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Abstract

We establish circumstances when a principal benefits from limiting contractual commit-

ment in the mechanism proposed to the agent. Such situations occur under constrained

contracting where the maximum number of admissible ex-ante contract offers is below the

number of potential agent types. Enabling the agent to cancel a contract under predefined

circumstances in return for a future offer by the principal, improves contract fit at the cost

of dynamic inefficiency. We study consequences of including such an escape clause in an

agreement and identify trade-offs involved in its design. The paper so develops a theory of

contracting with endogenously incomplete commitment.
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1 Introduction

A usual assumption of contract theory is that the agent has private information about the cost of

producing output demanded by the principal. The typical solution to the problem of contracting

under asymmetric information features a menu of contracts offered by the principal to the agent

upfront. This ex-ante menu is constructed to be incentive compatible so that the agent picks

its designated contract depending on its cost. Under a standard regularity assumption on the

probability distribution of costs, the menu features one unique contract designed for each of the

agent’s possible cost realizations (or types).

In reality, agents seldom receive such an extensive menu of contracts to select from as pre-

dicted by theory. For instance, agreements between regulatory authorities and regulated entities

usually are one-size-fits-all. We explore the consequences for mechanism design of an assump-

tion that the maximal number of different contracts that can be included in the ex-ante menu is

strictly smaller than the number of the agent’s potential cost types. The main insight emerging

from this analysis is that the principal may benefit from reserving ex ante the possibility to

contract with the agent ex post after the agent has reported its cost. This mechanism features

incomplete commitment in the sense that situations may arise when the agent first communicates

with the principal and then receives a contract offer. The degree of contractual incompleteness

is endogenous because the situations where ex-post contracting take place are described in the

mechanism presented to the agent ex ante.

Output under an ex-post contract is excessive from a second-best perspective as the agent’s

informational rent is sunk when the principal makes the contract offer. This dynamic inefficiency

increases the expected informational rent because the transfers required to sustain incentive com-

patibility ex ante are higher when the agent produces more output. However, output is excessive

from a second-best perspective for an agent with high marginal cost also under constrained con-

tracting because then high-cost types are bunched with lower-cost types. Output can therefore

be less distorted under ex-post than constrained ex-ante contracting for an agent with high cost.

This relative efficiency benefit can be sufficient to render some ex-post contracting optimal.

We model incomplete commitment as an escape clause defined in terms of a subset of cost

reports for which the mechanism does not specify any ex-ante contract. The initial menu of

contracts becomes invalid subject to the agent invoking the clause.1 The agent subsequently

receives a new contract offer by the principal. In effect, an escape clause is a safety valve that

enables contracting parties to avoid satisfying the conditions of the agreement, for instance

if circumstances render fulfillment of the contractual terms too costly. Many regulatory laws

and rules provide escape clauses.2 One example is the Swedish Electricity Act on electricity

1The Cambridge Dictionary defines an escape clause as “a statement in a contract that allows you to break all
or part of the contract under particular conditions.” dictionary.cambridge.org/dictionary/english/escape-clause

2Escape clauses are also common in real estate and venture capital agreements. A similar stipulation is a break
clause, typically featured in tenancy agreements, by which a party can end a contract prematurely. These clauses
usually do not require the principal to make a subsequent contract offer. As the principal generally cannot lose
from proposing a new contract after a previous agreement has ended, such agreements are also likely to feature
ex-post contracting. Escape clauses are common also in trade agreements (Bagwell and Staiger, 2005) or fiscal
policy frameworks (Halac and Yared, 2014). In those contexts, escape clauses typically allow parties to temporarily
deviate from an agreement in extreme circumstances. Our paper analyzes such escape clauses that permanently

1

https://dictionary.cambridge.org/dictionary/english/escape-clause


distribution networks:

“The regulatory authority may change the revenue cap during the regulatory period

by request of the regulated firm if:

1. circumstances warrant a substantial increase in the revenue cap; or

2. other valid reasons apply.”3

If a network owner activates the escape clause in accordance with this act, then the regulatory

authority is legally obliged to provide a modified contract. However, the legal framework places

no restrictions on this new contract other than it must be a revenue cap.

The following example illustrates the value of allowing ex-post contracting in a context with

constrained ex-ante contracting possibilities. Assume that the principal pays an agent a transfer

t to supply output in quantity q for which the principal has positive, but diminishing marginal

valuation S′(q). The agent produces output at constant marginal cost which is either low, θ1 > 0,

or high, θ2 > θ1. The principal cannot observe this marginal cost, but knows that it is low with

probability ν > 0 and high with probability 1− ν > 0. The principal would like to minimize the

transfer t for any quantity q produced by the agent, but the agent accepts the contract proposal

only if the transfer is sufficient to cover its production cost.

Figure 1: Efficiency benefits of ex-post contracting

Under complete information, the principal would instruct the agent to produce output at the

point where the marginal benefit of the principal was equal to the marginal cost of the agent.

This first-best quantity is identified by qfb1 in Figure 1 for an agent with low marginal cost and

by qfb2 if the agent produces at high marginal cost. Under incomplete information, the principal

offers a menu of two contracts. The agent produces the first-best output qfb1 under the low-cost

contract. The second-best output qsb2 (not identified in the figure) under the high-cost contract is

below qfb2 . The informational rent paid to an agent with low marginal cost to maintain incentive

terminate an initial agreement.
3Ellag (1997:857), 5 kap. 20 §; available at https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-

forfattningssamling/ellag-1997857 sfs-1997− 857 , our translation.
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compatibility increases the virtual marginal production cost above θ2 for an agent with high

marginal cost.

The assumption explored in this paper is that of constrained contracting. Its implication for

the above example is that the principal cannot offer two contracts upfront, only one. Let the

probability 1−ν of the agent having a high marginal cost be so large that the principal wants the

agent to produce regardless of its marginal cost. The principal’s most-preferred output q̂ under

constrained ex-ante contracting identified in Figure 1 balances the expected marginal distortion

of reducing output below qfb1 and increasing it above qsb2 . This output satisfies q̂ > qfb2 because

the agent’s expected virtual marginal production cost under constrained contracting is strictly

below θ2 by the probability that the agent produces at low marginal cost.4

Assume that the principal requires the agent first to report its marginal cost for then to offer

the agent a contract. The fear of future opportunism by the principal causes the agent to ma-

nipulate its cost report in certain situations. The agent truthfully reports its low marginal cost,

but understates its high marginal cost with probability 1−σ ∈ (0, 1). Then, the principal cannot

tell for sure whether the agent has a low or a high marginal cost following cost report θ1. Based

on its posterior belief about the distribution of cost types, the principal’s sequentially rational

output after observing a low cost report is identified by q1 in Figure 1. The agent’s expected

virtual marginal cost θ̄1 following cost report θ1 is smaller than the expected virtual marginal

cost under constrained ex-ante contracting because the principal attaches a larger probability to

the event that the agent has low marginal cost under ex-post than ex-ante contracting.5 Ex-ante

contracting therefore generates too little output q̂ compared to q1 contingent on cost report θ1.

Measured relative to θ̄1, this downward distortion yields an efficiency loss equal to the dotted

area in Figure 1. The principal deduces that the agent has high marginal cost following cost

report θ2 because only the high-cost agent reports a marginal cost of this magnitude. The cor-

responding sequentially rational output equals qfb2 . The ex-ante quantity q̂ generates too much

output in this case. Measured relative to the marginal cost θ2, this upward distortion generates

an efficiency loss equal to the dark area in Figure 1. The increased flexibility of contract offers

to the reported circumstances of the agent generates an expected net benefit to the principal of

choosing ex-post contracting over constrained ex-ante contracting measured by the dotted area

multiplied by the ex-ante probability ν + (1− ν)(1− σ) of a low cost report plus the dark area

multiplied by the ex-ante probability (1− ν)σ of a high cost report.

Strategic manipulation of cost reports by the agent inflicts a loss on the principal in the above

example although the principal prefers ex-post to constrained ex-ante contracting. The benefit

of a more truthful agent stems from the increased likelihood that the agent produces the better

suited output qfb2 instead of q1 if it has a high marginal cost. However, complete truthfulness

cannot be sustained as an equilibrium under ex-post contracting because the principal would

then infer from the cost report θ1 that the agent had in fact a low marginal cost. The sequentially

4This expected virtual marginal cost is given by ν(θ1 + (1− α)(θ2 − θ1)) + (1− ν)θ2 < θ2, where α ∈ (0, 1) is
the weight attached to the agent’s rent by the principal.

5The posterior probability that the agent has marginal cost θ1 [θ2] contingent on the cost report θ1 under

ex-post contracting equals ν
ν+(1−ν)(1−σ)

> ν, [ (1−ν)(1−σ)
ν+(1−ν)(1−σ)

< 1− ν].
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rational response would be to require the agent to produce qfb1 and extract all rent through the

transfer. The agent’s anticipation of this ratchet effect (Weitzman, 1980; Freixas et al., 1985)

places an upper bound on σ in equilibrium. The principal can mitigate its own commitment

problem by offering an ex-ante contract designed for the low-cost agent, and reserve ex-post

contracting for the high-cost agent through an escape clause activated by a reported marginal

cost of θ2. Hence, the principal’s optimal mechanism features incomplete commitment by design,

where an appropriate ex-ante contract is combined with an escape clause to maximize expected

surplus. The rest of the paper extends the example of constrained contracting to investigate

endogenously incomplete commitment sustained by an escape clause in a more general model.

We assume in Section 2 that the agent can be one of a finite number I ≥ 2 of cost types. The

principal offers a menu of K < I different contracts upfront. The mechanism may also specify

circumstances that entitle the agent to an ex-post contract offer that renders the initial menu of

contracts void. An application of the stochastic revelation principle by Bester and Strausz (2001)

results in an optimization program where the principal maximizes expected surplus subject to

standard incentive compatibility and individual rationality constraints, plus additional stochastic

and sequential rationality conditions. These incorporate strategic misrepresentation of marginal

cost by the agent and opportunistic behavior by the principal under ex-post contracting.

Section 3 derives a complete commitment benchmark without ex-post contracting against

which to compare incomplete commitment mechanisms with ex-post contracting. This mecha-

nism entails bunching of cost types into K cost groups because of constrained contracting.

Section 4 establishes fundamental properties of mechanisms with ex-post contracting. An

escape clause is defined as the subset of cost reports that entitle the agent to an ex-post contract

offer by the principal. We show that the escape clause so defined applies to high marginal cost

realizations of the agent. This result vindicates the view of an escape clause as a stipulation

that applies to unfavourable agent circumstances. As in the example, the agent understates its

marginal cost with positive probability to mitigate the ratchet effect. Simultaneously binding

upward and downward incentive compatibility constraints severely limit the degree of flexibility

in ex-post contracting: The principal offers at most two different ex-post contracts no matter

the size of the escape clause. Almost all cost reports that activate the escape clause are equally

(un)informative to the principal because of uniform randomization by the agent.6 Consequently,

a vague escape clause that does not involve any detailed communication of costs is near optimal

when the likelihood of any individual cost realization is small.

We then establish circumstances under which it is indeed optimal for the principal to include

an escape clause in the mechanism. Section 5 formalizes the example to I ≥ 2 cost types when

K = 1 so that the principal only can offer a one-size-fits-all contract upfront. Section 6 identifies

a sufficient condition for when an escape clause is optimal if K ≥ 1. This condition is fulfilled,

for instance, if the principal places a sufficiently strong weight on efficiency relative to rent

6A classical model of ex-post contracting is the analysis of strategic information transmission by Crawford and
Sobel (1982) where an informed agent sends a signal to the principal who then takes an action. The equilibrium
features uniform randomization by the agent with partitions that are more or less informative. Transfer payments
and an ex-post participation constraint by the agent reduce the informativeness of the agent’s cost reports that
trigger the escape clause in our model.
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extraction. Section 7 identifies the fundamental trade-off involved in determining the size of

the escape clause. Broadening it to include a marginally more efficient cost type improves the

contract fit for that marginal cost type, but exacerbates dynamic inefficiency by increasing the

already excessive ex-post quantity produced by the agent.

Section 8 argues that one can interpret constrained contracting in terms of the maximal

number of binding incentive compatibility and individual rationality constraints. Moreover,

reductions in expected contracting costs can justify ex-post over ex-ante contracting even when

there are no formal limits to the number of contracts the principal can propose ex ante. The

section also discusses differences between escape and renegotiation clauses.

Section 9 concludes the paper. All proofs are in the appendix.

Related literature Our paper contributes to mechanism design with incomplete commit-

ment. Commitment issues arise in a multitude of contracting problems. The seminal contribu-

tions by Freixas et al. (1985) and Laffont and Tirole (1988) study short-term contracting in a

multi-period framework. Other applications are repeated sales (e.g. Tirole, 2016; Beccuti and

Möller, 2018; Breig, 2020), organization design (e.g. Shin and Strausz, 2014) or auction design

(e.g. Vartiainen, 2013; Skreta, 2015; Akbarpour and Li, 2020). A fundamental problem is the

breakdown of the revelation principle. Bester and Strausz (2001, 2007), Skreta (2006) and Doval

and Skreta (2022) develop methodologies for analyzing such mechanisms. All these papers treat

incomplete commitment as exogenous. Ours is one of a few to consider incomplete commitment

as a mechanism design variable, specifically in the form of an escape clause.7 A string of papers

(e.g. Ben-Porath et al., 2019; Hancart, 2022) establish conditions for when commitment does not

benefit the principal, that is, ex-post yields the same expected surplus as ex-ante contracting.

In our setting with constrained ex-ante contracting, the principal may strictly prefer incomplete

commitment through a menu of ex-ante contracts augmented by an escape clause.

Escape clauses have been studied in models of optimal delegation where contracting is

constrained in the sense that transfers between the principal and the agent cannot be state-

contingent (e.g. Bagwell and Staiger, 2005; Beshkar and Bond, 2017; Coate and Milton, 2019).8

Activation of an escape clause in this context usually implements a different predefined rule than

the default rule, so the mechanism features complete commitment. In our model, triggering the

escape clause nullifies the initial menu of contracts and generates an ex-post contract offer. Halac

and Yared (2020) analyze delegation under incomplete commitment. Activation of the escape

clause by the agent implies that the principal pays a fixed cost to verify the agent’s type and

thereafter implements the efficient allocation. In our framework, the principal draws inferences

based on the agent’s observed behavior, but is unable to verify the agent’s type directly.

7Fudenberg and Tirole (1983) analyze sequential bargaining under incomplete information. Contracting is
constrained by an assumption that the seller provides a single price offer in the first stage. They observe that the
seller may strictly benefit from proposing a revised price if the buyer declines the seller’s initial offer. Adding this
second stage amounts to introducing ex-post contracting.

8Since the principal cannot use transfers to accomplish incentive compatibility, the remaining design issue is
how much discretion to leave to the agent regarding which actions to choose. Hence, the term optimal delegation.
First analyzed by Holmström (1984), Amador and Bagwell (2013) represents the most general treatment.
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2 The contracting problem

The agent (here a monopoly firm) can be one of a finite number I ≥ 2 of types. An agent of type

i ∈ {1, 2, ..., I} = I has constant marginal production cost of 0 < θi < ∞. Types are ranked in

order of increasing production cost: θi+1 > θi for all i ∈ {1, ..., I − 1}. Let ν = (ν1, ..., νi, ..., νI)

be the probability distribution over the set of possible types θ = (θ1, ..., θi, ..., θI), with νi > 0

for all i ∈ I, and
∑I

i=1 νi = 1. To simplify indexation, we define a null type θ0 ∈ [0, θ1) that

occurs with probability ν0 = 0. Also, we let Gi =
∑i

j=0 νj be the probability that the agent has

marginal production cost less than or equal to θi. Note that G0 = ν0 = 0.

A contract x = (q, t) is a pair specifying an output requirement q ≥ 0 that the agent has

to satisfy and an associated transfer of t ≥ 0 from the principal to the agent (transfers are

non-negative because the agent cannot be forced to produce at a loss). An agent with marginal

cost θi operating under contract x obtains the rent

Ui(x) = t− θiq.

The principal (here a regulatory authority) achieves the corresponding surplus of

Wi(x) = S(q)− t+ αUi(x) = S(q)− θiq − (1− α)Ui(x)

under contract x, where S(q) is the principal’s utility function of output q. This function is

continuous, twice continuously differentiable and strictly concave, with S(0) = 0. The parameter

α ∈ (0, 1) in the principal’s objective function reflects the weight the principal attaches to the

rent of the agent. We assume that the outside no-contract option has a value of zero both to

the principal and the agent and that agent participation is voluntary.

First-best contracting For any given output q, the principal wants to minimize the agent’s

rent by setting the transfer t as small as possible. Under complete information about marginal

costs, the principal therefore sets Ui(x) = 0 and maximizes

W fb
i (q) = S(q)− θiq

over q ≥ 0. We assume that S′(q) < θI for some q > 0 and that limq→0 S
′(q) > 0 is sufficiently

large that the first-best contract xfbi = (qfbi , tfbi ) entails strictly positive and bounded output

and transfer payments:

qfbi = S′−1(θi) > 0, tfbi = θiq
fb
i > 0 ∀i ∈ I.

We assume that the first-best contract is always strictly better from the principal’s point of view

than the outside option, wfb
i = W fb

i (qfbi ) > 0 ∀i ∈ I. The menu xfb = (xfb1 , ..., xfbi , ..., xfbI ) of

first-best contracts thus involves full participation in the sense that the agent produces a strictly

positive output under complete information, regardless of its marginal cost.
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Second-best contracting We study a contracting problem with incomplete information. The

setup is standard in the sense that everything is common knowledge except the agent has private

information about its marginal cost θi prior to contracting. The principal only knows the

distribution characteristics θ and ν.

To characterize the classical second-best optimum, one can apply the revelation principle

and thereby restrict attention to a direct mechanism in which the agent truthfully reveals its

marginal cost. The solution to this problem is a menu x of contracts that specifies one contract

xj for each potential cost report θj of the agent.

To minimize transfer payments, the principal ensures that an agent with marginal cost θi,

i ∈ {1, ..., I−1}, is indifferent between its designated contract xi and the contract xi+1, and that

an agent with maximal production cost θI is indifferent between producing and not. Formally,

Ui(xi) = ti+1 − θiqi+1 = Ui+1(xi+1) + (θi+1 − θi)qi+1 ∀i ∈ {1, ..., I − 1}, UI(xI) = 0.

The rent of an agent with cost θi is then found by adding up the rents for less efficient types,

Ui(xi) =
∑I−1

j=i
(θj+1 − θj)qj+1 ∀i ∈ {1, ..., I − 1}, UI(xI) = 0, (1)

loosely the discrete type version of the well-known integral in the continuous type case. This

rent is entirely a function of output.

By performing a summation by parts, we can write the expected surplus of the principal as

∑I

i=1
νiWi(xi) =

∑I

i=1
νiW

sb
i (qi), W sb

i (qi) = S(qi)− (θi +
Gi−1

νi
(1− α)(θi − θi−1))qi. (2)

Point-wise maximization of the expected welfare function delivers the second-best quantity qsbi
as the solution to

S′(qsbi ) = θi +
Gi−1

νi
(1− α)(θi − θi−1) (3)

in an interior optimum. The right-hand side of this expression defines the virtual marginal

production cost of an agent of type i under second-best contracting. Output is downward

distorted, qsbi < qfbi , for all cost types except the most efficient one, because of the fundamental

trade-off between efficiency and rent extraction under asymmetric information.

We employ the standard regularity assumption

θi +
Gi−1

νi
(1− α)(θi − θi−1) < θi+1 +

Gi

νi+1
(1− α)(θi+1 − θi) ∀i ∈ {1, ..., I − 1} (4)

of increasing virtual marginal cost. Output is strictly decreasing in the virtual marginal cost un-

der this assumption, so that the second-best menu xsb of contracts specifies one unique contract

for each cost type that produces positive output. The principal’s expected surplus associated

with offering the second-best contract to an agent with marginal production cost θi equals

νiw
sb
i = νiW

sb
i (qsbi ). It is easy to verify that wsb

i is strictly decreasing in the marginal cost θi

of the agent. The menu of second-best contracts therefore features full participation under the
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assumption that wsb
I > 0. The principal then offers I different contracts to the agent up front,

one for every possible realization of the agent’s marginal production cost.

Constrained ex-ante contracting We deviate from canonical setup by limiting the total

number K of different contracts the principal can offer the agent up front. K measures the

degree to which the environment constrains contracting between the principal and the agent,

with a smaller K meaning a more constrained environment. Contracting is unconstrained for

K ≥ I because the principal then can implement second-best contracting as described above.

Contracting is ex-ante constrained if K < I because then the principal cannot implement its

most preferred contract under asymmetric information. We refer to the polar extreme case

K = 1 as one of maximally constrained contracting.

We deviate from the standard paradigm also by assuming that the principal can enter into

the mechanism offered to the agent a possibility to contract ex post under certain predefined

circumstances. Formally, we analyze the following game between the principal and the agent:

Stage 0: The principal constructs two disjoint subsets A ⊂ I ∪ ∅ and B ⊂ I ∪ ∅ and a subset

C which contains the types not in A or B. The set C is empty if A ∪ B contains all types I.

Stage 1: The principal commits to a menu xA = {xj}j∈A of ex-ante contracts, xj = (qj , tj) >

(0, 0) for all j ∈ A if A ≠ ∅, and to xj = x0 = (0, 0) for all j ∈ C if C ̸= ∅. The menu xA consists

of at most K different contracts: |xA| ≤ K.

