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i INTRODUCTICR

A dynamic programming problem of economics typi-

cally has the following formal form:

vix} = max Ti{s,8,vi{x} (1}
5

where v 1is the “"value function™, s some policy
parameter, © some parameter of the problem and
T{s,8,-} is a mapping taking functions of x into
new functions of x. For & comparative statics
analysis, the differentiability properties of (1}
are of interest.

Gur main result {(theorem 4) essentially
states that as long as the optimal policy parameter
g is unigue, 1f one can formally differentiate (1}
with respect to 8, treating the policy s as being
fixed and v as being a priori differentiable, then
this differentiation is a posteriori justified.

We alsc give a wversion of the Tenvelope
theorem” which sometimes can be used to differenti-
ate (1} with respect to the variable x. (The formal
distinction in thisg context between variables and

parameters of v is that the right~hand side of (1)

* #Mogt of this work was done while I was visiting
regsearcher at the Insititute for Economic Studies,
University of Stockholm.
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depends on ©@ and vi{g,.} for the current value of ©
only, whereas it depends on vi{B,x'} aisc for x°
different from the current value of x.} A result in
this direction has also beern pregsented by

Benveniste and Scheinkman (1979).

2 SOME MATHEMATICAL RESULTS

Lemma 1. Let D be an open subset of RT, f(x) a
continuous function on D, gix,z} a function on DxD,

and assume that
£{x} 2z gix,z} for x close encugh to z, and
£ix} = gi{x,x}) for all x ¢ D.

Assume further that gi{x.,z} is differentiable w.r.t.
x and that g4(x,x) (the subscript denotes differen-
tiation wer.t. the first n variables) is continuocus
on D.

Then f{x) is continuously differentiable, and

ﬁxix§ = gqix,x).
Procf. 8Since we differentiate w.r.t. one variable
at a time, we mayv without loss of generality set

n=1. Now, for any xgeD

liminf [f(xg+h) - hixg)l/h 2

0<h~0

liminf [g{xg+h,xg)

0<h»0

~gl{xg,xg)1/h = gylxg, x40 {2

Now take h>0 arbitrarily and define
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m{h) = h + max{gy(x,x) | x5 £ x £ x4 *+ hl.
For h fixed, define
Fix) = £(x} - mih){x-xg), x ¢ [x4,x5+h].
Pizx} is continuocusg, and its maximum in [xgrxgthi]

must be attained at Xg. Indeed, for any

b4

£y

éx@,x§+h§

Timesup [(Filx~-k) - Fix)l/{~k} =

0k 0

limsup [flx~-ki~-£(x}1/{(-k} - mi{h) 2

0<k~>0

limsup [gi{x-k,x} - gix,x}1/{-k} - m{h} =
0<k~0

gy{x,x) ~ mth}) £ - h < @,

which is imposszible at a maximum point. Hence

F{xe%é} b4 Féxﬁéf i.8. f€x§+h} - féxgé £ mthih, thus

limsup [f£{xg+h) - f{xg)1/h £ limsup m{h) =

0<h~0 0<h+*0

(ad
o

Of course, {2} and {3} show that the right-hand
derivative of £ at x; exists and equals gjlxg,xg).
The left-hand derivative is treated sgsimilarly.
S.E.D.

Theorem 1 {"envelope theorem”"). Let D be an
open subset of R, A:D°R™ a continuocus, convex- and
compact~valued corrvespondence, hix,v}) a continuous

function on DxR™ and define

£{x} = max hix,v}, x £ D,
vEALK}



Then f£{x}! is continucus. If we further assume tha
the maximizer v* = v*{x} is uniguely determined by
x, then y*{(x) 1is continuous. If further hy(x,y)
exists and is continucug and v*{(x} is an interior

point of Al{x) then £{x} is differentiable and

It is important to note that hix,v) is not assumed

be differentiable w.r.t. v.

Proocf. The continuity of f£fix) and of y*{x} is well
known, and we do not repeat the arguments here. HNow

define
glx,z} 2 hix,v*{z}]

The differentiability conclusion of  £(x) now
follows from Lemma 1 applied to the pair £ and g.
T.E.D.

Theorem 2 (Blackwell, 1965). Let D be sone
subget of R™, and B(D) the Banach space of bounded,
real-valued continuous functions on D, normed by
the supremum norm.

