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There are striking similarities between the problem of designing
distributive aigorithms to take advantage of the concurrent and parallel
features of the new generation of computers and the problem of designing an
efficient organization to accomplish a specified goal. For both, the objective
is to parcel the workload among the various participating units in an efficient,
coordinated fashion. For instance, consider what is involved in creating a
distributative algorithm. The main task is to determine what it is that each
processor should compute and what partially computed information should be
conveyved to which other processors. There is a similar problee for the design
of an organization. Here responsibilities need to be assigned to the different
departments and divisions; namely, the goal is to establish an organizational
chart to determine the assignments and the reporting structure. Indeed, the
design both of distributive algorithms and of organizations can be summarized
with the coordinating questions of "who should do what?" and "who should say
what to whom”"

For manv situations, there exist algorithms and organizations that
efficiently solve this division of labor problem. Bui, in general, the design
of a system remazins as an important open question. In all cases the purpose of
an organization is to achieve a stated objective. So, the major obstacle is to
understand how to start with the stated objectives and then extract from these
goals the appropriate structures - structures that can be exploited to create
the organization. The principal purpose of this paper is to attack this problem
by developing a geometric characterization of this design problem. The
geometric constructs introduced here expose the structures associated with the
universal issues i) of determining the kind of information each unit needs to
convey in order to Schieve a stated objective and ii} of establishing the
reporting structure of who reports what to whom. Because my emphasis is to
introduce some of the underlying basic concepts, I treat here only a simplified
model where 1 ignore the many other related problems. A more complete
description is planned for elsewhere.

To state the problem in a simple setting, let the objective be given by
the smooth function
1.1 F:RE(1) x ,,, x RKUJ) ~==> R

where k(i), i = 1,..,j, are positive integers. Think of each space REli) gg
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representing the data available to the ith unit (processor, department,
individual, agent, etc.). The function F represents the specified objectives.
In a computational problem, F may be a function that is to be evaluated where
the relevant data is divided so that processor i can access only the data
represented in R¥¢iJ), j = 1,..,3. For a hypothetical organizational example,
consider a firm trying to optimize profits coming fros sales of a particular
product. Let a vector in RE(1J) represent data about potential markets, RkK(2)
represent data about costs and availability of raw materials needed for
production, and R¥¢3) represent other technical varisbles. Let F represent
either the optimal profits, or the output of the product that will achieve the
maximal maximal profits with the current environment. The goal is to efficiently
transfer information (or partial computations, partiallsy constructed products,
etc.) so that F is realized.

The objective function F specifies what is to be done - the goals. Once
F is given, the object is to find the ways - the organizations - so that the
task of realizing ¥ is divided among the several cooperating units. To do this,
I build upon the ideas of Abelson [1}, Hurwicz [3] and others to model the flow
of information among the units. The basic idea, which is a slight extension of
Abelson’s model, is simple and very natural. In the beginning, each unit has
knowledge only of the data assigned to it; the ith un:t can only use the data
frem RF(2), This data must be processed in a manner thzt contributes toward
realizing F. Represent this first step of computation by g‘i(xi} = mli; i=
1,..,3, x; € REt3), m!. € R. Namely, at the first stage (denoted by the
superscripts on g and m), the ith unit uses the availablie data x; to compute the
value m‘i. 0f course, the choice of gi1 is intended sc that the value m‘i
contributes toward determining the value of F(xl,..,xj}. ({In general it is not
obvious how to define gli; indeed, finding guidelines for an appropriate
selection of these functions is major aspect of the design problem.) Let ml =
(mll,...,mlj) € R denote the vector of the first stage computations.

At the second stage, each unit can use not only its assigned data, but
also the partial computations, or messages m!, transmitted at the first stage.
This means that the computations at the second stage car be denoted by
gzi(xi,-l) = m2i € R. The general situation at the at® stage is that the ith
unit can use all of the partial computations, or messages, from the other units

as well as the original data X; . Therefore the computation at this stage is
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represented by

1.2 ge (x,,ml,...,m0"1) = mo g
i.e., this computation is represented by a function

1.3 ge,: RROJ x (RI)e-)  —-mee > R,

where m¥ € RY is the vector of partial computations at the kP step, k = 1,..,
a-1.

At some step it may be that certain units have nothing to contribute or
do. This is the situsation if, for instance, a particular unit cannot proceed
with meaningful work until it receives certain messages from specified other
units. The above modeling admits such circumstances by defining the particular
function to be g¢, = 0.

Suppose it takes P stages of partial computations to determine the value
of F. I model this by assuming that all but one of the urnits complete their
partial computations at the (B-1)t® step. The remaining unit uses the messages

of partial computations and its data to compute the value of F.1 Namely, 1

assume there is a specific index s so that

1.4 gBS(XS,I}...,IB'l) =mk_, gﬁj 20 for j # s,
where
1.5 F(xl,..,x§§ = mh_ = g“s(xs,-l,..,lﬂ‘l).