Stage 2: The agent accepts or rejects the Stage 1 offer.

• Rejection: The principal and the agent each receive their reservation utility 0. Game over.

• Acceptance: The game continues to the next stage.

Stage 3: The agent reports marginal cost θj , j ∈ I.

• If A ≠ ∅ and j ∈ A, then the agent produces qj in exchange for tj . Game over.

• If C ̸= ∅ and j ∈ C, then the agent receives the null contract x0. Game over.

• If B ̸= ∅ and j ∈ B, then the game continues to the next stage.

Stage 4: The principal offers an ex-post contract xj = (qj , tj).

Stage 5: The agent accepts or rejects xj .

• Rejection: The principal and the agent each receive their reservation utility 0. Game over.

• Acceptance: The agent produces qj in exchange for tj . Game over.

The mechanism features pure ex-ante contracting if B = ∅. This is the standard complete

commitment setting of mechanism design, adapted here to the context of constrained contracting.

It has incomplete commitment if B ≠ ∅. We interpret this property as the inclusion of the

following escape clause in the mechanism:

All initial contract offers by the principal are void if the agent reports marginal cost

θj, j ∈ B. The agent will receive a new contract offer from the principal subsequent

to invoking this clause.
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The mechanism features pure ex-post contracting if A = ∅ so that the principal does not offer

any contract upfront before communicating with the agent.

The menu of contracts x = (xA,xB), xB = {xj}j∈B, is direct by assumption. Bester and

Strausz (2001) show for the class of games we consider here that the principal cannot gain

anything by extending communication to more general message spaces. The result applies if the

principal contracts with one single agent with private information about his type in a discrete

and finite type space, the menu of contracts x and the agent’s reporting strategy Σ (see below)

maximize the expected surplus of the principal, and the agent communicates its type with the

principal only once.

The information that forms the basis of the principal’s contract offer in Stage 4 differs from

the information underlying contract offers in Stage 1 because the later-stage contract offer builds

on information that the principal has obtained from communicating with the agent, namely the

cost report θj , j ∈ B. The menu xB contains all elements of B, but at most one of them will

ever be proposed in equilibrium. Hence, the maximal number of contracts with positive output

offered along the equilibrium path is K+1. Observe also that the principal can always offer the

null contract x0 regardless of K. This is not unreasonable given the simplicity of this particular

contract. The null contract is a simple way to handle partial participation, where some types do

not produce a positive quantity in equilibrium.

A mechanism with incomplete commitment may involve the agent misrepresenting its type

with positive probability in equilibrium. The reporting strategy of an agent of type i ∈ I is

a probability distribution σi = (σ1i, ..., σji, ..., σIi)
T ∈ ∆I−1, where ∆I−1 is the I − 1 standard

simplex. Specifically, σji ∈ [0, 1] is the probability that an agent with marginal cost θi claims to

have marginal cost θj . We let σi = σii denote the probability that an agent with marginal cost

θi truthfully reports its marginal cost. Let Σ = (σ1, ...,σi, ...,σI) ∈ ∆2(I−1) be the I × I matrix

of reporting probabilities. We call µji the posterior probability attached by the principal to the

event that the agent has marginal cost θi when the agent has reported marginal cost θj , and let

µj = µjj be the posterior belief that the cost report θj has been truthful.

By an extension of the terminology introduced in Bester and Strausz (2001) to the current

environment, the mechanism (x,Σ|A,B) is incentive feasible given (A,B) if it meets the following

conditions:

Ui(xi) ≥ 0 ∀i ∈ I (5)

Ui(xi) ≥ Ui(xj) = Uj(xj) + (θj − θi)qj ∀(i, j) ∈ I × I (6)

σi > 0, σji(Ui(xi)− Ui(xj)) = 0 ∀(i, j) ∈ I × I (7)

xj ∈ arg max
x′∈R2

+

∑I
i=1 µjiWi(x

′) ∀j ∈ B if B ̸= ∅ (8)

µji =
νiσji∑I

h=1 νhσjh
∀(i, j) ∈ I × I (9)

|xA| ≤ K (10)

Constraints (5) and (6) are the standard individual rationality and incentive compatibility con-
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straints. The ex-post menu xB and agent reporting strategy Σ must jointly form a PBE to be

part of an incentive feasible contract if B ̸= ∅. Constraints (7)-(9) are the associated equilibrium

conditions. First, (7) is a rationality constraint on Σ that keeps an agent of type i at least

indifferent between truth-telling and lying given that the agent correctly expects to receive xj if

it invokes the escape clause by reporting j ∈ B. Second, (8) is a sequential rationality constraint

on xB requiring that xj maximize the expected surplus of the principal subsequent to every cost

report θj , j ∈ B, and given the principal’s Stage 4 distribution of beliefs about the agent’s true

marginal cost θi. Third, (9) is a consistency requirement that the principal’s posterior beliefs

satisfy Bayes’ rule. The final constraint (10) appears because of constrained ex-ante contracting,

and does not feature in Bester and Strausz (2001). We use Γ(A,B) to label the set of incentive

feasible mechanisms given (A,B).
Following again Bester and Strausz (2001), a mechanism (x̂, Σ̂|A,B) is incentive efficient

given (A,B) if it maximizes the principal’s expected surplus

W (x,Σ|A,B) =
∑I

i=1

∑I
j=1 νiσjiWi(xj) (11)

in the set Γ(A,B) of incentive feasible mechanisms. Observe that the principal optimizes both

over the menu of contracts x and the reporting strategy Σ.

Complete commitment represents the default mode in mechanism design analysis where

B = ∅, so that no additional contracting occurs after the agent has reported its marginal

cost. Bester and Strausz (2001) consider the alternative setting of exogenously incomplete

commitment, i.e. for exogenously given (A,B) in the present context. Our paper attempts to

bridge the gap between the two paradigms by endogenizing commitment. Specifically, at Stage

0 of the game, the principal chooses (A,B) to maximize the expected surplus W (x̂, Σ̂|A,B). An
incentive optimal mechanism (x∗,Σ∗|A∗,B∗) solves this problem.

Instances can occur when an incomplete commitment mechanism can do as well as one with

complete commitment, but no better. We will stack the deck against escape clauses by assuming

that the principal chooses pure ex-ante contracting in this case. Hence, the principal benefits

from reducing contract commitment at stage 0 if and only if doing so strictly increases expected

surplus.

Definition 1 (Escape clauses are minimal) An incentive feasible mechanism (x∗,Σ∗|A∗,B∗)

containing an escape clause (B∗ ̸= ∅) is incentive optimal if and only if it maximizes the prin-

cipal’s expected surplus among all incentive efficient mechanisms,

W (x∗,Σ∗|A∗,B∗) ≥ W (x̂, Σ̂|A,B) ∀(A,B) ⊂ [I ∪ ∅]× [I ∪ ∅], A ∩ B = ∅, (12)

and the escape clause is minimal in the following sense:

W (x∗,Σ∗|A∗,B∗) > W (x̂, Σ̂|A,B) ∀(A,B) ⊂ [I ∪ ∅]× [B∗ ∪ ∅],A ∩ B = ∅,B ̸= B∗. (13)

The incentive optimal mechanism entails endogenously incomplete commitment if B∗ ̸= ∅. Con-
dition (12) simply states that the proposed mechanism with the escape clause maximizes the
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principal’s expected surplus across all possible incentive efficient mechanisms. Condition (13)

requires in addition that the principal must strictly prefer the proposed mechanism with the

escape clause to any incentive efficient mechanism without any escape clause, but also that the

principal cannot find another mechanism with a narrower escape clause B ⊂ B∗, B ≠ B∗, that

yields the same expected surplus as the proposed mechanism. The incentive optimal escape

clause is minimal in this sense.

3 Constrained contracting with complete commitment

This section analyzes properties of incentive efficient mechanisms under the assumption that

the principal commits to an ex-ante menu of contracts (A ≠ ∅), but does not engage in ex-post

contracting (B = ∅), so that the mechanism features complete commitment. We assume that

contracting is constrained, K < I, so that the principal is unable to implement the second-best

menu of contracts. These mechanisms establish the appropriate benchmark against which to

evaluate the merits and drawbacks of incomplete commitment mechanisms.

By the revelation principle, we can restrict attention to truth-telling mechanisms, i.e. incen-

tive feasible mechanisms for which Σ = I, where I is the I-dimensional identity matrix. The

principal maximizes (11) over xA subject to (5), (6) and (10). Incentive compatibility implies

that output is non-increasing in the agent’s marginal cost. Hence, the set of cost types for which

there is ex-ante contracting is convex and contains the most efficient cost types: A = {1, ..., A},
where θA is the marginal cost of the least efficient agent that produces positive output in the

mechanism. The mechanism features full participation if A = I. Otherwise, C = {A+ 1, ..., I}.
Set A is partitioned into K non-empty cost groups, indexed by k ∈ {1, ...,K}. Each cost

group k defines a convex set Ak ⊂ A consisting of all cost types that operate under the same

contract. Let θAk
be the marginal cost of the most efficient agent contained in Ak, and let θAk

be the marginal cost of the least efficient agent contained the same cost group. We identify the

contract designed for cost group k by xAk
= (qAk

, tAk
). We rank cost groups such that the agent

is more efficient if it has marginal cost in cost group k than k+ 1. Observe also that xAK
= xA

because A is the least efficient cost type contained in AK .

Same as under second-best contracting, the principal minimizes transfer payments to min-

imize agency rent. Incentive compatibility constraints are therefore locally downward-binding

for all cost types except the least efficient type I, for which the individual rationality constraint

is binding. Hence, the rent to an agent with marginal cost θi is given by (1). Substituting the

expressions for agency rent into (11) yields the principal’s expected surplus

W (x̂, I|A, ∅) =
A∑
i=1

νiWi(x̂i) =
K∑
k=1

νAk
WAk

(q̂Ak
) (14)

of the incentive efficient mechanism. In this expression, νAk
=

∑
i∈Ak

νi measures the ex-ante

11



probability that the agent’s marginal cost is contained in Ak, whereas

WAk
(q) = S(q)− [

∑
i∈Ak

νi
νAk

(θi + (1− α)(θAk
− θi) +

GAk−1

νAk

(1− α)(θAk
− θAk−1

)]q (15)

is the principal’s utility of output q in cost group k minus the virtual production cost of this

output, where
GAk−1

νAk
is the hazard rate of cost group Ak. We let GA0 = 0. This welfare

expression is equal to the second-best welfare expression W sb(q) defined in (3) if cost group k

consists of one single element Ak.

Maximization of WAk
(q) over q yields the incentive efficient output q̂Ak

in cost group k as

the solution to

S′(q̂Ak
) =

∑
i∈Ak

νi
νAk

(θi + (1− α)(θAk
− θi)) +

GAk−1

νAk

(1− α)(θAk
− θAk−1

). (16)

The output q̂Ak
of an agent with marginal cost θAk

is larger under pooling of types than the

corresponding second-best output qsbAk
. The reason is that more efficient cost types i ∈ Ak are

weighted by their full marginal cost θi instead of their contribution (1 − α)θi to the agent’s

informational rent in the calculation of the virtual marginal production cost under constrained

contracting. The output q̂Ak
= q̂Ak

of an agent with marginal cost θAk
is smaller under pooling

of types than the corresponding second-best output qsbAk
because the marginal cost θi of less

efficient cost types i ∈ Ak are included in the calculation of the virtual marginal production cost

under constrained contracting.

We derived the above results in a heuristic manner with a fuller treatment in the appendix.

In the appendix, we also analyze other important aspects of constrained contracting, namely

the optimal scope A of the ex-ante mechanism and the optimal partitioning of A into the K

specific cost groups.

4 Constrained contracting with incomplete commitment

This section establishes fundamental properties of the contract menus and the agent’s reporting

strategies in incentive feasible and incentive optimal mechanisms with incomplete commitment.

For any incentive feasible mechanism (x,Σ|A,B) that features ex-ante contracting, A ≠ ∅, we
denote by A the largest type contained in A. We let B and B be the minimal and maximal

types, respectively, contained in B, which is non-empty by assumption. Finally, C represents the

minimal type contained in C if the mechanism features partial participation, C ̸= ∅. We add an

asterisk “*” to this notation if the mechanism (x∗,Σ∗|A∗,B∗) in question is incentive optimal.

Lemma 1 (Fundamental properties of contracts) Any incentive feasible mechanism (x,Σ|A,B)
that features incomplete commitment (B ̸= ∅) has the following properties:

1. B has at most two unique contracts: |xB| ∈ {1, 2}.

2. If |xB| = 2, then:
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(a) All cost reports θj, j ∈ {B, ..., B − 1}, yield the same contract xB = (qB, θBqB).

(b) Cost report θB yields contract xfbB .

Any incentive optimal mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ ̸= ∅)
has the following additional properties:

3. The mechanism exploits all available ex-ante contractual flexibility, |x∗
A∗ | = K.

4. All cost types contained in A∗ are more efficient that those contained in B∗, and all ex-ante

contracts have strictly higher output than all ex-post contracts, θA∗ < θB∗ and q∗A∗ > q∗B∗.

5. All cost types contained in B∗ are more efficient that those contained in C∗ if the mechanism

features partial participation, θB∗ < θC∗ if C∗ ̸= ∅.

Proof. See Appendix A.2.

Item 1 of Lemma 1 shows that incomplete commitment increases the degrees of freedom in the

mechanism by at most 2 compared to a mechanism with complete commitment. The number

of different contracts contained in the menu x of incentive feasible contracts equals |x| = |xA|+
|xB| ≤ K+2 under incomplete commitment. This limited additional flexibility is not an artifact

of our choice to define incentive optimal mechanisms in terms of those with minimal escape

clauses, as the result applies to all incentive feasible mechanisms. Instead, flexibility is limited

under ex-post contracting by incentive compatibility and the ratchet effect that render incentive

compatibility constraints simultaneously downward- and upward-binding. We return to this

issue shortly.

By Item 2 of the lemma, a “no-distortion-at-the-bottom” result applies to the upper bound-

ary cost type B that invokes the escape clause, xB = xfbB in case |xB| = 2. This property follows

from the discretionary nature of a mechanism with incomplete commitment. The contract xB

leaves an informational rent to any agent with a smaller marginal cost θi < θB. But unlike in the

complete commitment setting, the transfer payments necessary to reach incentive compatibility

are sunk after the agent has announced marginal cost θB at Stage 4 of the game. Consequently,

there is no ex-post trade-off between efficiency and rent extraction. If |xB| = 2, the agent reports

θB only if it indeed represents the agent’s true marginal cost; see below. Upon observing cost

report θB, the principal’s sequentially rational choice therefore is to offer the first-best efficient

contract for that specific cost type.

Item 3 is intuitive because the principal can always increase expected surplus by costlessly

adding a new contract to the mechanism as long as the principal has not fully utilized all ex-ante

contractual flexibility. Items 4 and 5 imply that ex-ante contracts are designed for more efficient

types, whereas the escape clause is targeted towards less efficient cost types in the incentive

optimal mechanism. Sufficiently inefficient cost types may not produce at all in equilibrium.

Figure 2 illustrates a partitioning of cost types that is consistent with Lemma 1 for an agent

with 16 possible cost types and under the assumption that the principal only can offer one single

contract ex ante, K = 1. The mechanism is designed such that an agent who reports marginal
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Figure 2: Partitioning of cost types in an incentive optimal mechanism.

cost in the span between θ1 and θ7 receives the ex-ante contract x∗7, where A∗ = 7 marks the

upper boundary cost type for the ex-ante contract. The agent invokes the escape clause for any

marginal cost report between θ8 and θ12, where B∗ = 8 is the lower boundary and B∗ = 12 the

upper boundary cost type for the escape clause. The agent receives the same ex-post contract

offer x∗8 for nearly all cost reports that activate the escape clause. The exception is for the upper

boundary cost report θ12, subsequent to which the principal offers the agent the associated

first-best contract xfb12. The agent is not allowed to produce anything for reported marginal cost

equal to or above θ13, so that C∗ = 13 marks the lower boundary cost type for non-production.

Consider next the incentive optimal reporting strategy Σ∗ by the agent. Denote by B∗ the

set of types such that any marginal cost report θj , j ∈ B∗, induces the principal to offer the

ex-post contract x∗B∗ .9 For instance, B∗ = {8, 9, 10, 11} in Figure 2.

Lemma 2 (Fundamental properties of reporting strategies) For any incentive optimal

mechanism (x∗,Σ∗∗|A∗,B∗) featuring incomplete commitment (B∗ ̸= ∅), there exists an incentive

optimal mechanism (x∗,Σ∗|A∗,B∗) and reporting strategy Σ∗ with the following properties:

1. With respect to cost types in A∗:

(a) All but the least efficient type truthfully report their cost, σ∗
i = 1 ∀i ∈ {1, ..., A∗ − 1}

if |A∗| ≥ 2.

(b) The upper boundary type A∗ may invoke the escape clause, and then randomizes

uniformly across all cost types contained in B∗, σ∗
jA∗ =

1−σ∗
A∗

|B∗| ∀j ∈ B∗.

2. With respect to cost types in B∗:

(a) The lower boundary type B∗:

i. truthfully reveals its cost if the escape clause contains one type, σ∗
B∗ = 1 if |B∗| =

1;

ii. may choose an ex-ante contract if the escape clause contains two types and two

distinct contracts, σ∗
A∗B∗ = 1 − σ∗

B∗ ≥ 0 if |B∗| = 2 and |x∗
B∗ | = 2. In that case,

the A∗ type invokes the escape clause with zero probability, (1−σ∗
B∗)(1−σ∗

A∗) = 0;

iii. uniformly randomizes across all types in B∗ otherwise, σ∗
jB∗ = 1

|B∗| ∀j ∈ B∗ if

|B∗| = 2 and |x∗
B∗ | = 1 or if |B∗| ≥ 3.

9Formally, B∗ = {B∗, ..., B∗ − 1} if |x∗
B∗ | = 2, and B∗ = B∗ if |x∗

B∗ | = 1; see Lemma 1.
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(b) Intermediary types randomize uniformly across all types in B∗, σ∗
ji =

1
|B∗| ∀(i, j) ∈

{B∗ + 1, B∗ − 1} × B∗ if |B∗| ≥ 3.

(c) The upper boundary type B∗ randomizes between all types of cost reports that yield

ex-post contracting:

i. σ∗
B∗ < 1 and σ∗

jB∗ =
1−σ∗

B∗
|B∗| ∀j ∈ B∗ if |x∗

B∗ | = 2;

ii. σ∗
jB∗ = 1

|B∗| ∀j ∈ B∗ if |x∗
B∗ | = 1.

3. Cost types in C∗ truthfully report their cost if the mechanism features partial participation,

σ∗
i = 1 ∀i ∈ C∗ if C∗ ̸= ∅.

Proof. See the Appendix A.3.

Lemma 2 contains a near-complete characterization of the incentive optimal reporting strategy

under endogenously incomplete commitment, despite the potentially large set of cost types and

feasible randomization strategies. It is lengthy because the incentive optimal reporting strategies

under ex-post contracting depend on the number |B∗| of types in the escape clause. However, the

reporting strategies of the individual cost types are mostly simple, which we illustrate based on

Figure 2. By Item 1(a) of Lemma 2, any agent with marginal cost between θ1 and θ6 truthfully

reports its marginal cost and produces under the ex-ante contract x∗7. This result follows from

an application of the Revelation Principle to the menu of ex-ante contracts. By Items 2(a)iii

and 2(b) of the lemma, any agent with marginal cost between θ8 and θ11 uniformly randomizes

between cost reports θ8 and θ11 and thereby receives the ex-post contract x∗8 with probability 1.

By Item 3 of the lemma, any agent with marginal cost equal to or above θ13 truthfully reports

its marginal cost and receives the null contract. In Figure 2, remaining uncertainty relates to the

probability 1 − σ∗
7 ∈ [0, 1) with which an agent with marginal cost θ7 exaggerates its marginal

cost to activate the escape clause and thereby receive the ex-post contract offer x∗8. Additional

uncertainty is associated with the probability 1−σ∗
12 ∈ (0, 1) with which an agent with marginal

cost θ12 understates its marginal cost to receive the ex-post contract x∗8.
10

Understatement of marginal costs by some relatively inefficient types is fundamental to ensure

incentive compatibility of ex-post contracts for cost types i < B∗ in equilibrium. Suppose, for

instance, that no agent with marginal cost equal to or above θ9 ever pretends to have marginal

cost θ8 in Figure 2. The principal would then infer from a cost report equal to θ8 that the

agent had marginal cost of no more than θ8. The sequentially rational ex-post contract offer

x8 would then involve a transfer t8 ≤ θ8q8 by the principal in an effort to minimize agent

rent. Anticipating this ratchet effect, an agent with marginal cost θ8 would expect to earn

non-positive rent by a truthful cost report. It would be better for the agent to exaggerate its

marginal cost, for instance to θ12, and earn strictly positive rent. Consequently, the mechanism

would be incentive incompatible. The requirement that incentive compatibility constraints must

be locally upward-binding underlies the finding in Lemma 1, namely that ex-post contract offers

for all cost reports θj , j ∈ {B, ..., B − 1} are the same in any incentive feasible mechanism.

