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1. Introduction

Rooted in the seminal work of Samuelson (1938), the weak axiom of revealed preference
(WARP) and the weak generalized axiom of revealed preference (WGARP) have been
seen as minimal, normatively appealing, and potentially empirically robust consistency
conditions of choice. WGARP/WARP states that, for any pair of observations xt and
xs, when a consumer chooses xt with xs being affordable, then, when she chooses xs,
it must be that xt is more expensive/at least as expensive. Samuelson’s original 1938
paper focuses on demand functions, and studies WARP. Following Varian (1982), it is
empirically more convenient to work with demand correspondences, which, allowing for
indifferences, provide a natural justification for WGARP.

Standard utility maximization requires, in addition to being consistent with WGARP,
transitivity of preferences. However, there is abundant experimental and field evidence
against this property of preferences (Tversky 1969; Quah 2006). The potential lack of
robustness of the transitivity requirement on preferences motivated the influential work
of Kihlstrom et al. (1976), which essentially proposed to rewrite the entire theory of
demand on the basis of WARP alone. Also, the seminal work of Shafer (1974) proposed a
nontransitive consumer who nevertheless satisfies WARP. More recently, practitioners have
recognized some difficulties surrounding the computational complexity of using standard
utility maximization in setups of empirical interest (e.g., stochastic utility maximization,
which is NP-hard to check; see Kitamura and Stoye 2018). In response, there has been
a renewed interest in using WGARP as a minimalist version of the standard model of
rationality. (See, for example, Blundell et al. (2008), Hoderlein and Stoye (2014), Cosaert
and Demuynck (2018), and Cherchye et al. (2019).)1 In addition, many results in general
equilibrium, consumer theory, and measurement rely on this condition (Quah 2008).

Nonetheless, our motivation for the present analysis is to address the important ques-
tions regarding the nonparametric approach to demand analysis under WGARP/WARP
that have remained open, namely:

(i) Can a behavioral characterization of WGARP/WARP be provided without imposing
additional restrictions?

(ii) Is WGARP/WARP suitable for counterfactual demand analysis or equivalently, can
this condition alone make predictions out-of-sample?

(iii) How can preferences be recovered from observing behavior consistent with
WGARP/WARP?

The main contribution of this paper is to provide complete answers for all these
questions, based on the maximin model. These questions follow the classical approach

1In all of them, WGARP is usually stated without indifference, because the object of interest is a
demand function, not a demand correspondence. We cover both here.
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to demand analysis in Varian (1982). In addition to answering these questions, we also
shed additional light on well-known paradigms– such as the Shafer (1974) nontransitive
consumer and choices satisfying the law of demand–as special cases of the maximin model
(i.e., incorporating shape constraints). Our results also unify the treatment of finite and
infinite data sets.

Indeed, this paper proposes the maximin model as an answer to question (i). To
motivate the model, suppose the consumer is trying to figure out her true preferences.
Let us say she is trying to buy a car, and her three possible choices are a Ford, a Toyota,
and a Subaru. There are two main attributes that she focuses on: gas consumption and
reliability. When she compares the Ford to the Toyota, she focuses especially on the gas
consumption attribute; in doing so, she obtains a complete ranking of all cars according
to this feature. However, when she compares the Toyota to the Subaru, the attribute
on which she focuses is the reliability of the car during extreme winter conditions; she
then comes up with a possibly different ranking of all cars according to this dimension.
Finally, when comparing the Ford to the Subaru, she gives weight to both gas consumption
and reliability, and this produces yet a third ranking of all cars. We refer to each of
these rankings as an expression of her “local” preferences. Could she express her “global”
preferences over all cars by aggregating these “local” preferences?2

As explained next, the proposed notion brings to the forefront the idea of endogenous
reference points (Kőszegi and Rabin 2006), relevant to each pairwise comparison. Indeed,
the consumer acts as if any pairwise comparison colors her preferences over all possible
choices she makes. (Our interpretation of reference points as attributes or state of moods
is analogous to that in Richter and Rubinstein (2019).)

We find that a data set is consistent with WGARP if and only if it can be rationalized
by a maximin preference function (Theorem 1); the notion for WARP is similar, simply
switching from weak to strict rationalization (Theorem 2). We say that a finite data set
OT = {pt, xt}t∈T (a collection of prices and commodity bundles) is weakly rationalized
by a preference function r : X ×X → R, where X is the consumption set, if, for all t,
r(xt, y) ≥ 0 for any y ∈ X that is affordable at price pt (and wealth ptxt).

We now define a maximin preference function. Let U be an arbitrary finite set, and
∆(U) the probability simplex on U . These abstract elements may be viewed as reference
points. Let uij : X 7→ R denote a reference-dependent utility function based on the (i, j)
reference pair. Note that each utility function has a double subscript. This means that
the utility may depend on either one (i = j) or two (i 6= j) reference points. We require
that the order of such reference points not matter (i.e., uij = uji). We say that a data set
is weakly rationalized by a maximin preference function r if, for any x, y ∈ X, we can

2Although this example is stated for a discrete choice set, it also works for commodity bundles that
are the object of interest in this paper.
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write r(x, y) as:

r(x, y) = max
µ∈∆(U)

min
λ∈∆(U)

∑
i∈U

∑
j∈U

λiµj(uij(x)− uij(y)).

Thus, maximin rationalization can be interpreted as an aggregation of preferences
of an individual with multiple utility functions that are heterogeneous, due to reference
dependence. If this consumer is asked to make up her mind about how to compare any pair
of consumption bundles, how would she aggregate her different preferences if her behavior
is consistent with WGARP? The answer is provided by the maximin preference model.
That is, we show that this consumer has a preference function that is the maximum over
the minimal difference among the “local” utilities of the two bundles. Hence, to figure out
her preference between x and y, this consumer is cautious, in that she first looks at the
smallest differences between utilities (attribute by attribute), and only then maximizes
among them. This maximin aggregation of local utilities extends a partial, reflexive, and
asymmetric order (the direct revealed-preference relation under WGARP)3 to a complete,
reflexive, and asymmetric order on the grand-commodity set.

In fact, we show that a finite data set satisfying WGARP/WARP can be rationalized
by a maximin preference function that is skew-symmetric- a key property of nontransitive
consumers, first proposed by Shafer (1974) (i.e., r(x, y) = −r(y, x) for all x, y ∈ X). The
skew-symmetric maximin preference function dispenses with transitivity, while still being
compatible with WGARP/WARP.

The maximin preference function r(x, y) admits a game-theoretic interpretation. That
is, when one focuses on the bilateral comparison between bundles x and y, the maximin
r(x, y) can be interpreted as the outcome of the interaction of two adversarial selves
within the decision maker. In order to learn her own preferences, the consumer runs a
contest between her two selves. In this zero-sum game, (i) in trying to find reasons for
choosing x over y, one self chooses reference point i at random (mixed strategy µ) in order
to maximize a payoff function equal to uij(x)− uij(y); and (ii) in trying to find reasons
to rank y over x, the other self chooses reference point j at random (mixed strategy
λ), and thus has the negative of those payoffs. As in any two-player zero-sum game,
the maximin, minimax, and equilibrium logic coincide. We have chosen to describe our
representation as the maximin–reflecting cautious behavior–but we can also interpret it
as a Nash equilibrium. This interpretation would be similar to the self-equilibrium notion
in Kőszegi and Rabin (2006), because reference points are chosen endogenously from the
set U .

