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Abstraet

In a situation when no single sample inc1udes all the endogenous variables of a

simultaneous equation model but there are two (or more) non-overlapping samples and

each variable is included in at least one, then it is possible to pool the data and estimate

the model consistently by a two-stage least-squares procedure. The assymptotic variances

of the estimates are not always larger than those which would have been obtained with

TSLS from one complete sample. It is also shown that under certain assumptions the same

approach can be applied to an ordinary regression model.
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l. INTRODUCTION AND BACKGROUND

Survey data is a frequently used input in social science research and their

importance is increasing. This has been true for a long time in sociology, for instance, but

also in other disciplines there is a shiit in research interests. In economics there is an

increased emphasis on micro economics using survey data and panel studies as compared

to macro economic problems analysed with aggregate time-series data. Large surveys

are, however, veryexpensive and the increased response burden and the awareness of the

privacy issue on the part of legislators and the general public makes it increasingly

difficult to get the co-operation of the households and business establishments. We will

thus frequently have to rely on already existing data iiles designed for different purposes.

Most likely we then find that no data set contains all the information we would need.

Sometimes it is possible to combine information from several data sets by exact matching,

but this is not possible when they do not overlapp, i.e. when the probability for an

individual to participate in more than one survey is very small, or when identifying

information like the social security number is not available or its use is prevented by

protection of privacy.

We might thus have to face a situation when it is impossible to obtain a single

sample including all the variables we would need to estimate a model or test a hypothesis,

but it might be possible to obtain two or more data sets,' each of which would not inc!ude

all relevant variables, but each variable would be included in at least one data set. Can

this type of data be used at all and if so how?

One suggestion to deal with this situation is to use synthetic or statistical matching.

If ~wo or more data sets have some variables in common, but do not include the same

individua~s, the common variables could be used to match "alike" individuals. In this way

data for two (or more) individuals, one from each data set, is merged to a n·w set of

synthetic individuals. Ideally the new data set would have the same distributional

properties as a proper survey, but doubts have been raised about the possibilities to obtain
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this without unrealistic1y strong assumptions about the universe. A survey of the

literature on statistical matching and an extensive list of references are given in areport

from US Department of Commerce (1980).

Although the advocates of statistical matching usually emphasize other uses of a

synthetic fHe than estimation of multivariate models or tests of hypothesis about human

behavior with control for confounding factors, this is from the social scientists point of

view a likely reason to attempt a statistical match. The theoretical basis for the

statistical matching techniques is, however, relatively weak and the approach suggested in

this paper is not a statistical match, but the results obtained below invite to a few

comparative remarks about statistical matching at the end of the paper.

The problem treated in this paper is the estimation of one of the relations in a

simultaneous equation model when the relevant variables have to be obtained from

different data sets which have no individuals in common. The solution is a two-stage

least-squares proce~dure which does not require matching. A more rigorous specification

of the problem and the model is first given in section 2. Then fol1ow the estimation

method, an analysis of its properties and a discussion of the consequences of alternative

assumptions about the model and the data configuration. One special casl
s

the linear

regression mode!.

2. THE PROBLEM

The problem is to estimate the following equation,

which is part of the interdependent system,
I ,

YB+Xf::U;
I

E(U) = O; E(U U) = nl:

(1)

(2a)

(12b, c)

where Y G'n· is a matrix of n observations on G endogenous variables,

is a vector of the n observo. uons on the endogenous variable explained

by (1),
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is a matrix of the n observations on the g explanatory endogenous

variables in (1),

X
n

oo
K

is the observational matrix of all K exogenous variables,

X is a submatrix of X whieh inc1udes the k exogenous variables in (1),-
l n-k,

Un•
G

is a matrix of stochastic disturbanees,

u the vector of stochastic disturbanees of 0), one of the eolumns of U.
n·l

BCooC,f K-K are parameter matrices,

Q v are veetors of the non-zero parameters in (l)I-'C-l' lk-l

L
C

oo
C

is an unknown positive definite moment matrix.

It is assumed that (1) is identified.

The redueed form of the eomplete system is,
I

Y = X1T + V;

I

and V =U(B r l.