Because at certain stades some of the units mav not be transmitting a message,
the effective messages - the images of the g functions - form only a linear
subspace of (R3)}®., Let M, the message space, denote this linear subspace.

With this model, the functions {g“i} specify what each unit must do,
compute, and communicate at each stage. Because these functions determine "who
says what to whom,” I call a choice of smooth functions {g2,} that satisfies
these conditions a communication network that realizes F. Furthermore, 1 call
the issue of characterizing all possible comﬁunication networks that realize F

the central design problem associated with F.

1. This approach, which follows Abelson, is reasonable for models of
computation. An alternative model, with a slightly different supporting
mathematical theory, is where each unit finishes its computations at the fth
stage. The final determination of F is based only on these messages. Thus,
there is a function h:M ---> R so that h(m!,...,mB) = F(x;,...4x,). Here h may
correspond to the "auctioneer,” the central authority, the team ieader, or a
neutral computer. This alternative approach more closely represents several
models from economics.



On the design of organizations and algorithms Page 4

By solving or characterizing the solution of the central problem, all
sorts of information may be available about the communication network functions
{g“i}. This information can be used to analytically compare competing
communication networks, to develop complexity measures, and sc forth. As an
immediate observation, note that the value of B serves as a crude measure of the
"speed" of the communication network. This is because it indicates that F is
realized in f steps. Thus, there may be many situations whereby smaller values
of B imply a more valued communication network.

One can conceive of situations where efficiency, or mininimal cost is
determined by how much information needs to be transferred asmong the units,

This is particularly sc¢ should it be expensive, or time consuming to transmit
messages (or partial products, etc.). W¥When this is the case, measures of
complexity can be developed to reflect this fact. To see how this is done,
suppose a communication metwork {g“i} is given and consider the reporting issue
of determining "who savs what to whom?” The function g¢, represents what the
ith unit does at the a'® stage, so the dependency of this function on the m
variables determines who has to communicate what partial coeputations to this
unit. Namely, if for anv choice of s<a and k # i, the partizl derivative of g%,

with respect to mS_ is not identically zero, then the ktP unit needs to

K
communicate this value tc the itP unit before the ath stage.

As a third issue, note that it is of value to understand the "kind of
information” associated with a communication network. (This is particularly
true for theoretical investigations of a communication network.) By "kind of
information," 1 mean an equivalence class of data that gives rise to the same
value of each partial computation. In other words, starting with the given
data, at each step eachk unit computes the value of a message, m¢. . It may be
that with a different choice of data, all of the messages aée precisely the
same. (If so, then both data points give rise to the same value of F.) So, all
data giving rise to the same messages define the same kind of information. Thus
the "kind of information™ associated with a communication network is

characterized by the level sets of g, .
Definition. Let T = {g‘i}a s 1,...8; i=1,...3 be a given communication network
that realizes F. We say that x, x' € RE(1)x, . xRk{(J) are "I eguivalent” if the

following holds: gli(xi) = gli(x’) for all i. This requires the messages at
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the first stage to be the same. By induction, for all aq, g“i(xi,t‘,..,l“’l) =
g“i(x’i,l‘,..,lﬂ‘l). An equivalence class of data is called a "I information

set."”

As indicated, many of the basic issues for the design of algorithms or
organizational structures can be characterized in terms of the properties of &
communication network {g“i}. However, it is not at all clear how to start with
an objective function F and then determine an associated, non-trivial
communication network. It would be useful to determine structures that would
assist in this design. This goal, of finding what such a construction depends
upon, is the basic theme of this current paper. 1 characterize the
communication networks in terms of certain geometric comnstructs. As 1 indicated
earlier, the purpose of these geometric properties is to expose the hidden,
implicit structures of F that govern the admissible communication networks.

This approach involves solving several equations; equations that need not be
particularly easy to solve. On the other hand, these equations do indicate what
must be done to achieve such a network. As such, they form a most useful place
to start.

While myv goal is tc characterize all possible communicatzion networks, 1
would like to call attention to the several clever arguments used to find
properties of all possible communication networks without solving the central
problem. 1In particular, I point to the paper by Abelson [1], where, for j = 2
(i.e., only two units are allowed) he introduces a complexity measure, the total
information transfer, that is based on counting the number of messages that are
required to be conveyed between the processors. Thus, in terms of the above
discussion, this measure is determined by counting the non-zero partial
derivatives of the communication network functions, {g“i}, with respect to the
m variables. As such, with the efficiency assumptions introduced in the next
section, a lower bound for this measure is [dim(M) - 1] where the (-1) term
corresponds to m‘-”s - a message that is not transferred. (For j 2 3, this may
not be a sharp lower bound because the same message may be transferred to
several units.) Abelson finds a lower bound for all possible communication
networks strictly in terms of the rank properties of the Hessian of the
objective function F. By using more sophisticated mathematical approach based

on concepts from differential geometry, P. Chen [2] improves upon Abelson’s
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lower bound; Chen’s theorem is based on the rank of a bordered Hessian. Again,
Chen’s improved lower bound depends only on the differential properties of F; he

circumvents the more difficult issue of solving the central problen.