Perhaps surprisingly, we have a negative answer to question (ii) above. We show that
there are finite data sets that satisfy WGARP/WARP, and out-of-sample prices at which
no demand bundle can be chosen without exhibiting a violation of the axiom. This negative

3A bundle x is revealed preferred to y whenever x is chosen with y being affordable.
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result calls into question the usefulness of Samuelson’s weak axiom for nonparametric
demand analysis. We find the reason behind this failure and propose a way out. We show
that the failure to obtain out-of-sample predictions from the skew-symmetric maximin
preference function arises from the lack of convexity of preferences. This finding refutes a
classical conjecture in Kihlstrom et al. (1976) about the empirical equivalence of WARP
and the Shafer (1974) nontransitive consumer model. Indeed, Shafer (1974) proposed a
preference function r that, in addition to being skew-symmetric (and therefore compatible
with WARP), is also concave in the first argument, which ensures that the preferences of
this consumer are convex and always produce a solution to the maximization problem.
We propose the following two possible ways out of this pitfall involving WGARP/WARP
in counterfactual analysis:

[a] Interpreting maximin rationalization as a model of preference formation, one can
allow consumers to drop reference points out-of-sample. This reduction in the set of
reference points can be interpreted as a way for the consumer to learn her preferences by
prioritizing attributes. This means that the consumer will solve the maximin problem
with a constrained set of reference points that is possibly smaller than the original set
rationalizing the finite data set. We focus our attention on the minimal number of reference
points that must be dropped in order to re-establish the existence of a solution to the
maximization problem (Theorem 3).

[b] Alternatively, one can take a convex closure of the WGARP/WARP consistency
conditions, thereby effectively imposing convexity on the consumer’s preferences. In
practice, this takes the form of assuming some shape constraints on the preference
function. Such an approach was first proposed in John (2001), which also shows the
equivalence of this new condition (i.e., convex closure of WGARP/WARP) and the model
in Shafer (1974). Convexity of preferences allows us to reestablish the existence of the
consumer maximization problem without transitivity, as shown in Shafer (1974). Thus,
one could ask: what explains the gap in the maximin preference-function properties that
makes WGARP/WARP counterfactual analysis ill-behaved? In Theorem 4 we find that
the Shafer preference function is empirically equivalent to a restriction on the local utilities
of the maximin model. That is, the local utilities must have parallel straight-line income
expansion paths (i.e., they must admit a Gorman Form indirect-utility representation).
This tells us that WGARP and the equivalent maximin model may fail to produce a
solution to the consumer preference-maximization problem whenever local (reference-
dependent) utilities are heterogeneous in their marginal utility of income, this finding
resembles classical results from aggregation theory for a population of consumers.

Our finding that some data sets cannot be rationalized by convex preferences also
provides a counterexample to Samuelson’s eternal darkness, which refers to the impos-
sibility of testing the convexity of preferences in the case of utility maximization. In
addition, following Brown and Calsamiglia (2007) and Allen and Rehbeck (2018), we can
craft our restrictions on the local utilities in the maximin preference function to provide a
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representation for choices obeying the law of demand. This is done through a quasilinear
restriction in Theorem 5, a strengthening of the Gorman form. This characterization
may be of interest in its own right, due to the importance of the law of demand in both
theoretical and applied literatures.4

Let us turn now to the third central question we address in this paper, namely,
question (iii) above. We find that attempting to recover preferences using the classical
nonparametric tools developed in Varian (1982) may possibly result in uninformative
bounds to preferences. The reason for this failure is that preferences that generate data sets
consistent with WGARP may fail to be convex. Yet whenever possible, our model allows us
to recover preferences and to do welfare analysis on the basis of WGARP-consistent data
sets that cannot be generated by standard utility maximization. Specifically, in Theorem 6
we provide new informative bounds based on the notion of maximin rationalization for
data sets consistent with WGARP. Our key innovation is to consider subsets of the data,
consisting of pairs of observations, to which we can apply the tools in Varian (1982) to
recover local preferences that are combined to get bounds on the true global preferences.

The plan of the paper is as follows. After the central notions of revealed-preference
theory are reviewed in section 2, section 3 presents our characterizations of WGARP and
WARP based on the maximin rationalization model. Section 4 addresses counterfactual
analysis out-of-sample, and section 5 studies different shape constraints on the preference
function, showcasing new applications of the maximin model. In section 6 we tackle
the issue of recoverability of preferences. Section 7 extends the analysis to infinite data
sets. Section 8 is a brief review of related literature, and section 9 concludes. Proofs are
collected in an appendix.

2. Preliminaries

Suppose that a consumer chooses bundles consisting of L ≥ 2 goods in a market. We
assume that we have access to a finite number of observations, denoted by T , on the prices
and chosen quantities of these goods, where observations are indexed by T = {1, . . . , T}.
Let xt ∈ X ≡ RL

+ \ {0} denote the bundle of goods at time t ∈ T, which was bought at
prices pt ∈ P ≡ RL

++. We impose Walras’ law throughout: wealth at time t is equivalent
to ptxt ∈ W ≡ R++, for all t ∈ T.5 We write OT = {pt, xt}t∈T to denote all price-quantity

4Specifically, demand functions satisfying the law of demand have downward-sloping demand curves,
and allow the measurement of welfare changes in terms of consumer’s surplus for a given change in market
prices (Brown and Calsamiglia 2007).

5We use the following notation: The inner product of two vectors x, y ∈ RL is defined as xy =
∑L

l=1 xlyl.
For all (x, y) ∈ RL, x = y if xi ≥ yi for all i = 1, . . . , L; x ≥ y if x = y and x 6= y; and x > y if xi > yi

for all i = 1, . . . , L. We denote RL
+ = {x ∈ RL : x = (0, . . . , 0)} and RL

++ = {x ∈ RL : x > (0, . . . , 0)}.
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observations, and refer to OT as the data. In practice, the data OT describe a single
consumer that is observed over time.

2.1. Revealed-Preference Axioms

We begin by recalling some key definitions in the revealed-preference literature.

Definition 1. (Direct revealed preferred relations) We say that xt is directly revealed
preferred to xs, written xt �R,D xs, when ptxt ≥ ptxs. Also, xt is strictly and directly
revealed preferred to xs, written xt �R,D xs, when ptxt > ptxs.

If xt is directly revealed preferred to xs, this means that the consumer chose xt and not
xs, when both bundles were affordable. If xt is strictly and directly revealed preferred to
xs, then she could also have saved money by choosing xs. These definitions only compare
pairs of bundles. We can extend them to compare any subset of bundles by using the
transitive closure of the direct relation:

Definition 2. (Revealed preferred relations) We say that xt is revealed preferred to xs,
written xt �R xs, when there is a chain (x1, x2, . . . , xn) ∈ X with x1 = xt and xn = xs

such that x1 �R,D x2 �R,D . . . �R,D xn. Also, xt is strictly revealed preferred to xs, written
xt �R xs, when at least one of the directly revealed relations in the revealed preferred chain
is strict.

Hence, the revealed preferred relation �R is the transitive closure of the direct revealed-
preference relation �R,D. Next, we use these binary relations to define axioms that
characterize different types of rational consumer behavior. We begin with Samuelson’s
(1938) weak axiom of revealed preference:

Axiom 1. (WARP) The weak axiom of revealed preference (WARP) holds if there is no
pair of observations s, t ∈ T such that xt �R,D xs, and xs �R,D xt, with xt 6= xs.

