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Abstract: We propose a spatial search-matching model where both job creation and job

destruction are endogenous. Workers are ex ante identical but not ex post since their job can

be hit by a technological shock, which decreases their productivity. They reside in a city and

commuting to the job center involves both pecuniary and time costs. Thus, workers with

high wages are willing to live closer to jobs to save on time commuting costs. We show that,

in equilibrium, there is a one-to-one correspondence between the productivity space and the

urban location space. Workers with high productivities and wages reside close to jobs, have

low commuting costs and pay high land rents. We also show that higher commuting costs

and higher unemployment benefits lead to more job destruction.
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1 Introduction

It is commonly observed that unemployment varies both within and between regions and

cities (Holzer, 1989; Blanchflower and Oswald, 1994; Overman and Puga, 2002; Patacchini

and Zenou, 2007). There are also stark spatial differences in incomes. For example, in the

United States, the median income of central city residents is 40 percent lower than that of

suburban residents. There are also strong evidence that the labor market is characterized

by large flows and job turnover (Davis et al., 1996).

The aim of this paper is to provide a search-matching model where both features are

present, i.e. endogenous job creation and job destruction and an explicit land market.

There is by now a small literature on the theoretical aspects of spatial search models that

explicitly incorporates land and labor markets (see Zenou, 2007, 2008).1 Wasmer and Zenou

(2002, 2006) and Smith and Zenou (2003) introduce a land market (as in Fujita, 1989) in

a standard search-matching model (as in Pissarides, 2000). They all assume that the city

is monocentric, i.e. all jobs are located in one location. The interaction between land and

labor markets is performed through search intensity. Indeed, in their models, distance to

jobs affects search intensity because remote workers are less likely to obtain good information

about job opportunities. As a result, the land market equilibrium depends on aggregate

variables (such as wages and labor market tightness) since these variables affect location

choices of workers. On the other hand, the labor market equilibrium crucially depends

on the land market equilibrium configuration because the efficiency of aggregate matching

depends on the average location of the unemployed. Sato (2004) extends this framework

by introducing ex ante heterogeneity of workers who differ by specific training costs. It

is assumed that ex post all workers have been trained and are thus identical in terms of

productivities. The analysis is then relatively similar to what is obtained in the models above.

Sato (2001) develops a similar framework but allows ex post heterogeneity in productivities.

However, this heterogeneity in the productivity space, which implies different wages, does

not translate into an heterogeneity in the urban space since, in equilibrium, whatever their

location in the city, all workers experience the same costs of living and thus there is no

direct correspondence between the heterogeneity in the productivity space and the one in

the urban space. An other interesting contribution is Coulson et al. (2001) who develop a

search model in a duocentric city. They assume that the fixed entry cost of firms is greater

1It has been recognized for a long time that space affects search activities. For example, Stigler (1961) and

Diamond (1982) have put geographical dispersion as one of the main determinants of price ignorance because

the spatial dispersion of agents creates more frictions and thus more unemployment. See also Simpson (1992)

for an early approach of the analysis of urban labor markets.
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in the Central Business District (CBD) than in the Suburban Business District (SBD) and

that workers are heterogeneous in their disutility of transportation (or equivalently in their

search costs). These two fundamental assumptions are sufficient to generate an equilibrium

in which central city residents experience a higher rate of unemployment than suburban

residents and suburban firms create more jobs than central firms. The interaction between

the land and labor markets is due to the fact that workers and firms are mobile and look for

a “partner” to form a match in both areas.

None of these approaches have endogeneized job destruction and workers’ ex post het-

erogeneity. The aim of the present paper is to investigate these issues by proposing a spatial

version of the search-matching model developed by Mortensen and Pissarides (1994). By

endogeneizing job destruction, we obtain new results compared to the urban search models

mentioned above.

More precisely, following Mortensen and Pissarides (1994), we assume that each job is

characterized by a fixed irreversible technology, so that each time there is a technological

shock, the quality of the match and the productivity deteriorate. New filled jobs start at

the highest productivity value and a job is destroyed only if the idiosyncratic component

of their productivity falls below some critical number. Workers reside and work in the city

and thus commute to the employment center. Both pecuniary and time costs are taken into

account. Workers with the highest wages (productivity) have the steepest bid-rent curves

and are therefore located closest to the employment center. The unemployed have the lowest

value of time and live at the edge of the city. These properties of the model are standard

features of urban economic models with heterogeneity of workers that leads to differences

in the steepness of bid rent functions. What is less standard is that, in the present model,

such differences are not related to structural worker characteristics (such as education, age

or family composition), but to productivity levels that are only related to the job to which a

worker is randomly matched. Each change in the productivity of the job to which a worker is

matched leads immediately to a change in his/her wage, value of time and through these to

his/her residential location. This mechanism causes the relationship between productivity

and location that is central to the analysis of the model.

We first show that, in equilibrium, there is a one-to-one correspondence between the

productivity space and the urban location space since high-productivity workers bid away

low-productivity workers in order to occupy locations close to jobs. We then characterize

the labor-market equilibrium. Wages are set according to a bilateral bargaining between

a worker and a firm and we show that wages depend on labor market variables such that

the unemployment benefit or the cost of maintaining a vacancy but also on spatial variables
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such as the commuting cost. In fact, compared to the non-spatial model, there is a new

element here. Firms need to compensate employed workers for the transport cost difference

between the employed and the unemployed workers in order for them to accept the job offer.

We also determine the job creation and the job destruction conditions, which depend on the

commuting cost. We also characterize the urban land-use equilibrium. The difficulty here

is that ex post all workers are heterogenous in terms of productivities and thus in terms of

wages. Since the latter are the opportunity cost of leisure, we show that higher productivity

and higher wage workers locate closer to jobs than those with lower productivities and wages.

We can finally calculate the equilibrium utilities of all workers and land rent at each location

in the city. The interaction between the land and labor markets is performed here through

the wages because, as stated above, firms need to compensate workers for their spatial costs.

By running numerical simulations, we are able to highlight the main differences between

the spatial and non-spatial models. We show that the unemployment rate is higher while

the vacancy rate and the reservation productivity are lower in the spatial model. The main

reason for these differences is that there are more frictions in the spatial model since workers

are differentiated both in the productivity and urban spaces. An interesting feature of the

model is that firms keep some currently unprofitable jobs occupied because of the possibility

that a job productivity might change, which enable firms to start production at the new

productivity immediately after arrival, without having to pay the recruitment cost and forgo

production during search. This feature is present in both models but is much more important

in the spatial model. An other interesting difference is that, in the spatial model, each labor

variable has an impact on both markets. Take, for example, the unemployment benefit. An

increase in the latter increases the wage, which, in turn, affects the time cost of travelling.

This increases the competition in the land market since the access to the job center becomes

more valuable, which in turn increases the wage since firms need to compensate more for

spatial costs in order to induce workers to take a job. These amplifying effects leads to

higher unemployment rate and reservation productivity and lower labor market tightness in

the spatial model.

Compared to the urban search models mentioned above, we have the following new

results/features:

(i) Workers with high productivities and wages reside close to jobs, have low commuting

costs and pay high land rents. There is a one-to-one correspondence between the urban

space and the productivity space.

(ii) Wages are a function of workers’ productivity, the productivity gap between workers

and the reservation productivity below which jobs are destroyed.
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(iii) Higher commuting costs and higher unemployment benefits lead to more job de-

struction.

(iv) There is more interaction between the land and the labor market because workers’

productivity are now affecting the land rent and the location of workers in city.