2. Single Shot Mechanisas.

In this section, some insight is obtained about the kinds of information
admitted by a specified F. I do this by showing that a communication network
for F can be viewed as being a special case of a different kind of network that
realizes F - the single shot mechanism. An important advantage of reiating the
two problems is that in this way I can exploit existing results characterizing
all possible single shot mechanisms. This characterization can be used to
impose bounds on what is possible for the associated communication networks, as
well as to characterize the possible "kinds of information" admitted by the
possible networks. Then, in Section 3, a characterization of the central
problem is provided.

The more general svsteg is where all of the information is communicated
among the different units in a single step. For this to be possible, the values
of m need to be determined implicitly. Thus, rather than communicating a value
{as is true for a communication network), the ith unit communicates & set
{m, G (x,,m) = 0}. The actual message is the intersection of these sets, i =
1,..,3, in a message space M. Such systems occur quite naturally as part of the
equilibrium analysis of a dynamical exchange of information that assumes the
form m’i = G, (x;,m). The basic purpose of the dynamic given by this
differential equation is to allow each unit to update its message based on its
own characteristics, X and the recent messages of the other units. The
equilibrium state of the dynamic is where the G functions are all egual to zero.
Notice that this modeling generalizes the common price dynamic story from
economics where prices change according to the market pressures of supply and
demand. For more detailed discussion of this and other interpretatioms, see
Hurwicz [3].

Single Shot Problem: For a given objective function F, find smooth
functions G°,(x,,m):Rk(i)xM -—> M, M = R®, a = ,..yn;, i =1,..,j; and a smooth

function h:M --> R so that with any value of m implicitly defined by
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2.1 Ge, (x,,m) = 0,
we have that
2.2 him) = F(xl,...xj). The triple ({G“if, M, h) is called a single-shot

mechanism that realizes F.

Thus the single shot mechanism corresponds to factoring a function F
through another space, M, in a non-standard implicit form. Of course, the "kind
of information" associated with a single shot mechanism {G“i} is defined in a
similar way as the I information sets - it is given by the level sets of the G°,
functions. The relationship between the single shot and the central problem is

stated in the following formal statement.

Theorem 1. 1f a function F admits a communication network, then this network
defines a single shot mechanism, {G‘i}, for F. The message space for both
systems is the same. Moreover, an information set associated with this
communication network is same information set associated with the defined

mechanism {G“i}.

The proof of this theorem is immediate. This is because the
communication network function, Eg. 1.2, can be expressed in the implicit single
shot form G*, (x,,m) = 0; a =1,..,6; 1 =1,..,J; where m = (mi, m%,...,m*} € RBJ
= M by defining G°,(x,,m) = g“i(xi,ll,...,lﬂ’i)-m“i. The assertions of the
theorem now follow immediately. Chen’s Theorew is based on a similar

observation.

An advantage of Theorem 1 is that there exists two characterization of
the single shot mechanisms (Hurwicz, Reiter, and Saari [4], and Saari [5])}. For
the purposes of this paper, 1 adopt the characterization in Saari [5,6] because
it is more general and it appears to be computationally easier to use.

According to Theorem 1, this characterization can be invoked to limit the
possible choices of the communication networks. This is because the
communication networks are those single shot mechanisms that satisfy an
additional rank condition.?

2. These rank conditions are the obvious ones required to take the equation for
the single shot mechanism and solve them to obtain a communication network.
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In general there are infinitely many choices of {G“i} functions that
give rise to the same information sets.3 However, a given set {G“i} can be
pared to a basic set by eliminating redundancies. This is the purpose of the
following set of efficiency assumptions. In these conditions, treat {G“i} as a
mapping from Rk(1)x, .RE(J)xM into an Euclidean space that agrees with the number
of G*, functions.

Efficiency Assumptions on {G“i}.

a. The dimension of M agrees with the number of {G®,} functions.

Let X = (xl,..,xj) and m represent variables in a zero set of {G“i}.

b. At (X,m) the Frechet derivative of {G‘i} with respect to m is non-
singular.

c. At (X,m) the Frechet derivative of {G“i} with respect to X has
maximal rank.

(The Frechet derivative can be viewed as being the Jacobian of {G‘i}

with respect to the indicated variables.