Kihlstrom et al. (1976) introduces a generalized version of WARP:6

Axiom 2. (WGARP) The weak generalized axiom of revealed preference (WGARP) holds
if there is no pair of observations s, t ∈ T such that xt �R,D xs, and xs �R,D xt.

Samuelson (1948) shows how WARP can be used to construct a set of indifference
curves in the two-dimensional (L = 2) case, but also recognizes that WARP is not enough
to characterize rationality in the multidimensional (L > 2) case. Responding to this

6In contrast to only observing a finite number of prices and quantities, suppose that we knew the entire
demand function. In this case, Kihlstrom et al. (1976) shows that if the demand function is differentiable
and satisfies WGARP at every point in its domain, then the Slutsky substitution matrix derived from the
demand function is negative semidefinite at every point.

7



challenge, Houthakker (1950) introduces the strong axiom of revealed preference (SARP),
which makes use of transitive comparisons between bundles as implied by the revealed
preferred relation:

Axiom 3. (SARP) The strong axiom of revealed preference (SARP) holds if there is no
pair of observations s, t ∈ T such that xt �R xs, and xs �R,D xt, with xt 6= xs.

Varian (1982) notes that SARP requires single-valued demand functions, and argues
that it is empirically more convenient to work with demand correspondences and “flat”
indifference curves. To accomodate these properties, Varian introduces the generalized
axiom of revealed preference (GARP):

Axiom 4. (GARP) The generalized axiom of revealed preference (GARP) holds if there
is no pair of observations s, t ∈ T such that xt �R xs and xs �R,D xt.

In the two-dimensional case, the following equivalences are known:

Theorem A. (Equivalence of axioms) Let L = 2. Consider a finite data set OT =
{pt, xt}t∈T:

• The data OT satisfies SARP if and only if OT satisfies WARP (Rose 1958).

• The data OT satisfies GARP if and only if OT satisfies WGARP (Banerjee and
Murphy 2006).

2.2. Revealed-Preference Characterizations

In this section, we recall the main results from the revealed-preference literature that
are needed in order to introduce our contribution. Consider the following definitions of
rationalization:7

Definition 3. (Utility rationalization) Consider a finite data set OT = {pt, xt}t∈T and a
utility function u : X 7→ R. For all x ∈ X and all t ∈ T such that ptx ≤ ptxt,

• the data OT is weakly rationalized by u if u(xt) ≥ u(x).

• the data OT is strictly rationalized by u if u(xt) > u(x) whenever x 6= xt.
7We say that a utility function u : X 7→ R is: (i) continuous if for any sequence (xn) for n ∈ N+ such

that xn ∈ X and limn→∞ xn = x with x ∈ X implies limn→∞ u(xn) = u(x); (ii) locally nonsatiated if for
any x ∈ X and for any ε > 0, there exists y ∈ B(x, ε) where B(x, ε) = {z ∈ X| ||z − x|| ≤ ε} such that
u(y) > u(x); (iii) strictly increasing if for x, y ∈ X, x ≥ y implies u(x) > u(y); and (iv) concave if for any
x, y ∈ X, we have u(x)− u(y) ≥ ξ (y − x), for ξ ∈ ∂u(y), where ∂u(y) is the subdifferential of u.
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Afriat’s (1967) fundamental theorem is well known:

Theorem B. (Afriat’s theorem, Varian 1982) Consider a finite data set OT = {pt, xt}t∈T.
The following statements are equivalent:

(i) The data OT can be weakly rationalized by a locally nonsatiated utility function.

(ii) The data OT satisfies GARP.

(iii) There exist numbers U t and λt > 0 for all t ∈ T such that the Afriat inequalities:

U t − U s ≥ λtpt(xt − xs),

hold for all s, t ∈ T.

(iv) There exist numbers V t for all t ∈ T such that the Varian inequalities:

if pt(xt − xs) ≥ 0 then, V t − V s ≥ 0,
if pt(xt − xs) > 0 then, V t − V s > 0,

hold for all s, t ∈ T.

(v) The data OT can be weakly rationalized by a continuous, strictly increasing, and
concave utility function.

There are several interesting features of Afriat’s theorem.8 Statements (ii), (iii), and
(iv) give testable conditions that are easy to implement in practice. Perhaps the most
interesting theoretical implication of Afriat’s theorem is that statements (i) and (v) are
equivalent, which means that continuity, monotonicity, and concavity are nontestable
properties. In other words, separate violations of any of these properties cannot be
detected in finite data sets.

Varian (1982) shows that the numbers U t and λt in statement (iii) can be interpreted
as measures of the utility level and marginal utility level of income at observation t ∈ T.
Analogously, Demuynck and Hjertstrand (2019) shows that the numbers V t in statement
(iv) can be interpreted as measures of the utility levels at the observed demands.

Matzkin and Richter (1991) provides an analogous result for strict rationalization, by
showing that SARP is a necessary and sufficient condition for a data set OT to be strictly
rationalized by a continuous, strictly increasing, and strictly concave utility function:

Theorem C. (Matzkin and Richter 1991) Consider a finite data set OT = {pt, xt}t∈T.
The following statements are equivalent:

8Statements (i), (ii), (iii), and (v) comprise Varian’s (1982) original formulation of Afriat’s theorem.
Statement (iv) is rather new to the revealed preference literature.
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(i) The data OT can be strictly rationalized by a locally nonsatiated utility function.

(ii) The data OT satisfies SARP.

(iii) There exist numbers U t and λt > 0 for all t ∈ T such that the inequalities:

if xt 6= xs then, U t − U s > λtpt
(
xt − xs

)
,

if xt = xs then, U t − U s = 0,

hold for all s, t ∈ T.

(iv) There exist numbers V t for all t ∈ T such that the inequalities:

if xt 6= xs and pt(xt − xs) ≥ 0 then, V t − V s > 0,
if xt = xs then, V t − V s = 0,

hold for all s, t ∈ T.

(v) The data OT can be strictly rationalized by a continuous, strictly increasing and
strictly concave utility function.

Matzkin and Richter’s (1991) theorem mirrors Afriat’s, in the sense that it shows that
continuity, monotonicity, and strict concavity are nontestable properties.9 Although much
is known about the types of consumer behavior that characterize finite data sets satisfying
SARP and GARP, there are no analogous characterizations for WARP and WGARP. The
current paper, starting with the next section, fills this gap.

3. Characterizations of WGARP and WARP

In this section, we provide revealed-preference characterizations analogous to the ones
in Afriat’s and Matzkin and Richter’s theorems, for WGARP and WARP. We begin by
introducing the maximin preference model, which, to the best of our knowledge, is a new
model of consumer behavior.

3.1. The Maximin Preference Model

We start with some preliminaries.

9Matzkin and Richter’s (1991) original formulation consists of statements (i), (ii), (iii), and (v).
Talla Nobibon et al. (2016) proves the equivalence of statements (ii) and (iv).

10



Definition 4. (Preference function) A preference function is a mapping r : X ×X → R,
that maps ordered pairs of commodity bundles to real numbers.

A preference function is a numerical representation of a consumer’s preferences. If
r(x, y) ≥ 0 then the consumer prefers bundle x to y. Similarly, if r(x, y) > 0, x is strictly
preferred to y.