(3a)

(3b)

(Je)

The part of the reduced form corresponding to the endogenous variables to the

right of the equali ty in O) is,

(4)

where 1T l and Vl are the corresponding g- K and n-g submatriees of 1T and V respeetive-

ly. For later use it is also convenient to introduce a n·(K-k) matrix X2 defined by,

Suppose now that data are not available in the form of one eomplete sample but

there are two samples, A and B, none of which contains all variables. Assume that data

come in the following form,

Sample A: yA XA
(nA-l); (nA•K)

Sample B: yB xB
l ,(n

B
oog); (n

B
"K)

nA and nB are the two sample sizes. They are not neeessarily equa1. Since (2e) implies

that there is no residual correlation between observational uni ts, the two samples can be
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treated as independent random samples. l

An example for which this problem specification might be applicable is the joint

estimation of demand functions for consumer goods and household time-use functions,

both derived from a household production type of model. Consumer expenditure data

could be obtained from a household budget study, while time-use data would have to be

taken from a separate time-use survey. There are presently no surveys which inc1ude both

kinds of data. 80th surveys wouid, however, give income data and other characteristics of

the household.

3. ESTIMAnON

3.1 The estimation proceedure.

Eg. O) cannot be estimated from sample A alone since the Yl-variables are mis-

sing, but the two samples can be combined in the following two-stage proceedure,

l. Estimate the reduced form eguations (4) from sample B by OLS which gives the

estimates fir B. Use these estimates to predict Yl in sample A, i.e.

.... A A .... 'B
Yl = X 1TI ; (6)

II. Estimate by OLS from sample A

A .... A A A-A
Y =YI 8+X 1 y+(u +YI 8); (7)

- A A .... A
where Yl =Y l -Yl •

Note that Vl A is not the vector of least-sguares prediction errors from sample A and thus

not necessarily orthogonal to X A.

With the following notation,

, {' l '}

<5 = 8 : y l-(g+k);
.... A I A

Z - {y I X} .
- l I l nA -(g+k)'

then (7) becomes

A A-A
Y =Zo+(u +Vl 8);

and the estimator of o is,

If the two samples would coincide. ~ would be the usual TSLS estimator.

(8)

(9)
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3.2 Properties

3.2.1 ~~~J!_s_c:~e!~_~~~~

The expected value of o over the whole sample space defined by both samples can be

obtained in the following stepwise way:

E{~ IXA,XB) = E{E(6 IfhB,XA)IXA,x B}.

E{611h B,X A) =E{(Z'zf1Z'yA} =

E{ å+{z'zf1 Z'(uA+V1 Ap)}=

6+E{(Z'Zf1Z'v1
A s} = 6+E{{Z'Zf 1Z'(YI A-Y1A)f3} =

(la)

The Jast term of (12) is in general not zero and the estimator is thus biased, a property it

shares with the usual TSLS estimator. The folJowing simple example might clarify this

point further. .All variables and parameters are scalars.

StrJcturaJ form:

Reauced form:

The firs! equation of the structural form is estimated with the foJIowing two samples,

A ASampJe A: y 1 ,x .

B BSample B: Y2 ,x .

The first step of the estimation proceedure gives,
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and the estimator of B12 then becomes,

=------- =
A A
TIll

A B
TI21

The flrst equation is exactly identified which explains why B12 in this case is a simple

ratio of the estimates of two reduced form parameters.

We now find that,

E(S12 IxA,xB) = EB{EA(TIll A ITI21 B)} = EB(7f 11 ITI2 l B) f. 7f 11 / 7f 21 = B12'

3.2.2 5;_<?~~is!:~cy

We will first look at the case when nA is finite and fixed while n
B

tends towards

infinity. Assume that the matrix {.L (xB)'X B} tends towards a finite non-singular matrix
nB

when nB tends towards infinity. It then fol1ows that

Set Zo

"A AYl -+ E(Y l ) when n
B

-+ 00;

- A A
Vl -+ Vl when n

B
-+ 00;

A " A}Z-+{X 7fl :X l whenn
B

..... co •

A I A
= {X 7f l : X1 }, then

(l3a)

03b)

(l3e)

(l3d)

(14)

The expected value of this limit for the sample space defined by sample A is,

(5)