The characterization of the single-shot mechanisms for a given F are
expressed in a differential form. The idea is that the zero sets of the iGGi}
functions define level sets, or certain collections of related foliations of the
space RE{1)x, xRkt3), Thus, the leaves from the foliations correspond tc the
kinds of information. Foliations can be totally characterized in terms of their
normal vectors. These vectors define the normal bundle. When these vectors are
expressed in terms of differential one-formws, the normal bundle becomes an ideal
of differential forms. The necessary integrability conditions on the normal
bundle now are expressed in terms of a condition on the ideal; it must be a
differential ideal. These concepts lead to the following statement. For a
proof, a discussion of these terms, and more details, along with a partial

history of this problem see Saari [5].

——— ———— - —— -

3. This is why I place more emphasis on the "kinds of information" than on the
actual single shot mechanisms or communication networks. In fact, a useful
equivalence relationship can be defined among the mechanisms {the communication
networks) in terms of these level sets. In this manner, networks that seem to
have little to do with each other can be shown to be equivalent.
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Theorem 2. Let a smooth objective function F be given. The following are
necessary and sufficient conditions that a smooth single shot mechanisa
({G*,},M,h) for F exists in a neighborhood of X € RX(1)x, xRk(J) that satisfies
the efficiency assumptions.

1. For each i, there is a differential ideal I, =
(dF,wi'l,...,wi's(i);[dxj]i>, s8(i)=n;-1, with (Ej,ikj)+ni linearly independent
one-forms. Here, each Wi e is a smooth one form and the set [dxj}i = {dx,y x,
is a coordinate direction for a parameter not in R¥(1)},

2. The set I = n, I, is a differential ideal with n = Z; n; linearly
independent one-foras.

The resulting mechanism to realize F has a message space of dimension n

vhere there are n, functions relating the parameters of the ith unit with the

i
messages.

The proof that this is a sufficient condition follows from the Frobenius
Theorem {see Saari [5]). That this is a necessary condition comes by re-
expressing the gradients {VG“i} in terms of differential forms {dG“i}. These
one~forms form a basis for the differential ideals, {Ei}izl,__‘j, 1, that have
the specified properties. The reason the one-forms {dxj]i are in I, is to
capture the condition that the ith unit has access oniv to data from Rk(i), The
reguirement on the ideal I is to ensure that the the conveyved messages are
coegpatible with one another in evaluating F.

To illustrate how Theorem 1 can be used, notice that a trivial single
shot mechanism is a "parameter transfer” where one unit communicates the value
of all of its parameters to the second unit. After these values are
transferred, the second unit computes the value of F. Namely, if
Fix, ,x, ) :RExRk -=> R, then B = k+1, and G5, = x_ - ®5;, = O where x_ is the stk
coeponent of x,, s = 1,..,k, while G!, = F((mll,...,l“l),xz)-ml2 = 0. the
function h is the projection h(m) = mlz. This single shot mechanism has a
message space M with dim(M) = k+1l. The communication network associated with
the parameter transfer is gs, =0, g%, = m%, vwhere m%, is the stP component of
x;s 8 = 1,..,k, while gf, = F((mll,...,lkl),xz) and gk*!, = 0. This
coepunication network associated with the parameter transfer does not reflect
the kind of benefits one expect from a system capable of concurrent or

distributive action. After all, this system just transfers all of the work to
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another unit. Thus, such a communication network is one that is not overly
efficient. Yet, suppose the only single shot mechanisms admitted by F are
equivalent to a parameter transfer. It follows from Theorem 1 that all possible
commpunication networks associated with F must be related to this undesired
transfer method.

More generally, the class of all possible single-shot mechanisms that
realize F restrict the kinds of communication networks that are associated with
F. Thus, Theorems 1 and 2 form an important first step toward determining what
kinds of networks are possible. 1In Saari [5,6], several examples of F are
analyzed to characterize the associated single shot mechanisms. One example is
repeated here to illustrate Theorem 2.

Example 1. Let F:R2xR? --> R be defined by F(x,y) = I,x,y,. I show
that this function admits only a parameter transfer. To do this, I first
consider I,. This set must contain dF = Eiyidxj + Zixidyi = dxF + dyF. It also
contains dy, and dy,, as well as all possible linear combinations of these three
one-forms where the coefficients are smooth functions of x and y. As the second
supmation in dF, d_F, can be expressed as combinations of dy1 and dy, , this part
of dF can be eliminated. Thus, these forms can be reduced to the set {d F =
Eiyldx}, dyl,dyz}. If 1, were to admit any other linearly independent one-form,
then & basis for I, would be <dx1,dx2,dy1,dy2>. The foliation identified with
this ideal is given by the intersection of the level sets of X;s ¥y i=1,2.

In other words, the messages are equivalent to the first unit transmitting the
value of x to the second unit. This means that the accompanying mechanism is
{equivalent to) a parameter transfer. Hence, assume that I, = <dxF = Eiyjdxi,
dyl,dy2>. A similar argument shows that to avoid a parameter transfer of the ¥y
values, I2 = <dy = Zixidyi,dxl,dx2>. Consequently, I = <2ixidyi, Eiyidxi>.