In what follows, we focus on a particular representation of r, namely the maximin
model. Let U be an arbitrary finite set. The elements in this set can be thought as
reference points. Let a reference pair be defined as any pair of points i, j ∈ U . For every
reference pair i, j ∈ U let uij(x) : X → R denote a reference dependent utility function.
Since every reference dependent utility function depends on a pair of elements in U , there
are |U | × |U | such utility functions, where | · | denotes cardinality. We assume that uij
is independent of permutations of the indices in the subscript, so that uij = uji for all
i, j ∈ U .

It is natural to think of the reference points as representing attributes, or state of moods
of the consumer. As such, the utility uij represents the preference of the consumer over
consumption bundles when considering attributes i, j ∈ U . To give a different example
from the one in the introduction, suppose a consumer has preferences consisting of |U | = 2
distinct attributes, healthy (h) and tasty (t), over bundles of hamburger and salad. In this
case, she evaluates the bundle differently from a pure healthy perspective than she would
from a pure tasty perspective, which also differ if she combines the two attributes and
evaluates the bundle from a “healthy and tasty” perspective. The reference-dependent
utilities uhh, utt, and uht = uth represent the utilities from the three different states. How
should she aggregate these moods in order to formulate her global preference?

Let ∆(U) be the probability simplex defined on U . Our maximin preference model is
defined as:

Definition 5. (Maximin (strict) preference model) We say that the preference function
r(x, y) is a maximin (strict) preference function if, for any x, y ∈ X, it can be written as:

r(x, y) = max
µ∈∆(U)

min
λ∈∆(U)

∑
i∈U

∑
j∈U

λiµj(uij(x)− uij(y)),

where, for any reference point indexed by i, j ∈ U , the local utility function, uij, is
continuous, strictly increasing, and (strictly) concave.

The maximin preference function assigns a numerical value to the comparison of any
pair of commodity bundles x, y ∈ X, by additively aggregating over local preferences that
are defined for any reference pair. More specifically, the aggregation is a maximin function,
which in the first dimension takes the maximal difference between the utility gains of x
over y, and in the second dimension, takes the minimal value of that difference, over the
different local utility functions. As will be argued, the maximin aggregation effectively
extends the incomplete direct revealed preference relation when it is asymmetric (i.e.,
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when WGARP holds) to the commodity space X. As such, this representation provides us
with an interpretation of the direct revealed preference relation when rationality –GARP–
fails, but WGARP is satisfied.

For any reference pair i, j ∈ U , the local utility function, uij, is continuous, strictly
increasing, and (strictly) concave. Moreover, the maximin is attained at a particular
average utility (with endogenous weights) , i.e.,

r(x, y) =
∑
i∈U

∑
j∈U

λ∗iµ
∗
j(uij(x)− uij(y)),

for some λ∗, µ∗ ∈ ∆(U). Thus, for any pairwise comparison, the model is “locally” (i.e.,
for a fixed pair of bundles) equivalent to one where the consumer behaves as if she is
rational. However, note from the definition of the maximin model that, for any distinct
pairwise comparison preferences may change, in which case, preferences are not stable
across all observations. In the maximin (strict) preference model, a consumer still behaves
locally “as if she were rational” in that behavior according to this model rules out binary
inconsistencies. More precisely, we show that a data set OT satisfies (WARP) WGARP if
and only if the maximin (strict) preference model (strictly) rationalizes the data.

Next, we present some properties of the preference function. We begin with a property
that turns out to be key in our characterizations of WARP and WGARP:

Definition 6. (Skew-symmetry) We say that a preference function r : X × X 7→ R is
skew-symmetric if r(x, y) = −r(y, x) for all x, y ∈ X.

Skew-symmetry means that the preference function r induces a preference order on
X that is complete and asymmetric. Note that, when a data set OT satisfies WGARP,
the direct preference relation is an (incomplete) asymmetric relation on X, the preference
function r extends it if it is a maximin function. We have the following result:

Lemma 1. If r is a maximin (strict) preference function, then for any x, y ∈ X, we have:

r(x, y) = max
µ∈∆(U)

min
λ∈∆(U)

∑
i∈U

∑
j∈U

λiµj(uij(x)− uij(y))

= min
λ∈∆(U)

max
µ∈∆(U)

∑
i∈U

∑
j∈U

λiµj(uij(x)− uij(y)),

and moreover, r is skew-symmetric.

The proof of this lemma is omitted, as it follows directly from the classical von
Neumann’s minimax theorem (because ∆ is convex and compact, and the sum is linear
in λ and µ). It is easy to see that the maximin (strict) preference function is skew-
symmetric, making this model a generalization of the general nontransitive consumer
model, considered in Shafer (1974).

The following examples illustrate the maximin model:
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Example 1. Consider L = 2 goods, hamburger (x1) and salad (x2). As above, suppose
that the preferences of the consumer consists of two attributes, healthy (h) and tasty
(t). Let the consumer be endowed with the following three reference-dependent utilities:
utt(x) = αx1 + x2, uhh = αx1 + x2, and uth(x) = uht(x) = x1 + x2, where α > 1 > α. The
maximin preference function has a closed form solution:

r(x, y) = uht(x)− uht(y) = x1 + x2 − y1 − y2.

This implies that r(x, y) = −r(y, x).

In this example, behavior is not only consistent with WGARP but also rational
(consistent with GARP by Theorem A) because the consumer endogenously decides to
focus on both attributes to make her decision independently of the quantities consumed
of both goods.

The next example illustrates a more complicated solution with reference dependence,
and describes how reference dependence arises endogenously from the maximin aggregation
of preferences.

Example 2. Consider L = 3 goods, such that x1, x2, x3 represent consumption of
vegetables, chocolate, and meat. Suppose there are two reference points, U = {h, s},
representing two different moods, where h stands for hedonistic, and s for stoic. The
utility of the hedonistic mood is uhh(x) = 1

2 log(x1) + log(x2) + log(x3), and the utility of
the stoic mood is uss(x) = 2log(x1) + log(x2) + log(x3). The combination of the two moods
has utility uhs(x) = ush(x) = log(x1) + log(x2) + log(x3). When the consumer is on the
stoic mood she has a boost for eating vegetables, when she is on the hedonistic mood she
experiences a lessening of the utility of eating vegetables. The maximin preference function
has a closed form solution:

r(x, y) =

 uhh(x)− uhh(y) x1 ≤ y1

uss(x)− uss(y) x1 > y1.

Note the preference function r above has an endogenous reference point at x1 = y1.
When comparing bundle x to y, the maximin consumer valuation depends on whether
the former bundle has weakly more quantity of vegetables than the latter. If a bundle
has more vegetables than another bundle, then she evaluates the bundles according to
the the stoic mood. Otherwise the evaluation will correspond to the hedonistic mood.
The higher presence of vegetables activates the stoic mood in the consumer. Following
Shafer (1974) we can maximize the preference function r subject to the budget constraint
p1x1 + p2x2 + p3x3 = w, and obtain the demand system:

x1(p, w) = p2w

p1(3p2 + 2p3) ,

13



x2(p, w) = 2w
3p2 + 2p3

,

x3(p, w) = 2p2w

p3(3p2 + 2p3) .