Thus, if sample B is "very large" the estimation proceedure is almost equivalent to

replacing Y1 A by its expected value and estimating the fol1owing relation by OLS,2

(6)

For very large nB the estimates of S and r are thus almost unbiased.
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l A l A}
Now let both n and n

B
tend to infinity. Assume that f-:::- (X )(X) and, A n A

{_l_ (XB}'<XB}} both tend to finite non-singular matrices as nA and nB respectively tend to
nB

infinity. Then,

plim c = plim (plim c) =
nA+cx> nA+cx> nB+cx>

nB+cx>

l , _ . l 'A . l , A
c+ (plim -=-<Zo Zo}) l(pllm t::-Zo u )+pl1m f--Z o V l S})= <5.n n n

nA+cx> A nA+cx> A nA+CJ:> P-.

The second equa1ity foUows from (14) and the third equality from the by definition zero

correlation between the stochastic residuals and the exogenous variables. c is thus a con-

sistent estimator.

Assume that nB= kn
A

, where k>Q is an arbitrary finite constant, and that

(l!nA)(~'~) and (l/nB) (XB'XB) both tend to finite non-singular limits when

TIA and n
B

tend to infinity. Assume a1so that the rows of U are not only un­

correlated but also independent.

Since TI~ is a consistent estimator it follows that (l!nA)(Z'Z) tends in

probability to a finite non-singular matrix, say Q. lt also follows that ·vt
tends in distribution to VI' the submatrix of reduced form errors. Thus,

(18)

-l ' A
tends in distribution to Q (1!')lA)2

0
(u +V1B). lt will be proved below that

(uA+V1B) has a scalar moment matrix, say a2I. lt then follows from the Lindeberg­

Levy theorem that (l/~)Z~(uA+VlS) is asymptoticly normal with zero mean vector

and covariance matrix cr 2Q. (For a proof se Theil (1971) p. 380). The asymptotic

distribution of Q-l(l/~)Z~(uA+VlB) is thus normal with zero mean vector but
. h h . . 2Q-l

~lt t e covarlance matrlx o

To prove that the covariance matrix of (uA+VlB) is scalar, assume ~ith­

out loss of generality that (l) is the first structural equation of the

system (2) and that the endogenous variables of that equation are the first

g+l variables of Y.. If we par·tition the inverse of the parameter matrix B
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in the following way,

* **
(BGXg : BGx (G-g» ; (19)

it follows that,

and thus,

*V=UB
l

U(B,)-l *' **U(B:B ); (20)

(21)

The covariance matrix of (uA+VlB) now becomes,

E (uAu A ') + E (u ABI B* I U') + E (UB*euA I ) +

* *E( VB BB'B I V' ) . (22)

F (2) Il ( .f.. A,) l from c it fo ows that E u u = °111, where 011 is the top e t element

of the moment matrix I. In order to evaluate the last three terms of (22)

partition Iby its columns,

~ ( l l I )
L= °1 : o2 ~ ... : oG

We then obtain,

(23)

ernxn
* A5 S'B ')E(u el U') *(l el S'B ')(1 )nxn ~ or

and,

*B'B' l°1 ; (24 )

(25)
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*. *
E(UB se'B 'U') = * *E{(UB B) (3 ( B' B ' U' )} = E{ (l

nxn
* *e S'B ')(U(3U')(B Sel)}

*=(I3B'B ')(HJa~
.L

I
l ••••
I

*=(S'B 'a l
l

* ' * I={(S'B 'o" :S'B '0
2

l
.l. I I

* *=(S'B Lel)(B 001)

(22), (24)-(26) now give,

* *B'B 'LB BI. (26)

(27)

The expression within brackets is thus the scalar 0
2 refered to above.

~

To conclude, if n
B
= kn

A
, then ItlA(o-o) asymptoticly follows a normal distri­

-1
oution with zero mean vector and covariance matrix (011+20iB*LB*S)Q .
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In this case the variance of the two-stage least-squares estimates

based on two samples thus differs from the variance of the ordinary TSLS

estimator based on a complete sample A by the second and third terms inside

the parenthesis of (27). Since these terms do not only depend on all

varlancesand .covariancesb.ut also on all the elements of B, the relative magnitude of the
. ".. •.. . _tI'!'~. .. .. . '

assymptotic;' varianceoi ct;.is;difficult::Yd,eva1uatewithout knowing at least the structure

of B and the signs of the non-zero parameters. One might believe that the two incomplete

samples would be less informative than one complete sample. but this is not necessarily

true because a large sample B might compensate for the missing variables in sample A.