It remains to determine whether I,, I,, and I are differential ideals.

Trivially, 1, and I, are differential ideals. One way to show this is to note

1
that r, = (Ziyidxi),dyl.dy2 is a three-form. A necessary and sufficient
condition for I, to be a differential ideal is that dw.r, = 0 where w is any one
fore from I,. But, dw.r is a five-form in a four dimensional space, so it must
be identically zero.

An alternative argument prd&ing that 11 is a differential ideal uses the
fact that this is so iff there is aﬁ associated foliation identified with I,.

This foliation is given by the intersection of the level sets (in R?xR?) of F,
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£,

ideal.

= ¥y and f2 = y,. A gsimilar argument proves that I, also is a differential

The final step is to show that I is not a differential ideal. First, r =
(Ziyidxi}-(zixidyi) # 0 and d(Eixidyi) = Zidxi-dyi. A necessary and sufficient
condition for 1 to be a differential ideal is that d(Zixjdyi)-r £ 0. However, a
direct computation proves that d(Zixidyi).r # 0. Because I is not a
differential ideal, there does not exist a single shot mechanism with n1=n2=].
This means that any single shot mechanism associated with F must involve adding
another independent one-form either to I, or to I,, and, hence, to I. Suppose
this one form is added to I,. As shown above, the addition of this independent
one-form makes 1, = <dx,,dx,,dy,,dy,>. In turn, this means that the kind of
information associated with the mechanism is egquivalent to a parameter transfer
of the x values to the other unit. Namely, for this choice of F, all single
shot mechanisms are equivalent to the parameter transfer mechanism.

It now follows from Theorem 1 that the communication networks for this
scalar product are equivalent to networks of the following form: Let g8, = x_ =

s

ms,, g5, 0, s = 1,2, g, = Z,m,vy,, g31 = 0.
3. Characterization of the Communications Networks.

The characterization of communication networks also can be expressed in
terms of differential ideals, except several more ideals are required. These
additional ideals account for the rank conditions needed to ensure that the
equations for a single shot mechanism can be sclved to determine the associated
communication network. Again, for any F, there are an infinite number of
associated communication networks, so the first task is to eliminate certain
redundancies. As in the previous section, this is done bf imposing efficiency
assumptions. In these conditions, consider only the non-constant functions in
{g“i} and treat the remaining functions as defining a mapping.

Efficiency Assumptions on a Communication Network {g“i}.

a. The dimension of M agrees with the number of non-constant {g“i}
functions.

Let X = (xl,..,xj) and m represent variables in a zero set of {g“i}.

b. At (X,m) the Frechet derivative of the non-constant {g“i} with

respect to m is non-singular.
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c. At (X,m) the Frechet derivative of the non-constant {g“i} with

respect to X has maximal rank.

Theorem 3. Let a smooth objective function F be given. The following are
necessary and sufficient conditions that a smooth communication network {g‘i}
that satisfies the efficiency assumptions exists imn a neighborhood of X €
RE(1)x, xRk(3),

1. For each i, there is a differential ideal Ili = <wii,;[dxj]i> where

the one-form wl, € T*R*(i); j.e., it is a linear combination of the

i
differentials of the coordinate functions in R¥(1) where the scalar functions
are smooth functions from RE(1) to R.

2. By induction, for each i and each a satisfying 1<a<B8, there is a one
form we. so that I¢, = <we,, I°“1i> is a differential ideal. Secondly, for all
i with the exception of an index s, IB, = I8-1.. In the exceptional case of i =
s, there can be a one-form w8_ so that IB_ = (wﬂ‘,f"18> is a differential
ideal. For all i, dF € IB,.

3. For all i and all a satisfying 1<a<f and for a = B when i = 8, all
of the ideals Je, = Ie, n (nwi I“‘lk) are differential ideals.

The resulting communication network takes £ steps and the dimension of

the message space corresponds to the dimension of Jas.

The proof of this theorem will appear elsewhere. Some of the
connections between Theorems 2 and 3 are that i) the ideal JB_ from Theorem 3
plays the role of the ideal I in Theorem 2 while ii) the ideals IBi from Theorem
3 correspond to the ideals I, from Theorem 2. The remaining ideals correspond
to the added conditions required to ensure that a2 single shot mechanism can be
expressed in the form of a communication network. XNotice that the conditions oﬁ

the ideals for the first stage, Ili, amount to choosing a one-form wl, to be a

i
functional multiple of dg‘i(xi). It is not obvious how to choose the functions
gli{xi). Therefore it is iinteresting to note, as illustrated in the following
examples, that this choice is partially governed by the conditions on the Jzi
ideals as well as the other conditions from Theorem 3. While the resulting set
of equations may be difficult to solve, this approach does provide additional
structure to understand how to decompose F into an organizational format.