(v) Firms can keep some currently unprofitable jobs occupied because of the possibility

that a job productivity might change in the future.

The rest of the paper is organized as follows. Section 2 presents the model. In sections

3 and 4, we characterize the urban land-use and the labor equilibrium, respectively. The

steady-state equilibrium, which solves simultaneously the urban land use and the labor

market equilibrium, is analyzed in section 5. In section 6, we calibrate the model and

presents the different numerical results. Finally, section 7 concludes. All proofs are given in

the Appendix.

2 The model

There is a continuum of ex ante identical workers whose mass is N and a continuum of

identical firms. Among the N workers, there are L employed and U unemployed so that

N = L+U . The workers are uniformly distributed along a linear, closed andmonocentric city.

Their density at each location is taken to be 1. There is no vacant land in the city and all land

is owned by absentee landlords. All firms are exogenously located in the Central Business

District (CBD hereafter) and consume no space. Workers are assumed to be infinitely lived,

risk neutral and decide their optimal place of residence between the CBD and the city fringe.

Let us describe the labor market, which follows Mortensen and Pissarides (1994). We

assume that each job is characterized by a fixed irreversible technology. To be more precise,

the value of a match is given by y + �, where y denotes the general productivity and �

is a parameter that is drawn from a distribution G(�), which has a finite support [�, �]

and no mass point. To be consistent with the way we model the linear city, we assume a

uniform distribution, so that G(�) = (�− �) / (�− �).2 It is assumed that a job is created

with the highest productivity value, y + �, capturing the idea that firms with new filled

jobs use the best available technology. Then, a new value of productivity � is drawn from

G(�) independently of the current value of � when the productivity shock arrives at rate δ

according to the Poisson process. Given that a new match is assumed to have the highest

productivity, this implies that when the productivity shock arrives, the productivity of a

new match always declines. A job is then destroyed only if the idiosyncratic component of

2None of our results in the labor-market equilibrium are affected by this assumption.
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their productivity falls below some critical number e� < �. As a result, the rate at which jobs

are destroyed is given by δG(e�) = δ (e�− �) / (�− �). Because there will be a distribution of

ex post productivities y + �, there will also be a distribution of wages wL(�).

A firm is a unit of production that can either be filled by a type-� worker whose production

is y+� units of output or be unfilled and thus unproductive. In order to find a worker, a firm

posts a vacancy. A vacancy can be filled according to a random Poisson process. Similarly,

workers searching for a job will find one according to a random Poisson process. In aggregate,

these processes imply that there is a number of contacts per unit of time between the two

sides of the market that are determined by the following matching function:3

M(U, V )

where U and V the total number of unemployed and vacancies respectively. As in the

standard search-matching model (see e.g. Mortensen and Pissarides, 1999, and Pissarides,

2000), we assume that M(.) is increasing both in its arguments, concave and homogeneous

of degree 1 (or equivalently has constant return to scale). Thus, the rate at which vacancies

are filled is M(U, V )/V . By constant return to scale, it can be rewritten as

M(1/θ, 1) ≡ q(θ)

where θ = V/ (U) is the labor market tightness and q(θ) is a Poisson intensity. By using the

properties of M(.), it is easily verified that q0(θ) ≤ 0: the higher the labor market tightness,
the lower the rate at which firm fill their vacancy. Similarly, the rate at which an unemployed

worker leaves unemployment is
M(U, V )

U
≡ θq(θ)

Again, by using the properties of M(.), it is easily verified that [θq(θ)]0 ≥ 0: the higher the
labor market tightness, the higher the rate at which workers leave unemployment since there

are relatively more jobs than unemployed workers.

A steady-state equilibrium requires solving simultaneously an urban land use equilibrium

and a labor market equilibrium. It is convenient to present first the former and then the

latter.

3This matching function is written under the assumption that the city is monocentric, i.e. all firms are

located in one fixed location.
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3 Urban land-use equilibrium

To generate a location pattern by productivity type, as in Brueckner et al. (2002), we

introduce a key assumption that links commuting costs to the wage paid. In a more general

model, this link is achieved through a labor-leisure choice, which implies that a unit of

commuting time is valued at the wage rate (see, for example, Fujita, 1989, Chapter 2).

However, such a model is cumbersome to analyze, and it is likely not to yield additional

insights beyond those available from our simpler approach. This one is based on a particular

formulation of the labor-leisure choice, which is consistent with the empirical literature that

shows that the time cost of commuting increases with the wage (see, e.g. Small, 1992, and

Glaeser et al., 2008).

We assume that each worker consumes one unit of land in the city in which he/she lives,

while providing a fixed amount of labor time T . With land consumption fixed, the worker’s

utility depends solely on the quantity of a consumption good c and on the time Λ available

for leisure.

In a model with labor-leisure choice, work hours are adjusted until the marginal value

of leisure time equals the wage rate. While the explicit incorporation of flexible work hours

would seriously complicate the model, we incorporate the spirit of this standard result by

assuming that utility can be approximately by a function that values leisure time at the

wage rate. In particular, we assume that workers consume a composite good z defined as

follows:

z = c+ wL Λ (1)

The marginal utility of Λ is thus equal to the worker’s wage, as would be the case if work

hours were adjusted optimally in a more general setting. The worker purchases the good c

produced and sold at the corresponding CBD and incurs τx in monetary commuting costs

when he/she lives at distance x from the CBD. Letting R(x) denote rent per unit of land at

distance x, the budget constraint of a type-� worker at distance x can be written as follows:

wL(�)T = c+R(x) + τx (2)

where T , the amount of working hours, is assumed to be the same and constant across

workers. Furthermore, commuting time from distance x is equal to tx, where t > 0 is time

spent per unit of distance. Hence, the time constraint of a type-� worker at distance x is
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given by

1 = T + Λ+ tx (3)

in which the total amount of time is normalized to 1 without loss of generality.

Substituting (2) and (3) in (1), the instantaneous (indirect) utility of a type-� worker at

distance x, denoted by WL(�), is then given by:

WL(�) ≡ zL = wL(�)T −R(x)− τx+ wL(�)(1− T − tx)

= wL(�) (1− tx)− τx−R(x) (4)

Therefore, the time cost of commuting for a type-� worker residing at a distance x from

the CBD is twL(�)x; in accordance with empirical observation, it increases with the income

wL(�)T . As usual, wL(�) in (4) does not stand for the worker’s actual income (which is equal

to wL(�)T < wL(�)) but for the income that would accrue to an individual working all the

time (T = 1). Rearranging (4) yields:

ΨL(�, x,WL(�)) = wL(�) (1− tx)− τx−WL(�) (5)

which is the bid rent of a type-� employed worker residing at a distance x from the CBD.4

Inspection of (5) shows that, as usual, the bid-rent function is decreasing in x, with

∂ΨL/∂x < 0. In the present model, this reflects the combined influence of the time cost of

commuting and the monetary cost. Since w0(�) ≥ 0 (see below), further inspection shows
that, at a given x, an increase in � makes the bid-rent slope more negative (∂2ΨL/∂�∂x < 0).

This means that high-�workers have steeper bid-rent curves than low-� workers. The intuitive

reason is that an extra mile of commuting reduces income more for a high-� worker than for

a low-� worker, a consequence of the higher net wage. Therefore, the high-� worker requires

a larger decline in land rent than a high-� worker to maintain a given utility level. In

comparing the residential locations of two groups, it is well known that the group with the

steeper bid-rent curve locates closer to the CBD (see, for example, Fujita, 1989, Chapter 2).