Let T:B{(DI®B(D}! be a mapping with the follow-
ing two properties (Blackwell's conditions, abbre-

viated B.C. in the seqguel)l:
{monotonicity) £ 2z g implies T(f) z Tl(g}
{discounting) there is a number g{1 {the mod~-
ulus of T} such for all f¢B{D}) and all con-

gstants ¢ > 0, T{f+c} £ T(f) + BC.

Then T is a contraction mapping with modulus . In

particular, the eguation



has a unigue solution ££B{(D), and if 8 is a closed
subset of B{D} such that T maps % intc 8, then the

solution £ lieg in 8.

Theorem 3 {("Bellman's principle”). With the nota-
tion of Theorem 2, let T = T{s;.} depend continu-
ously on some parameter st KCR™ and assume that the

modulus B can be choosen independently of s. Let

[

A:D?*K  be a compaci-valued <correspondence, an

congider the two eguations

fix} = max Ti(g;f){x}) & T*{L){x)
st Alx}
gix) = Tlsgix);L)(x)

=
z
o
g
i
in

al{x}:D7A(x) 1is any continuous function (it

is easy to see Lthat both right-hand sides define
mappings satisfving B.C., so both equations have

unigue sclutions). Then
gl(x) £ f£ix}! for a1l x£D.

Procf., Let 8 be the closed subset of B(D} con-
gisting of functions 2 g. Then for any hté8 we have

T*(h)(x) 2 Tlsgl{x);hl(x) 2z Tisgxi;glix) =

glx}

where in the second relation we used the monoton-
1city of T. Hence, by theorem 2, f¢8. Q0.E.D.

For the rest of this section we will adopt
notions from differential calculus for mappings
between Banach spaces. We refer to Dieudonné (1860)

as a general reference.
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Lemma 2. With the notation of Theorem 2, let

¥

5y

T=T{8;.} depend continuocusly on scme real ¥

arameter

e

§€€§§g@ b, assume that the modulus p of T can

5 and
e
be choosen independently of 8. Assume further that

Tia;-§:€8§,§¢§x553§ - BI{D) is differentiable. Then

the solution f=f(c

o

;-1 to

£ = T(9;f} {

LA

ig differentiable w.r.t. 8, and f_ is the unigue
g:g =

solution to

Fy
t
3
4
6]
by
+
g
T3

L, E;E.) = THROEL) .
vl

= (6}

Here the mapping T% satisfies B.C.

Progf. Eguation {(4) mayv be written

]

}
3
)]

Sy
bty

H
[ow]

g0 the conclusion that £ ig differentiable, as well
as formula {(86), follows from the implicit function
theorem. The only non-trivial thing to check is
that the devivative of £~T{8;f)} w.r.t. £ is

her

)]

invertible. But this derivative is E~?f€@,n§,

W
I ig the identity mapping. We show below that th

M

¢t

linear mapping T satisfies B.C., 80 its norm 18 a

EER

most 8<l, and the invertibility of I-T, follows.

<
i+
w

To prove monoctonicity of T*, take g 2
ol

B{D). For any hEéBID} and ¢ » 0O

Te(O,hiegl 2 T(B;h+eg) - T(E;h) -

i T{e;h+e gl - T(B;h) - Tf{@,ﬁ;EgE iz O+rofle}
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by the monotonicity of Ti8:-}) and the definition of
differentiality. But Tgiﬁ,h;-} ig linear, 80 divid-
ing by ¢ and letting €20 gives Tg(9,h;g) 2 0. Since
Tg(O,h;-) is linear, this provides monotonicity of
nd hence of T*,

Discounting is proved similarlv. Q.E.D.

Thecrem 4. With the notation of Theorem 2,
let T=T{(s,9;-) depend continuously on stKCR™® and
8¢ (84,89} with a modulus of T being independent of
s and of 9. Let D(U) denote (8,4,8,)xD and let
A:D{U)~K be a continuous, compact-valued correspon-

dence and consider the eqguation

fi{x}) = max Tlg,o;f){x} {7
s B8, %)

Agsume that the maximizer g=8*{8;:;x} isg uniguely

determined by © and x and that s*(8,.x)¢A(8,,x) for
all x¢D 1if B, is close to gl
Then £ 18 differentiable w.r.t. 8, and £_. is

the unigue sclution to

D

£F. = T (s*{x},

-
b
()

dEY o+ ?fis*éx},@ff;f ) (83

o

where the right-hand gide defines a mapping in £

o
el

gsatisfving B.C.