Finally, notice that because the dimension of J“s agrees with the dimension of
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- M, the structure of JB_ provides valued information about Abelson’s total
information transfer.

The differences between Theorem 2 and 3, as well as an indication how to
use these results, is illustrated with the following examples. The first one,
Example 2, shows that not all single shot mechanisms are related to a
communication network.

Example 2. Let F:R2xR2-->R be defined as Fi{x,¥) = [x1y2+x2}/[1-x1y1].

1 show that F admits a (1,1) single shot mechanism; that is, there is a single
shot mechanism with n,=n,=1. This conclusion is by no means obvious. What is
even less obvious is how to decompose F into the appropriate messages from the
two units. Therefore, it is worth noting how the structures of the ideals lead
to the resulting mechanisn.

If F admits a (1,1) mechanism, then I, must be <d F;dy,,dv,> and I, =
<dyF;dxl,dx2> where, as in Example 1, dxF and dyF are, respectively, the part of
dF that has only dxj differentials and dyj differentials. If w, = {l—xlyl)zdxF
and w, = [(1—x1y1)2/x1]dyF, then I, = <w,,dy,,dy,>, I, = <W,,dx;,dx,>, I =

WpyWy >y Wy = (Vo4x,y, )dx; + (1 - x;y,)dx,, and w, = (x;¥,+x, )dy, +

1
(1 - xlyl)dyz. By using argument similar to those found in Example 1, it
follows that 1, and I, are differential ideals. Thus it suffices to show that I
is a differential ideal.

The ideal I is a differential ideal with dimension two ift r = w,.w, # 0
and both dw,.r and dw,.r are identically zero. But, because d(dxF) = -d(dyF),
it follows that 1 is a differential ideal if r # 0 and dw,.r = 0. A

computation shows that r = (yz+x2y1)(xly2+x2)dx1-dy3 +

n

(¥, 4x, ¥, M1-x,y, )dx,.dy, + (1-x,¥,)(x,y,+x;)dx,.dy, + {1~x1y1)2dx -dy, and dw,
-dx,.dy, - 2y,dx,.dx, - x,dx,.dy, + x;dx,.dy,. It is clear that r #0. A
direct computation proves that dwl,r £ 0. This establishes that I is a
differential ideal, so it also follows (from Theorem 2) that there does exist a
{(1,1) single shot mechanism that realizes F.
By following the scheme described in Saari {5,6], the single shot

mechanism given by the G“i functions can be determimed. One choice is
3.1 G, = x,

G, y,m, +y, -m =0,

In other words, for this single shot mechanism, each unit transmits a line. In

B+t x, -m = 0,

L

M = R2, these two lines intersect in a unique point; this point is the
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equilibrium value of m = (m,;,m,). The function h:M = EZ ~-> R is given by h(m)
2"

Now consider all of the communication networks associated with F. Each
choice of a network specifies the particular unit that is charged with computing
the value of F at the fth step. Secondly, to start the computation process, at
least one of the two units must make an initial partial computation; i.e., at
least one dg!;, # 0. This requires either I! or 11, to have a one-form in
addition to the one-forms corresponding to the other units coordinate functions.
This one-form characterizes the initial computation step. So, assume that the
second unit is to determine the value of F and that 111 has an independent one-
form other than dy, and dy,. (All other cases have a similar argument.} The
integrability conditions force this one-form in Il1 to be a scalar function
multiple of the differential of a function gll(x). It follows immediately from
the form of dxF that there does not exist a function ti{x,¥) so that the
coefficients of t(x,y)dxF are strictly functions of x. Consequently, both dxF
and dg’l(x) are in IP-! , and they are linearly independent. This forces 18-1,
= <dx,;, dx,; dy,, dy,>. In turn, this means that the kind of information
associated with anyv communication network must be equivalent to a parameter
transfer, so § = 3. One such network is g* (x) = x;, = ®*;, g, (y) 20; 1=
1,2; while g3, = Fi(m!,, »?,), ¥), and g3, = 0. In other words, even though the
above single shot mechanism provides a distributive wav to code information
about F that results in a saving over the parameter transfer, such economies do
not extend or exist for any of the communication networks associated with F.

The total information transfer is 2; the first unit transfers nll and
mzi to the second unit. That it is impossible to find & communication network
that improves upon the above constructed one for F follows either from the
above anal&sis or from Chen's theorem. Chen’s result shows that the lower bound

for information transfer for this choice of F is 2.

Example 3. Abelson uses the following function F to illustrate
certain features of a communication process. Chen uses the same F to illustrate
that his lower bound (of 3) improves upon Abelson’s. 1 use this F to illustrate
how Theorem 3 can be used to determine a communication network.