10An agent with marginal cost θB∗ may understate marginal cost to θA∗ under very specific circumstances; see
Item 2(a)ii of Lemma 2.
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We summarize the most important qualitative features of incentive optimal mechanisms with

incomplete commitment as:

Observation 1 The incentive optimal mechanism includes an escape clause to accommodate

situations in which the agent has high marginal costs. Ex-post contracts are distorted from an

ex-ante perspective mainly because (i) the principal treats informational rent as a sunk cost when

making ex-post contract offers; (ii) the agent may trigger the escape clause by exaggerating its

cost.

Implementation through a vague escape clause In the mechanisms described above, the

transactions between the principal and the agent build on highly detailed communication. Any

mechanism describes for each possible cost report θj , j ∈ A, which contract xj of K specified

options the agent shall receive; it defines a subset B of cost types such that the agent triggers the

escape clause for all marginal cost reports θj , j ∈ B. Finally, the mechanism may also specify a

non-empty subset C such that the agent does not produce anything for any cost report θj , j ∈ C.
Such high level of contractual detail can be costly to implement in practice, and delineating the

exact boundaries of the escape clause seems particularly challenging. An interesting question

for mechanism design then relates to the extent to which detailed communication adds economic

value to the principal.

To gauge the value of communication between the principal and the agent in our context,

consider first the posterior beliefs generated by the agent’s cost reports under the assumption

that the escape clause encompasses three or more types |B∗| ≥ 3, and that ex-post contracting

yields two different contract offers, |x∗
B∗ | = 2. On the basis of the reporting strategies in Lemma

2, the principal attaches posterior probability equal to 1 of a truthful report for all cost reports

θj such that j ∈ A∗ ∪C∗ and for the specific cost report θB∗ . Because of uniform randomization

of cost reports, the principal forms the same set of posterior beliefs,

µ∗
jA∗ =

νA∗(1− σ∗
A∗)

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi + νB∗(1− σ∗

B∗)

µ∗
ji =

νi
νA∗(1− σ∗

A∗) +
∑

i∈B∗ νi + νB∗(1− σ∗
B∗)

∀i ∈ B∗

µ∗
jB∗ =

νB∗(1− σ∗
B∗)

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi + νB∗(1− σ∗

B∗)
,

(17)

subsequent to any cost report θj such that j ∈ B∗. Based on these posterior beliefs, the

sequentially rational ex-post contract x∗B∗ chosen by the principal features the transfer payment

t∗B∗ = θB∗q∗B∗ and output requirement q∗B∗ is characterized by

S′(q∗B∗) =
νA∗(1− σ∗

A∗)(θA∗ + (1− α)(θB∗ − θA∗))

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi + νB∗(1− σ∗

B∗)

+

∑
i∈B∗ νi(θi + (1− α)(θB∗ − θi)) + νB∗(1− σ∗

B∗)θB∗

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi + νB∗(1− σ∗

B∗)
.

(18)
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The right-hand side of (18) measures the expected virtual marginal cost of an agent that invoked

the escape clause by reporting a marginal cost between θB∗ and θB∗−1, where the expectation

is taken over the principal’s posterior belief distribution (17).

Consider now an alternative mechanism and alternative sequence of events:

Stage 1: The principal commits to the VC mechanism consisting of the menu xV C
A∗ of contracts,

where

qV C
j = q∗j , tV C

j = t∗j − (θB∗ − θA∗)(q∗B − qV C
B ) ∀j ∈ A∗,

augmented by the vague escape clause (VC):

The agent has the right to obtain a new contract offer from the principal if the agent’s

costs are sufficiently high. All initial contract offers by the principal are void if the

agent invokes this clause.

Stage 2: The agent

• selects xV C
i if |A∗| ≥ 2 and the agent has marginal cost θi, i ∈ {1, ..., A∗ − 1}.

• selects xV C
A∗ with probability σ∗

A∗ and activates the escape clause VC with probability

1− σ∗
A∗ if the agent has marginal cost θA∗ .

• activates the escape clause VC if it has has marginal cost θi, i ∈ B∗.

• rejects the contract offer if C∗ ̸= ∅ and the agent has marginal cost θi, i ∈ C∗.

Stage 3: If the agent has invoked the escape clause in stage 2, then the principal offers the

ex-post contract xV C
B∗ featuring transfer payment tV C

B∗ = θB∗qV C
B∗ and output requirement qV C

B∗

characterized by

S′(qV C
B∗ ) =

νA∗(1− σ∗
A∗)(θA∗ + (1− α)(θB∗ − θA∗)) +

∑
i∈B∗ νi(θi + (1− α)(θB∗ − θi))

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi

. (19)

The above mechanism features restricted communication in the sense that the agent never

directly reports its cost to the principal, only implicitly through its choices. The agent either

self-selects one of the ex-ante contracts, activates the escape clause, or completely rejects the

offer after which the game ends. The escape clause VC is formulated in vague terms such as

those found in real clauses. Contrary to the escape clause that forms the foundation of the

incentive optimal direct mechanism, the above clause does not state the precise circumstances

under which it applies. Ambiguity comes from the adverb ”sufficiently”, which is not defined

in the contract.11 In the above game, the principal does not challenge the agent’s decision to

activate the clause. We now show the consequences when the principal introduces a mechanism

with simpler communication.

11Maggi and Staiger (2011) and Gennaioli and Ponzetto (2017) develop rigorous models of vague contract
stipulations and provide examples of vague contract provisions.
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The principal forms the posterior beliefs

µV C
A∗ =

νA∗(1− σ∗
A∗)

νA∗(1− σ∗
A∗) +

∑
i∈B∗ νi

, µV C
i =

νi
νA∗(1− σ∗

A∗) +
∑

i∈B∗ νi
∀i ∈ B∗ (20)

about the agent’s distribution of marginal costs subsequent to the activation of the escape clause

by the agent. The right-hand side of (19) measures the expected virtual marginal cost of an

agent that invoked the escape clause VC, where the expectation is taken over the principal’s

posterior belief distribution (20). Those beliefs differ from the beliefs in the initial mechanism

only by the factor vB∗σ∗
B∗ in (17). The belief system (20) places higher posterior probability

than (17) on the agent having the high marginal cost realization θB∗ . This property increases

the expected virtual marginal cost relative to the initial mechanism, which implies that the

equilibrium output requirement satisfies qV C
B∗ < q∗B∗ . This property of the VC mechanism reduces

the transfer payments necessary to maintain incentive compatibility, which tends to increase the

expected surplus of the principal under the VC compared to the initial mechanism. However,

the initial mechanism provides more flexibility than the VC mechanism, in particular because

the former mechanism implements xfbB∗ subsequent to the marginal cost report θB∗ . These pros

and cons are both negligible for small vB∗σ∗
B∗ because then the contracts are almost identical

in both mechanisms.

Proposition 1 Assume that the incentive optimal (direct) mechanism features incomplete com-

mitment. Then there exists a restricted communication mechanism augmented by a vague escape

clause that can be sustained as a PBE. This mechanism generates in the limit νB∗σ∗
B∗ → 0 the

same expected surplus to the principal as the incentive optimal (direct) mechanism.

Proof. See the Appendix A.4.

Proposition 1 arises because all cost reports θj , j ∈ B∗, provide exactly the same information

to the principal about the cost distribution of the agent. Only the cost report θB∗ potentially

produces different information than the others. This additional information is negligible in

expectation in a large type space (so that νi is small for all i ∈ I). Hence, the proposition

shows that the value of direct communication is small under plausible circumstances. A policy

implication is that the principal plausibly has little to gain from specifying a detailed escape

clause. The vague escape clause (VC) does nearly as well in equilibrium.

This section has characterized properties of incentive optimal mechanisms under incomplete

commitment. However, we have not yet established if there are circumstances under which

the principal strictly prefers incomplete commitment over pure ex-ante contracting. The next

sections establish sufficient conditions for this to be the case.

5 Maximally constrained ex-ante contracting

Consider the polar extreme case of maximally constrained ex-ante contracting where the princi-

pal can offer at most one contract upfront to the agent, that is, K = 1. Many real-life contracts
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have this one-size-fits-all property. We first compare pure ex-ante with pure ex-post contracting.

This analysis is interesting in its own right as it provides insight into the relative merits of of-

fering contracts ex ante relative to ex post. In the first case, the principal commits to one single

contract x = (q, t). The agent accepts this contract if it has marginal cost θi ≤ t
q , but rejects

it otherwise. Under pure ex-post contracting, the principal does not propose any contract up

front. Instead, the principal states an upper bound θB to the marginal cost report above which

there will be no contract with the agent. If the agent reports marginal cost θj ≤ θB, then the

principal offers a contract xj = (qj , tj) based on this cost report and the beliefs inferred about

the agent’s true cost based on the cost report. The ex-post contracting situation is particularly

simple under full participation. The agent then reports its cost, after which the principal offers a

contract. We will demonstrate that the principal strictly prefers pure ex-post over pure ex-ante

contracting under the assumption that K = 1.

The surplus-maximizing ex-ante contract Suppose the principal implements an ex-ante

contract that only an agent with marginal cost equal to or below θA, A ∈ I, accepts. The rent-

minimizing transfer by the principal equals tA = θAq for arbitrary quantity q. Maximization of

the principal’s expected surplus

W̃A(q) =

A∑
i=1

νi[S(q)− (θi + (1− α)(θA − θi))q] (21)

over q yields the associated output requirement q̂A as solution to

S′(q̂A) =
A∑
i=1

νi
GA

(θi + (1− α)(θA − θi)). (22)

We denote the incentive efficient ex-ante contract that yields a cut-off at θA by x̂A = (q̂A, θAq̂A).

Let θÂ be the cut-off that maximizes the principal’s expected surplus among all potential cut-offs

θA, A ∈ I ∪ ∅. Assume that Â ≥ 2.12 Let the maximum be strict:

W̃Â(q̂Â) > W̃A(q̂A) ∀A ∈ I ∪ ∅, A ̸= Â. (23)

Incentive feasible ex-post contracts Consider pure ex-post contracting, and assume that

the principal allows ex-post contracting if and only if the agent reports marginal cost equal

to or below θÂ. Assume that the agent randomizes uniformly across all cost reports θj , j ∈
{1, ..., Â − 1} if it has marginal cost θi < θÂ. Let σÂ ∈ (0, 1) be the probability that an agent

with marginal cost θÂ truthfully reports its cost, and assume that this agent reports marginal

cost θj with probability
1−σÂ

Â−1
for all j < Â. Assume that the agent rejects the contract if

Â ≤ I − 1, and the agent has marginal cost θi > θÂ. The reporting strategies generate the same

12A sufficient condition for Â ≥ 2 is W sb
2 (qfb1 ) > 0. This condition is satisfied for instance if θ2 − θ1 is small,

since then W sb
2 (qfb1 ) ≈ wfb

1 > 0.
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probability distribution

µji =
νi

GÂ−1 + νÂ(1− σÂ)
∀i ∈ {1, ..., Â− 1}, µjÂ =

νÂ(1− σÂ)

GÂ−1 + νÂ(1− σÂ)
(24)

of the agent’s true marginal cost θi for any cost report θj , j ∈ {1, ..., Â− 1}.
The sequentially rational contract offer by the principal equals xfb

Â
subsequent to receiving

the cost report θÂ as the principal attaches probability 1 to the event that the agent was truthful.

After receiving a cost report θj , j ∈ {1, ..., Â − 1}, the principal offers the transfer t = θÂq for

any arbitrary q, under the assumption that the principal wants the agent to produce for all

marginal cost realizations equal to or below θÂ. The expected ex-post surplus of the principal

then equals

Ω̃Â(q, σÂ) =
Â−1∑
i=1

νi[S(q)− (θi + (1− α)(θÂ − θi))q] + νÂ(1− σÂ)[S(q)− θÂq] (25)

divided by GÂ−1 + νÂ(1− σÂ). Maximization over q yields the output q1 as the solution to

S′(q1) =

∑Â−1
i=1 νi(θi + (1− α)(θÂ − θi)) + νÂ(1− σÂ)θÂ

GÂ−1 + νÂ(1− σÂ)
< θÂ = S′(qfb

Â
). (26)

The ex-post contract for any cost report θj , j ∈ {1, ..., Â− 1} is x1 = (q1, θÂq1) if the principal

wants the agent to produce for all marginal cost realizations equal to or below θÂ. Note that

the ex-post quantity increases as the agent becomes more truthful,

∂q1
∂σÂ

=
−ανÂ
S′′(q1)

∑Â−1
i=1 νi(θÂ − θi)

(GÂ−1 + νÂ(1− σÂ))
2
> 0,

since the expected virtual marginal cost of an agent that reports θj < θÂ is smaller when σÂ is

larger.

The ex ante expected surplus of the principal equals

ΩÂ(q1, σÂ) = Ω̃Â(q1, σÂ) + νÂσÂw
fb

Â
(27)

under pure ex-post contracting, with a cut-off θÂ. The principal benefits from a more truthful

agent,
∂ΩÂ

∂σÂ
= νÂ[w

fb

Â
−W fb

Â
(q1)] > 0,

because an agent with marginal cost θÂ is more likely to receive a contract better suited (from

the principal’s perspective) to the agent’s particular circumstances if σÂ is larger. The marginal

effect on q1 of an increase in σÂ has only a second-order effect on the principal’s expected surplus.
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Even the agent benefits in expectation from a more truthful reporting strategy, as

∂

∂σÂ

Â∑
i=1

νiUi(x1) =

Â−1∑
i=1

νi(θÂ − θi)
∂q1
∂σÂ

> 0.

The agent is indifferent between truthfully reporting its marginal cost θÂ and understating it to

θj < θÂ, all else equal. However, the agent benefits from the indirect effect on q1 because the

higher output increases informational rent whenever the agent has marginal cost θi < θÂ. Both

the principal and the agent therefore agree ex ante that more truthful behavior would be better

under pure ex-post contracting.

However, there is an upper bound to the agent’s truthfulness about its marginal cost θÂ that

is consistent with sequential rationality of x1. If σÂ is too large, then it becomes sequentially

rational for the principal to exclude this cost type after receiving a cost report θj < θÂ. Doing

so would allow the principal to save on informational rent without sacrificing much efficiency.

This is the ratchet effect. Suppose the principal, instead of x1, implements an ex-post contract

that only an agent with marginal cost equal to or below θA, A ∈ {1, ...Â − 1}, would accept.

The associated rent-minimizing transfer by the principal equals tA = θAq for arbitrary quantity

q. Based on the posterior beliefs (24), this alternative strategy yields expected surplus W̃A(q)

divided by G ˆA−1+νÂ(1−σÂ). The optimal deviation contract therefore equals x̂A. The expected

deviation profit delivers a necessary and sufficient condition

Ω̃Â(q1, σÂ) ≥ W̃A(q̂A) ∀A ∈ {1, ...Â− 1}

for sequential rationality of x1. By comparison of (26) with (22), we see that the ex-post quantity

q1 converges to q̂Â when σÂ → 0. Then, Ω̃Â(q1, σÂ) converges to W̃Â(q̂Â) as σÂ → 0. By way of

(23), it follows that x1 is sequentially rational if σÂ > 0 is sufficiently close to zero. We conclude

that the pair (x1, x
fb

Â
) of ex-post contracts can be sustained in equilibrium if the probability

is sufficiently large that an agent with marginal cost θÂ understates its cost to achieve the

anticipated ex-post contract x1 instead of the ex-post contract xfb
Â
.

Comparison of ex-post and ex-ante contracting A comparison of the incentive efficient

ex-ante contract x̂Â with the menu (x1, x
fb

Â
) of ex-post contracts delivers

ΩÂ(q1, σÂ)− W̃Â(q̂Â) = Ω̃Â(q1, σÂ)− Ω̃Â(q̂Â, σÂ) + νÂσÂ(w
fb

Â
−W fb

Â
(q̂Â)) > 0 ∀σÂ > 0. (28)

In this expression, Ω̃Â(q1, σÂ) > Ω̃Â(q̂Â, σÂ) because q1 represents a better ex-post trade-off

between efficiency and rent extraction than q̂Â, given σÂ. In addition, ex-post contracting

enables the principal to supply a tailor-made ex-post contract to an agent with reported marginal

cost θÂ. As x̂Â maximizes the principal’s expected surplus across all incentive feasible pure

ex-ante contracts, there exist incentive feasible pure ex-post contracts (x1, x
fb

Â
) that strictly

outperform all incentive feasible pure ex-ante contracts.
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Proposition 2 The principal strictly prefers pure ex-post over pure ex-ante contracting if con-

tracting is maximally ex-ante constrained (K = 1), and the principal’s surplus-maximizing ex-

ante contract involves some pooling of cost types (Â ≥ 2).

Under maximally constrained contracting, ex-post contracts generally offer superior fit to the

economic environment compared to a pure ex-ante contract, despite strategic manipulation of

cost reports by the agent. Since under ex-post contracting the principal can always add an

ex-ante contract without reducing expected surplus, we establish the following result without

additional proof:

Proposition 3 The incentive optimal mechanism features an escape clause if contracting is

maximally ea-ante constrained (K = 1), and the principal’s surplus-maximizing ex-ante contract

involves some pooling of cost types (Â ≥ 2).

6 Generally constrained ex-ante contracting

So far we have established the incentive optimality of introducing an escape clause when con-

tracting is maximally constrained in the sense that the principal only can offer a one-size-fits-all

contract under ex-ante contracting (K = 1). The incremental value of ex-post contracting is

smaller if the principal can offer more complex contracts ex ante, that is, when K is larger,

because then the principal can include more contingencies into the menu of contracts already

beforehand. However, the principal may still have insufficient degrees of freedom to be able to

include all potential contingencies ex ante. This occurs for any K if the type space is sufficiently

large. This plausible scenario leads to the question whether escape clauses are incentive optimal

for more generally constrained mechanisms such that 1 ≤ K < I? The next result establishes a

simple sufficient condition for this to be the case.

Lemma 3 Let Â be the least efficient cost type that produces positive output q̂Â > 0 in the

mechanism that maximizes the principal’s expected surplus across all incentive feasible mecha-

nisms with complete commitment (pure ex-ante contracting). The incentive optimal mechanism

features incomplete commitment if q̂Â > q̂fb
Â
.

Proof. See Appendix A.5.

By pooling a subset of cost types into a cost group K that contains multiple cost types, the

least efficient cost type Â in that group produces an inefficiently high output from the viewpoint

of the second-best contract, q̂Â > qsb
Â
; see Section 3. The surplus-maximizing output could

potentially be upward distorted even compared to the first-best solution, q̂Â > qfb
Â
. To see why,

subtract (16) from S′(qfb
Â
) = θÂ to get the difference

νÂK
[S′(qfb

Â
)− S′(q̂Â)] =

∑
i∈ÂK

ανi(θÂ − θi)−GÂK−1
(1− α)(θÂ − θÂK−1

)
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in marginal expected surplus. The first term on the right-hand side measures the effect on the

virtual marginal cost of pooling cost type Â with more efficient cost types i < Â. The pooling

effect tends to increase q̂Â compared to the first-best output qfb
Â
. The second term on the

right-hand side above measures the adjustment of the informational rent, which occurs under

constrained contracting, but not under first-best contracting. This adjustment tends to reduce

q̂Â relative to qfb
Â
. By adding a small escape clause to the initial mechanism that only contains

the Â type, the principal can reduce an excessive distortion q̂Â > qsb
Â

for the cost type Â if

q̂Â > qfb
Â
. The reason is that the sequentially optimal contract implements xfb

Â
.

The adjustment for informational rent vanishes in the limit as α → 1 as rent extraction has

a negligible effect on output q̂Â when α is close to one. We immediately obtain:

Proposition 4 The incentive optimal mechanism contains an escape clause if the principal

attaches sufficient weight to efficiency relative to rent extraction (α is sufficiently close to 1).

Sometimes the principal can offer more complex contracts than one-size-fits-all, and sometimes

the principal places a lot of weight on rent extraction in the design of the mechanism. The above

results do not apply when K ≥ 2 and α is small. Still, there are plausible circumstances under

which the incentive optimal mechanism features incomplete commitment:

Proposition 5 Assume that the mechanism that maximizes the principal’s expected surplus

across all incentive feasible mechanisms with complete commitment features partial participa-

tion. Assume also that the incremental difference in marginal production costs is small for

the boundary cost type (θÂ+1 − θÂ−1 is close to zero). The incentive optimal mechanism then

contains an escape clause if W sb
Â
(qfb

Â
) > 0.

Proof. See Appendix A.6.

In the best mechanism with full commitment, the principal is nearly indifferent between including

an agent with boundary marginal cost θÂ or excluding it from the mechanism if the type space is

large and the mechanism features partial participation. A better alternative could be to include

the boundary type through an escape clause instead. This occurs if the expected surplus of

doing so is sufficiently high in the sense that W sb
Â
(qfb

Â
) > 0. The second-best welfare function is

the correct welfare metric because it conveys the optimal trade-off between efficiency and rent

extraction from an ex ante perspective.

The two previous sections have established circumstances under which the incentive optimal

mechanism features incomplete commitment. However, we have not discussed the trade-offs

faced by the principal in the design of the escape clause. This is the topic of our next section.