In the present model, this implies that high-� workers locate closer to the CBD than low-�

workers.5

4The bid rent is a standard concept in urban economics. It indicates the maximum land rent that a

worker located at a distance x from the CBD is ready to pay in order to achieve a utility level. See Fujita

(1989) for a formal definition.
5Observe that, in the real world, people with different levels of income may use different ways of commut-

ing. For example, it is likely that high-income people prefer using cars, whereas low-income people use public

transportation. We could introduce two modes of transportation but this will complicate an already quite

complicated model without yielding new results. In particular, the location of workers in the city would be

the same since high-income workers would still have the highest opportunity cost of time.
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Let us now focus on the unemployed. Their budget constraint is given by:

wU = z +R(x) + τx (6)

where wU is the unemployment benefit. It is assumed that the unemployed commute as often

to the CBD as the employed since they go there to search for jobs and to be interviewed.6

We also assume that the unemployed’s opportunity cost of time is negligible since they do

not work, and thus time costs do not enter in their utility function.7 As a result, and to

be consistent with the utility of the employed, the instantaneous (indirect) utility of an

unemployed worker residing at distance x is:

WU ≡ zU = wU −R(x)− τx

and the bid rent is equal to:

ΨU(x,WU) = wU − τx−WU (7)

Since the wage is never equal to zero, any employed worker (whatever his/her �−type) will
have a steeper bid rent than the unemployed worker. To formalize this notion, we introduce

the definition of residential equilibrium:

Definition 1 A land-use urban equilibrium consists of the following mapping �(x) that as-

signs a worker of skill type � to a location x, i.e.

�(x) = �−
µ
�− e�
L

¶
x for 0 ≤ x ≤ L (8)

a set of utility levels W ∗
L(�) and WU , and a land rent curve R

∗(x) such that:

(i) at each x ∈ [0, L],

R∗(x) = ΨL(�(x), x,W
∗
L(�))

= max
�

ΨL(�, x,W
∗
L(�)) (9)

6It is easy to verify that assuming less trips for the unemployed would not change any of our results.
7This is admittedly a simplifying assumption because the unemployed workers are assumed to commute

to the CBD as well. However, because their wage (i.e. unemployment benefit) is fixed, does not vary with

work hours and is lower than any wage earned by an employed worker, they have the lowest opportunity

cost of time when commuting. Hence, assuming that time costs do not enter in their utility function is just

a normalization assumption. Relaxing this assumption will not alter our main results.
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(ii)

ΨL(L,WL(e�)) = ΨU(L,WU) (10)

(iii)

ΨU(N) = 0 (11)

To define the urban equilibrium, we need to calculate the assignment rule between the

location space defined on [0, L] and the productivity space defined on [e�, �], since in equi-
librium only workers with productivity equals or above e� will work. Because we know that
the relationship is negative and because of the linearity assumption of both the distribution

x of workers in the city and the distribution � of productivities, this relationship has to be

linear. So we have to find a linear and negative relationship between � and x so that �(0) = �

and �(L) = e�. The only equation that satisfies these requirements is given by (8). Moreover,
equation (8) formalizes the claim above that high-� workers locate closer to the CBD than

low-� workers. Indeed, the mapping between the physical and productivity “distances” of

workers involves a correlation between these distances. It should be noted that this result

depends on the assumption of a fixed lot size and uniform distribution of �. As is well known,

variable land consumption can overturn the present inverse association between residential

distance and the time cost of commuting (see, for example, Fujita, 1989, Chapter 2). With

variable consumption, however, additional conditions could be imposed to guarantee that

the two distances remain perfectly. The same applies to a more general c.d.f. G(�).

Let us interpret the other equations. Equation (9) says that land rent Ψ(x) at location

x equals the maximum of the bid rents across productivity types, and that the productivity

type offering the highest bid at x is occupying the location x. Furthermore, at distance

x = L, the bid rents between the employed with the lowest productivity, i.e. e�, and the
unemployed worker has to be equal to ensure the continuity of the land rent. This condition

is given by (10). Finally, because of our assumptions of a fixed lot size and of no vacant land,

the land rent at the edge of the city (distance N) is undetermined. Since the value of this

constant does not affect our results, we say in equation (11) that it equals the opportunity

cost of land, which is assumed to be zero without loss of generality.

It is important to observe that richer and more productive workers live closer to the job

center but this does not necessary imply that they live close to the city-center. What matters

is the distance to jobs. For example, in a very decentralized city, rich workers will live far

away from the city center but relatively close to jobs, if they are located in the suburbs.

We cannot solve the urban land-use equilibrium before knowing the exact value of the

wage. So let us now determine the labor-market equilibrium.
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4 Labor-market equilibrium

We need first to write the different lifetime expected utilities of workers and firms. The

steady-state Bellman equations for unemployed and employed workers are given by:

rIU = wU − τx−R(x) + θq(θ) [IL(�)− IU ] (12)

rIL(�) = wL(�) (1− tx)− τx−R(x) + δ

Z �

e

IL(s)dG(s) + δG(e�)IU − δIL(�) (13)

Let us interpret these equations. Equation (12) says that an unemployed worker, who enjoys

an instantaneous utility wU − τx − R(x) today, can find a job at rate θq(θ) and, in that

case, will start a job at the highest productivity level y + � and thus obtains an expected

utility IL(�) with the highest wage level wL(�). Equation (13) has a similar interpretation. An

employed worker, who is employed at a certain productivity level �, obtains an instantaneous

utility given by (4), i.e. wL(�) (1− tx)− τx−R(x), but can then be “hit” by a productivity

shock at rate δ and will continue to work in that job only if the match is still productive,

i.e. the productivity is at least equal to y+e�. If not, that is if the productivity of the match
is less than y + e�, which happens with probability G(e�) = Pr [� ≤ e�], the worker becomes
unemployed and loses IL(�) − IU . With our uniform distribution assumption, (13) can be

written as:

rIL(�) = wL(�) (1− tx)− τx−R(x) +
δ

(�− e�)
Z �

�

IL(s)ds+ δ

µe�− �

�− �

¶
IU − δIL(�)

(14)

For firms, with a filled job and a vacancy, we have respectively:

rIF (�) = y + �− wL(�) +
δ

(�− e�)
Z �

�

IF (s)ds+ δ

µe�− �

�− �

¶
IV − δIF (�) (15)

rIV = −c+ q(θ) [IF (�)− IV ] (16)

where c is the cost of a vacancy. The interpretation of these equations are similar to that of

(12) and (13).

4.1 Free-entry condition and labor demand

We assume that firms post vacancies up to a point where:

IV = 0 (17)
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which is a free entry condition. From (16), the value of a new job is equal to:

IF (�) =
c

q(θ)
(18)

Now using (17), (15) can be written as:

IF (�) =
y + �− wL(�)

(r + δ)
+

δ

(�− e�) (r + δ)

Z �

�

IF (s)ds (19)

Evaluating this last equation at � = � and using (18) leads to the following decreasing relation

between labor market tightness and wages:

c (r + δ)

q(θ)
= y + �− wL(�) +

δ

(�− e�)
Z �

�

IF (s)ds (20)

4.2 Wage determination

At each period, the total intertemporal surplus is shared through a generalized Nash-

bargaining process between the firm and the worker. At each period, the wage is thus

determined by:

wL = argmax
wL

[IL(�)− IU ]
β [IF (�)− IV ]

1−β (21)

where 0 ≤ β ≤ 1 is the bargaining power of workers. Observe that IU , the threat point for
the worker does not depend on the current location of the worker, who will relocate if there

is a transition in his/her employment status. The result of the bargaining is equal to:

(1− β) [IL(�)− IU ] = βIF (�) (22)

We have the following result.