The demand system does not depend directly on the reference pair. Nonetheless, we can
easily verify that the entries of the associated Slutsky matrix10 of this system of equations
is not symmetric:

s13(p, w) = 2p2(p2 − p3)w
p1p3(3p2 + 2p3)2 ,

s31(p, w) = 2p2
2w

p1p3(3p2 + 2p3)2 .

In this example, reference dependence breaks transitivity. This means that this demand
system is not rational or violates GARP/SARP. However, it satisfies WGARP.

Our last example connects our work with the recent maximin model of rationality in
Frick et al. (2019).

Example 3. Consider a case where there is one physical good (money) and 3 states of
the world (good, business-as-usual, bad). The Arrow-Debreu state-contingent securities are
xl for l = 1, 2, 3. Suppose that the consumer knows that state 1 happens with probability
1/2, and state 2 or 3 happens with probability 1/2 but there is uncertainty about which of
these two will occur. The consumer has two reference points U = {r,m}, where r stands
for realistic and m for pessimistic. The utility of an Arrow-Debreu security x associated
with the attitudes i, j is:

uij = 1/2v(x1) + (1/2− πij)v(x2) + πijv(x3) = Eπi,j
[v(x)],

where 0 ≤ πi,j ≤ 1/2 and v is a Bernoulli utility defined over money. The subjective
probability associated with r, r ∈ U is πr,r = 1/5, for m,m ∈ U it is πm,m = 1/3, and for
r,m ∈ U it is πr,m = πm,r = 1/4. We note that this model is similar to the ambiguity
framework posed in Frick et al. (2019), where the “act” corresponds to choosing bundle x
over bundle y, such that the utility of such “act” is given by:

r(x, y) = max
i∈{r,m}

min
j∈{r,m}

(Eπi,j
(v(x)− v(y))).

Here we assume that the maximin is achieved at pure strategies. This is done for illustrative
purposes and without loss of generality as v is left unspecified.

The next definition lists some additional important properties of preference functions,
which will connect with the maximin preference model in the sequel:

10The Slutsky matrix is an L× L matrix with entry slk(p, w) = ∂xl(p,w)
∂pk

+ ∂xl(p,w)
∂w xk(p, w).
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Definition 7. Consider a preference function r : X ×X → R. We say that:

(i) r is continuous if for all y ∈ X and any sequence {xn} of elements in X that
converges to x ∈ X it must be that limn→∞ r (xn, y) = r (x, y).11

(ii) r is locally nonsatiated if for any x, y ∈ X such that r (x, y) = 0 and for any ε > 0,
there exists a y′ ∈ B(y, ε) such that r (x, y′) < 0.

(iii) r is strictly increasing if for all x, y, z ∈ X, x ≥ z implies r(x, y) > r(z, y).

(iv) r is quasiconcave if for all x, y, z ∈ X and any 0 ≤ λ ≤ 1 we have r (λx+ (1− λ) z, y) ≥
min {r (x, y) , r (z, y)} and strictly quasiconcave if, for any 0 < λ < 1, the inequality
is strict whenever x 6= z.

(v) r is concave if for all x, y, z ∈ X and any 0 ≤ λ ≤ 1 we have r (λx+ (1− λ) z, y) ≥
λr (x, y) + (1− λ) r (z, y), and strictly concave if, for any 0 < λ < 1, the inequality
is strict whenever x 6= z.

(vi) r is piecewise concave if there is a sequence of concave functions in the first argument
ft (x, y) for t ∈ K, where K is a compact set, such that r (x, y) = maxt∈K {ft (x, y)},
and strictly piecewise concave if there is a similar sequence of strictly concave
functions.

Continuity is a technical condition that is convenient to ensure existence of a maximum
in the constrained maximization of the preference function (Sonnenschein 1971). Local
nonsatiation rules out thick indifference curves: if we take an arbitrarily small neighborhood
of a bundle that is indifferent to a given bundle x, the neighborhood contains bundles
that are dominated by x. Strict monotonicity simply means that “more is better”.
Quasiconcavity says that for any fixed point y ∈ X, a mixture of two bundles x, z ∈ X
is at least as good as the worst of the two bundles, according to the preference function.
Concavity is a cardinal version of quasiconcavity. Quasiconcavity and concavity are
important properties because they ensure well-behaved optimization problems. More
precisely, quasiconcavity guarantees that a function defined on a compact set has a convex
set of maxima points, while a strictly concave function defined on a compact set always
has a unique global maximum. In the general nontransitive consumer model considered
by Shafer (1974), the preference function is assumed to be concave.

Piecewise concavity and its strict version are new properties, which turn out to be
especially important for our characterizations of WGARP/WARP.12 The property says
that for a fixed y ∈ X, a mixture of two bundles x, z ∈ X is at least as good as the worst
one of the two bundles, but only if x, z are close enough. In other words, this is a local
version of concavity, implying local quasiconcavity.

11We state the weaker versions of these properties, as all we need is to work with movements in one of
the arguments.

12See Zangwill (1967) for a detailed discussion of piecewise concave functions.
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3.2. Preference Function Rationalization

We now introduce the notion of (strict) rationalization by a preference function, which
is analogous to utility rationalization in Definition 3:

Definition 8. (Preference function rationalization) Consider a finite data set OT =
{pt, xt}t∈T and a preference function r : X ×X 7→ R. For all y ∈ X and all t ∈ T such
that pty ≤ ptxt,

• the data OT is weakly rationalized by r if r(xt, y) ≥ 0.

• the data OT is strictly rationalized by r if r(xt, y) > 0 whenever y 6= xt.

3.3. WGARP

The next theorem provides a revealed-preference characterization of WGARP for
finite data sets. This result mirrors Afriat’s theorem in terms of preference-function
rationalization (as opposed to utility rationalization):

Theorem 1. Consider a finite data set OT = {pt, xt}t∈T. The following statements are
equivalent:

(i) The data OT can be weakly rationalized by a locally nonsatiated and skew-symmetric
preference function.

(ii) The data OT satisfies WGARP.

(iii) There exist numbers Rt,s and λtts > 0 for all s, t ∈ T with Rt,s = −Rs,t and λtts = λtst
such that inequalities:

Rt,s ≥ λttsp
t(xt − xs),

hold for all s, t ∈ T.

(iv) There exist numbers W t,s for all s, t ∈ T with W t,s = −W s,t such that inequalities:

if pt(xt − xs) ≥ 0 then, W t,s ≥ 0,
if pt(xt − xs) > 0 then, W t,s > 0,

hold for all s, t ∈ T.

(v) The data OT can be weakly rationalized by a maximin preference function.

(vi) The data OT can be weakly rationalized by a continuous, strictly increasing, piecewise
concave, and skew-symmetric preference function.
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The equivalence of statements (i) and (vi) shows that, if the data can be weakly
rationalized by any nontrivial preference function at all, it can, in fact, be weakly
rationalized by a preference function that satisfies continuity, monotonicity, and piecewise
concavity. Put differently, separate violations of these three properties cannot be detected
in finite data sets.

The numbers Rt,s and λtst in statement (iii) have a similar interpretation as in Afriat’s
theorem for each reference point; that is, if we consider t, s ∈ T, then Rt,s is a measure of
the utility difference uts(xt)− uts(xs) for that particular pairwise data set, while λtst is a
measure of the marginal utility level of income at observation t ∈ T in that pairwise data
set.