7 Fundamental trade-offs in the design of an escape clause

To delineate the boundaries of the escape clause in incentive optimal mechanisms, consider an

initial mechanism (x∗,Σ∗|A∗,B∗) featuring an escape clause B∗ that contains at least two cost

types. Assume that the agent truthfully reports its marginal cost θi if i ∈ A∗∪C∗ and randomizes
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uniformly across all marginal cost reports θj , j ∈ B∗, if i ∈ B∗. Such a simplified mechanism is

approximately incentive efficient if the number I of potential cost realizations is large, and the

probability νi of any single cost realization θi is small. This mechanism delivers the expected

surplus

w∗ =
∑
i∈A∗

νiWi(x
∗
i ) + ΩB∗(q∗B∗).

to the principal. In this expression,

ΩB∗(q∗B∗) =
∑
i∈B∗

νi[S(q
∗
B∗)− (θi + (1− α)(θB∗ − θi))q

∗
B∗ ]

defines the expected surplus of the ex-post contract x∗B∗ = (q∗B∗ , θB∗q∗B∗).

Compare now the initial mechanism to a modified mechanism (x,Σ|A,B) with an incremen-

tally smaller escape clause. Specifically, the lower boundary type B∗ is included in the least

efficient cost group, so that AK = A∗
K ∪ B∗, and the escape clause is correspondingly reduced

to B = B∗\B∗. All other cost groups remain the same as before. The modification of the

escape clause reduces ex-post output to qB < q∗B∗ in the sequentially rational ex-post contract

xB = (qB, θB∗qB) because the escape clause now consists of less efficient cost types than before.

This output reduction changes the downward incentive compatibility constraints, which affects

the transfer to the more efficient types. The initial ex-ante contracts are modified as follows:

qj = q∗j , tj = t∗j + t, t = (θB∗ − θA∗)(q∗A∗ − q∗B∗)− (θB∗ − θA∗)(q∗B − qB) ∀j ∈ A∗,

whereas x∗B∗ = (q∗A∗ , t∗A∗ + t). Every ex-ante contract has the same output requirement as before

but all transfer payments are adjusted by the same amount.13 This particular mechanism

generates the expected surplus

w =
∑
i∈A

νiWi(xi) + ΩB(qB) =
∑
i∈A∗

νiWi(x
∗
i )−GA∗(1− α)t+ νB∗WB∗(xB∗) + ΩB(qB).

to the principal. The second term on the right-hand side measures the expected economic effect

of the change in transfer payments to any agent with marginal cost equal to or below θA∗ . The

third effect is the expected surplus of an agent with marginal cost θB∗ who is now on an ex-ante

contract. The last term is the expected surplus of the escape clause.

We can decompose the net benefit to the principal of the incentive optimal mechanism over

the modified one into three separate effects:

w∗ − w = ν∗B[W
sb
B∗(q∗B∗)−W sb

B∗(q∗A∗)]

−GB∗(1− α)(θB∗ − θB∗)(q∗B∗ − qB)− [ΩB(qB)− ΩB(q
∗
B∗)].

The first term on the right-hand side is the effect on the principal’s expected surplus of an agent

with marginal cost θB∗ producing ex-post output q∗B∗ instead of the smallest ex-ante output q∗A∗ ,

13The proof that this mechanism is incentive feasible is available on request.
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evaluated on the basis of the second-best welfare function. The ex-post contract provides a better

ex-ante trade-off between efficiency and rent extraction than the ex-ante contract if the ex-post

output is closer to the second-best output than the ex ante output so that qsbB < q∗B∗ < q∗A∗ .

Output q∗B∗ is larger under escape clause B∗ compared to qB under the smaller escape clause B
because an agent that has invoked the escape clause on average is more efficient under B∗ than

B. The increase in output has a first-order effect on ex ante expected informational rent because

the principal chooses q∗B∗ and qB ex post after the information rent is sunk. The dynamic

inefficiency of a broader escape clause is measured by the first negative term on the second line

above. The final effect is the one on the inefficiency of output q∗B∗ , relative to qB under the

ex-post welfare function ΩB(q).
14

Based on these trade-offs, the proposed mechanism is incentive optimal only if:

ν∗B[W
sb
B∗(q∗B∗)−W sb

B∗(q∗A∗)] ≥ GB∗(1− α)(θB∗ − θB∗)(q∗B∗ − qB).

We interpret the left-hand side of this inequality as the expected improvement in contract fit

associated with an agent that has marginal cost θB∗ receiving an ex-post contract x∗B∗ that is

better suited to that agent (from the principal’s perspective) than the ex-ante contract x∗A∗ . This

benefit must be sufficiently large to outweigh the expected increase in dynamic inefficiency asso-

ciated with ex-post contracting under the escape clause on the right-hand side of the inequality.

We summarize this fundamental trade-off as:

Remark 1 The design of an incentive optimal escape clause balances the expected improvement

in contract fit against the expected increase in dynamic inefficiency.

8 Discussion

Contract complexity We have interpreted K literally as the number of contracts contained

in the ex-ante menu offered to the agent. Many real-life mechanisms have this property. Reg-

ulatory mechanisms most often have only one single contract. Mobile subscription plans with

different monthly download allowances, mortgage loans with different interest rate maturities,

and electricity retail contracts with hourly, monthly or yearly average prices, are examples of

menus of contracts with a finite number of offers. However, in our context the principal could

as well specify a single ex-ante rule defined as a continuous function x(θ) = (q(θ), t(θ)) with

the property that all contracts xAk
, k ∈ {1, ...,K}, lie somewhere on x(θ). With this formula-

tion, it is not self-evident that one can discuss constrained contracting in terms of the number

of contracts. However, K more generally specifies the maximal number of binding incentive

compatibility and individual rationality constraints.

Let a local incentive compatibility constraint Ui(xi) = Ui(xi+1) be non-trivially binding

if xi ̸= xi+1 (trivially binding if xi = xi+1). Likewise, an individual rationality constraint

14This final effect is of second-order importance in a large type space in the sense that
ΩB(q∗B∗ )−ΩB(qB)

θB∗+1−θB∗ → 0 for

θB∗+1 − θB∗ → 0.
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Ui(xi) = 0 is non-trivially binding if xi ̸= x0 (trivially binding if xi = x0). An incentive

efficient mechanism with pure ex-ante contracting features K non-trivially binding IC and IR

constraints in our model with constrained contracting, K < I. These binding constraints pin

down the expected surplus to the principal and the agent of the mechanism. The continuous

mapping x(θ) will have these exact same properties. Therefore the parameter K in a more

general sense represents a measure of contract complexity. The larger is K, the more complex is

the mechanism.

Sources of constrained contracting The number K of contracts the principal can offer

the agent ex ante is exogenous in the model. There can be several reasons why a principal

would limit the number of contracts. For instance, the Swedish Regulatory Authority for the

Electricity Market offers one single regulatory contract to avoid discriminating across different

electricity distribution networks ex post. We here briefly explore a different avenue to explain

K < I. Let the number K of contracts be endogenous, but assume that there is a fixed cost

C of adding each additional contract to any given menu of contracts. This cost arises both for

ex-ante and ex-post contracts. An important difference is that the cost of specifying an ex-ante

contract xj , j ∈ A, arises regardless of whether the agent actually invokes this contract at a

later stage, whereas the cost of specifying ex-post contract xj only arises after the agent has

activated the escape clause by reporting marginal cost θj , j ∈ B.
The contracting cost approach, introduced by Dye (1985), has suffered criticism for being

too ad hoc, as it is difficult to relate the economic magnitude of such costs relative to other

important economic effects of contracting. For instance, Segal (1999) argues that the economic

value of a contract stipulation is likely to be large relatively to the cost of inserting this contract

stipulation into the contract. If so, then contracts should be close to being complete (K is close

to I in this setting). From that perspective, the costs of writing contracts cannot explain the

prevalence of incomplete contracting.

Adding an arbitrary contract to an initial menu of contracts is unlikely to be very costly.

However, not all contract additions will generate economic value to the principal. In our setting,

any additional contract must be incentive compatible relative to the initial menu of contracts.

Second, the incremental contract must increase the principal’s expected surplus relative to the

initial menu. Identifying an incentive compatible, surplus-increasing contract is much more

challenging in terms of time and resources than simply adding an arbitrary contract. The

complexity of this task is probably larger and its incremental value smaller as the number of

initial contracts is larger. For these reasons we assume here that the cost of adding a meaningful

contract is non-negligible. Still, we will characterize circumstances under which the principal

would constrain the number of ex-ante contracts and include an escape clause rather than

increase the number of ex-ante contracts, even for small but positive C.

Let us revisit the simple example of the introduction where the agent either has low marginal

cost θ1 > 0 with probability ν or high marginal cost θ2 > θ1 with probability 1−ν. The principal

has four options under pure ex-ante contracting. The first is a single contract x̂ = (q̂, θ2q̂) that is
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acceptable to the agent regardless of its marginal cost. This mechanism yields expected surplus

W̃ (q̂) = νW fb
1 (q̂2) + (1− ν)W sb(q̂)− C,

where the output q̂ > qfb2 is characterized by S′(q̂) = ν(θ1 + (1 − α)(θ2 − θ1)) + (1 − ν)θ2. We

assume that contracting costs are small in the sense that W sb
2 (q̂) > C. The second option is a

single contract that only the most efficient agent will accept:

W̃1(q
fb
1 ) = νwfb

1 − C.

The third option is to supply the second-best mechanism at the expense of increased contracting

costs:

wsb = νwfb
1 + (1− ν)wsb

2 − 2C.

The fourth option, null contracting, is dominated by the first option by the assumption of small

contracting costs.

Consider now the mechanism with incomplete commitment. The principal offers the contract

x1 = (qfb1 , θ1q
fb
1 + (θ2 − θ1)q

fb
2 ) up front. The agent receives this contract by reporting marginal

cost θ1. The agent invokes the escape clause by reporting marginal cost θ2, after which the

principal offers the ex-post contract xfb2 . The agent truthfully reports its cost even in this case.

This mechanism is incentive feasible and yields an expected surplus of

wB = νwfb
1 − C + (1− ν)[W sb

2 (qfb2 )− C].

The principal faces a trade-off relative to the second-best mechanism of

wB − wsb = νC − (1− ν)[wsb
2 −W sb

2 (qfb2 )].

On the one hand, the principal reduces expected contracting costs by including an escape clause

in the mechanism. On the other, the second-best contract xsb2 offers a better trade-off between

efficiency and rent extraction from an ex-ante perspective than the discretionary contract xfb2
when the agent is inefficient. Importantly, the benefit of increasing the number of contracts

from 1 to 2 is measured in terms of the expected incremental increase in surplus. This increase

can be small even if the value of contracting is large. For instance, reduced contracting costs

dominate increased contractual efficiency for arbitrary C > 0 if the likelihood of a high cost

event is small, i.e. ν is large. Intuitively, an ex-post contract is better than an ex-ante contract

to cover unlikely events. The cost effect dominates also if α is sufficiently close to one or if ν

is sufficiently close to zero. The net benefit to the principal of second-best relative to first-best

contracting is small if ν(1−α) is close to zero as the principal would mainly care about efficiency

in the choice of qsb2 .15

15The marginal efficiency effect wsb
2 − W sb

2 (qfb2 ) vanishes in the limit as α → 1 because then qsb2 → qfb2 . To

obtain the second result, use L’Hôpital’s rule to get limν→0
wsb

2 −Wsb
2 (q

fb
2 )

ν
= limν→0[S

′(qsb2 ) − θ2]
dqsb

dν
= 0 and

therefore limν→0
wB−wsb

ν
= C > 0.
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The mechanism with an escape clause beats the ex-ante mechanism with production only by

the efficient agent, wB > W̃1(q
fb
1 ) by W sb(qfb2 ) > W sb(q̂) > C. However, it does not necessarily

beat the pure ex-ante contract x̂. The difference

wB − W̃ (q̂) = ν[wfb
1 −W fb(q̂)] + (1− ν)[W sb

2 (qfb2 )−W sb
2 (q̂)− C].

in expected surplus can be positive or negative, depending on the circumstances. It is positive if

ν is large or if α is close to one and C < wfb
2 −W fb(q̂). It is not optimal to modify x̂ by adding

an escape clause if ν is small.16

Remark 2 Constrained contracting (K < I) can be justified even on the basis of small con-

tracting costs, for instance if the likelihood of inefficient outcomes is sufficiently small or the

principal cares sufficiently about efficiency relative to minimizing agency rent.

Other clauses The benchmark against which we evaluate mechanisms with incomplete com-

mitment is the mechanism (x̂, I|Â, ∅) that maximizes the principal’s expected surplus in the set

of incentive feasible mechanisms with complete commitment. The general message of the paper

is that incentive feasible mechanisms sometimes exist that strictly improve upon the complete

commitment benchmark under constrained contracting. All such improvements must necessarily

involve some form of incomplete commitment.

We have interpreted incomplete commitment as the inclusion of an escape clause that the

agent triggers by reporting marginal cost θj , j ∈ B, where the subset B is specified in the

mechanism offered to the agent at the initial stage of interaction. All initial contract offers are

invalidated if the agent invokes the escape clause. This formulation of incomplete commitment

is inspired by qualitative properties of real-life escape clauses. However, our results do not rule

out the possibility that other mechanisms featuring incomplete commitment could outperform

mechanisms with escape clauses, from the viewpoint of the principal.

A renegotiation clause is similar in spirit to an escape clause. Invoking a renegotiation clause

also triggers ex-post contracting. A main difference is that the agent under a renegotiation

clause will reject any ex-post contract offer that delivers lower rent than the best possible ex-

ante contract, whereas the ex-post contract merely is required to outperform the outside option

under the escape clause.17

Under the escape clause, the value of the agent’s outside option is zero, regardless of the

agent’s marginal cost. Under the renegotiation clause, the value of the outside option is type

dependent and therefore private information. To see the implications, assume that the agent

receives one of K ex-ante contracts for cost reports θj , j ∈ A = {1, ...A}. The agent triggers

16However, pure ex-post contracting always yields strictly higher expected surplus than the pure ex-ante contract
x̂ by Proposition 2. Adding contractual costs to the equations does not matter for the comparison in (28) because
the expected contracting cost equals C in either mechanism under full participation. Under partial participation,
ex-post contracting not only is more efficient but also reduces the expected contracting cost under maximally
constrained ex-ante contracting.

17A renegotiation clause means that the mechanism may feature partial renegotiation (i.e. only for a subset of
cost reports) as opposed to full renegotiation as has previously been studied by Hart and Tirole (1988), Laffont
and Tirole (1990), and more recently by Maestri (2017).
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the renegotiation clause by reporting θj , j ∈ B = {A + 1, ...B}, B ≥ A + 1. Finally, the agent

receives the null contract for all cost reports θj , j ∈ C = {B+1, ...I} if B ≤ I − 1. Suppose now

that an agent with marginal cost θi, i ∈ B has invoked the renegotiation clause. This agent will

accept the ex-post contract xj if and only if

Ui(xj) ≥ Ui(xA).
18

The right-hand side of this ex-post individual rationality constraint depends on the agent’s

marginal cost θi, unlike in the case of the escape clause where the right-hand side is zero. This

modification has an impact on the principal’s sequentially rational choice of the ex-post contract.

For instance, the principal is unable to extract all rent ex post even if the agent truthfully

reports marginal cost. This property should dampen the ratchet effect associated with ex-post

contracting and will most likely also affect the extent to which the agent manipulates cost reports

in equilibrium. As our paper has shown, such effects have implications for the incentive optimal

mechanism that are far from obvious.

9 Conclusion

This paper has developed a theory of endogenously incomplete commitment in mechanism de-

sign, framed in the context of an escape clause. Triggering an escape clause terminates the initial

agreement and generates a revised contract offer from the principal. The motive for an escape

clause arises from an assumption of constrained contracting where the maximal number of dif-

ferent contracts the principal can propose up front is smaller than the size of the agent’s type

space. The admissible number of ex-ante contracts represents a measure of contract complexity.

Our findings demonstrate that it can be in a principal’s best interest to allow for discretion

when it comes to future contracting, even if the principal has access to a very general reward

structure with unconstrained transfers by which to incite agent behavior. In a setting where

the principal cannot cover every possible pay-off relevant contingency in an ex-ante contract,

ex-post contracting can increase contract fit that is valuable enough to dominate the dynamic

inefficiency associated with discretionary contracting.

Many contractual arrangements feature endogenously incomplete commitment, even if not al-

ways by means of an escape clause. Optimal contract length is a major design issue in regulation

and service procurement agreements. A longer-term agreement implies stronger commitment,

whereas a sequence of shorter-term agreements means less commitment. Defining appropriate

market size thresholds when to regulate firms directly (ex-ante contracting) or indirectly through

competition policy (ex-post contracting) is important for market efficiency. These issues require

independent analysis, so we leave them for future research.

18Formally, the agent evaluates xj against all xh, h ∈ A. However, incentive compatibility and monotonicity of
output of the menu of ex-ante contracts implies Ui(xA)−Ui(xh) = UA(xA)−UA(xh)+ (θi − θA)(qh − qA) ≥ 0 for
all (i, h) ∈ B ×A.
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Appendix

This appendix first establishes four claims that characterize incentive feasible mechanisms in our

specific context. Appendix A.1 then provides a characterization of incentive efficient mechanisms

with complete commitment. In particular, Appendix A.1 establishes locally downward-binding

incentive compatibility, binding individual rationality of the least efficient cost type and output

declining in cost as the fundamental constraints in incentive efficient mechanism with complete

commitment. The rest of the appendix then proves the lemmas and propositions in the main

text as they appear in chronological order.

Claim 1 A mechanism (x,Σ|A,B) satisfies individual rationality (5) and incentive compatibil-

ity (6) if and only if the following conditions are all met:

UI(xI) ≥ 0, (29)

Ui(xi) ≥ Ui(xi+1) ∀i ∈ {1, ..., I − 1}, (30)

Ui(xi) ≥ Ui(xi−1) ∀i ∈ {2, ..., I}, (31)

qi ≥ qi+1 ∀i ∈ {1, ..., I − 1}, (32)

Proof. Necessity of (29)-(31) is obvious. Local incentive compatibility implies

Ui(xi) ≥ Ui+1(xi+1) + (θi+1 − θi)qi+1, Ui+1(xi+1) ≥ Ui(xi)− (θi+1 − θi)qi ∀i ∈ {1, ..., I − 1}.

By rearranging expressions we get

(θi+1 − θi)qi ≥ Ui(xi)− Ui+1(xi+1) ≥ (θi+1 − θi)qi+1 ∀i ∈ {1, ..., I − 1}.

Hence, output is non-increasing in marginal cost in any incentive compatible mechanism, even

if this mechanism features incomplete commitment.

As for sufficiency, the net benefit of truthfully reporting cost θi relative to exaggerating it to

θj , j ∈ {i+ 1, ..., I} can be written as

Ui(xi)−Ui(xj) =

j−1∑
h=i

[Uh(xh)−Uh(xh+1) + (θh+1 − θh)(qh+1 − qj)] ≥ 0 ∀i ∈ {1, ..., I − 1}, (33)

where non-negativity follows from the assumptions of local downward incentive compatibility

(30) and monotonicity (32). The net benefit of truthfully reporting cost θi relative to under-

stating it to θj , j ∈ {1, ..., i− 1}, equals

Ui(xi)− Ui(xj) =
i∑

h=j+1

[Uh(xh)− Uh(xh−1) + (θh − θh−1)(qj − qh−1)] ≥ 0 ∀i ∈ {2, ..., I}, (34)

where non-negativity follows from the assumptions of local upward incentive compatibility (31)
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and monotonicity (32). Individual rationality (5) then follows from

Ui(xi) ≥ Ui(xI) = UI(xI) + (θI − θi)qI ≥ UI(xI) ≥ 0∀ i ∈ N.

Claim 2 Let (x,Σ|A,B) be an incentive feasible mechanism.

1. If Ui(xi) > Ui(xi+1), then Uh(xh) > Uh(xj) ∀(h, j) ∈ {1, ..., i} × {i+ 1, ..., I}.

2. If Ui(xi) = Ui(xi+1) and qi > qi+1, then Uh(xh) > Uh(xj) ∀(h, j) ∈ {1, ..., i − 1} × {i +
1, ..., I}.

Proof. By (33), the net benefit of truthfully reporting cost θi, relative to exaggerating it to θj ,

j ∈ {i+ 1, ..., I}, satisfies

Ui(xi)− Ui(xj) = Ui(xi)− Ui(xi+1) + (θi+1 − θi)(qi+1 − qj)

+

j−1∑
h=i+1

[Uh(xh)− Uh(xh+1) + (θh+1 − θh)(qh+1 − qj)] > 0

if Ui(xi) > Ui(xi+1). Similarly, the net benefit of truthfully reporting cost θh, h ∈ {1, ...., i− 1},
relative to exaggerating it to θj , j ∈ {i+ 1, ..., I}, satisfies

Uh(xh)− Uh(xj) =

i−1∑
l=h

[Ul(xl)− Ul(xl+1)] +

i−2∑
l=h

(θl+1 − θl)(ql+1 − qj)

+ Ui(xi)− Ui(xi+1) + (θi − θi−1)(qi − qi+1) + (θi+1 − θi−1)(qi+1 − qj)

+

j−1∑
l=i+1

[Ul(xl)− Ul(xl+1) + (θl+1 − θl)(ql+1 − qj)]

≥ Ui(xi)− Ui(xi+1) + (θi − θi−1)(qi − qi+1) > 0

if either Ui(xi) > Ui(xi+1), or Ui(xi) = Ui(xi+1) and qi > qi+1.

Claim 3 Let (x,Σ|A,B) be an incentive feasible mechanism.