Also assymptoticly the variance of ö can be exceeded by the variance of the TSLS

estimator based only on sample A which, for instance, can be shown with the two-equation

model used in the example above. In this model

B=
{

l -B12}

-132 l l

and thus,

Asy. var (6) =nA-1{011+2(OllB122/U-B12B21)+012 131'2.(1-6121321»)+

! ,
(1312 10-6 12132 d)i( 0111312 2+2 0 12612+ 02 2)}X plim(n A-l Z Z).-l

With, for instance, f3I2=0. 05,621 =1,0 11 =022=1 and o 12=-0.9 the scalar expression within

braces is less than ol l , but if the sign of o l 2 is reversed it exceeds o l l' 3

The fact that the two-sample estimator may have a smaller variance than

the ordinary TSLS estimator might at first be a surprise. The explanation

is th~t since the last term of (18), Z'V1B, does not vanish, unlike the

corresponding term of the ordinary TSLS estimator, its limit in distribution

may be negatively correlated with the first term, ZluA, and if this cor­

relation is sufficiently strong the variance of the total error will become

less than the variance of the first error term.

4. ALTERNAnYE ASSUMPTIONS ABOUT DATA CONFIGURAnON AND MODEL

Note that all exogenous variables are inciuded in both samples. In the ordinary
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case with only one sample, consistent estimates of the parameters of (1) can be obtained

by the instrumental variables method if there are at least g X2.-variables inc1uded in the

sample to serve as instruments. However, for the case discussed in this paper it is not

possible to obtain consistent estimates with one or more of the exogenous variables

missing from either sample. If we would attempt to estimate a reduced form with some

of the Xl-variables missing or replaced by other variables the estimates of if l would in

general be biased and inconsistent, (13c) would no longer hold and o would not be a consis­

tent estimator. To see this note that plim (nA-l 2 0 IV l AS) in (17) has to be replaced by plim
nA~ nA~

(nA-l ZIVl As) and that the critical part of this expression is, nB+c:o

( -A I){' B l}plim n
A

l(X l )X iTl- plim Oh ) s·
nA+~ nB+c:o

Thus, when fh B is not a consistent estimator (29) does not vanish and 8
tent.

(29)

becomes inconsis-

One may also note that even if sample A would include data on all endogenous

variables in (1) but there would be less than g X2.-variables included in the sample, the

information in sample B cannot be utilized to obtain consistent estimates.

If sample A would include all the endogenous variables of (1) but not all Xl-variables,

could we then use the information in sample B to estimate Xl? It is not obvious that such

a proceedure can be justified within the present model. The problem is that there is no

theoretical basis for predicting Xl since these variables are exogenous. However, if it,

for instance, would be realistic to add to the model the assumption that all exogenous

variables are multivariate normal then one could proceed to use both samples to estimate

the model. ~

A special case of (1), with S=O, is the common model,
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I

Y = Xl Y + U; E(u IXd = O; E(uu IXl) = a l d. (30)

Since the regression surfaces in a multivariate normal distribution are linear, we can

write,

(32)

where R is a matrix function of }.Il, }.I2 and rt. (32) inserted into (30) gives,

y =X2Ry + (u + e:y). (33)

R can be estimated from sample B and provided K-k> k, X2 ARB gives k linearly indepen­

dent predictions of X l A which inserted into (33) give,

yA = X2ARBy + (u + e:y + X2AOy); (34)

where D=R-R. (34) is an errors-in-variable model and the OLS estimates of y will have a

small sample bias. They will, however, be consistent and assymptotically unbiased since D+

o when n
B

-+CXl.

If the assumption of no explanatory endogenous variables, B=O, is relaxed again, the

two-stage least-squar~sproceedure taking into account both the simultaneity of the mode!

and the need to estimate Xl would require that K-k.?: g+k.

