
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref36
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref37
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref38
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref39
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref40
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref41
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref42
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref43
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref44
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref45
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref46
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref47
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref48
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref49


36 V. Dequiedt, Y. Zenou / Mathematical Social Sciences 88 (2017) 28–36
Perry-Smith, J., Shalley, C., 2003. The social side of creativity: A static and dynamic
social network perspective. Acad. Manag. Rev. 28, 89–106.

Pinski, G., Narin, F., 1976. Citation influence for journal aggregates of scientific
publications: Theory, with application to the literature of physics. Inf. Process.
Manage. 12, 297–312.

Powell, W., Koput, K.W., Smith-Doerr, L., 1996. Interorganizational collaboration
and the locus of innovation: Networks of learning in biotechnology. Adm. Sci.
Quart. 41, 116–145.

Rubinstein, A., 1980. Ranking the participants in a tournament. SIAM J. Appl. Math.
38 (1), 108–111.
Stephenson, K., Zelen, M., 1989. Rethinking centrality: Methods and examples.
Social Networks 11, 1–37.

Thomson, W., 2011. Consistency and its converse. Rev. Econ. Des. 15,
257–291.

Uzzi, B., 1997. Social structure and competition in interfirm networks: The paradox
of embeddedness. Adm. Sci. Quart. 42, 35–67.

van den Brink, R., Gilles, R., 2000. Measuring domination in directed networks.
Social Networks 22 (2), 141–157.

Wasserman, S., Faust, K., 1994. Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge.

http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref50
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref51
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref52
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref53
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref54
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref55
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref56
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref57
http://refhub.elsevier.com/S0165-4896(17)30067-7/sbref58

	Local and consistent centrality measures in parameterized networks
	Introduction
	Definitions
	Networks and Katz--Bonacich centrality
	Parameterized networks and parameterized reduced networks
	Centrality measures

	Axioms
	Characterization
	Extensions
	Degree centrality
	Eigenvector centrality

	Conclusion
	References