1. If Ui+1(xi+1) > Ui+1(xi), then Uh(xh) > Uh(xj) ∀(h, j) ∈ {i+ 1, ..., I} × {1, ..., i}.

2. If Ui+1(xi+1) = Ui+1(xi) and qi > qi+1, then Uh(xh) > Uh(xj) ∀(h, j) ∈ {i + 2, ..., I} ×
{1, ..., i}.

Proof. By (34), the net benefit of truthfully reporting cost θi+1, relative to understating it to

θj , j ∈ {1, ..., i}, satisfies

Ui+1(xi+1)− Ui+1(xj) = Ui+1(xi+1)− Ui+1(xi) + (θi+1 − θi)(qj − qi)

+
i∑

h=j+1

[Uh(xh)− Uh(xh−1) + (θh − θh−1)(qj − qh−1)] > 0,
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by the assumption that Ui+1(xi+1) > Ui+1(xi). The net benefit of truthfully reporting cost θh,

h ∈ {i+ 2, ..., I}, relative to understating it to θj , j ∈ {1, ..., i}, satisfies

Uh(xh)− Ui(xj) =
h∑

l=i+2

[Ul(xl)− Ul(xl−1)] +
h∑

l=i+3

(θl − θl−1)(qj − ql−1)

+ Ui+1(xi+1)− Ui+1(xi) + (θi+2 − θi+1)(qi − qi+1) + (θi+2 − θi)(qj − qi)

+

i∑
l=j+1

[Ul(xl)− Ul(xl−1) + (θl − θl−1)(qj − ql−1)]

≥ Ui+1(xi+1)− Ui+1(xi) + (θi+2 − θi+1)(qi − qi+1) > 0

if either Ui+1(xi+1) > Ui+1(xi), or Ui+1(xi+1) = Ui+1(xi) and qi > qi+1.

Claim 4 Let (x,Σ|A,B) be an incentive feasible mechanism. If qi = qj, then xi = xj.

Proof. Incentive compatibility (6) implies

ti − θiqi ≥ tj − θiqj , tj − θjqj ≥ ti − θjqi ∀(i, j) ∈ I × I.

Rearranging the two expressions yields

θi(qj − qi) ≥ tj − ti ≥ θj(qj − qi) ∀(i, j) ∈ I × I.

If qi = qj , then ti = tj and therefore xi = xj .

A.1 Mechanisms with complete commitment

This appendix contains a full analysis of incentive efficient mechanisms with complete commit-

ment discussed in Section 3. We let K ≥ 1, but do not necessarily assume that contracting is

constrained. Hence, we allow K ≥ I. The incentive efficient mechanism under complete commit-

ment consists of a partitioning A = {A1, ...,Ak, ...,AK̃} of A = {1, ..., A} into K̃ ≤ min{K; I}
non-empty cost groups. Each cost group consists of all cost types that operate under the same

contract. A and each separate cost group form convex sets because output is non-increasing

in marginal cost in any incentive feasible mechanism. We let θAk
be the lowest marginal cost

and θAk
the highest marginal cost contained in cost group k. We denote by xAk

= (qAk
, tAk

)

the contract awarded to the agent for any cost report θj , j ∈ Ak. Cost groups are indexed

in increasing order of marginal cost. In particular, xAK̃
= xA = (qA, tA) since A is the upper

boundary cost type in AK̃ .

Lemma 4 Assume that the mechanism (x̂, I|Â, ∅) maximizes the principal’s expected surplus

under complete commitment. Let 1 ≤ K̂ ≤ min{K; I} be the number of non-empty cost groups

in this mechanism.

1. Output q̂Âk
in non-empty cost group Âk is characterized by (16). If cost group k features

pooling, |Âk| ≥ 2, then:
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(a) Output is downward distorted relative to the second-best efficient output of the most

efficient cost type in Âk, q̂Âk
< qsb

Âk

.

(b) Output is upward distorted relative to the second-best efficient output of the least

efficient cost type in Âk, q̂Âk
> qsb

Âk
.

2. If K̂ ≥ 2, then the upper boundary type Âk in interior cost group k ∈ {1, ..., K̂ − 1},
satisfies the principal’s local incentive compatibility constraint:

W sb
Âk

(q̂Âk
)−W sb

Âk
(q̂Âk+1

) ≥ 0 ≥ W sb
Âk+1

(q̂Âk
)−W sb

Âk+1
(q̂Âk+1

). (35)

3. The upper bound Â to ex-ante contracting under partial participation, Â ≤ I − 1, satisfies

the principal’s individual rationality constraint:

W sb
Â
(q̂Â) ≥ 0 ≥ W sb

Â+1
(q̂Â). (36)

Notice the similarity between (35) and (36) and the local downward, upward IC constraints and

IR constraint of the agent. The difference is that the constraints of the principal are evaluated

using the second-best welfare function W sb
i (q) because this is the correct welfare metric with

which to evaluate the trade-off between rent and efficiency in an unconstrained environment.

To prove Lemma 4, we start by proving two intermediate claims. These two claims jointly

establish that for any incentive efficient mechanism with complete commitment, the incentive

compatibility constraints are locally downward-binding for all interior cost types i ∈ {1, ..., Â−1},
and the individual rationality constraint of the least efficient cost type Â is also binding.

Claim 5 A complete commitment mechanism (x̂, Σ̂|A, ∅) with 1 ≤ K̃ ≤ min{K; I} non-empty

cost groups is incentive efficient only if

[UAk
(x̂Ak

)− UAk
(x̂Ak+1)][UAk+1(x̂Ak+1)− UAk+1(x̂Ak

)] = 0 ∀k ∈ {1, ..., K̃ − 1} if K̃ ≥ 2. (37)

Equation (37) holds also for k = K̃ if K̃ ≤ I − 1.

Proof. Suppose both the local IC constraints are slack for some k ∈ {1, ..., K̂}. By Claim

2, the downward IC constraints are slack for all cost types θi and cost reports θj , (i, j) ∈
{1, ..., Ak} × {Ak + 1, ..., I} as well. Hence, σ̂ji = 0 for all those combinations. By Claim 3, the

upward IC constraints are slack for all cost types θi and cost reports θj , (i, j) ∈ {Ak+1, ..., I}×
{1, ..., Ak}. Hence, σ̂ji = 0 even for all these combinations. A marginal reduction in the transfer

payment t̂j by a small amount ϵ for all types j ∈ {1, ..., Ak} then increases the principal’s

expected surplus while maintaining incentive feasibility. Then the proposed mechanism cannot

be incentive efficient.

Claim 6 A complete commitment mechanism (x̂, Σ̂|A, ∅) with with 1 ≤ K̃ ≤ min{K; I} non-

empty cost groups is incentive efficient only if

UA(x̂A) = 0, UAk
(x̂Ak

) = UAk
(x̂Ak+1) ∀k ∈ {1, ..., K̃ − 1} if K̃ ≥ 2. (38)
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Equation (38) holds also for k = K̃ if K̃ ≤ I − 1.

Proof. We first show that UAk+1(x̂Ak+1) > UAk+1(x̂Ak
) for all k ∈ {1, ..., K̂ − 1} if K̂ ≥ 2 and

for k = K̂ if K̂ ≤ I − 1. Suppose instead the local upward IC constraint is binding for some k.

Then the local downward IC constraint in (37) is slack by q̂Ak
> q̂Ak+1. An agent with marginal

cost equal to or below θAk
will strictly prefer to truthfully report its cost rather than exaggerate

it to θAk+1 or above, by Claim 2. By q̂Ak
> q̂Ak+1 and Claim 3, an agent with marginal cost

equal to or above θAk+2 strictly prefers to truthfully report its cost rather than understate it

to θAk
or below. Finally, σ̂j(Ak+1) = 0 for all j ∈ {1, ..., Ak−1} if k ≥ 2, again by monotonicity

q̂Ak
> q̂Ak+1

.

Construct a perturbed mechanism (x,Σ|A, ∅) by setting tj = t̂j − ϵ, ϵ > 0, for all j ∈
{1, ..., Ak} and setting σAk+1 =

∑
j∈Ak

σ̂j(Ak+1) + σ̂Ak+1. Everything else is held equal to the

original mechanism. This perturbed mechanism is incentive feasible for all ϵ sufficiently small.

The difference in expected principal surplus between the two mechanisms is:

W (x,Σ|A, ∅)−W (x̂, Σ̂|A, ∅) =
Ak∑
i=1

νi(1− α)ϵ+
∑
j∈Ak

νAk+1σ̂j(Ak+1)[WAk+1(x̂Ak+1
)−WAk+1(x̂Ak

)],

which is strictly positive. The inequality follows from σ̂Ak+1 = 0 ifWAk+1(x̂Ak
) > WAk+1(x̂Ak+1

),

which violates the incentive feasibility condition σ̂Ak+1 > 0. Sine the upward IC condition in

(37) is slack, then the local downward IC constraint in (37) necessarily is binding. To complete

the proof, we need to establish UA(x̂A) = 0. If A ≤ I − 1, then x̂A+1 = x0. The binding

downward IC condition then implies UA(x̂A) = UA(x̂A+1) = UA(x0) = 0. Assume next that

A = I. If UI(x̂I) > 0, then the principal could reduce the transfer for all cost types j ∈ I by

ϵ > 0 without violating incentive feasibility. Hence, UA(x̂A) = 0 also in this final case.

We first establish Item 1 of Lemma 4. Claim 6 implies Ui(x̂i) = Ui(x̂i+1) = Ui+1(x̂i+1) +

(θi+1 − θi)q̂i+1 for all i ∈ {1, ..., A − 1} and UA(x̂A) = 0 in any incentive efficient mechanism

(x̂, I|A, ∅) with complete commitment. We can then use these binding constraints to derive the

expression (1) for agency rent of any incentive efficient mechanism with complete commitment.

The expected welfare function (14) follows from substituting (1) into (11) and applying the

following summation by parts

GAk
θAk

−GAk−1
θAk−1

=
∑
i∈Ak

[νiθi +Gi−1(θi − θi−1)].

The welfare function (14) is additively separable across cost groups, and the objective function

(15) is strictly concave in output. Hence, a mechanism (x̂, I|A, ∅) with transfer payments that

yield (1) and where output is characterized by (16) for all K̃ cost groups, is incentive efficient

if this mechanism is also incentive feasible. The mechanism satisfies (10) by K̃ ≤ K. We

then need to verify individual rationality (5) and incentive compatibility (6). To do this, we

start by demonstrating monotonicity of output. Comparing q̂Ak
characterized in (16) with q̂sbAk
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characterized in (3) delivers

S′(q̂Ak
)− S′(qsbAk

) =
∑
i∈Ak

νi
νAk

[θi +
Gi−1

νi
(1− α)(θi − θi−1)

− θAk
−

GAk−1

νAk

(1− α)(θAk
− θAk−1

)] ≥ 0

by assumption (4) of increasing virtual marginal production cost. Strict concavity of S(q) implies

qsbAk
≥ q̂Ak

with strict inequality if |Ak| ≥ 2. Next,

S′(qsbAk
)−S′(q̂Ak

) =
∑
i∈Ak

νi
νAk

[θAk
+

GAk−1

νAk

(1−α)(θAk
−θAk−1)−θi−

Gi−1

νi
(1−α)(θi−θi−1)] ≥ 0

implies q̂Ak
≥ qsbAk

with strict inequality if |Ak| ≥ 2. Combining inequalities yields q̂Ak
≥

qsbAk
> qsbAk+1

≥ q̂Ak+1
. This property establishes monotonicity of output, q̂i ≥ q̂i+1 for all

i ∈ {1, ..., I − 1}. Locally downward-binding incentive compatibility, Ui(x̂i) = Ui(x̂i+1) for

all i ∈ {1, ..., I − 1}, the zero rent condition UI(x̂I) = 0, and monotonicity of output imply

Ui(x̂i) ≥ Ui(x̂i−1) for all i ∈ {2, ..., I}. Hence, (x̂, I|A, ∅) satisfies (5) and (6) by Claim 1. This

completes the proof of Item 1 of the Lemma.

We establish Item 2 by verifying that any incentive efficient mechanism features W sb
Âk

(q̂Âk
) ≥

W sb
Âk

(q̂Âk+1
) for all k ∈ {1, ...K̂ − 1} if the number K̂ ≤ min{K; I} of non-empty cost groups

satisfy K̂ ≥ 2. This holds trivially if |Âk| = 1 because then W sb
Âk

(q̂Âk
) = wsb

Âk
≥ W sb

Âk
(q̂Âk+1

).

Assume nest that |Âk| ≥ 2. Compare expected surplus W (x̂, I|Â, ∅) to what the principal

could achieve under a modified mechanism (x, I|Â, ∅) where an agent with marginal cost θAk

is transferred to a less efficient cost group: Ak = Âk\Âk and Ak+1 = Âk+1 ∪ Âk, k ≤ K̂ − 1.

All other cost groups remain unchanged if K̂ ≥ 3. The menu of contracts has the following

properties: xj = (q̂j , tj), tj = t̂j−(θÂk
−θÂk−1)(qÂk

−qÂk+1
) for all j ∈ {1, ...Âk−1}, xÂk

= x̂Âk+1
,

and xj = x̂j for all j ∈ {Âk + 1, ...I}. The modified mechanism is incentive feasible. First, it

satisfies Ui(xi)−Ui(xi+1) = Ui(x̂i)−Ui(x̂i+1) = 0 for all i ∈ {1, ..., Âk − 2) if Âk ≥ 3 and for all

i ∈ {Âk, ..., I − 1). Moreover, UÂk−1(xÂk−1) = UÂk−1(xÂk
) and UI(xI) = UI(x̂I) = 0. Output

is monotonic by qi = q̂i for all i ∈ I. These properties imply (5) and (6) by Claim 1. Moreover,

|xA| = |x̂Â| = K̂ ≤ K. These results verify incentive feasibility of (x, I|Â, ∅). The difference in

expected surplus between the two mechanisms simplifies to

W (x̂, I|Â, ∅)−W (x, I|Â, ∅) = νÂk
[W sb

Âk
(q̂Âk

)−W sb
Âk

(q̂Âk+1
)] ≥ 0,

where the inequality follows from the assumed incentive efficiency of (x̂, I|Â, ∅). Hence, incentive
efficiency implies W sb

Âk
(q̂Âk

) ≥ W sb
Âk

(q̂Âk+1
) also for |Âk| ≥ 2. By analogous arguments, an

agent with marginal cost θÂk+1
optimally belongs in cost group Âk+1 only if W sb

Âk+1

(q̂Âk+1
) ≥

W sb
Âk+1

(q̂Âk
).

One can use the same recipe as above to establish Item 3.□
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A.2 Proof of Lemma 1

We prove the Lemma through a sequence of 7 claims. Assume throughout that K < I so that

the second-best mechanism (xsb, I|I, ∅) is infeasible. Let zj ∈ {j, ..., I} be the maximal cost

type that reports θj with positive probability in the incentive feasible mechanism (x,Σ|A,B):
σjzj > 0 and σji = 0 for all i ∈ {zj + 1, ..., I} if zj ≤ I − 1. The type zj exists by σj > 0.

Claim 7 A mechanism (x,Σ|A,B) with incomplete commitment (B ≠ ∅) is incentive feasible

only if tj = θzjqj > 0 ∀j ∈ B.

Proof. Consider the principal’s optimal choice tj in Stage 4 after some cost report θj , j ∈ B.
If tj > θzjqj , then the principal can strictly reduce the transfer and thereby save on information

rent without violating the individual rationality constraint for any type i ∈ I that also reports to

be of type θj with positive probability. If tj < θzjqj , then Uzj (xj) < 0 ≤ Uzj (xzj ) and therefore

σjzj = 0 by (7), which contradicts the assumption that σjzj > 0. This leaves tj = θzjqj as the

only remaining possibility. Substituting tj into (8) and maximizing over qj leads to

qj = S′−1
(∑I

i=1 µji(θi + (1− α)(θzj − θi))
)
≥ S′−1(θI) = qfbI > 0,

where qfbI > 0 by assumption, and qj ≥ qfbI by S′′ < 0 and

θI −
∑I

i=1 µji(θi + (1− α)(θzj − θi)) =
∑I

i=1 µji(α(θI − θi) + (1− α)(θI − θzj )) ≥ 0.

Let B ∈ I be the minimal cost type and B ∈ I the maximal cost type contained in B in a

mechanism with incomplete commitment, i.e. B ∈ B, B ∈ B, B ≤ B and B ⊆ {B, ..., B}. In

particular, the escape clause B need not be convex.

Claim 8 A mechanism (x,Σ|A,B) with incomplete commitment (B ≠ ∅) is incentive feasible

only if zj = z ≥ B ∀j ∈ B. Incentive feasibility further implies:

1. xj = xB ∀j ∈ {B, ..., z − 1} if either B ≤ B − 1 or z ≥ B + 1.

2. xj = x0 ∀j ∈ {z + 1, ..., I} if z ≤ I − 1.

Proof. The property zj ≥ B ∀j ∈ B holds trivially if B = 1. Assume that B ≥ 2 and

suppose zj < B for some j ∈ B. Then Uzj (xB) = UB(xB) + (θB − θzj )qB > 0 by UB(xB) ≥ 0,

θB > θzj and qB > 0. By σjzj > 0 and (7), it follows that Uzj (xzj ) = Uzj (xj) = tj − θzjqj = 0.

Uzj (xIB ) > Uzj (xzj ) then follows, which is a violation of (6). We conclude that zj ≥ B ∀j ∈ B.
Suppose zj < zh for some (j, h) ∈ B × B. In this case, Uzj (xzj ) = 0 < (θzh − θzj )qh = Uzj (xh),

which again violates incentive compatibility. Hence, zj = z ≥ B for all j ∈ B.
Consider Item 1 of the claim. B ≤ z − 1 by the assumption of the claim. By the incentive

compatibility constraint (6),

Uz(xz−1) = Uz−1(xz−1)− (θz − θz−1)qz−1 ≤ Uz(xz) = 0.
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Invoking incentive compatibility (6) again, plus individual rationality (5) and Claim 7 yields

Uz−1(xz−1) ≥ Uz−1(xB) = tB − θz−1qB = (θz − θz−1)qB.

Combining these two inequalities delivers

(θz − θz−1)qB ≤ Uz−1(xz−1) ≤ (θz − θz−1)qz−1,

and therefore qB ≤ qz−1. By monotonicity, it must also be the case that qB ≥ qz−1. Hence,

qB = qz−1. Applying monotonicity again yields qj = qz−1 = qB for all j ∈ {B, ..., z − 1}. We

can now invoke Claim 4 to obtain xj = xB for all j ∈ {B, ..., z − 1}.
Consider Item 2 of the claim. Assume that z ≤ I − 1, and suppose either qj > 0 or qj = 0

and tj > 0 for some j ∈ {z + 1, ..., I}. In this case, Uz(xj) = Uj(xj) + (θj − θz)qj > 0 = Uz(xz),

which violates incentive compatibility. By necessity, xj = (0, 0) = x0 for all j ∈ {z+1, ..., I}.

Claim 9 A mechanism (x,Σ|A,B) with incomplete commitment (B ≠ ∅) is incentive feasible

only if |xB| ∈ {1, 2}. Incentive feasibility implies xj = xB ∀j ∈ {B, ..., B − 1} if B ≤ B − 1.

Proof. We prove the claim in reverse order. Let B ≤ B − 1. By the previous claim, B ≤
B− 1 ≤ z− 1 and then all contracts xj , j ∈ {B, ..., B− 1} are identical and equal to xB. Seeing

as B ⊆ {B, ..., B}, |xB| ∈ {1, 2} if B ≤ B − 1. Obviously, |xB| = 1 if B = B.

Claim 9 establishes Item 1 of Lemma 1. Consider Item 2. |xB| = 1 if z ≥ B + 1 by Claim 8.

Hence, |xB| = 2 implies z = B. Claims 7, 8 and z = B then imply xj = (qj , θBqj) for all j ∈ B.
Invoking Claim 9 yields xj = xB = (qB, θBqB) for all j ∈ {B, ..., B − 1} if |xB| = 2. Next:

Ui(xi) ≥ Ui(xB) = (θB − θi)qB > (θB − θi)qB = Ui(xB) ∀i ∈ {1, ..., B − 1}.

The first (weak) inequality follows from incentive compatibility, the second (strict) inequality

from qB ̸= qB by xB ̸= xB and monotonicity of output. Furthermore,

Ui(xi) = Ui(x0) = 0 > −(θi − θB)qB = Ui(xB) ∀i ∈ {B + 1, ...I}, B ≤ I − 1.

The first string of equalities follow from z = B for |xB| = 2 and Claim 8. Ui(xi) > Ui(xB)

for all i ̸= B implies σBi = 0 for all i ̸= B by (7). Hence, µBB = 1 by (9) if |xB| = 2. Upon

observing cost report θB, the principal attaches posterior probability equal to one that the agent

in fact has marginal cost θB. The sequentially rational choice for the principal is then to offer

xfbB and obtain ex-post surplus wfb
B > 0. This completes the proof of Item 2 of Lemma 1. To

prove items 3-5, we now characterize additional properties of incentive efficient and incentive

optimal mechanisms with incomplete commitment. The next claim states that local incentive

compatibility constraints are binding even in mechanisms with incomplete commitment.