5. A BRIEF COMPARISON WITH STATISTICAL MATCHING

The two-stage least-squares proceedure described above can be compared with

statistical matching. Suppose we want to estimate (1) using the two samples A and B as

given on page 3. If statistica! matching is defined as arandom drawing of a vector of Y1­

values, say Y l- '*, among those observations of sample Bwith a given vector {X l- A: X2-A},
l l l

to replace the unknown Yl--vector in sample A, then the equation to estimate becomes,
l

A '* A Ay = y l B+X l y+(GB+ u ); (35)

'*where G =Yl-Yl It is assumed that nB is so much larger than nA that a match can

always be found.

Since Y1'* comes from sample B and uA from sample A and there is by assumption
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no correlation between the residuals of the two samp1es, Y1"* is uncorrelated with UA.

Statistical matching thus takes care of the simultaneity problem, but at the same time it

introduces an errors in variables problem because the matcrung error G is now part of the

residual. OLS estimates of (35) will thus neither be unbiased nor consistent, but this

problem can be overcome if (:35) is estimated by a method which takes the matching error

into account, for instance, and instumental variables method. TSLS applied to (35) would

be assymptotically equivalent to the two-stage proceedure suggested above, but in small

samples it might be less effident since some of the information in the larger B-sample is

ignored. s

If it is not always possible to find a match with identically the same vector {Xl> : X 2 .}
l l

but instead a match is defined by some distance function on the exogenous variables, a

systematic error is introduced which presumably makes also the TSLS estimates of (35)

inconsistent. Matching constrained to a one-to-one correspondence between the X-values

of the two samples is almost equivalent to simulating the reduced form (4), but matching

of observations with only approximately the same X-values can be compared to a

simulation based on the wrong vector {Xl: X 2 .}.
l l

The same results seem to carry over to the regression model with multivariate

normal X-variables. The replacement of the unobserved Xl A by a match from sample B,

"*say Xl ,will introduce a matching or measurement error. Estimation of y would then re-

quire a method which takes these errors into account.

The simple form of statistical matching assumed here does not do justice to the

variety of techniques used in practice, but one general conc1usion is that the estimation

method used after a statistical match should take into account the random - and if

possible any non-random - matcrung error. Ordinary least-squares will in general not do

this.

6. CONCLUDING REMARKS

Future research based on micro data might have to rely more and more on the kind

of incompletedata discussed in this paper. To be able to do this we will need some
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vehicle, a model, which !inks the variables of the different data sets. In our case the

simultaneous-equation model and the multivariate normal distribution both served this

purpose. Such a theoretical basis is necessary for solving the missing data problem

whether this is done by the two-stage least-squares proceedure or statistical matching and

it seems unlikely that a model free and purely design-based proceedure could be

developed. If this is true the kind of general purpose argument, sometimes given for

statistical matching, would have Ii ttle validity for these two approaches. It also raised

the issue of how robust these methods are for model specification errors.

In the first part of the paper no particular family of distributions was assumed

which in a natural way leads to least-squares theory. In section 4- a multivariate normal

distribution was introduced. The particular family is not principally important - although

the normal distribution is very convenient - but if it is realistic to assume a distribution

there might be more efficient methods based on maximum likelihood theory. With large

micro data samples efficiency might, however, be of secondary importance.



-14-

Footnotes

l

2

3

5

Note that this model spedfication is within the econometric "superpopulation"

tradition and there is no mentioning of a sample design. Although this is. a

controversal issue, it can be argued that the estimation proceedure will not depend

on the sampling design ~s long as the selection probabilities are independent of the

residuals U.

Note the similarity with Wold's generalized interdependent systems, GEID, (Mosbaek

&. Wo1d, 1970).
I A

For 012= -0.9 asy. var (o) :::0.9131 nA-lplim(nA-l Z Z)-l. For (J12 = +0.9 asy. var (o) :::
,

1.1030 n
A

- l plim(nA-1ZZf l .

This assumption does not imply any causal relation between the exogenous variables.

In practice the smal1er sample A would probably be matched into sample B, which

imp1ies that each y.-value might be used repeatedly and more of sample B would be
l

used. There is, however, no guarantee that the whole of sample B can be used since

there may be vectors {xl.Bi x 2 .
B} which have no correspondence in sample A.

l l
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