Lemma 1 Assume

(1− β) tL <
β (�− e�)

(1− β)wU + β (y + c θ + �)
(23)

Then the wage wL(�) is always strictly positive, given by

wL(�) =
(1− β)wU + β (y + �+ c θ)

1− (1− β) tL (�− �) / (�− e�) (24)

and increasing in �.
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First, condition (23) guarantees that 1 − (1− β) tx > 0, ∀x ∈ [0, L] so that the wage
is always strictly positive in the area of the city where the employed workers live, i.e. in

[0, L]. This condition also guarantees that w0(�) > 0. Condition (23) is a natural require-

ment because it says that commute time from the border between the employed and the

unemployed, which equals t L, is less than tL < �−�
�+�

< 1, and thus less than the total time

available (unity). Second, the wage (24) is a generalization of the non-spatial wage obtained

by Mortensen and Pissarides (1994) (see for example in Pissarides (2000) equation (2.10)

page 42, which is (24) when t = 0). As in the standard search-matching model, we have the

same positive effects of wU , y, c and θ on the wage since they all increase the outside option

of workers. The new element here is the spatial aspect of the negotiation where the employer

has to take into account the location x of workers. As in Wasmer and Zenou (2002), firms

must compensate workers for the transport cost difference between the employed and the

unemployed workers in order for them to accept the job offer. However, the main difference

with Wasmer and Zenou is that here workers are ex post heterogenous in terms of produc-

tivity � and, because of the assignment rule (8), this translates into heterogeneity in terms

of distance to jobs x. So the compensation is more complex and this leads to a non-linear

relationship between w and �.

Third, compared with the non-spatial model, what is interesting is that here the range of

the distribution �− e� does affect the wage. Indeed, in the non-spatial model, wages depend
on job productivity y but not on other jobs’ productivities. Here, because of the spatial

compensation, the productivity of the highest and lowest productivity has an impact on the

wage of every worker, whatever his/her productivity. Fourth, because the employed and

unemployed workers have the same monetary commuting cost, only time cost (i.e. t) affects

the wage. Not surprisingly, the higher t, the higher the wage since firms need to compensate

more workers to induce to accept the job offer. Of course, this interpretation (like the ones

above) is done for a given θ and a given L. In equilibrium, θ and L = (1− u)N will be

affected by t and thus there will also be indirect effects of t on w via θ and L. Finally, the

wage obtained in (24) is independent of the uniform distribution assumption of G(�).

4.3 Endogenous job creation and job destruction

To determine the job-acceptance rule, we have to solve the following equations

IF (e�) = 0
IL(e�)− IU = 0
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These two equations are equivalent by the sharing rule (22). Let us thus solve the first one.

We show in the Appendix that, by solving this equation and using (18), the job-creation

condition can be written as:

c

q(θ)
=

µ
1− β

r + δ

¶
(�− e�) (1− tL) + [(1− β)wU + β (y + �+ c θ)] tL

[1− (1− β) tL]
(25)

while the job-destruction condition is given by:

(y + e�) (1− tL)− wU −
βc

1− β
θ +

δ (1− tL)

2 (r + δ)
(�− e�) = 0 (26)

The job-creation condition comes from the zero-profit condition while the job-destruction

condition comes from the workers’ arbitrage between working and being unemployed. Equa-

tion (25) states that the firm’s expected gain from a new job is equal to the expected hiring

cost paid by the firm. In the non-spatial case, when t = 0, we obtain

c

q(θ)
=

µ
1− β

r + δ

¶
(�− e�) (27)

which is equation (2.14) page 43 in Pissarides (2000). First, in the non-spatial case, described

by (27), the relationship between the reservation productivity e� and the labor market tight-
ness θ is negative because at higher e�, the expected lifetime of a job is shorter since, in any
short interval of time dt, the job is destroyed with probability δG(e�)dt. As a result, firms
create fewer jobs, which leads to a fall in θ and thus less job creation. This is not true

anymore since by differentiating (25), one obtains:

∂θ

∂e� R 0⇔ (1− β) tL R η(θ) (r + δ)

θq(θ)β + η(θ) (r + δ)
(28)

where

η(θ) = −q
0(θ)

q(θ)
θ > 0

is the elasticity of q(θ) in absolute value. This is because, as highlighted above, wages need

to be spatially compensated. So, when e� increases, jobs are shorter but workers need to
be compensated less, which increases θ. The net effect is thus ambiguous. If the spatial

compensation effect is not too strong, i.e. if t is not too high, one can see from (28) that

the relationship between θ and e� is negative, as in the non-spatial model. This is what we
assume now. Second, the impact of the discount rate r or the mismatch rate δ is similar to

that of the non-spatial model since higher r or δ decrease job creation because the future
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returns from new jobs are discounted at higher rates. Third, contrary the non-spatial model,

the general productivity y, the cost of maintaining a vacancy c as well as the unemployment

benefit wU enter in the equation and thus affect the relationship between e� and θ. Again

this is because of the spatial aspect of wages, which implies that, contrary to (27), the firm’s

expected revenues and costs are not anymore proportional to y. Finally, the spatial variable

t does affect the relationship between e� and θ. If t increases, then firms will create less jobs

because wages increase due to higher spatial compensation. Observe that all our comments

were made at a given L = (1− u)N . At the general equilibrium, there will be additional

effects since u is also affected by θ and e� (see below).
Let us now comment the job-destruction equation (26) and compared it with the non-

spatial case, which is given by:

y + e�− wU −
βc

1− β
θ +

δ

2 (r + δ)

(�− e�)2
(�− �)

= 0 (29)

and corresponds to equation (2.15) page 44 (for the uniform distribution) in Pissarides (2000).

Contrary to the job-creation equations, the two equations (26) and (29) are quite similar.

This is mainly because job creation is directly affected by wages while job destruction is not.

First, as in the non-spatial model, there is a positive relationship between θ and e� because
at higher θ, the worker’s outside opportunities are better, wages are thus higher, and so

more marginal jobs are destroyed, which increase e�. Second, all the variables except t enter
in a similar way and have the same effects on the relationship between θ and e� as in the
non-spatial model. Finally, the new element is t the commuting cost per unit of distance. At

given θ and L, it is easy to verify that an increase in t increases e�, which implies that more
marginal jobs are destroyed. Indeed, when t is higher, net wages increase and thus the value

of employment at each �, i.e. IL(�), increases. As a result, since the value of unemployment

IU is not affected, e� has to increase to satisfy the condition IL(e�) = IU .

4.4 Unemployment rate

The number of workers who enter unemployment is δG(e�)(1−u)N and the number who leave

unemployment is θq(θ)uN . The evolution of unemployment is thus given by the difference

between these two flows,

•
u = δG(e�)(1− u)− θq(θ)u (30)

where
•
u is the variation of unemployment with respect to time. In steady state, the rate of

unemployment is constant and therefore these two flows are equal (flows out of unemployment

15



equal flows into unemployment). We have:

u∗ =
δG(e�)

δG(e�) + θq(θ)
=

δ (e�− �)

δ (e�− �) + (�− �) θq(θ)
(31)

This equation is exactly the same as in the non-spatial model. All spatial variables will

affect the unemployment rate only indirectly through both job creation θ (see (25)) and job

destruction e� (see (26)).
5 Steady-state equilibrium

The steady-state equilibrium is a 7-tuple (θ∗, e�∗, u∗, R∗L(x), W ∗
L(�), W

∗
U , L

∗) such that

equations (25), (26), (31), (9), (10), (11), and

L∗ = (1− u∗)N (32)

are satisfied. We can in fact solve separately the urban and the labor equilibrium. We have

a first result:

Proposition 1 Assume

tL

�− e� < min
½

β/ (1− β)

(1− β)wU + β (y + c θ + �)
,
1

�− �

¾
(33)

Then, there exists a unique residential equilibrium characterized the assignment rule (8).