Claim 10 Consider a mechanism (x̂, Σ̂|A,B) that entails ex-ante contracting (A ̸= ∅) and

incomplete commitment (B ≠ ∅). Let the mechanism have the following properties: B ≥ 2,
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q̂Ak
> q̂B for some cost group Ak, and x̂j = x̂B ∀j ∈ {Ak + 1, ..., B − 1} if Ak ≤ B − 2. This

mechanism is incentive efficient only if

[UAk
(x̂Ak

)− UAk
(x̂B)][UAk+1(x̂B)− UAk+1(x̂Ak

)] = 0, (39)

the local incentive compatibility constraint Ak is downward binding for Ak ≤ B − 2,

UAk
(x̂Ak

) = UAk
(x̂B), (40)

and

UAl
(x̂Al

) = UAl
(x̂Al+1

) ∀l ∈ {1, ..., k − 1}, k ≥ 2. (41)

Proof. The proof of identity (39) is analogous to the proof of Claim 5 and the proofs of identities

(40) and (41) are analogous to the proof of Claim 6.

We finally prove three claims of incentive optimal mechanisms.

Claim 11 A mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ ̸= ∅) is in-

centive optimal only if |x∗
A∗ | = K and q∗j /∈ {q∗B∗ , q∗B∗} for all j ∈ A∗.

Proof. Suppose |x∗
A∗ | < K, and denote the corresponding number of cost groups byK∗ ≤ K−1.

Construct a modified mechanism (x∗,Σ∗|A,B) as follows: Al = A∗
l for all l ≤ K∗ if K∗ ≥ 1. If

|x∗
B∗ | = 2, then AK∗+1 = B∗\B∗ and B = B∗. If |x∗

B∗ | = 1, then AK∗+1 = B∗ and B = ∅. The

modified mechanism is incentive feasible since the menu of contracts and reporting strategies are

the same as in the initial mechanism. Both mechanisms also yield the same expected surplus

to the principal. Seeing as B ⊂ B∗ ∪ ∅, (x∗,Σ∗|A∗,B∗) is not minimal in the sense of (13), and

therefore cannot be incentive optimal.

Assume next that |x∗
A∗ | = K, but q∗j ∈ {q∗B∗ , q∗B∗} for some j ∈ A∗

k. Then x∗A∗
k
∈ {x∗B∗ , x∗B∗}

by Claim 4. Construct a modified mechanism (x∗,Σ∗|A,B) as follows: Al = A∗
l for all l ̸= k

if K ≥ 2. If |x∗
B∗ | = 2 and x∗A∗

k
= x∗B∗ , then Ak = A∗

k ∪ B∗\B∗ and B = B∗. If |x∗
B∗ | = 2 and

x∗A∗
k
= x∗B∗ , then Ak = A∗

k∪B∗ and B = B∗\B∗. If |x∗
B∗ | = 1, then Ak = A∗

k∪B∗ and B = ∅. By
way of an identical arguments as above, the proposed mechanism is not minimal in the sense of

(13), and therefore cannot be incentive optimal.

An immediate implication of Claim 11 is that B∗ = {B∗, ..., B∗}. This property holds trivially

if either B∗ = B∗ − 1 or B∗ = B∗. If B∗ ≤ B∗ − 2 and j ∈ A∗ for some B∗ < j < B∗, then

q∗j = q∗B∗ by Claim 8, which violates Claim 11.

Let z∗ be the maximal cost type that with positive probability invokes the escape clause

by reporting cost θj , j ∈ B∗, in an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) that features

incomplete commitment (B∗ ̸= ∅).

Claim 12 Assume that the incentive optimal mechanism (x∗,Σ∗|A∗,B∗) features incomplete

commitment (B∗ ̸= ∅), where B∗ ≤ I − 1. If q∗B∗+1 > 0, then z∗ = B∗ + 1.
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Proof. We first demonstrate that z∗ ≤ B∗ + 1. This is obviously true if B∗ ∈ {I − 1, I}, but
the result holds also for B∗ ≤ I − 2. For if z∗ ≥ B∗+2, then q∗j = q∗B∗ for all j ∈ {B∗, ..., z∗− 1}
by Claim 8. In particular, q∗B∗+1 = q∗B∗ , which violates the necessary condition of incentive

optimality established in Claim 11. Invoking Claim 8 delivers z∗ ∈ {B∗, B∗ + 1}. Assume that

q∗B∗+1 > 0. If z∗ = B∗, then UB∗(x∗B∗) = 0 < (θB∗+1 − θB∗)qB∗+1 = UB∗(x∗B∗+1), which violates

incentive compatibility. This leaves z∗ = B∗ + 1 as the only remaining possibility.

Claim 13 A mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ ̸= ∅) is in-

centive optimal only if z∗ = B∗.

Proof. The result follows directly if B∗ = I since we already established z∗ ≥ B∗ in Claim 8.

Let B∗ ≤ I − 1. The proof proceeds as follows: We first show that x∗B∗+1 = xfbB∗+1 if q∗B∗+1 > 0.

We then show that the principal in that case can obtain strictly higher expected surplus than

in the proposed mechanism by modifying the escape clause. Hence, incentive optimality implies

q∗B∗+1 = 0. We already showed in the proof of Claim 12 that z∗ ∈ {B∗, B∗+1}. The final part of
the proof establishes that z∗ ̸= B∗ + 1 if q∗B∗+1 = 0. This leaves z∗ = B∗ as the only remaining

possibility for B∗ ≤ I − 1.

It cannot be the case that q∗B∗+1 = q∗B∗ , because this would violate Claim 11. If q∗B∗+1 ∈
(0, q∗B∗), then z∗ = B∗ + 1 by Claim 12. Hence, x∗j = x∗B∗ for all j ∈ B∗ by Claim 8. Moreover,

A∗
K = {B∗+1} identifies the maximal cost group in A∗ because x∗j = x0 for all j ∈ {B∗+2, ..., I}

if B∗ ≤ I − 2; see Claim 8. The local downward incentive compatibility constraint UB∗(x∗B∗) ≥
UB∗(x∗B∗+1) is slack because UB∗+1(x

∗
B∗+1) = UB∗+1(x

∗
B∗) and q∗B∗ > q∗B∗+1. By Claim 2, it

follows that Ui(x
∗
i ) > Ui(x

∗
j ), and therefore σ∗

ji = 0, for all (i, j) ∈ {1, ..., B∗} × {B∗ + 1, ..., I}.
If B∗ ≤ I − 2, then upward-binding IC and strict monotonicity also imply σ∗

ji = 0 for all (i, j) ∈
{B∗+2, ..., I}×{1, ..., B∗} by Claim 3. Moreover, Ui(x

∗
i ) = Ui(x0) = 0 > −(θi− θB∗+1)q

∗
B∗+1 =

Ui(x
∗
B∗+1) imply σ∗

(B∗+1)i = 0 for all i ∈ {B∗+2, ..., I}. In particular, Ui(x
∗
i ) > Ui(x

∗
B∗+1) for all

i ̸= B∗+1 if q∗B∗+1 ∈ (0, q∗B∗). As the principal cannot reduce the information rent by distorting

q∗B∗+1, it follows that x
∗
B∗+1 = xfbB∗+1. Finally, σ

∗
j(B∗+1) = 0 for all j ∈ {1, ..., B∗ − 1} if B∗ ≥ 2

by UB∗(x∗B∗) ≥ UB∗(x∗B∗−1), q
∗
B∗−1 > q∗B∗ and Claim 3. Based on this information, we can write

the principal’s expected surplus of the proposed incentive optimal mechanism as:

W (x∗,Σ∗|A∗,B∗) =

B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1[

∑
j∈B∗

σ∗
j(B∗+1)WB∗+1(x

∗
B∗) + σ∗

B∗+1w
fb
B∗+1].

Consider the alternative mechanism (x∗,Σ|A,B), where Al = A∗
l for all l ∈ {1, ...,K − 1},

if K ≥ 2, AK = B∗ and B = {B∗ + 1}. Also, let σB∗+1 = 1. Reporting strategies remain

unchanged otherwise. Setting xB∗+1 = xfbB∗+1 = x∗B∗+1 is sequentially rational following the

cost report θB∗+1 in the modified mechanism: Ui(x
∗
i ) > Ui(x

∗
B∗+1) for all i ̸= B∗ + 1 implies

σ(B∗+1)i = 0 for all i ̸= B∗ + 1, which in turn implies that the principal attaches posterior

probability equal to 1 to the event that the agent has cost θB∗+1 after observing that particular
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cost report. The expected surplus to the principal of the modified mechanism equals

W (x∗,Σ|A,B) =
B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1w

fb
B∗+1.

The difference

W (x∗,Σ|A,B)−W (x∗,Σ∗|A∗,B∗) = νB∗+1(1− σ∗
B∗+1 −

∑
j∈B∗

σ∗
j(B∗+1))w

fb
B∗+1

+ νB∗+1

∑
j∈B∗

σ∗
j(B∗+1)[w

fb
B∗+1 −WB∗+1(x

∗
B∗)]

in expected surplus between the two mechanisms is strictly positive by x∗B∗ ̸= x∗B∗+1 = xfbB∗+1

and because z∗ = B∗ + 1 it follows that
∑

j∈B∗ σ∗
j(B∗+1) > 0. Having eliminated all other

possibilities, it follows that q∗B∗+1 = 0.

We next establish z∗ ̸= B∗ + 1 if q∗B∗+1 = 0. Suppose z∗ = B∗ + 1. Everything is nearly the

same as in the previous part of the proof, except now x∗B∗+1 = x0 instead of x∗B∗+1 = xfbB∗+1. In

particular, the expected surplus of the proposed incentive optimal mechanism is:

W (x∗,Σ∗|A∗,B∗) =
B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1

∑
j∈B∗

σ∗
j(IB∗+1)WIB∗+1(x

∗
B∗).

Consider a modified mechanism (x,Σ|A∗,B), where B ={B∗, ..., B∗ + 1}, xB∗+1 = xfbB∗+1 and

σi = σ∗
i + σ∗

(B∗+1)i for all i ∈ {B∗ + 2...., I} if B∗ ≤ I − 2. All other contracts and reporting

strategies remain the same as in the initial mechanism. Even this mechanism is locally upward-

binding at θB∗+1, UB∗+1(x
fb
B∗+1) = UB∗+1(x

∗
B∗) = 0, and is incentive feasible if q∗B∗ > qfbB∗+1.

We now demonstrate q∗B∗ > qfbB∗+1. On the basis of the locally upward-binding IC constraint

UB∗+1(x
∗
B∗+1) = UB∗+1(x

∗
B∗), monotonicity q∗B∗ > 0 = q∗B∗+1 and Claim 3, we obtain σ∗

ji = 0

for all (i, j) ∈ {B∗ +2, ...I}× {1, ..., B∗} if B∗ ≤ I − 2. Upon observing a cost report θj , j ∈ B∗,

the principal therefore obtains the expected ex-post surplus

S(q∗B∗)−
B∗+1∑
i=1

µ∗
ji[θi + (1− α)(θB∗+1 − θi)]q

∗
B∗ , µ∗

ji =
νiσ

∗
ji∑B∗+1

h=1 νhσ
∗
jh

,

of offering the contract x∗B∗ = (q∗B∗ , θB∗+1q
∗
B∗). The equilibrium quantity q∗B∗ is then character-

ized by

S′(q∗B∗) =

B∗+1∑
i=1

µ∗
ji[θi + (1− α)(θB∗+1 − θi)] < θB∗+1 = S′(qfbB∗+1),

where the inequality follows from

θB∗+1 −
B∗+1∑
i=1

µ∗
ji[θi + (1− α)(θB∗+1 − θi)] = α

∑B∗

i=1 νiσ
∗
ji(θB∗+1 − θi)∑B∗+1

h=1 νhσ
∗
jh

> 0.
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Strict concavity of S(q) then implies q∗B∗ > qfbB∗+1.

The expected surplus in the modified mechanism is

W (x,Σ|A∗,B) =
B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1[

∑
j∈B∗

σ∗
j(IB∗+1)WIB∗+1(x

∗
B∗) + σ∗

B∗+1w
fb
B∗+1].

The difference in expected surplus between the two mechanisms is

W (x,Σ|A∗,B)−W (x∗,Σ∗|A∗,B∗) = νB∗+1σ
∗
B∗+1w

fb
B∗+1 > 0,

which contradicts the assumed incentive optimality of (x∗,Σ∗|A∗,B∗). We conclude that q∗B∗+1 =

0 implies z∗ ̸= B∗ + 1.

We can now draw conclusions about incentive optimal mechanisms with incomplete commitment.

Claim 11 proves Item 3 of Lemma 1. By way of z∗ = B∗ and Item 2 of Claim 8, C∗ =

{B∗ + 1, ..., I} if B∗ ≤ I − 1. This proves Item 5. Moreover, B∗ ∪ C∗ = {B∗, ..., I}. By

A∗ ̸= ∅, and since A∗, B∗ and C∗ partition I ∪ ∅, it follows that B∗ ≥ 2 and A∗ = {1, ..., A∗},
where A∗ = B∗ − 1. This proves the first part of Item 4 of Lemma 1. Item 4(a) follows from

Claim 11 and monotonicity. Item 4(b) follows from Claim 7, Claim 8 and z∗ = B. Obviously,

UB∗(x∗B∗) = UB∗(x∗B∗) = 0.□

A.3 Proof of Lemma 2

We first demonstrate some general properties ofΣ∗ in incentive optimal mechanisms (x∗,Σ∗|A∗,B∗)

that feature incomplete commitment (B∗ ̸= ∅). This is done in 6 claims.

Claim 14 Consider a mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ ̸= ∅)
and incomplete commitment (B∗ ̸= ∅). This mechanism is incentive optimal only if the following

conditions are all met:

1. σ∗
ji = 0 ∀(i, j) ∈ {1, ...A∗ − 1} × {B∗, ..., I} if A∗ ≥ 2.

2. σ∗
ji = 0 ∀(i, j) ∈ {1, ..., B∗ − 1} × {B∗, ...I} if q∗B∗ > q∗B∗.

3. σ∗
ji = 0 ∀(i, j) ∈ {1, ..., B∗ − 1} × C∗ if C∗ ̸= ∅.

4. σ∗
ji = 0 ∀(i, j) ∈ {B∗ + 1, ..., I} × A∗ if B∗ ≤ I − 1.

5. σ∗
jB∗ = 0 ∀j ∈ {1, ..., A∗ − 1} such that q∗j > q∗A∗, if A∗ ≥ 2.

6. σ∗
ji = 0 ∀(i, j) ∈ C∗ × (A∗ ∪ B∗) if C∗ ̸= ∅.

Proof. By combining incentive compatibility conditions, we obtain:

Ui(x
∗
i )−Ui(x

∗
j ) = Ui(x

∗
i )−Ui(x

∗
h)+Uh(x

∗
h)−Uh(x

∗
j )+(θh−θi)(q

∗
h−q∗j ) ≥ (θh−θi)(q

∗
h−q∗j ). (42)

Hence, σ∗
ji = 0 if (θh − θi)(q

∗
h − q∗j ) > 0 for some h ∈ I.
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Item 1: If h = A∗, then the rightmost expression in (42) is strictly positive for all (i, j) ∈
{1, ..., A∗ − 1} × {B∗, ..., I} by q∗A∗ > q∗B∗ ≥ q∗j for all j ∈ {B∗, ..., I}.

Item 2: If h = B∗ − 1, then the rightmost expression in (42) is strictly positive for all (i, j) ∈
{1, ..., B∗ − 2} × {B∗, ...I} by q∗B∗−1 > q∗B∗ ≥ q∗j for all j ∈ {B∗, ...I}.

Item 3: If h = B∗, then the rightmost expression in (42) is strictly positive for all (i, j) ∈
{1, ..., B∗ − 1} × C∗ by q∗B∗ > 0.

Item 4: If h = B∗, then the rightmost expression in (42) is strictly positive for all (i, j) ∈
{B∗ + 1, ..., I} × A∗ by q∗j ≥ q∗A∗ > q∗B∗ for all j ∈ A∗.

Item 5: If h = A∗, then the rightmost expression in (42) is strictly positive for all j ∈ {1, ..., A∗−
1} that satisfy q∗j > q∗A∗ .

Item 6: If h = B∗, then the rightmost expression in (42) is strictly positive for all (i, j) ∈ C∗×A∗

by q∗j ≥ q∗A∗ > q∗B∗ ≥ q∗B∗ for all j ∈ A∗. Ui(x
∗
i ) = 0 > −(θi − θB∗)q∗j = Ui(x

∗
j ) for all

(i, j) ∈ C∗ × B∗ completes the proof.

Claim 15 A mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ ̸= ∅), incom-

plete commitment (B∗ ̸= ∅) and partial participation (C∗ ̸= ∅), is incentive optimal only if∑
j∈C∗ σ∗

jB∗ = 0.

Proof. We consider two cases separately. In case one, q∗B∗ > q∗B∗ . By Claim 14, σ∗
IB∗ i = 0 for

all i ̸= B∗. Upon observing θB∗ , the principal therefore deduces that the agent with probability

one has cost θB∗ . The sequentially rational ex-post contract then equals x∗B∗ = xfbB∗ . This holds

for any σ∗
B∗ > 0. The expected surplus of the principal equals

W (x∗,Σ∗|A∗,B∗) =
B∗−1∑
i=1

B∗−1∑
j=1

νiσ
∗
jiWi(x

∗
j ) +

B∗−1∑
j=B∗

νB∗σ∗
jB∗WB∗(x∗B∗) + νB∗σ∗

B∗w
fb
B∗ .

Let a modified mechanism (x∗,Σ|A∗,B∗) differ from the previous mechanism only by σB∗ =∑I
j=B∗ σ∗

jB∗ . The principal can implement x∗ also under the modified reporting strategy because

the change from Σ∗ to Σ does not affect posterior beliefs about the agent’s true cost type θi

upon observing cost report θj , j ∈ B∗. The difference

W (x∗,Σ|A∗,B∗)−W (x∗,Σ∗|A∗,B∗) =
∑
j∈C∗

νB∗σ∗
jB∗w

fb
B∗ ,

in the principal’s expected surplus is strictly positive if
∑

j∈C∗ σ∗
jB∗ > 0, which would contradict

the assumed incentive optimality of (x∗,Σ∗|A∗,B∗).

In case two, q∗B∗ = q∗B∗ , so that x∗j = x∗B∗ for all j ∈ B∗. We now introduce some notation

that will be useful later. Recall from the main text the definition B∗ = {B∗, ..., B∗ − 1} if

|x∗
B∗ | = 2 and B∗ = B∗ if |x∗

B∗ | = 1. After observing a cost report j ∈ B∗, the principal’s option

is whether to offer the contract x∗B∗ or save on information rent by excluding one or more of the

least efficient cost types. The maximal surplus the principal can achieve by offering a deviation
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contract x∗djh = (q∗djh, θhq
∗d
jh) in Stage 4 that leaves an agent of cost type h ∈ {A∗, ..., B∗ − 1}

indifferent between accepting or rejecting the ex-post contract, equals
Ωjh(σ

∗
jh)∑B∗

i=A∗ νiσ∗
ji

, where

Ωjh(σjh) =
h∑

i=A∗

νiσjiWi(x
d
jh) =

h∑
i=A∗

νiσji[S(q
d
jh)− (θi + (1− α)(θh − θi))q

d
jh], (43)

xdjh = (qdjh, θhq
d
jh) is the ex-post contract offered by the principal in that case, and

S′(qdjh) =

∑h
i=A∗ νiσji(θi + (1− α)(θh − θi))∑h

i=A∗ νiσji
, (44)

characterizes the optimal output given the reporting strategy σjh = (σjA∗ , ..., σjh). The contract

x∗djh results from replacing σjh by σ∗
jh in (43) and (44). The Stage 4 expected surplus of offering

x∗B∗ subsequent to a cost report θj , j ∈ B∗, equals
Ω∗

jB∗∑B∗
i=A∗ νiσ∗

ji

, where

Ω∗
jB∗ =

B∗∑
i=A∗

νiσ
∗
jiWi(x

∗
B∗) =

B∗∑
i=A∗

νiσ
∗
ji[S(q

∗
B∗)− (θi + (1− α)(θB∗ − θi))q

∗
B∗ ]

By these definitions, x∗B∗ is sequentially rational if and only if

Ω∗
jB∗ ≥ Ωjh(σ

∗
jh) ∀(j, h) ∈ B∗ × {A∗, ..., B∗ − 1}. (45)

In particular, x∗B∗ is sequentially rational only if WB∗(x∗B∗) ≥ 0. Otherwise, the principal would

be strictly better off by excluding the least efficient cost type under ex-post contracting and

offering instead a deviation contract.

Consider now the specific case where q∗B∗ = q∗B∗ , so that |x∗
B∗ | = 1. Suppose σ∗

lB∗ > 0 for

some l ∈ C∗. Construct a modified mechanism (x,Σ|A∗,B∗) where σlB∗ = σ∗
lB∗ − ϵ ≥ 0, ϵ > 0,

and

σjB∗ = σ∗
jB∗ +

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)∑

j′∈B∗
∑B∗

i=A∗ νiσ∗
j′i(θB∗ − θi)

ϵ ∀j ∈ B∗.