3.4. WARP

The next theorem provides a revealed-preference characterization of WARP for finite
data sets, and mirrors Matzkin and Richter’s (1991) theorem:

Theorem 2. Consider a finite data set OT = {pt, xt}t∈T. The following statements are
equivalent:

(i) The data OT can be strictly rationalized by a locally nonsatiated and skew-symmetric
preference function.

(ii) The data OT satisfies WARP.

(iii) There exist numbers Rt,s and λtts > 0 for all s, t ∈ T with Rt,s = −Rs,t and λtts = λtst
such that inequalities:

if xt 6= xs then, Rt,s > λttsp
t
(
xt − xs

)
,

if xt = xs then, Rt,s = 0,

hold for all s, t ∈ T.

(iv) There exist numbers W t,s for all s, t ∈ T with W t,s = −W s,t such that inequalities:

if xt 6= xs and pt(xt − xs) ≥ 0 then, W t,s > 0,
if xt = xs then, W t,s = 0,

hold for all s, t ∈ T.

(v) The data OT can be strictly rationalized by a maximin strict preference function.

(vi) The data OT can be strictly rationalized by a continuous, strictly increasing, piecewise
strictly concave, and skew-symmetric preference function.
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Analogous to Theorem 1, this result shows that separate violations of continuity,
monotonicity, and strict piecewise concavity cannot be detected in finite data sets.

4. Demand Counterfactuals

In this section, we investigate the important open question of whether WGARP is
suitable for counterfactual demand analysis. That is, for a new (possibly unobserved)
price vector pT+1, we study whether WGARP is able to predict demand generically. As
such, we need to formalize what it means for WGARP to make out-of-sample predictions.
We are interested in the following object:

Definition 9. (W-Demand Set) We define the W-demand set, or the set of all bundles
compatible with WGARP, by

D↓(pT+1, wT+1) = {x ∈ X : OT ∪ {pT+1, x} satisfies WGARP and pT+1x = wT+1}.

We obtain a negative result that seems to be new in the literature. In particular, the
following lemma shows that, for some prices, the W-demand set may be empty, which
implies that, for these prices, it is not possible to predict demand using WGARP.

Lemma 2. (Impossibility) There are data sets OT such that for an open set of out-of-
sample prices pT+1 ∈ P , the W-demand set is empty, i.e., D↓(pT+1, wT+1) ≡ ∅.

We notice that the W-demand set for a new price-vector can be formulated as a linear
program by making use of the following result:

Corollary 1. The bundle xT+1 ∈ X is in D↓(pT+1, wT+1) if and only if it satisfies:

(i) pT+1xT+1 = wT+1,

(ii) ptxT+1 ≥ ptxt, for all t ∈ T, for which pT+1xt ≤ pT+1xT+1,

(iii) ptxT+1 > ptxt, for all t ∈ T, for which pT+1xt < pT+1xT+1.

This program is a simplification of the procedure for the same purpose under GARP,
proposed by Varian (1982). The first condition imposes Walras’ law for the target income
level. The second condition imposes the restriction that, if the observed bundles are
cheaper than the new bundle at the new prices, then the new bundle cannot be affordable
at the observed prices. The third condition strengthens the second, for the case of a strict
inequality.

We now illustrate the foregoing lemma by means of a counterexample for a single price.
The fact that there exists an open set of prices for which the W-demand set is empty
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shows that our counterexample does not constitute a degenerate case, but that it is also
robust to perturbations of the out-of-sample price.

Example 4. (Empty-demand counterfactuals) (Keiding and Tvede 2013, Example 1,
p.467) Consider the data set O3 with prices p1 = (4, 1, 5)′, p2 = (5, 4, 1)′, p3 = (1, 5, 4)′,
and bundles x1 = (4, 1, 1)′, x2 = (1, 4, 1)′, x3 = (1, 1, 4)′. Note that the income level in
all observations is the same, i.e., ptxt = 22 for all t ∈ {1, 2, 3}. This data set satisfies
WGARP. Suppose the out-of-sample budget is: pT+1 = 1

3(p1 + p2 + p3) = 10
3 (1, 1, 1)′

and wT+1 = 22. Now, assume towards a contradiction that there exists a bundle xT+1

in the set D↓(pT+1, wT+1). Note that xT+1 is directly revealed preferred to xt, because
22 = pT+1xT+1 > pT+1xt = 20 for all t ∈ {1, 2, 3}. By definition, it must be that
ptxt < ptxT+1 for all t ∈ {1, 2, 3}, such that WGARP (and WARP) holds. However,
averaging these inequalities, we get 22 = 1

3(p1x1 + p2x2 + p3x3) < pT+1xT+1 = 22, where
the right-hand side of the inequality follows from the definition of pT+1. Hence, we obtain
a contradiction, and can conclude that D↓(pT+1, wT+1) = ∅.

4.1. A New Approach to Counterfactual Analysis Using WGARP

Maximin rationalization allows to understand the source of the failure of WGARP in
producing nonempty demand counterfactuals. Simply put, the multiple-selves involved in
the maximin may not be able to produce aggregated preferences that provide a solution
for the consumer’s maximization problem. As already argued, one key interpretation of
maximin rationalization is to see it as a model of preference formation, and emptiness
of the demand correspondence can be viewed as a failure of this preference formation
process. As a solution for this failure, in this section we propose to allow the maximin
rational consumer to drop reference points when such a solution does not exist. Recall
that the set U is the set of all reference points.

Definition 10. (Decisive maximin (strict) preference model) We say that the preference
function r(x, y) is a decisive maximin (strict) preference function if, for any x, y ∈ X, it
can be written as:

r(x, y) = max
µ∈∆(Vp,w)

min
λ∈∆(Vp,w)

∑
i∈Vp,w

∑
j∈Vp,w

λiµj(uij(x)− uij(y)),

where, Vp,w is a subset of U , such that for any reference point indexed by i, j ∈ U , the
local utility function, uij, is continuous, strictly increasing, and (strictly) concave; and
such that maximizing r for any arbitrary linear budget set defined by prices p ∈ P and
wealth w ∈ W has a solution.

The decisive maximin preference model is well defined because there is always a subset
Vp,w ⊆ U that satisfies the definition, namely, we can set Vp,w to be a singleton. In that
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case, continuity of the only utility function associated with Vp,w guarantees the existence
of a solution to the preference maximization problem for any budget set.

The following result is a trivial consequence of Theorem 1.

Corollary 2. If a data set OT can be rationalized by a maximin preference function, it
can be rationalized by a decisive maximin preference function.

Definition 11. (WT\S decisive demand set) We define the WT\S decisive demand set, or
the set of all commodity bundles compatible with WGARP, when we leave all observations
indexed by S ⊆ T out from OT , by:

DT\S(pT+1, wT+1) = {x ∈ X : OT\{ps, xs}s∈S∪{pT+1, x} satisfies WGARP and pT+1x = wT+1}.

In the proof of Theorem 1 we show that we can identify the index set T with the
set of reference points U . This means that we can drop reference points by removing
observations from the data set OT . The following result holds:

Lemma 3. For any data set OT with T ≥ 2 satisfying WGARP, there is a set S ⊆ T, with
at least 2 elements such that the decisive demand set is nonempty, i.e., DT\S(p, w) 6= ∅
for all p, w ∈ P ×W .