Let F:R"xR™ --> R be F(x,y) = I x_(y,)s + Zsys{xl)s. A direct
computation shows that dF = Z_(y,)sdx, + (I sy (x,)5-1)dx, +
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CI (x,)edy, (Z_s(y,)®"1x_)dy,. At the first stage, 11, = «dg!,(x);dy;,..,dy > and
121 = <dg!, (y); dx,,..,dx >. The choice of the functions g!, is not obvious.
What is interesting is that the choice of the functions is determined at the
second step by the structure of the ideals given in Theorem 3.

It is clear that there must be at least one more stage. If not, then to
satisfy condition 2 of Theorem 3, either d F must be a scalar (function)
multiple of dgll(x), or dyF must be a scalar multiple of dgi,{y). Because of
the mixed Xis ¥ form of the coordinate functions in these two differentials,
neither is possible. If only one additional stage is required before the value
of F can be computed by, say, unit 2, then IZ1 = <dg11, dF; dy,,..,dy_ > and le
= <dg11, dglz, d F>.

The ideal 12, is a differential ideal because it describes the foliation
given by the intersection of the level sets of gll, F, and fs(x,y) T ¥gr 8=
1,..,n. On the other hand, J2, is a differential ideal iff d(d F).r = 0 where r
= dgll-dglz.dXF # 0. {This is because d(dgli) £0 for i =1,2.) As d(d,F) =
-(Zs(y,)s-tdx_).dy, + {Zs(x,)5-1dy_}.dx,, it is easy to see that a necessary and
sufficient condition for le to be a differential ideal is that dgll(x) and
dg*z(y) are, respectively, scalar function multiples of dx; and dy,. From this,
following the scheme described in Saari [5], a communication network can be
constructed. Namely, g (x) = x; = o}, gl (y) =y, = o, g7, = I x (ml,)s =

mzl, g, =0, and g3, = mzl + Iy, (ml )8 = m32 = F{x,y).

Example 4. A very simple example is F:RExRF --> K given by F(x,y) =
f{x)g{y) where f and g are smooth functions. An obvious communication network
is m*l = f(x) and F(x,¥} = mzz = m! g(y). I show how this network arises out of
Theorem 3. First of all note that to minimize the value of B, the goal is to
choose communication functions that will permit dF to be in an ideal as soon as
possible. Therfore, we check to see if it is possible for dF € Ill. This is
true because dxF = g{y}df(x), so it is in the ideal <df(x);dy1,..,dyk>. The

described message system follows immediately.

Example 5. As a final example, I consider F:RrxR® -—> R that is given
by the scalar product; F(x,y) = E.x_¥.. According to both Abelson’s and Chen’s
Theorems, the total information transfer must be at least n - the same as for a

parameter transfer. However, a parameter transfer requires 8 = n + 1.
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Therefore, it is worth questioning whether F admits communication networks other
than the parameter transfer that permit B < n + 1. The best one can do is if at
each stage, each unit transfers & message to the other unit. If this transfer
is done efficiently, then the network would require (8-1) = n/Z2. (Recall, there
is no transfer of information at the B'P gtep; this is the stage where the value
of F is computed.) To find efficient networks is easy. However, 1 use this
simple choice of F to illustrate how the structures of Theorew 3 help to design
communication networks. {The analysis also shows what other methods are, or are
not possible.) Because I am using F to illustrate the use of the above
theorems, my description is phrased in a general fashion so that one can extend
the notions to other choices of F.

At the first stage, I}, = <dg11(x);dy1,..,dyn> and 1!, =

1
<dg12(y);dxl,..,dxn>. As true with the earlier examples given above, while the
choice of the functions {g3k} is not obvious, assistance for the choice of these
functions is provided by the structure of J¢, for a22. I will show how this
happens in different wavs. For my first choice, 1 consider what manner of
conditions for the ideals lead to the following kind of communication network:
At the first stage, the first unit communicates the value of x, while the second
communicates the value of v,. At the second stage, the first unit computes and
transmits the value of X ¥, {based on the message it received; while the second
unit transmits the value of X ¥, The process continues.

To see how the above kind of network arises, consider what happens
should a one-form wzl(x,yé = I8, (x,y)dx; be added to Izl where at least one of
the 6, functions does depend on the y variable. The first condition is that IZl
is a differential ideal. This involves showing that dwzl.r = { where r is the
{n+2)-form dgll.wzl-[dyl-....dyn]. The dw?, term can be expressed as d w?, +
dywzl '

variables while the second comes from the partial derivatives with respect to

where the first terms comes from the partial derivatives of the x

the y variables. The bracketed term in r annihilates the dywzl contribution, so
all that remains is that dxwzl.wzrdgl1 = 0. This is guaranteed for w?, being
the x-part of the differential of any function H(x,y); i.e., wzx = dxH(x,y).
Assume this is the case where, of course, the choice of H is to be determined.