Progf. First we must prove that £ is Hdointly
continucus in 9 and x. To this end, we may Ltempo-
rarily think of the right~hand side of (7) being a

-~

mapping BID(S) 1B DI{8}) ). Indeed, for any gt B D{B}]

max Ti{s,0;g){x}
seAl{x,8)

1 Esge, 2f A{B,x} = Alx} is independent of S.
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is continuous on D{B}) by Theorem 1 {although the
maximizer need not be unigue for arbitrary gj). Now,

by Theorem 2, £6B{D{8}}, which proves the doint

:

continuity of £ in 8 and x.

e g

Now define g(8,87;x) on (8,,8.)x(0,,8,)xD

o
b

the eguation

,87;x) = T(e*(8';x),8;g9)({x)

te}
6]

where g*{.;.} is «continucus by Theorem 1. By

Thecorem 3,

£{8;:x) 2 g(B,8%;:;x}, @ close to OF
and by definition

£(9;x) = gl8,0;:x}).

By Lemma 2, gi{B,8';x}) is differentiable w.r.t. ©,
so by Lemma 1, £ is differentiable w.r.t. ©,
f.(89;x) = ¢,(8,8;x) and substituting £, for 94 in

H

the equation for gy given by (6}, gives {(8). Q.E.D.

3 AN EXAMPLE

To illustrate the results of Section 2, let us

-~

consider the following simple dynamic problewm;

po= max ful fixt=y] + vivilt, ({
ULy £(x}

A

<
i

Here w is utility flow of consumption, x
capital stock and £{x}) a production function. The
discount factor iz pdl. This period’s production
£ix} is split into consumption ¢ and next period's

capital y; c+y=£{(x).
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Agsume that u and £ are continuously differ-
entiable, increasing and goncave, anda dencte the
right-hand side of (9} by Ti{v}). Obviously T
satisfies B.C., and the wvalue function v is
increasing and concave by Theorem 2, since T maps
the set of (non-strictly) increasing, concave
functiong into itself.

The correspondence x7[0,£{(x}] is continuous
and bv concavity, optimal yv=v* is unigue, so if y*
is not a corner solution, vix) is differentiable by

Theorem 1 and
vi{x) = u'{f{xi-v*{x))Ff  {x}.
{Cbhserve that in order to apply Theorem 1 we need
onlv a priori know that vi{y} is continuous.!}
HNow we mayv write the first order condition
for v {assuming away corner solutions, for simplic-

1Lyl
(E£ixy~-v) + pvil{y}) = 0.

Ising this eguality it is possible to show that
both v*{x} and f{x}-y*{x} are increasing in x {we
omit the details), which we will exploit below.

Now assume that £=f{(B;x} 1s parametrized bv 8
guch that §5>§ and gﬁig%. We may now use Theorem 4
to differentiate (9) w.r.t. O to get
v {x} = u‘if{x}“y*{x}}fgéx} + ﬁ?eéy*{x}}gézﬁk

As anticipated by Thecorem 4, the right-hand side of

{10) is a mapping in v satisfying B.C.; we denote

it by T*{v, ). Hence we can use Theorem 2 to derive

properties of v, ; for instance Vg is decreasing in
L

x. Indeed, using u’ decreasing, fxeéﬁ, the increas-
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ingness of f£{x)-y*{(x} and of v*{x}, we see that T*
maps decreasing functions into decreasing func-
tions. Using this fact one can show {(we omit the
details) that optimal consumpiion c¢* increases with
increasing ©9; i1.e., an improvement in production
£0 will

{not surprisingly) increase consumption during the

accordin to the specification £ 50, £
9 P & Ox

first consumption periocd for any initial capital

stock x.



REFERENCES

Benveniste, L.M. and J.A. Bcheinkman, 1979, "On the
Differentiability of the Value Function in

Dyvnamic Models of Economics, Econometbrica,

Vol.47, Ho.3.
Blackwell, D., 19653, Discounted Dynamic Program-

ming; Annals of Mathematical Statistics, 36.

Dieudonné, J., 1960, Foundations of Modern Analvsis;

Academic Press, New York and London.