It is obvious that if S is a singleton then the decisive demand set will be nonempty. If
OT and T ≥ 2, then we can always drop all observations but any 2. In this new data set
{ps, xs}s∈S, WGARP holds and is equivalent to GARP, in which case the set DT\S(p, w) is
nonempty (Varian 1982). Now we can define the following counterfactual demand set as:

Definition 12. (Upper decisive demand set) We define the upper decisive demand set for
any price and wealth pair (p, w) ∈ P ×W by

D↑(p, w) = ∪S⊂TDT\S(p, w).

We are interested in the upper decisive demand set because it allow us to make
well-defined (i.e., nonempty) counterfactual predictions, using the largest amount of
information contained in a data set OT that satisfies WGARP. The following result follows
from the previous arguments:

Theorem 3. If a data set OT is rationalized by any decisive maximin preference function r
in the set R, then for a given price-wealth pair (p, w) ∈ P ×W the demand correspondence
xr(p, w) –associated with maximizing r– is such that:

D↓(p, w) ⊆ ∪r∈Rxr(p, w) ⊆ D↑(p, w).

There is an obvious caveat to the previous exercise. The upper bound D↑(p, w) might
be uninformative. Consider the case where we drop all but one observation, in which case
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WGARP is trivially satisfied.13 We can refine the decisive maximin preference model in
order to get more informative bounds. For instance, we can require that Vp,w is the largest
possible set (in the set inclusion sense) that delivers a nonempty demand correspondence.
This requirement implies that we can focus our attention on the largest possible set S
that has nonempty decisive demand sets.

Definition 13. (Minimal upper decisive demand set) We define the minimal upper decisive
demand set for any price and wealth pair (p, w) ∈ P ×W by

D↑(p, w) = ∪S⊆SDT\S(p, w),

where the collection of sets S ⊆ 2T is such that any S ′ ⊆ T that contains some S ∈ S, has
an empty DT\S′(p, w).

Next, by means of an example, we illustrate the fact that the minimal upper decisive
demand set can be informative.

Example 5. (Illustration of the minimal upper decisive demand set) Consider a data set
O3 as in Example 4. Set the out-of-sample budget to pT+1 = 1

3(p1 + p2 + p3) = 10
3 (1, 1, 1)′,

and wT+1 = 22.

• The set D{2,3}(pT+1, wT+1) is characterized by all consumption bundles x, with
corresponding shares sl = pT+1

l xl/w
T+1, for l = {1, 2, 3}, such that: (i) s1 ≤ 1

3 and
s2 >

1
9(7− 12s1), or (ii) s1 >

1
3 and s2 >

1
3(−2 + 9s1).

• The set D{1,3}(pT+1, wT+1) is characterized by all consumption bundles x, with
corresponding shares sl, for l = {1, 2, 3}, such that: (i) s1 <

1
3 and 1

3(−2 + 9s1) <
s2 <

1
12(5− 3s1).

• The set D{1,2}(pT+1, wT+1) is characterized by all consumption bundles x, with
corresponding shares sl, for l = {1, 2, 3}, such that: (i) s1 >

1
3 and 1

9(7− 12s1) <
s2 <

1
12(5− 3s1).

The set D↑(pT+1, wT+1) is the union of the previous three sets and is depicted in Figure 1.

Remarkably, we can observe that the intersection of the three sets corresponding to
dropping one observation from the data set, is empty. This empty set corresponds to
the WGARP counterfactual demand set. In contrast, the set D↑(pT+1, wT+1) (the union
of the aforementioned sets) is nonempty and informative. In fact, a large region in the
budget share-simplex is excluded as a possible prediction. As we just mentioned, this set
is the most informative counterfactual set that is compatible with the decisive maximin
preference model, because it uses all of the available information imposing WGARP.

13Note that even in this case counterfactuals may be informative albeit containing very little information.
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Figure 1 – Minimal Upper Decisive Demand Set: Shaded areas represent the Minimal Upper
Decisive Demand Set.

4.2. Computing the Minimal Upper Decisive Demand Set

In this subsection, we outline a simple and practical procedure to compute the minimal
upper decisive demand set just introduced. This procedure is based on the following
equivalent reformulation of the (minimal) upper decisive demand set:

Proposition 1. The following statements hold:

(i) The bundle xT+1 ∈ X is in the upper decisive demand set if and only if there exist
binary variables et ∈ {0, 1} for all t ∈ T such that the following inequalities hold:

pT+1xT+1 = wT+1, (1)
ptxT+1 ≥ etptxt, for all t ∈ T, for which pT+1xt ≤ pT+1xT+1, (2)
ptxT+1 > etptxt, for all t ∈ T, for which pT+1xt < pT+1xT+1. (3)

(ii) The minimal upper decisive demand set is given by the observations corresponding
to the maximal number of binary variables {et}t∈T equal to unity such that the
expressions in Eqs. (1)-(3) hold.

The minimal upper decisive demand set in (ii) can be computed in the L1-norm by
solving the following problem:

arg min
{e1,...,eT ,xT +1}

∑
t∈T

(1− et) s.t. Eqs. (1)− (3) hold. (4)
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However, this problem is difficult to implement because of the logical relations appearing
in (2) and (3). An efficient practical implementation is possible by formulating the problem
as a mixed integer linear programming (MILP) problem. Specifically, the inequalities in
Eqs. (2) and (3) are equivalent to the existence of binary variables {yt1}t∈T and {yt2}t∈T,
with yt1 ≤ yt2, such that the following inequalities hold:

At(yt1 − 1) ≤ pT+1(xT+1 − xt), (5)
Bt

1(yt1 − 1) ≤ pt(xT+1 − etxt), (6)
At(yt2 − 1) + ε ≤ pT+1(xT+1 − xt), (7)

Bt
2(yt1 − 1) ≤ pt(xT+1 − etxt), (8)

where At ≥ pT+1xt, Bt
1 ≥ ptxt, Bt

2 ≥ ptxt + ε and 0 < ε < wT+1. We have that yt1 = 1 if
and only if pT+1(xT+1−xt) ≥ 0 and pt(xT+1−etxt) ≥ 0, which correspond to (2). Similarly,
yt2 = 1 if and only if pT+1(xT+1 − xt) > 0 and pt(xT+1 − etxt) > 0, corresponding to (3).
Hence, we suggest to replace (2) and (3) in the problem (4) with the linear inequalities
(5)-(8), and compute the minimal decisive demand set by solving the following MILP
problem:

arg min
{e1,...,eT ,y1

1 ,...,y
T
1 ,y

1
2 ,...,y

T
2 ,x

T +1}

∑
t∈T

(1− et) s.t. Eqs. (1) and (5)− (8) hold. (9)

This problem gives an exact and global solution, and there exist efficient algorithms for
solving such MILP problems in practice (e.g., branch and bound and cutting plane).