The equilibrium instantaneous utilities of employed workers of type � are given by:

W ∗
L(�) =

β2 (�− e�)
(1− β)2 tL

log

∙
�− e�− (1− β) tL (�− �)

�− e�− (1− β) tL (�− e�)
¸
− τN

+
β (�− e�)
(1− β)

+
[(1− β)wU + β (y + �+ c θ)] (1− tL)

1− (1− β) tL
(34)

which are increasing and convex in �, while the unemployed’s utility is:

W ∗
U = wU − sτN (35)

The equilibrium land rent in the employment zone R∗L(x), i.e. for all x ∈ [0, L], is equal to

R∗L(x) =
[(1− β)wU + β (y + � (1− 1/L) + xe�/L+ c θ)] (1− tx)

1− (1− β) tx

− [(1− β)wU + β (y + e�+ c θ)] (1− tL)

1− (1− β) tL
+ τ (N − x) (36)

+
β (�− e�)
(1− β)L

∙
β

(1− β) t
log

∙
1− (1− β) tx

1− (1− β) tL

¸
− 1 + x

¸
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and is decreasing and convex in x. In the unemployment zone, i.e. for all x ∈ [L,N ], the
equilibrium land rent R∗U(x) is given by:

R∗U(x) = τ (N − x) (37)

This result establishes that there is a unique urban land-use equilibrium and gives the

exact values of all the endogenous variables as a function of the exogenous parameters and the

endogenous variables in the labor market, i.e. θ∗,e�∗, u∗. Observe that the way these labor
variables affect the spatial variables W ∗

L(�), W
∗
U and R∗(x) are through the wage setting.

Indeed, as we have seen above, the wage (24) is affected by θ∗,e�∗, u∗, but the wage also
affects the land market through the bid rent. Indeed, workers with higher wages want to

reduce their commuting time, and thus outbid workers with lower wages at the outskirts of

the city. Concerning the labor market, we have three unknowns θ∗,e�∗, u∗, and three equations
(25), (26) and (31). By imposing the restriction in the parameters as given by (28), we have

a decreasing relationship between θ and e� in (25). Then, using similar arguments as in
Mortensen and Pissarides (1994), one can show that the steady-state equilibrium exists and

is unique. What is interesting now is to analyze the interaction between the land and the

labor market. Because the model is quite cumbersome, we now turn to numerical simulations.

6 Numerical simulations

We run some numerical simulations to obtain reasonable values of the unemployment rate

and the job creation rate. We will, in particular, focus our discussion on the differences

between the spatial and the now spatial model. As it is usual, we use the following Cobb-

Douglas function for the matching function:

M(uN, V ) = (uN)0.5 (v N)0.5

where v is the vacancy rate. This implies that q(θ) = θ−0.5, θq(θ) = θ0.5 and, the elasticity

of the matching rate (defined as η(θ) = −q0(θ)θ/q(θ)) is equal to 0.5. The values of the
parameters (in yearly terms) are the following: the output y is normalized to unity, as is

the scale parameter of the matching function. The relative bargaining power of workers is

equal to η(θ), i.e. β = η(θ) = 0.5. Unemployment benefits have a value of 2 and the costs

of maintaining a vacancy c are equal to 2 per unit of time while the general productivity is

4. The uniform distribution of � is defined on the support [0, 2], which implies that new jobs

have a productivity equal to y + � = 6 while for the worse jobs it is y + � = 4. Pecuniary
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commuting costs τ are equal to 0.1 whereas time cost are equal to 0.07. The discount rate

is r = 0.05, whereas the mismatch rate is δ = 0.15, which means that, on average, there is a

technological shock every six and half years. Finally, the total population is normalized to

1. Table 1 summarizes these different values.

Table 1. Parameter values

y=4 General productivity r=0.01 Pure discount rate

δ=0.15 Job-specific shock arrival rate β =0.5 Workers’ share of surplus

�=0, �=2 Parameters of the distribution η(θ)=0.5 Search elasticity of matching

N =1 Total population t=0.07 Time commuting cost

wU =2 Unemployment benefit τ =0.1 Pecuniary commuting cost

c=2 Cost of a vacant job

6.1 Steady-state equilibrium

Let us calculate the steady-state equilibrium for the non-spatial (t = 0) and the spatial

models (t > 0, τ > 0) using the parameter values given in Table 1. The numerical results of

these two equilibria are displayed in Table 2.

Table 2. Steady-state equilibrium

Non-spatial model (t = 0) Spatial model (t > 0, τ > 0)

u∗(%) 6.07 8.11

θ∗ 1.77 1.69

v∗(%) 10.77 13.71e�∗ 1.15 1.53

�∗(x) 2− 0.51x
w∗L(�) 4.69 + 0.5 � (4.69 + 0.5 �) / (0.86− 0.068 �)
IF (�) −3.59 + 3.13 � −19.96 + 6.25 �+ 146.83/(12.60 + �)

W ∗
L(�) 4.69 + 0.5 � 2.95 + 1.48�+ 7.30 log[0.89 + 0.07�]

W ∗
U 2 1.95

The unemployment rate u∗ and the reservation productivity e�∗ are lower and the job-
creation rate θ∗ is higher in the non-spatial model. Indeed, the urban space through com-
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muting costs and land rent creates additional frictions in the labor market that lead to these

differences. Let us understand more closely these differences.

Figure 1 displays the assignment rule �∗(x) = 2 − 0.51x, which establishes a perfect
negative correlation between the urban and the productivity spaces. This provides evidence

of the double differentiation of workers in both the productivity and urban spaces.

[Insert Figure 1 here]

To better understand the differences between the two models, let us examine the wage setting.

In the non-spatial model, the wage, given by 4.69 + 0.5 � varies between w∗L(e�∗) = 5.27 and
w∗L(�) = 5.69 while the total productivity varies between y + e�∗ = 5.15 and y + � = 6. This

means that firms keep some currently unprofitable jobs occupied. In fact, it is easy to verify

that all jobs with a productivity � ≤ 1.38 are not currently profitable because y+ � ≤ w∗L(�)

while job with a � ∈ ]1.38, 2] are profitable. As observed by Pissarides (2000), this means
that some firms keep some currently unprofitable jobs occupied because of the possibility

that a job productivity might change, which enable firms to start production at the new

productivity immediately after arrival, without having to pay the recruitment cost (which

is here quite high since c = 2) and forgo production during search. This is confirmed by

looking at IF (�), the lifetime expected utility of a firm with a filled job, which is calculating

using (43) and given by −3.59 + 3.13 �. It is easy to check that it is always strictly positive
for all � ∈ [e�∗, �]. So even if jobs with an � ∈ [1.15, 1.38[ are not currently profitable, firms
keep them because their lifetime expected utility IF (�) are strictly positive in this interval.

This is even more true in the spatial model. Indeed, because firms need to compensate for

spatial costs, wages are always higher but productivity is the same, and it is easy to verify

that, in our example, all jobs are currently unprofitable since w∗L(�) > y + �, ∀� ∈ [e�∗, �].
However, in the same interval, it is also easy to check that the lifetime expected utility IF (�)

is strictly positive. Figure 2a displays the wage distribution in the urban space, showing that

workers living further away have a lower wage because they also have a lower productivity.