All other reporting strategies remain the same as before. By this construction,
∑

j∈B∗(σjB∗ −
σ∗
jB∗) = ϵ. Also, the contract xB∗ = (qB∗ , θB∗qB∗), where

S′(qB∗) =

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θi + (1− α)(θB∗ − θi)) + νB∗θB∗ϵ∑

j∈B∗
∑B∗

i=A∗ νiσ∗
ji + νB∗ϵ

,

is sequentially rational for all cost reports j ∈ B∗ if and only if

ΩjB∗(σjB∗) ≥ Ωjh(σ
∗
jh) ∀(j, h) ∈ B∗ × {A∗, ..., B∗ − 1}. (46)

A marginal increase in ϵ has no effect on the right-hand side of (46). The marginal effect of ϵ on

xB∗ has only a second-order effect on the principal’s surplus, i.e.
∂ΩjB∗

∂ϵ = νB∗
∂σjB∗
∂ϵ WB∗(xB∗).
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The derivative

∂WB∗(xB∗)

∂ϵ
= (S′(qB∗)− θB∗)

∂qB∗

∂ϵ
= −α

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)∑

j∈B∗
∑B∗

i=A∗ νiσ∗
ji + νB∗ϵ

∂qB∗

∂ϵ

is strictly positive by

∂qB∗

∂ϵ
=

ανB∗

S′′(qB∗)

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)

(
∑

j∈B∗
∑B∗

i=A∗ νiσ∗
ji + νB∗ϵ)2

< 0.

Since
∂ΩjB∗

∂ϵ > νB∗
∂σjB∗
∂ϵ WB∗(x∗B∗) ≥ 0 for all ϵ > 0, xB∗ is sequentially rational for all ϵ > 0.

The key question is how ϵ affects the principal’s ex-ante expected surplus. If UA∗(x∗A∗) =

UA∗(x∗B∗), then

∂

∂ϵ
W (x,Σ|A∗,B∗) = νB∗WB∗(xB∗)− (GA∗−1 + νA∗σ∗

A∗)(1− α)(θB∗ − θA∗)
∂qB∗

∂ϵ
> 0.

The case with UB∗(x∗A∗) = UB∗(x∗B∗) is qualitatively similar. We conclude that σ∗
jB∗ = 0 for all

j ∈ C∗ also when q∗B∗ = q∗B∗ .

Claim 16 Consider a mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ ̸= ∅)
and incomplete commitment (B∗ ̸= ∅). Assume that B∗ = B∗. This mechanism is incentive

optimal only if σ∗
B∗ = 1.

Proof. Item 1 of Claim 14 implies
∑A∗−1

j=1 σ∗
jB∗ = 0 if A∗ ≥ 2. Claim 15 implies

∑I
j=B∗+1 σ

∗
jB∗ =

0 if B∗ ≤ I − 1. Hence, σ∗
A∗B∗ + σ∗

B∗ = 1 if B∗ = B∗. σ∗
A∗B∗ > 0 only if UB∗(x∗B∗) = UB∗(x∗A∗).

In that case, UA∗(x∗A∗) > UA∗(x∗B∗) by strict monotonicity q∗A∗ > q∗B∗ . As we have previously

verified, σB∗i = 0 for all i ̸= B∗ in those conditions, which establishes x∗B∗ = xfbB∗ . The principal’s

expected surplus then equals

W (x∗,Σ∗|A∗,B∗) =

A∗∑
i=1

A∗∑
j=1

νiσ
∗
jiWi(x

∗
j ) + (1− σ∗

B∗)WB∗(x∗A∗) + σ∗
B∗w

fb
B∗ .

in an incentive optimal mechanism where B∗ = B∗ and σ∗
B∗ < 1. Consider a modified mechanism

(x,Σ|A∗,B∗) that differs from the original mechanism by a reduced transfer tA∗
k
= t∗A∗

k
− (θB∗ −

θA∗)(q∗A∗−q∗B∗) to all cost groups A∗
k, k ∈ {1, ...,K}, and by σB∗ = 1. Everything else is the same

as in the original mechanism. This mechanism is incentive feasible and has expected surplus

W (x,Σ|A∗,B∗) = W (x∗,Σ∗|A∗,B∗)+GA∗(θB∗ −θA∗)(q∗A∗ −q∗B∗)+(1−σ∗
B∗)(w

fb
B∗ −WB∗(x∗A∗)),

which is strictly larger than W (x∗,Σ∗|A∗,B∗). Hence, B∗ = B∗ implies σ∗
B∗ = 1.

Claim 17 applies the Revelation Principle to the menu of ex-ante contracts and invokes the three

previous claims.
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Claim 17 For any incentive optimal mechanism (x∗,Σ∗∗|A∗,B∗) that features incomplete com-

mitment (B∗ ̸= ∅), there exists an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) where the re-

porting strategy Σ∗ has the following properties:

1. σ∗
i = 1 ∀i ∈ {1, ..., A∗ − 1} if A∗ ≥ 2.

2.
∑B∗−1

j=A∗ σ∗
ji = 1, i ∈ {A∗, B∗} if |x∗

B∗ | = 2.

3.
∑B∗

j=A∗ σ∗
ji = 1, i ∈ {A∗, B∗} if |x∗

B∗ | = 1.

4. σ∗
A∗B∗(1− σ∗

A∗) = 0.

5.
∑B∗−1

j=B∗ σ∗
ji = 1, i ∈ {B∗ + 1, ..., B∗ − 1} if B∗ ≤ B∗ − 2 and |x∗

B∗ | = 2.

6.
∑

j∈B∗ σ∗
ji = 1, i ∈ {B∗ + 1, ..., B∗ − 1} if B∗ ≤ B∗ − 2 and |x∗

B∗ | = 1.

7.
∑

j∈B∗ σ∗
jB∗ = 1.

8. σ∗
jB∗ > 0 ∀j ∈ B∗.

9. σ∗
i = 1 ∀i ∈ C∗ if C∗ ̸= ∅.

Proof. Construct Σ∗ as follows: If A∗ ≥ 2, then σ∗
i = 1 ∀i ∈ {1, ..., A∗ − 1}. For i ∈ {A∗, B∗},

σ∗
A∗i =

∑
j∈A∗ σ∗∗

ji and σ∗
ji = σ∗∗

ji ∀j ∈ {B∗, ..., I}. Moreover, σ∗
ji = σ∗∗

ji ∀(i, j) ∈ {B∗+1, ..., B∗}×
I if B∗ ≤ B∗−1, and finally σ∗

i = 1 ∀i ∈ C∗ if C∗ ̸= ∅. The modification fromΣ∗∗ toΣ∗ does not

affect posterior beliefs for any reported j ∈ B∗ in Stage 4 of the game. Hence, (x∗,Σ∗|A∗, B∗)

is incentive feasible. To derive incentive optimality, observe that

νi(σ
∗
ji − σ∗∗

ji )Wi(x
∗
j ) = 0 ∀(i, j) ∈ I × {B∗, ..., I} and ∀(i, j) ∈ {B∗ + 1, ..., I} × A∗ if B∗ ≤ I − 1

because either σ∗
ji = σ∗∗

ji or Wi(x
∗
j ) = 0 in all those cases. This result explains the second row

below:

W (x∗,Σ∗|A∗,B∗)−W (x∗,Σ∗∗|A∗,B∗)

=
∑B∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗

ji )Wi(x
∗
j )

=
∑A∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗

ji )Wi(x
∗
j )

=
∑A∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗

ji )[Wi(x
∗
j )−Wi(x

∗
i ) +Wi(x

∗
i )]

=
∑A∗

i=1 νi[
∑A∗

j=1 σ
∗
jiWi(x

∗
j )−

∑A∗

j=1 σ
∗∗
ji Wi(x

∗
i )]

=
∑A∗

i=1 νi[σ
∗
i −

∑A∗

j=1 σ
∗∗
ji ]Wi(x

∗
i ) = 0.

(47)

The third row follows from∑A∗

j=1 νB∗(σ∗
jB∗ − σ∗∗

jB∗)WB∗(x∗j )

=
∑A∗

j=1 νB∗(σ∗
jB∗ − σ∗∗

jB∗)WB∗(x∗A∗) = 0

where ∑A∗

j=1 σ
∗
jB∗ = σ∗

A∗B∗ =
∑A∗

j=1 σ
∗∗
jB∗
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by construction of Σ∗. In the fourth row, we have added and subtracted Wi(x
∗
i ) inside the

square brackets. The fifth row follows from:

σ∗∗
ji (Wi(x

∗
i )−Wi(x

∗
j )) = 0 ∀(i, j) ∈ A∗ ×A∗.

This property obviously holds for σ∗∗
ji = 0, but also for σ∗∗

ji > 0 because then Wi(x
∗
i ) = Wi(x

∗
j ).

For Wi(x
∗
i ) > Wi(x

∗
j ) it would have been better to set σ∗∗

ji = 0. For Wi(x
∗
i ) < Wi(x

∗
j ), it would

have been better to set σ∗∗
i = 0, which would violate the condition that σ∗∗

i > 0 in an incentive

feasible mechanism. The first equality in the last row of (47) follows from σ∗
ji = 0 ∀(i, j) ∈

A∗ × A∗, i ̸= j. The second equality is implied by σ∗
i = 1 =

∑A∗

j=1 σ
∗∗
ji ∀i ∈ {1, ..., A∗ − 1} if

A∗ ≥ 2, and σ∗
A∗ =

∑A∗

j=1 σ
∗∗
jA∗ by construction of Σ∗.

Item 1 Follows directly from the construction of Σ∗.

Item 2 By construction of Σ∗,
∑A∗−1

j=1 σ∗
ji = 0, i ∈ {A∗, B∗}, if A∗ ≥ 2. If |x∗

B∗ | = 2, then

q∗B∗ > q∗B∗ , and we can apply Item 2 of Claim 14 to get
∑I

j=B∗ σ∗
ji = 0, i ∈ {A∗, B∗}.

Item 3 From the proof of the previous item, we have
∑I

j=A∗ σ∗
ji = 1, i ∈ {A∗, B∗}. The result

then trivially follows if B∗ = I. Let B∗ ≤ I − 1, so that C = {B∗ + 1, ..., I}. We can then apply

Item 3 of Claim 14 to obtain
∑I

j=B∗+1 σ
∗
jA∗ = 0 and also

∑I
j=B∗+1 σ

∗
jB∗ = 0 if B∗ ≤ B∗ − 1.

We can finally apply Claim 15 to obtain
∑I

j=B∗+1 σ
∗
jB∗ = 0 if B∗ = B∗.

Item 4 Observe that σ∗
A∗B∗ > 0 only if UB∗(x∗B∗) = UB∗(x∗A∗). But then UA∗(x∗A∗) > UA∗(x∗B∗)

by q∗A∗ > q∗B∗ . From Claim 2, we then obtain UA∗(x∗A∗) > UA∗(x∗j ), and therefore σ∗∗
jA∗ = 0, for

all j ∈ {B∗, ..., I}. Hence, 1 =
∑I

j=1 σ
∗∗
jA∗ =

∑A∗

j=1 σ
∗∗
jA∗ = σ∗

A∗ .

Item 5 Assume that B∗ ≤ B∗ − 2. From Item 4 of Claim 14, we get
∑A∗

j=1 σ
∗
ji = 0 for all

i ∈ {B∗ + 1, ..., B∗ − 1}. |x∗
B∗ | = 2 implies q∗B∗ > q∗B∗ , and we can invoke Item 2 of Claim 14 to

get
∑I

j=B∗ σ∗
ji = 0 for all i ∈ {B∗ + 1, ..., B∗ − 1}.

Item 6 Follows directly from Item 3 and Item 4 of Claim 14.

Item 7 If B∗ ≤ B∗−1, then Item 4 of Claim 14 implies
∑

j∈A∗ σ∗
jB∗ = 0, whereas

∑
j∈C∗ σ∗

jB∗ = 0

if C∗ ̸= ∅ from Claim 15. If B∗ = B∗, then the result follows directly from Claim 16.

Item 8 Follows directly from z∗ = B∗.

Item 9 Follows directly from the construction of Σ∗.

Claim 17 still differs from Lemma 2 in a number of aspects. One difference is that Lemma 2

is specific about the randomization strategies an agent with marginal cost θi, i ∈ {A∗, ..., B∗},
uses for cost reports θj , j ∈ {B∗, ..., B∗ − 1} if |X∗

B∗ | = 2 and j ∈ B∗ if |X∗
B∗ | = 1, that cause

the principal to implement the ex post contract x∗B∗ . We next establish incentive optimality of

uniform randomization strategies.

Claim 18 For any incentive optimal mechanism (x∗,Σ∗∗|A∗,B∗) that features incomplete com-

mitment (B∗ ̸= ∅), there exists an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) in which the

reporting strategy Σ∗ has the following properties:
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1. σ∗
ji =

1−σ∗
A∗i

B∗−A∗−1 ∀(i, j) ∈ {A∗, ..., B∗ − 1} × {B∗, ..., B∗ − 1} if |x∗
B∗ | = 2,

2. σ∗
jB∗ =

1−σ∗
B∗

B∗−A∗−1 ∀j ∈ {B∗, ..., B∗ − 1} if |x∗
B∗ | = 2,

3. σ∗
ji =

1−σ∗
A∗i

B∗−A∗ ∀(i, j) ∈ {A∗, ..., B∗} × B∗ if |x∗
B∗ | = 1.

Proof. Using the results in Claim 17, we can write the principals’ expected surplus as

B∗∑
i=1

νiWi(x
∗
i ) + νA∗(1− σ∗∗

A∗)[WA∗(x∗B∗)−WA∗(x∗A∗)] + νB∗σ∗∗
A∗B∗

× [WB∗(x∗A∗)−WB∗(x∗B∗)] + νB∗(1− σ∗∗
B∗)[WB∗(x∗B∗)−WB∗(x∗B∗)]

(48)

in the incentive optimal mechanism (x∗,Σ∗∗|A∗, B∗). The expected surplus depends onΣ∗∗ only

through (σ∗∗
A∗ , σ∗∗

A∗B∗ , σ∗∗
B∗) if |x∗

B∗ | = 2 and (σ∗∗
A∗ , σ∗∗

A∗B∗) if |x∗
B∗ | = 1. Let (σ∗

A∗ , σ∗
A∗B∗ , σ∗

B∗) =

(σ∗∗
A∗ , σ∗∗

A∗B∗ , σ∗∗
B∗). Then Σ∗ only modifies cost reports θj , j ∈ B∗ = {B∗, ..., B∗ − 1} if |x∗

B∗ | =
2 and in B∗ = B∗ if |x∗

B∗ | = 1. Everything else is the same as in the original mechanism.

Therefore, the mechanism (x∗,Σ∗|A∗,B∗) also yields expected surplus (48). To close the proof,

we demonstrate sequential rationality of x∗B∗ in the modified mechanism. Recall x∗B∗ = x∗B∗ if

|x∗
B∗ | = 1.

By way of the uniform distribution of reporting strategies in Σ∗, the posterior beliefs re-

garding agent costs are identical for all j ∈ B∗. The maximal surplus the principal can achieve

by offering a deviation contract xdh = (qdh, θhq
d
h) in Stage 4 that leaves an agent of cost type

h ∈ {A∗, ..., B∗ − 1} indifferent between accepting or rejecting the ex-post contract is propor-

tional to

Ωh =

h∑
i=A∗

νi(1− σ∗∗
A∗i)[S(q

d
h)− (θi + (1− α)(θh − θi))q

d
h]

where

S′(qdh) =

∑h
i=A∗ νi(1− σ∗∗

A∗i)(θi + (1− α)(θh − θi))∑h
i=A∗ νi(1− σ∗∗

A∗i)
.

In the above expressions, σ∗∗
A∗i = 0 for all i ∈ {B∗+1, ..., h} if h ≥ B∗+1. If |x∗

B∗ | = 2, then the

principal’s expected surplus of offering x∗B∗ at Stage 4 subsequent to a cost report θj , j ∈ B∗, is

proportional to

Ω∗
B∗ =

B∗−1∑
i=A∗

νi(1− σ∗∗
A∗i)[S(q

∗
B∗)− (θi + (1− α)(θB∗ − θi))q

∗
B∗ ] + νB∗(1− σ∗∗

B∗)[S(q∗B∗)− θB∗q∗B∗ ].

If |x∗
B∗ | = 1, then the principal’s expected surplus of offering x∗B∗ at Stage 4 subsequent to a

cost report θj , j ∈ B∗, is proportional to

Ω∗
B∗ =

B∗−1∑
i=A∗

νi(1− σ∗∗
A∗i)[S(q

∗
B∗)− (θi + (1− α)(θB∗ − θi))q

∗
B∗ ] + νB∗ [S(q∗B∗)− θB∗q∗B∗ ].

49



The mechanism (x∗,Σ∗|A∗,B∗) is incentive feasible if and only if the following sequential ratio-

nality constraint is met:

Ω∗
B∗ ≥ Ωh ∀h ∈ {A∗, ..., B∗ − 1}. (49)

We now show that sequential rationality (45) of x∗B∗ in the original mechanism implies

sequential rationality (49) of x∗B∗ in the modified mechanism. Summing up (45) over all j ∈ B∗

gives:

Ω∗
B∗ ≥

∑
j∈B∗

Ωjh(σ
∗∗
jh) = Ω̄h(Σ

∗∗
h ) ∀h ∈ {A∗, ..., B∗ − 1}. (50)

If |x∗
B∗ | = 2, then Σ∗∗

h is a (B∗ − B∗) × (h + 1 − A∗) matrix that identifies how each of the

cost types i ∈ {A∗, ..., h} randomizes across cost reports θj , j ∈ {B∗, ..., B∗ − 1}. Instead, Σ∗∗
h

has dimension (B∗ − A∗) × (h + 1 − A∗) if |x∗
B∗ | = 1, because then the agent may optimally

randomize across all cost types j ∈ B∗. The final step is to show that Ω̄h(Σ
∗∗
h ) ≥ Ωh.

Consider the problem of minimizing Ω̄h(Σh) over Σh subject to 0 ≤ σji ≤ 1 for all σji ∈ Σh,∑B∗−1
j=B∗ σji = 1 − σ∗∗

A∗i for all i ∈ {A∗, ..., h} if |x∗
B∗ | = 2 and

∑B∗

j=B∗ σji = 1 − σ∗∗
A∗i for all

i ∈ {A∗, ..., h} if |x∗
B∗ | = 1. By way of the envelope theorem we obtain:

∂Ωjh

∂σji
= νiWi(x

d
jh) = νi[S(q

d
jh)− (θi + (1− α)(θh − θi))q

d
jh],

with the cross-partial derivative of

∂2Ωjh

∂σji∂σjl
= −νiνl

[S′(qdjh)− θi − (1− α)(θh − θi))][S
′(qdjh)− θl − (1− α)(θh − θl)]∑h

i=A∗ νiσjiS′′(qdjh)
.

If we define

yjih = νi[S
′(qdjh)− θi − (1− α)(θh − θi)],

and yjh = (yjA∗h...., yjhh)
T , then we can write the Hessian matrix Hjh of Ωjh(σjh) as:

Hjh =
−yjhy

T
jh∑h

i=A∗ νiσjiS′′(qdjh)
.

By implication:

σT
jhHjhσjh =

−σT
jhyjhy

T
jhσjh∑h

i=A∗ νiσjiS′′(qdjh)
=

−(σT
jhyjh)

2∑h
i=A∗ νiσjiS′′(qdjh)

≥ 0.

Positive definiteness of Hjh implies that Ωjh(σjh) is a convex function. Consequently, Ω̄h(Σh)

is convex because it is a sum of (additively separable) convex functions. Because all constraints

are linear, all solutions to the (B∗ −B∗)× (h+ 1−A∗) [(B∗ −A∗)× (h+ 1−A∗) if |x∗
B∗ | = 1]

first-order conditions

νiWi(x
d
jh)− λih − ξ

jih
+ ξjih = 0, (51)
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the h+ 1−A∗ equality constraints

B∗−1∑
j=B∗

σji = 1− σ∗∗
A∗i if |x∗

B∗ | = 2;
B∗∑

j=B∗

σji = 1− σ∗∗
A∗i if |x∗

B∗ | = 1, (52)

and the (B∗−B∗)× (h+1−A∗) [(B∗−A∗)× (h+1−A∗) if |x∗
B∗ | = 1] complementary slackness

conditions

σji ∈ [0, 1], ξ
jih

≥ 0, ξjih ≥ 0, σjiξjih = (1− σji)ξjih = 0 (53)

minimize Ω̄h(Σh). In the first-order condition (51), λih represents the Lagrangian multiplier on

the equality constraint (52), ξ
jih

is the Karush-Kuhn-Tucker (KKT) multiplier on σjih ≥ 0, and

ξjih is the KKT multiplier on σji ≤ 1.

Obviously, Σ∗
h, ξji = ξji = 0 and λih = νiWi(x

d
h) jointly solve (51)-(53). Hence, Ω∗

B∗ ≥
Ω̄h(Σ

∗∗
h ) ≥ Ω̄h(Σ

∗
h) = Ωh for all h ∈ {A∗, ..., B∗ − 1}.

To close the proof of Lemma 2, we need a final result.

Claim 19 A mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ ̸= ∅) and is

characterized either by (i) B∗ = B∗ − 1 and |x∗
B∗ | = 1, or (ii) B∗ ≤ B∗ − 2, is incentive optimal

only if σ∗
ji = 0 for all (i, j) ∈ B∗ ×A∗.

Proof. Suppose σ∗
ji > 0 for some (i, j) ∈ B∗ ×A∗. We will show that there exists an incentive

feasible mechanism (x,Σ|A,B) that also features incomplete commitment (B ≠ ∅) and yields

the same expected surplus as the original mechanism, but B ⊂ B∗ and B ≠ B∗. The original

mechanism is not minimal and therefore cannot be incentive optimal.