The second part of the a = 2 stage is to show that le =
<dxH(x,y),dg11(x), dglz(y)> is a differential ideal. The only thing that needs
to be done here is to show that d(dxH)-{dxH.dgll(x)-dglz(y)} £ 0. As I have
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already shown above that d w? .w?,.dg!;, = 0, so it remains to show that
dywzx.dgll.dglz.wzl = 0. But dywzl is in the space spanned by {dxi-dyj}.
Another basis can be given by the wedge product of the {dxi) terms with the
orthogonal basis {dg’z(y), ti(y)}. Therefore dywz1 can be expressed as a linear
{with scalar functions as coefficients) combination of {dg!, (y)-dx,, ti(y).dxj}.
“If dywz admits any terms of the form ti(y)-dxj (but not of the form t,(y).dg!,
or 1,{y).d H(x,y)) then the differential ideal condition will not be satisfied.
This means that the "y" part of H(x,y) must depend upon the message g21 = ml,.

«

One choice is if gz1 = y,» then H(x,y) = x_¥ (There are many other choices,

Voo
such as counterproductive choices of x,y . However, such choices are quickly
excluded at the f*h step when dF must be in all ideals. Indeed, the object in
the design of the g°, functions is to include dF in each of the ideals as
quickly, or as efficiently as possible. This role of dF is illustrated with the
next design of a network.)

It is very easy to determine that the above kind of netwerk is not very
efficient. The inefficiencies are created by adding one forms to £2i that
depend on the other unit’s variables. Therefore, it is worth questioning what
happens if the one-forms added at each stage are designed to avoid the other
unit’s variables for as long as possible. Namely, suppose for eack a < s, wa,
depends onlyv on x while wa, depends onlyv on the y variables. Becazse none of

the added one-forms involve anv of the other unit’s variables, it is only

L™

necessary to show that Ie, is a differential ideal; the fact that &5 is a
differential ideal follows immediately. Moreover, the choice of thke one-forms
and the statement that each 1%, is a differential ideal guarantees that there
are communication functions g“l(x) and g“z(y). The important fact is that these
functions do not depend upon the communicated messages; they depend only upon
the data available to each unit. )

Suppose the sth stage is the last step of the exchange of imformation;
that is, f-1 = s. This requires 15, = <d F, dg!, (x), ..,dgs‘ll(x}; dy,s..,dy,>
and J®, = «d F, dg!,(x), ..,dgs-1, (x); dgt,(y), ..,dgs-1,(y)>. Again, IS, is a
differential ideal because it corresponds to the foliation given by the level
sets of F, {g“l(x)}a s 1,...8-1° f, = y;. The only part to verify is that Js,
is a differential ideal. This computation just involves showing that d(dxF)“r E
0 where r is the wedge product of the basis one-forms defining Js,. As above,

d(d_F) has two parts determined by the two sets of basis {dxi-dx and

j}i<j
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{dxi-dyj}. Denote them as d  F and dxyF.

The basic condition now becomes d_,F.r + dxyF.r £ 0. The first term is
identically zero because Is, is a differential ideal. (One could either use the
fact that mixed partial derivatives are equal, or the fact that because 15l is a
differential ideal, [(dxxF+deF}-dxF.dg11(x)-..- dge-1, (x) 1. [dy;....dy,] = O.
The last bracketed expression has the effect of annihilating all terms in the
first bracket that involve a dyi‘ The remaining terms have no dyi forms, so
[d, F.d F.dg! (x)....dgs-! (x)] = 0. But, this expression is part of the d  F.r
computation.) Thus, it remains to show that dxyF.r 0.

To show when dxyF.r = 0, note that the basis for the two-forms of this

mixed type can be divided into four parts. First, take the space generated by
the {dx;} and find another basis specified in two orthogonal parts - P*] =
{dg“l(x)} and le = {Ii’}}. Likewise, do the same for the space generated by
{dv; | where the division is P!, = {dg°,(y)} and P?, = {ti’z}. The n?¢ terms in
the basis for the mixed two-forms is given by the wedge products of one-forms
from one set with the other. Thus, any components of dxyF with a term in either
P‘} is annihilated. The d _F terms that frustrate satisfying the differential
condition are those expressed as a wedge product of forms from le and Pzz. By
assumption {that the process now is complete and dF is in the last ideal) this
cannoct happen. Therefore, the {g“i} functions are to be chosed to avcoid the
possibility of dva having any terms in the product of the PZi spaces.
Moreover, the choice of the g“i’s should be made so that all of this is true for
as small of a value of 3 as possible. As dxyF = I,dx;.dy,;, it is clear that all
of this holds if the choice of the {dg“l} is such that it includes dx, for half
of the indices while the choice of the {dg“z} includes dyj for the other half of
the indices.

A communication network that satisfies the above conditions is gs, (x) =
x, = m5,, g5,(y) =y,,,., =B5,, s =1,..,n/2 = B -2, ge-1 (x,m) = E.x ,,_ m5, =

s
me-1,, gB-1, =0, g, (x,m) = (Zy_m%)) + mb-1,.
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