Figure 2b confirms what we said before. The spatial wage w∗SL (�) (solid curve) is always

higher than the non-spatial one w∗NS
L (�) (dotted curve) because of the need for firms to

spatially compensate workers for commuting and land costs. Figure 2c shows that, in the

spatial model, IF (e�∗) = 0 and then is always strictly positive for any � > e�∗. Finally, Figure
2d compares the two expected lifetime utilities IF (�) (solid and dotted curves for the spatial

and non-spatial, respectively) and shows that it is always higher in the spatial model for

� ∈ [e�∗, �] because wages are much lower. To summarize, when comparing the spatial and
the non-spatial model, we find that, because spatial wages are higher and there are more
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frictions since workers are differentiated both in the productivity and urban spaces, the

unemployment rate as well as the reservation productivity are higher and job creation lower.

[Insert F igures 2a, 2b, 2c, 2d here]

Let us now focus on the land market. Figure 3a shows that the instantaneous utility

of employed workers is decreasing with the distance to jobs because workers who live fur-

ther away have a lower productivity and thus earn a lower wage. Figure 3b compares the

equilibrium instantaneous utilities in the spatial model (solid curve), given by W ∗
L(�), and in

the non-spatial model (dotted curve), given by w∗L(�). It is not clear which utility is higher

because, on the one hand, spatial wages are higher but workers incur commuting and land

costs. In Figure 3b, one sees that for low values of �, the non-spatial utility is higher while we

have the reverse for high productivity values. This is quite intuitive because when � is low,

wage differences are not too high but spatial costs exist, and thus the non-spatial utility has

a higher value. For high �, we have the reverse because the wage difference is sufficiently high

to compensate the spatial cost difference. This is because the spatial wage (24) is non-linear

in �. Finally, in Figure 4, we have plotted the land rent for type−e� workers. It shows that
the land rent is decreasing with distance to jobs.

[Insert F igures 3a, 3b, 4 here]

6.2 Comparative statics

We would like to pursue our analysis of the interaction between land and labor markets

by analyzing the impact of the key spatial variable, commuting cost t, on the equilibrium

labor market variables, u∗, e�∗ and θ∗. The effects are complex since t directly affects the land
market through the land rent and the instantaneous utilityWL(�) andWU but also indirectly

affects the labor market through the wage. Figures 5a, 5b and 5c display the comparative

static results of the impact of an increase in t on u∗, e�∗ and θ∗. The relationships between

u∗ and t and between e�∗ and t are clearly increasing while the one between θ∗ and t is

decreasing. This should not be a surprise since higher commuting costs lead to an increase

in wages (firms need to compensate more workers for their spatial costs), which makes

travelling to the job center even more costly. As a result, land rents increase and firms

must compensate even more workers. Therefore, firms enter less in the labor market, thus

creating less jobs, which decreases θ∗. Also since wages have increased, IL(�) the lifetime

expected value of employment increases for each job �, which implies that e�∗, the reservation
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productivity below which jobs are destroyed, must increase for the condition IL(e�∗) = IU

to be satisfied. Because more marginal jobs are destroyed and less jobs are created, the

equilibrium unemployment u∗ is reduced following an increase in t.

[Insert F igures 5a, 5b, 5c here]

One can also notice that the equilibrium values are quite sensitive to a variation in the

commuting cost t. Indeed, looking at Figures 5a, 5b, and 5c, an increase in the commuting

cost from t = 0 to t = 0.15 leads to an increase in the unemployment rate from 6.07% to

10.59%, an increase in the reservation productivity from 1.15 to 1.995, and a decrease in the

job-creation rate from 1.77 to 1.6 (which corresponds to an increase in the vacancy rate from

10.77% to 16.91%). These are important effects due to the fact that the interaction between

land and labor markets tends to amplify the effect of one variable on the other. To illustrate

this point, let us consider an increase in the unemployment benefit wU on u
∗, e�∗ and θ∗ both

in the spatial and non-spatial models. In both models, we obtain without surprise that an

increase in wU leads to an increase in u∗ and e�∗ and a decrease in θ∗. What is interesting

is the difference in the values of the endogenous variables. Table 3 reports these values for

wU = 0, 1, 2, 3, 4.

Table 3. Variation of the unemployment benefit wU

Non-spatial model (t = 0) Spatial model (t > 0, τ > 0)

u∗(%) θ∗ v∗(%) e�∗ u∗(%) θ∗ v∗(%) e�∗
wU = 0 4.12 2.72 11.20 0.94 5.58 2.63 15.17 1.32

wU = 1 4.95 2.25 11.12 1.04 6.76 2.16 14.61 1.42

wU = 2 6.07 1.77 10.77 1.15 8.11 1.69 13.71 1.53

wU = 3 7.69 1.31 10.04 1.27 10.07 1.22 12.33 1.65

wU = 4 10.34 0.84 8.72 1.41 13.32 0.77 10.21 1.79

It is easy to see that the values of the endogenous variables are much higher in the spatial

model than in the non-spatial one because of amplifying effects due to the interaction between

the land and labor markets. Indeed, when wU = 0, the unemployment rate is 4.12% and the

vacancy rate is 11.20% in the non-spatial model while, in the spatial model, these figures

are 5.58% and 15.17%, respectively. When wU = 4, the differences are even larger, with

for example 3 percent more unemployment in the spatial model. This is because, in the
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spatial model, each labor variable, like for example wU , has an impact on both markets.

Indeed, the unemployment benefit directly affects the wage since, at given θ and L, higher

wU implies higher wages, which in turn affects the time cost of travelling. This increases the

competition in the land market since the access to the job center becomes more valuable,

which in turn increases the wage since firms need to compensate more for spatial costs in

order to induce workers to take a job. These amplifying effects lead to higher unemployment

rate and reservation productivity and lower labor market tightness in the spatial model.

7 Conclusion

Most people live and work in cities, particularly in developed countries. Since the urban

economy is almost the microcosm of the national economy, understanding its problems re-

quires the application of many economic subdisciplines. In the present paper, we focus on

one of them, namely the labor market. We embed a search-matching model a la Mortensen-

Pissarides into a land market a la Alonso-Fujita. To the best of our knowledge, this is the

first paper that brings together a search matching model with endogenous job destruction

and a land market in a unified framework. We characterize the general equilibrium of this

economy. In the urban space, workers with high productivities and wages reside close to

jobs, have low commuting costs but pay high land rents. In the productivity space, ex ante

identical workers are ex post heterogenous and we obtain a wage distribution. In this re-

spect, workers are heterogenous in both the urban and productivity spaces. We show that,

in equilibrium, there is a perfect negative correlation between these two spaces since high-

productivity workers are also those who occupy locations close to jobs. We also show that

in the bargaining process, there is a spatial element in the wage setting since firms need to

compensate workers for their spatial costs. Compared to the non-spatial model, the unem-

ployment rate and the reservation productivity are lower and the job-creation rate is higher

in the non-spatial model because the urban space through commuting costs and land rent

create additional frictions in the labor market.

Our model can finally explain why there are much more flows and mobility in the labor

market in bigger than smaller cities. Indeed, we have shown that higher commuting costs

lead to more job destruction. Concerning job creation, if smaller cities (or rural areas) are

characterized by lower levels of productivity or at least a lower productivity gap between

workers, then job creation can be higher in bigger cities even if commuting costs are also

higher. This is an interesting issue that we shall pursue and deepen in the future.
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APPENDIX

Proof of Lemma 1.

We start the demonstration of this Lemma by using a general c.d.f G(�).