By way of Item 4 in Claim 14, we know that σ∗
ji > 0, (i, j) ∈ B∗ ×A∗, implies i = B∗. From

Item 2 and Item 3 of Claim 17, we can set σ∗
jB∗ = 0 for all j ∈ {1, A∗ − 1} if A∗ ≥ 2. Moreover,

σ∗
A∗B∗ > 0 implies σ∗

i = 1 for all i ∈ A∗ ∪ C∗ by Item 1, Item 4 and Item 9 of Claim 17. From

Claim 18, we apply uniform randomization to derive the posterior probability distribution

µ∗
jB∗ =

νB∗(1− σ∗
A∗B∗)∑

i∈B∗ νi − νB∗σ∗
A∗B∗ − νB∗σ∗

B∗

µ∗
ji =

νi∑
i∈B∗ νi − νB∗σ∗

A∗B∗ − νB∗σ∗
B∗

∀i ∈ {B∗ + 1, ..., B∗ − 1}

µ∗
jB∗ =

νB∗(1− σ∗
B∗)∑

i∈B∗ νi − νB∗σ∗∗
A∗B∗ − νB∗σ∗

B∗

for all j ∈ {B∗, ..., B∗ − 1} and µ∗
B∗ = 1, if |x∗∗

B∗∗ | = 2. Instead,

µ∗
jB∗ =

νB∗(1− σ∗
A∗B∗)∑

i∈B∗ νi − νB∗σ∗
A∗B∗

µ∗
ji =

νi∑
i∈B∗ νi − νB∗σ∗

A∗B∗
∀i ∈ {B∗ + 1, ..., B∗}
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for all j ∈ B∗ if |x∗
B∗ | = 1. The mechanism has expected surplus

W (x∗,Σ∗|A∗,B∗) =
B∗∑
i=1

νiWi(x
∗
i ) + νB∗σ∗

A∗B∗
[WB∗(x∗A∗)−WB∗(x∗B∗)]

+ νB∗(1− σ∗
B∗)[WB∗(x∗B∗)−WB∗(x∗B∗)].

Consider the modified mechanism (x,Σ|A,B) in which Ak = A∗
k for all k ∈ {1, ...K − 1} if

K ≥ 2, AK is extended to include the cost type B∗, and B is correspondingly reduced. That is,

A = B∗ and B = B∗+1. Let xj = x∗j for all j ̸= B∗ and xB∗ = x∗A∗ . As for reporting strategies,

let σi = σ∗
i = 1 for all i ∈ A∗ ∪ C∗ and σB∗ = σ∗

A∗B∗ . If |x∗
B∗ | = 2, then σjB∗ =

1−σB∗

B∗−B∗−2 ,

σji =
1

B∗−B∗−2 , i ∈ {B∗ + 1, ..., B∗ − 1} , and σ∗
jB∗ =

1−σ∗
B∗

B∗−B∗−2 for all j ∈ {B∗ + 1, ..., B∗ − 1},
whereas σB∗ = σ∗

B∗ . If |x∗
B∗ | = 1, then σjB∗ =

1−σB∗

B∗−B∗−1 , σji =
1

B∗−B∗−1 , i ∈ {B∗+1, ..., B∗} , for

all j ∈ {B∗+1, ..., B∗}. Observe in particular that σij = 0 for all (i, j) ∈ B×A by construction.

Moreover, W (x∗,Σ∗|A∗,B∗) = W (x,Σ|A,B). The uniform distribution of cost reports Σ yields

posterior beliefs µji = µ∗
ji for all (i, j) ∈ I × {B∗ + 1, ..., B∗}. Hence, the modified mechanism

is incentive feasible by sequential rationality of x∗
B∗ .

Claims 16-19 map into the items of Lemma 2 as follows. Item 1 of Claim 17 implies Item 1(a).

Item 1 and Item 3 of Claim 18 imply Item 1(b). Claim 16 implies Item 2(a)i. Item 2 and Item 4

of Claim 17 imply Item 2(a)ii. Item 1 and Item 3 of Claim 18 and Claim 19 imply Item 2(a)iii.

Item 1 of Claim 18 and Claim 19 imply Item 2(b). Item 8 of Claim 17 and Item 2 of Claim 18

imply Item 2(c)i. Item 7 of Claim 17 and Item 3 of Claim 18 imply Item 2(c)ii. Item 9 of Claim

17 implies Item 3.□

A.4 Proof of Proposition 1

Let (x∗,Σ∗|A∗,B∗) be an incentive optimal mechanism with incomplete commitment (B∗ ̸= ∅).
We consider first the more complicated case with |x∗

B∗ | = 2. There are two subcases.

Subcase 1 : An agent with marginal cost θB∗ reports marginal cost θA∗ with zero probability,

σ∗
A∗B∗ = 0. This is the case discussed in the main text. We start the proof by demonstrating

incentive feasibility of a particular mechanism (x,Σ|A∗,B∗), which is described by the menu of

contracts xA∗ = xV C
A∗ , xj = xB∗ = xV C

B∗ for all j ∈ B∗ and xj = x0 for all j ∈ C∗ if C∗ ̸= ∅. As for
the reporting strategies, σi = 1 for all i ∈ {1, ...A∗−1} if |A∗| ≥ 2, σA∗ = σ∗

A∗ and σjA∗ =
1−σ∗

A∗
|B|∗

for all j ∈ B∗, σji =
1

|B|∗ for all (i, j) ∈ B∗ × B∗, and σi = 1 for all i ∈ C∗ if C∗ ̸= ∅.
By subtracting (18) from (19), we get

S′(qV C
B∗ )− S′(q∗B∗) = ανB∗

σ∗
B∗ [νA∗(1− σ∗

A∗)(θB∗ − θA∗) +
∑

i∈B∗ νi(θB∗ − θi)]

[νA∗(1− σ∗
A∗) + νB∗ ][νA∗(1− σ∗

A∗) + νB∗ − νB∗σ∗
B∗ ]

> 0.

Hence, q∗B∗ > qV C
B∗ = qB∗ by strict concavity of S(q).

By construction, Ui(xi) − Ui(xj) = Ui(x
∗
i ) − Ui(x

∗
j ) for all (i, j) ∈ A∗ × A∗, UA∗(xA∗) −

UA∗(xB∗) = UA∗(x∗A∗)− UA∗(x∗B∗), and q∗A∗ > qB∗ , so we can apply Item 2 of Claim 2 and Item
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1 of Claim 3 to verify individual rationality (5) and incentive compatibility (6) of (x,Σ|A∗,B∗).

The mechanism obviously satisfies the stochastic rationality constraint (7). The posterior beliefs

(9) of the modified mechanism are calculated as µj = 1 for all j ∈ A∗ ∪ C∗ and µji = µV C
i for

all j ∈ B∗ and i ∈ A∗ ∪B∗, where µV C
A∗ and µV C

i for all i ∈ B∗ were described in (20). Moreover,

|xA∗ | = |x∗
A∗ | implies (10). We finally need to verify sequential rationality (8) of xB∗ to establish

incentive feasibility of (x,Σ|A∗,B∗). To do so, we fist define the function

Ω̃(σ) = νA∗(1− σ∗
A∗)[S(q̃(σ))− (θA∗ + (1− α)(θB∗ − θA∗))q̃(σ)]

+
∑
i∈B∗

νi[S(q̃(σ))− (θi + (1− α)(θB∗ − θi))q̃(σ)]− νB∗σ[S(q̃(σ))− θB∗ q̃(σ)],

where q̃(σ) is implicitly defined by

S′(q̃(σ)) =

∑B∗

i=A∗ νi(θi + (1− α)(θB∗ − θi))− νA∗σ∗
A∗(θA∗ + (1− α)(θB∗ − θA∗))− νB∗σθB∗

νA∗(1− σ∗
A∗) + νB∗ − νB∗σ

.

By this construction, q̃(σ∗
B∗) = q∗B∗ , Ω̃(σ∗

B∗) = Ω∗
B∗ , see the proof of Claim 18 for a definition,

and q̃(0) = qB∗ . The expected surplus to the principal of offering the ex-post contract xB∗ after

the agent has reported marginal cost θj , j ∈ B∗, equals Ω̃(0)
νA∗ (1−σ∗

A∗ )+νB∗ , whereas the deviation

profit of offering a deviation contract xdh = (qdh, θhq
d
h), h ∈ {A∗, ..., B∗−1}, equals Ωh

νA∗ (1−σ∗
A∗ )+νB∗ ,

see the proof of Claim 18 for the definition of Ωh and discussion. Hence, xB∗ is sequentially

rational if and only if Ω̃(0) ≥ Ωh for all h ∈ {A∗, ..., B∗ − 1}. Sequential rationality of x∗B∗ in

the incentive optimal mechanism implies Ω̃(σ∗
B∗) ≥ Ωh for all h ∈ {A∗, ..., B∗− 1}. We close the

proof of incentive feasibility by demonstrating Ω̃(0) > Ω̃(σ∗
B∗). As

Ω̃′(σ) = −νB∗(S(q̃(σ))− θB∗ q̃(σ)), Ω̃′′(σ) =
−1

S′′(q̃(σ))

ν2B∗(S′(q̃(σ))− θB∗)2

νA∗(1− σ∗
A∗) + νB∗ − νB∗σ

> 0,

we have Ω̃′(σ) < Ω̃′(σ∗
B∗) = −νB∗WB∗(x∗B∗) ≤ 0 for all σ < σ∗

B∗ , where we demonstrated

WB∗(x∗B∗) ≥ 0 in the proof of Claim 15. Hence, Ω̃(0) > Ω̃(σ∗
B∗).

By way of incentive feasibility of (x,Σ|A∗,B∗) and |xB∗ | = 1, the reduced communication

mechanism augmented by a vague escape clause (VEC) described in the main text can be

sustained as a PBE. This mechanism generates the same expected surplus to the principal as

(x,Σ|A∗,B∗), namely:

W (x,Σ|A∗,B∗) =
∑
i∈A∗

νiWi(x
∗
i ) + νA∗(1− σ∗

A∗)[W
fb
A∗(qB∗)−W fb

A∗(q
∗
B∗)]

+
∑
i∈B∗

νiWi(xB∗) + νA∗(1− α)(θB∗ − θA∗)(q∗B∗ − qB∗),

where νA∗ =
∑

i∈A∗ νi. The net benefit of choosing the incentive optimal mechanism over
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(x,Σ|A∗,B∗) can be written as

W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)

= νA∗(1− σ∗
A∗)[W

fb
A∗(q

∗
B∗)−W fb

A∗(qB∗)] +
∑
i∈B∗

νi[Wi(x
∗
B∗)−Wi(xB∗)]

+ νB∗σ∗
B∗ [w

fb
B∗ −W fb

B∗(q
∗
B∗)]− νA∗(1− α)(θB∗ − θA∗)(q∗B∗ − qB∗)

limνB∗σB∗→0[S
′(qB∗)− S′(q∗B∗)] = 0 implies q∗B∗ → qB∗ and x∗B∗ → xB∗ as νB∗σB∗ → 0. There-

fore, limνB∗σB∗→0[W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)] = 0.

Subcase 2 : An agent with marginal cost θB∗ reports marginal cost θA∗ with positive probability,

σ∗
A∗B∗ > 0. This occurs only if |B∗| = 2 and |x∗B∗ | = 2; see Lemma 2. In this case, σ∗

A∗B∗ =

1− σ∗
B∗ . The incentive optimal ex-post contract x∗B∗ = (q∗B∗ , θB∗q∗B∗) has output

S′(q∗B∗) =
νB∗σ∗

B∗(θB∗ + (1− α)(θB∗ − θB∗)) + νB∗(1− σ∗
B∗)θB∗

νB∗σ∗
B∗ + νB∗(1− σ∗

B∗)
.

Consider the modified mechanism (x,Σ|A∗,B∗) in which the menu x of contracts has the follow-

ing properties: xj = (q∗j , t
∗
j−(θB∗−θB∗)(q∗B∗−qB∗)) for all j ∈ A∗ and xB∗ = xB∗ = (qB∗ , θB∗qB∗)

where

S′(qB∗) =
νB∗σ∗

B∗(θB∗ + (1− α)(θB∗ − θB∗)) + νB∗θB∗

νB∗σ∗
B∗ + νB∗

.

The reporting strategies are as follows: σi = σ∗
i = 1 for all i ∈ A∗. If C∗ ̸= ∅, then σi = σ∗

i = 1

also for all i ∈ C∗. Moreover, σA∗B∗ = 1 − σ∗
B∗ , σB∗ = σB∗B∗ =

σ∗
B∗

2 and σB∗B∗ = σB∗ = 1
2 . In

particular,

S′(qB∗)− S′(q∗B∗) =
ανB∗σ∗

B∗νB∗σ∗
B∗(θB∗ − θB∗)

[νB∗σ∗
B∗ ][νB∗σ∗

B∗ + νB∗(1− σ∗
B∗)]

> 0

implies q∗B∗ > qB∗ . It is straightforward to verify that the construction of the transfer payments

in xA∗ , Ui(xi) − Ui(xj) = Ui(x
∗
i ) − Ui(x

∗
j ) for all (i, j) ∈ A∗ × A∗, UB∗(xB∗) = UB∗(xA∗) and

q∗A∗ > qB∗ imply that the modified mechanism satisfies feasibility conditions (5)-(7) and (10).

We calculate the posterior beliefs (9) of the modified mechanism as:

µjB∗ =
νB∗σ∗

B∗

νB∗σ∗
B∗ + νB∗

, µjB∗ =
νB∗

νB∗σ∗
B∗ + νB∗

j ∈ {B∗, B∗}.

We finally verify sequential rationality (8) of xB∗ . In the incentive optimal mechanism, x∗B∗ is

sequentially rational if and only if

Ω∗
B∗ = νB∗σ∗

B∗ [S(q∗B∗)−(θB∗+(1−α)(θB∗−θB∗))q∗B∗ ]+νB∗(1−σ∗
B∗)[S(q∗B∗)−θB∗q∗B∗ ] ≥ νB∗σ∗

B∗wfb
B∗ .

The right-hand side of this expression is the expected surplus of offering a deviation contract that

is accepted only by an agent with marginal cost θB∗ . The modified contract xB∗ is sequentially
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rational if and only if

ΩB∗ = νB∗σ∗
B∗ [S(qB∗)− (θB∗ + (1− α)(θB∗ − θB∗))qB∗ ] + νB∗ [S(qB∗)− θB∗qB∗ ] ≥ νB∗σ∗

B∗wfb
B∗ .

One can then construct a similar function to Ω̃(σ) above to verify ΩB∗ > Ω∗
B∗ , but we omit this

step.

By the properties of (x,Σ|A∗,B∗), the following reduced communication mechanism sus-

tained by a vague escape clause (VEC) can be sustained as a PBE: The principal offers xA∗ in

Stage 1. In Stage 2, any agent with marginal cost θi, i ∈ A∗, selects the contract xi. An agent

with marginal cost θB∗ selects xA∗ with probability 1− σ∗
B∗ and invokes the escape clause with

probability σ∗
B∗ . If C∗ ̸= ∅, the any agent with marginal cost θi, i ∈ C∗ rejects the mechanism. In

Stage 3, the principal offers the ex-post contract xB∗ if the agent has invoked the escape clause.

This mechanism generates expected surplus

W (x,Σ|A∗,B∗) =
∑
i∈A∗

νiWi(x
∗
i ) + νB∗(1− σ∗

B∗)WB∗(x∗A∗) + νB∗σ∗
B∗WB∗(xB∗) + νB∗WB∗(xB∗)

+ (νA∗ + νB∗(1− σ∗
B∗))(1− α)(θB∗ − θB∗)(q∗B∗ − qB∗).

The net benefit of choosing the incentive optimal over the reduced communication mechanism

can be written as

W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)

= νB∗σ∗
B∗ [W fb

B∗(q∗B∗)−W fb
B∗(qB∗)] + νB∗ [W fb

B∗(q
∗
B∗)−W fb

B∗(qB∗)]

+ νB∗σ∗
B∗ [w

fb
B∗ −W fb

B∗(q
∗
B∗)]− (νA∗ + νB∗)(1− α)(θB∗ − θB∗)(q∗B∗ − qB∗)

Again, limνB∗σ∗
B∗→0[W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)] = 0 since q∗B∗ → qB∗ for νB∗σB∗ → 0.

We consider finally the less complicated case with |x∗
B∗ | = 1. Ex-post contracting then only ever

gives rise to one single contract proposal x∗B∗ regardless of the specific cost report θj , j ∈ B∗.

Incentive optimality of uniform randomization established in Lemma 2 then yields exactly the

same distribution of posterior beliefs over the agent’s marginal cost as in (20) for any cost report

θj , j ∈ B∗. Hence, the principal does not derive any additional information from the specific cost

report θj than what it can infer from the activation of the clause itself. The following sequence of

event can therefore be sustained as a PBE: The principal commits to a mechanism consisting of

the menu x∗
A∗ of contracts, augmented by the vague escape clause (VC). The agent then selects

x∗i if |A∗| ≥ 2 and the agent has marginal cost θi, i ∈ {1, ..., A∗− 1}. The agent selects x∗A∗ with

probability σ∗
A∗ and activates the escape clause VC with probability 1 − σ∗

A∗ if it has marginal

cost θA∗ . The agent activates the escape clause VC with probability 1 if the agent has marginal

cost θi, i ∈ B∗. The agent rejects the contract offer if C∗ ̸= ∅ and the agent has marginal cost

θi, i ∈ C∗. The principal offers the ex-post contract x∗B∗ in stage 3 if the agent has activated the

escape clause in stage 2. This restricted communication mechanism augmented by a VC clause

generates precisely the same expected welfare as the incentive optimal direct mechanism.□
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A.5 Proof of Lemma 3

Denote by (x̂, I|Â, ∅) the mechanism that maximizes the principal’s expected surplus in the set

of all incentive feasible mechanism with pure ex-ante contracting. Let Â be the least efficient

cost type that produces positive quantity q̂Â > 0 in this mechanism. Assume that q̂Â > q̂fb
Â
.

From Section 3, we know that q̂Â = qsb
Â

≤ qfb
Â

if the least efficient cost group K only contains

one element, i.e. |ÂK | = 1. Hence, q̂Â > q̂fb
Â

implies |ÂK | ≥ 2. Consider a modified mechanism

(x, I|A,B) in which Ak = Âk for all k ∈ {1, ...,K − 1} if K ≥ 2, AK = ÂK\Â and B =

Â. Hence, the least efficient cost type in the pure ex-ante mechanism has been moved into

a separate escape clause designed for that specific type only. Let x have the properties that

xj = (q̂j , t̂j − (θÂ − θÂ−1)(q̂Â − qfb
Â
)) for all j ∈ A, and assume that xÂ = xfb

Â
. Let all cost types

report their true cost with probability 1.

We first verify incentive feasibility of the modified mechanism. Individual rationality (5) and

incentive compatibility (6) follow from

Ui(xi)− Ui(xj) = Ui(x̂i)− Ui(x̂j) ≥ 0 ∀(i, j) ∈ A×A

Ui(xi)− Ui(x
fb

Â
) = Ui(x̂i)− Ui(x̂Â) + (θÂ−1 − θi)(q̂Â − qfb

Â
) ≥ 0 ∀i ∈ A

Ui(xi)− Ui(xj) = Ui(x̂i)− Ui(x̂j) + (θÂ − θÂ−1)(q̂Â − qfb
Â
) > 0 ∀(i, j) ∈ {Â, ..., I} × A

Ui(xi)− Ui(x
fb

Â
) = (θi − θÂ)q

fb

Â
> 0 ∀i ∈ {Â+ 1, ..., I}, Â ≤ I − 1

Ui(x
fb

Â
) = (θÂ − θi)q

fb

Â
≥ 0 ∀i ∈ Â

This mechanism trivially satisfies (7) because all types truthfully report cost with probability 1.

xfb
Â

is sequentially rational (8) because the only type that reports θÂ is an agent with marginal

cost θÂ. By truthfulness, the posterior probabilities (9) are µj = 1 for all j ∈ I. The mechanism

satisfies the contracting constraint (10) by |xA| = |x̂Â|. The expected surplus to the principal

of the modified mechanism equals

W (x, I|A,B) =
Â−1∑
i=1

νiWi(x̂i) + νÂw
fb

Â
+GÂ−1(1− α)(θÂ − θÂ−1)(q̂Â − qfb

Â
).

The difference

W (x, I|A,B)−W (x̂, I|Â, ∅) = νÂ[W
sb
Â
(qfb

Â
)−W sb

Â
(q̂Â)]

in expected surplus is strictly positive by strict concavity of W sb
Â
(q) and qsb

Â
< qfb

Â
< q̂Â. As

we have found an incentive feasible mechanism with incomplete commitment that strictly out-

performs all incentive feasible mechanisms with complete commitment, the incentive optimal

mechanism must feature incomplete commitment.□
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A.6 Proof of Proposition 5

If Ĉ ̸= ∅, then Â+ 1 ≤ I. If θÂ+1 − θÂ−1 is small, then W sb
Â
(q̂Â) ≈ W sb

Â+1
(q̂Â) ≈ 0; see (36). If

also W sb
Â
(qfb

Â
) > 0, then W sb

Â
(qsb

Â
) > W sb

Â
(qfb

Â
) > W sb

Â
(q̂Â). Strict concavity of W sb

Â
(q), qfb

Â
> qsb

Â

and q̂Â > qsb
Â

(Lemma 4) then imply q̂Â > qfb
Â
.□
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