The sharing rule (22) implies in particular that:

IL(�)− IU =
β

1− β
IF (�) (38)

Note that the sharing rule (22) can also be written as

(1− β) IL(�)− βIF (�) = (1− β) IU (39)

Now, using (38) and (18), we have:

rIU = wU − τx−R(x) + θq(θ) [IL(�)− IU ]

= wU − τx−R(x) + θq(θ)
β

1− β
IF (�)

= wU − τx−R(x) +
β

1− β
c θ (40)

Now multiplying the asset equation IF (�) defined in (15) by β, we obtain:

rβIF (�) = β [y + �− wL(�)] + βδ

Z �

�

IF (s)dG(s)− δβIF (�)

Also, multiplying the asset equation IF (�) defined in (14) by (1− β), we get:

r (1− β) IL(�) = (1− β) [wL(�) (1− tx)− τx−R(x)]

+ (1− β) δ

Z �

�

IL(s)dG(s) + (1− β) δG(e�)IU
−δ (1− β) IL(�)

Substracting the second equation from the first, we obtain:

r [(1− β) IL(�)− βIF (�)]

= (1− β) [wL(�) (1− tx)− τx−R(x)]− β [y + �− wL(�)]

+ (1− β) δ

Z �

�

IL(s)dG(s)− βδ

Z �

�

IF (s)dG(s)− δ [(1− β) IL(�)− βIF (�)]

+ (1− β) δG(e�)IU
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Observing that

(1− β) δ

Z �

�

IL(s)dG(s)− βδ

Z �

�

IF (s)dG(s) = δ

Z �

�

[(1− β) IL(s)− βIF (s)] dG(s)

then using the sharing rule (39), we obtain:

r (1− β) IU

= (1− β) [wL(�) (1− tx)− τx−R(x)]− β [y + �− wL(�)]

+δ (1− β) IU

Z �

�

G(s)− δ (1− β) IU + (1− β) δG(e�)IU
Observing that

R �
�
G(s) = 1−G(e�), we get:
r (1− β) IU

= (1− β) [wL(�) (1− tx)− τx−R(x)]− β [y + �− wL(�)]

+δ (1− β) IU [1−G(e�)− 1 +G(e�)]
which is equivalent to:

r (1− β) IU = (1− β) [wL(�) (1− tx)− τx−R(x)]− β [y + �− wL(�)]

Finally, using the value of rIU in (40), we obtain

(1− β) [wU − τx−R(x)] + βc θ = (1− β) [wL(�) (1− tx)− τx−R(x)]− β [y + �− wL(�)]

which after some manipulations leads to:

wL(�) =
(1− β)wU + β (y + �+ c θ)

1− (1− β) tx
(41)

Now we need to use the assignment rule given by (8), which assumes a uniform distribution

in G(�). The assignment rule (8) implies

x(�) =

µ
�− �

�− e�
¶
L for 0 ≤ x ≤ L

then the wage is given by:

wL(�) =
(1− β)wU + β (y + �+ c θ)

1− (1− β) tL (�− �) / (�− e�)
which is (24). For this wage to be strictly positive, it has to be that:

(1− β) tL
(�− �)

(�− e�) < 1
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This has to be true for all � ∈ [e�, �], which means that this condition must be:
(1− β) tL < 1

This condition is captured by (23) since

β (�− e�)
(1− β)wU + β (y + c θ + �)

< 1

Furthermore, we have:

w0(�) =
β
£
1− (1− β) tL

¡
�−�
�−�
¢¤
− [(1− β)wU + β (y + �+ c θ)] tL

¡
1−β
�−�
¢£

1− (1− β) t
¡
�−�
�−�
¢
L
¤2

For w0(�) > 0, it must be that

β

∙
1− (1− β) tL

µ
�− �

�− e�
¶¸

> [(1− β)wU + β (y + �+ c θ)] (1− β)

µ
tL

�− e�
¶

which is equivalent to

(1− β) tL <
β (�− e�)

(1− β)wU + β (y + c θ + �)

which is captured by condition (23).

Determination of the job-creation and job-destruction conditions

We derive the results for a general c.d.f. G(�) and then determine them for the uniform

distribution. By plugging the wage wL(�) given by (24) in (15) and using the fact that

IV = 0, we obtain:

(r + δ) IF (�) =
(1− β) (y + �)

h
1− tL (�−�)

(�−�)

i
− (1− β)wU − βc θh

1− (1− β) tL (�−�)
(�−�)

i + δ

Z �

�

IF (s)dG(s)

(42)

First, evaluating (42) at � = e�, we obtain:
(r + δ) IF (e�) = (1− β) (y + e�) (1− tL)− (1− β)wU − βc θ

[1− (1− β) tL]
+ δ

Z �

�

IF (s)dG(s)

Now, substracting this equation from (42) and noting that IF (e�) = 0, we get:
(r + δ) IF (�) =

(1− β) (y + �)
h
1− tL (�−�)

(�−�)

i
− (1− β)wU − βc θh

1− (1− β) tL (�−�)
(�−�)

i
−(1− β) (y + e�) (1− tL)− (1− β)wU − βc θ

[1− (1− β) tL]
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Replacing this value into the IF (s) in the integral in (42) yields:

(r + δ) IF (�) =
(1− β) (y + �)

h
1− tL (�−�)

(�−�)

i
− (1− β)wU − βc θh

1− (1− β) tL (�−�)
(�−�)

i (43)

+
δ

(r + δ)

Z �

�

(1− β) (y + �)
h
1− tL (�−�)

(�−�)

i
− (1− β)wU − βc θh

1− (1− β) tL (�−�)
(�−�)

i dG(�)

− δ

(r + δ)

Z �

�

(1− β) (y + e�) (1− tL)− (1− β)wU − βc θ

[1− (1− β) tL]
dG(�)

Let us now determine the conditions for job creation and job destruction. For job creation,

we evaluating (43) at � = � and obtain:

(r + δ) IF (v) = (1− β)
(y + �)βtL+ (�− e�) (1− tL) + [(1− β)wU + βc θ] tL

[1− (1− β) tL]

Combining this equation with (18), we obtain

c

q(θ)
=

µ
1− β

r + δ

¶
(y + �)βtL+ (�− e�) (1− tL) + [(1− β)wU + βc θ] tL

[1− (1− β) tL]

which is (25). This is the job-creation condition.

Let us now determine the job-destruction condition. For that, we evaluate (43) at � = e�
and using the reservation rule IF (e�) = 0, we get:

(y + e�) (1− tL)− wU −
βc

1− β
θ +

δ (1− tL)

(r + δ)

Z �

�

(�− e�) dG(�) = 0 (44)

Let us calculate this result for the case of a uniform distribution. We obtain:

(y + e�) (1− tL)− wU −
βc

1− β
θ +

δ (1− tL)

2 (r + δ)
(�− e�) = 0

which is (26).

Proof of Proposition 1

This proof follows that of Brueckner et al. (2002).

Existence: We establish existence by construction. In order for

ΨL (�(x), x,W
∗
L(�(x))) = max

�
ΨL (�, x,W

∗
L(�)) ,
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it must be true that:
dΨL(�, x,W

∗
L(�))

d�
|�=�(x) = 0 (45)

We use this equation to solve for the unknown function W ∗
L(�), which ensures that the bid

rent of a type �(x) worker is maximal at location x. Using (41), the bid rent can be written

as:

ΨL(�, x,WL(�)) = wL(�) (1− tx)− τx−WL(�)

=

∙
(1− β)wU + β (y + �+ c θ)

1− (1− β) tx

¸
(1− tx)− τx−WL(�)

Thus (45) is equivalent to:

w0(�) (1− tx)−W 0
L(�) = 0 (46)

that is
β (1− tx)

1− (1− β) tx
−W 0

L(�) = 0 (47)

Because we want to solve for W ∗
L (�), this equation must be rewritten in terms of �. Since

our mapping, given by (8), implies

x(�) =

µ
�− �

�− e�
¶
L for 0 ≤ x ≤ L

we have:

W 0
L(�) =

β [�− e�− tL (�− �)]

�− e�− (1− β) tL (�− �)
(48)

Equation (48) constitutes a differential equation involving the unknown function W ∗
L(·).

Integrating, the solution is:

W ∗
L(�) =

Z
β
£
1− tL

¡
�−�
�−�
¢¤

1− (1− β) tL
¡
�−�
�−�
¢d�

=

Z
β (�− e�)− βtL (�− �)

�− e�− (1− β) tL (�− �)
d�

= β (�− e�)Z 1

�− e�− (1− β) tL (�− �)
d�+ βtL

Z − (�− �)

�− e�− (1− β) tL (�− �)
d�

=
β (�− e�)
(1− β) tL

log [�− e�− (1− β) tL (�− �)]

+βtL

∙
−
µ

�− �

(1− β) tL

¶
− (�− e�) log [�− e�− (1− β) tL (�− �)]

[(1− β) tL]2

¸
+K

= − β2 (�− e�)
(1− β)2 tL

log [�− e�− (1− β) tL (�− �)]− βtL (�− �)

(1− β) tL
+K
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where K is a constant of integration. We thus have:

W ∗
L(�) = −

β2 (�− e�)
(1− β)2 tL

log [�− e�− (1− β) tL (�− �)]− β (�− �)

(1− β)
+K (49)

To verify that the above solution indeed maximizes ΨL(·), we need to check that the
second-order condition holds at any solution to the first-order condition (47). This condition

requires that d2ΨL/d�
2 < 0, which implies from (47) that W 00

L(�) > 0. By differentiating

(48), we obtain:

W ∗00
L (�) =

β2 (�− e�) tL
[�− e�− (1− β) tL (�− �)]2

> 0

Let us check that W ∗0
L (�) > 0. Using (48), this is equivalent to:

�− e�− tL (�− �)

�− e�− (1− β) tL (�− �)
> 0

We thus need to show that both

tL <
�− e�
�− �

and tL <
1

(1− β)

µ
�− e�
�− �

¶
But since �−�

�−� <
1

(1−β)
¡
�−�
�−�
¢
, this reduces to

tL <
�− e�
�− �

and this is true using condition (33).

Substituting the value of W ∗
L(�), defined in (49), into (46), and using the assignment rule

(8), we obtain the equilibrium land rent R∗L(x) at the given x ∈ [0, L], which equals:

R∗L(x) =

"
(1− β)wU + β

¡
y + �− �

L
+ �

L
x+ c θ

¢
1− (1− β) tx

#
(1− tx)− τx−K

+
β2 (�− e�)
(1− β)2 tL

log [�− e�− (1− β) tx (�− e�)] + β

(1− β)L
(�− e�)x

We can calculate the equilibrium utility of the unemployed. Indeed, by solving (11) using

(7), we obtain

W ∗
U = wU − τN

which is equation (35). By plugging this value in (7), we get the equilibrium land rent R∗U(x)

at the given x ∈ [L,N ], that is:
R∗U(x) = τ (N − x)
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which is (37). Then, using R∗U(x) evaluated at x = L and R∗L(x), defined by (50), evaluated

at x = L, equation (10) can be written as:

K =

∙
(1− β)wU + β (y + e�+ c θ)

1− (1− β) tL

¸
(1− tL)− τN (50)

+
β2 (�− e�)
(1− β)2 tL

log {(�− e�) [1− (1− β) tL]}+ β (�− e�)
(1− β)

Substituting this value of K in (49), we obtain W ∗
L(�). Finally, by plugging this value of

W ∗
L(�) in (46), we obtain the city’s equilibrium land-rent function R∗(x).

By plugging the value of the constant K defined by (50) into (49) and in (50), we finally

obtain:

W ∗
L(�) = β

(�− e�)
(1− β) tL

log

∙
�− e�− (1− β) tL (�− �)

�− e�− (1− β) tL (�− e�)
¸
− τN

+βtL
(�− �/2) (1− �)

(�− e�) +
[(1− β)wU + β (y + �+ c θ)] (1− tL)

1− (1− β) tL

and

R∗L(x) =
[(1− β)wU + β (y + � (1− 1/L) + xe�/L+ c θ)] (1− tx)

1− (1− β) tx

− [(1− β)wU + β (y + e�+ c θ)] (1− tL)

1− (1− β) tL
+ τ (N − x)

+
β (�− e�)
(1− β)L

∙
β

(1− β) t
log

∙
1− (1− β) tx

1− (1− β) tL

¸
− 1 + x

¸
which are (34) and (36), respectively.

Let us now calculate R∗0L(x). For that, we use (5), that is:

R∗L(x) = wL(�) (1− tx)− τx−WL(�)

with the assignment rule (8), i.e. �(x) = �−
¡
�−�
L

¢
x, that links negatively � and x, �0(x) < 0,

We have:

∂R∗L(x)

∂x
= w0(�)�0(x) (1− tx)− wL(�)t− τ −W 0

L(�)�
0(x)

= �0(x) [w0(�) (1− tx)−W 0
L(�)]− wL(�)t− τ

= −wL(�)t− τ

which is always negative. To obtain the last equality, we use (46), which gives the value of

W 0
L(�). Differentiating this expression leads to:

∂R∗L(x)

∂x
= −w0(�)�0(x)t ≥ 0 (51)
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Since the land rent function is the upper envelope of downward-sloping bid-rent curves,

we know that it must be downward sloping and convex. Convexity of R∗L(x) is clear from

inspection of (51), and we have shown that the slope is negative, i.e. R∗0L(x) < 0.

Uniqueness: To show uniqueness of the equilibrium, suppose that productivity types �0

and �1 > �0 reside at distances x0 and x1 where x1 > x0. This pattern differs from the

mapping in (8). For workers of skill type �0 to reside at the close-in location x0, they must

outbid workers of type �1 for land at this location. But since the bid rent curve of type �0

is flatter than that of type �1, it follows that type �0 will also outbid type �1 for land at the

more-distant location x1, where that type is assumed to live. This is a contradiction, and

it rules out any location pattern in which productivity type and location distance are not

perfectlycorrelated.
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Figure 1. Equilibrium assignment rule 
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Figure 2a. Equilibrium wage distribution in the urban space 
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Figure 2b. Equilibrium wage distribution for the spatial  

and non-spatial models in the productivity space 
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Figure 2c. Equilibrium distribution of lifetime expected utility of  

firms with filled jobs in the productivity space 
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Figure 2d. Comparison of lifetime expected utilities of firms with filled jobs  

between the spatial and non-spatial models 
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Figure 3a. Equilibrium instantaneous utility distribution  
of the employed workers in the urban space 
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Figure 3b. Comparaison of equilibrium instantaneous utilities 
between the spatial and non-spatial models 
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Figure 4. Equilibrium land rent of the employed workers of type ε~  
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Figure 5a. Impact of the commuting cost on the equilibrium unemployment 
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Figure 5b. Impact of the commuting cost  
on the equilibrium labor-market tightness 
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Figure 5c. Impact of the commuting cost  

on the equilibrium reservation productivity 
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