5. Shape Constraints: Concave Rationalization and the Law of
Demand

We have shown, in sections 3.3 and 3.4, that WGARP (WARP) is a necessary and
sufficient condition for a data set to be rationalized by a continuous, strictly increasing,
skew-symmetric, and piecewise (strictly) concave preference function. In this section,
we consider conditions that are necessary and sufficient for a data set to be rationalized
under stronger shape restrictions, while also addressing the issue of nonemptiness of the
solution in the consumer’s maximization problem. The results offered here highlight
new applications of the maximin preference model, and add, with respect to Theorem 1,
quasihomothetic and quasilinear restrictions of the preference function.
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5.1. Concave Rationalization

John (2001) provides conditions under which a data set can be weakly rationalized
by a continuous, strictly increasing, skew-symmetric, and concave preference function
(Shafer preference function). Given that (quasi)concavity is a testable condition (See
Example 6 in the next section) and the generic failure of WGARP to produce convex
preferences, John’s conditions are stronger than WGARP. Nevertheless, these conditions
are weaker than GARP because they still relax transitivity. In this section, we extend the
results in John (2001) by providing restrictions on the local utilities associated with the
maximin preference function in order to guarantee a rationalization with convex preferences.
Specifically, we show that when the local utilities are restricted to be quasihomothetic, i.e.,
when the indirect local utility functions are consistent with the Gorman polar form, then
the data can be rationalized with a Shafer concave preference function. More precisely,
we require that the marginal utility of income associated with each local utility function
is the same, or in other words, the marginal utility is reference-independent. This result
might be of interest in its own right because it links reference-dependence in the presence
of multiple attributes/selves with aggregation theory. Empirically, these restrictions are
helpful because they guarantee that nonparametric counterfactual demand analysis can
always be performed without imposing transitivity. Moreover, our new notion of maximin
rationalization with the additional restriction that the local utilities are quasihomothetic
opens the door to provide tractable models of nontransitive behavior using well-known
Gorman polar functional forms in parametric demand modelling. In passing we highlight,
that consistent aggregation of reference-dependent models of behavior may be important
to guarantee well-behaved counterfactual analysis.

In order to introduce our results, we need some preliminaries. The indirect utility
function is defined as:

v(p, w) = max
x
{u(x)|px ≤ w}.

Next, we define the concept of rationalization by quasihomothetic (Gorman polar)
preferences.

Definition 14. (Quasihomothetic/Gorman polar utility rationalization) A data set OT is
rationalized by quasihomothetic (Gorman polar) preferences if there exists a continuous,
strictly increasing and concave utility function, u, that rationalizes the data, and such that
the associated indirect utility function can be written v(p, w) = w−a(p)

b(p) , where the functions
a(p) : P → R and b(p) : P → R are homogeneous of degree one.

The function b can be interpreted as the inverse of the marginal utility of income, and
it will play a crucial role in obtaining the additional restrictions on the local utilities in the
maximin model to obtain a rationalization with a concave preference function. To state
these results, we define in the obvious manner the maximin quasihomothetic preference
model and the notion of maximin quasihomothetic preference rationalization, where for
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any reference point indexed i, j ∈ U , the local utility function uij is continuous, strictly
increasing, concave, and quasihomothetic. In particular, the indirect utility functions,
vij, associated with each local utility function are Gorman polar forms with reference-
independent marginal utilities, i.e., vij(p, w) = w

b(p) −
aij(p)
b(p) , such that aij = aji for all

i, j ∈ U . The next theorem states our main result in this section.

Theorem 4. Consider a finite data set OT = {pt, xt}t∈T. The following statements are
equivalent:

(i) The data OT can be weakly rationalized by a locally nonsatiated, concave, and
skew-symmetric preference function.

(ii) There exist numbers Rt,s and λt > 0 for all s, t ∈ T with Rt,s = −Rs,t such that the
inequalities:

Rt,s ≥ λtpt(xt − xs),

hold for all s, t ∈ T.

(iii) The data set OT can be weakly rationalized by a maximin quasihomothetic preference
function.

(iv) The data OT can be weakly rationalized by a continuous, strictly increasing, concave,
and skew-symmetric preference function.

John (2001) proves the equivalence of (i), (ii), and (iv). We prove the equivalence of
(ii) and (iii). In particular, this is a new result that connects the general nontransitive
consumer of Shafer (1974) with the maximin preference model introduced in this paper.
Strictly speaking, the Shafer preference function and the maximin preference function are
different models of behavior. However, Theorem 4 establishes their empirical equivalence.
As representations, both formulations have their own pros and cons but we can use them
interchangeably when modelling consumer demand.

In comparison with Theorem 1, it is easy to see that the testable condition (ii) in
Theorem 4 imply any of the conditions in our theorem, but not vice versa. In particular,
note that, in contrast to statement (iii) in Theorem 1, the indices λt are constant across
all pairs s, t ∈ T. This ensures that the maximin quasihomothetic preference function is
indeed concave.

5.2. The Law of Demand and Quasilinear Preference Functions

This subsection derives necessary and sufficient conditions for a finite data set to be
rationalized by a continuous, strictly increasing, skew-symmetric, concave, and quasilinear
preference function. Interestingly, we show that one such condition is the law of demand,
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and consequently, this is equivalent to rationalization by a maximin quasilinear prefer-
ence function. Before presenting these results, we briefly recall the revealed-preference
characterization for quasilinear-utility maximization.

5.2.a. The Quasilinear Utility Maximization Model.– First, we consider the definition of
quasilinear utility maximization:

Definition 15. (Quasilinear utility maximization) Consider a locally nonsatiated utility
function u(x). We say that a consumer facing prices p ∈ P and income w ∈ W is a
quasilinear utility maximizer if she solves

max
x∈X

u(x) + w − px ⇐⇒ max
x∈X,y∈R

u(x) + y s.t. px+ y ≤ w.

As in standard applications of quasilinear utility maximization, we allow the numeraire
y to be negative in order to avoid technicalities related to corner solutions.14

Brown and Calsamiglia (2007) shows that the axiom of cyclical monotonicity is a
necessary and sufficient condition for a data set to be rationalized by a continuous, strictly
increasing, concave, and quasilinear utility function.

Axiom 5. (Cyclical monotonicity) Cyclical monotonicity holds if, for all distinct choices
of indices (1, 2, 3, . . . , n) ∈ T:

p1(x1 − x2) + p2(x2 − x3) + · · ·+ pn(xn − x1) ≤ 0.

The next theorem recalls the revealed-preference characterization of quasilinear utility
maximization from Brown and Calsamiglia (2007) and Allen and Rehbeck (2018):

Theorem E. (Brown and Calsamiglia 2007; Allen and Rehbeck 2018) Consider a finite
data set OT = {pt, xt}t∈T. The following statements are equivalent:

(i) The data OT can be rationalized by a locally nonsatiated and quasilinear utility
function.

(ii) The data OT satisfies cyclical monotonicity.

(iii) There exist numbers U t for all t ∈ T such that the inequalities:

U t − U s ≥ pt(xt − xs),

hold for all s, t ∈ T.

(iv) The data OT can be rationalized by a continuous, strictly increasing, concave, and
quasilinear utility function.

14Allen and Rehbeck (2018) shows the equivalence of the unconstrained quasilinear maximization and
the constrained version with a numeraire in Definition 15.

26



5.2.b. The Law of Demand and the Quasilinear Preference Function Maximization
Model.– In this subsection, we provide analogous results for the quasilinear preference
function model, and show that the law of demand is a necessary and sufficient condition for
a data set to be rationalized by a continuous, strictly increasing, concave, skew-symmetric,
and quasilinear preference function. The axiom of the law of demand is formally defined
as:

Axiom 6. (Law of demand) The law of demand holds if, for all observations s, t ∈ T:

(pt − ps)(xt − xs) ≤ 0.

For any sequence consisting of only two (distinct) observations s, t ∈ T, it is easy to see
that cyclical monotonicity and the law of demand are equivalent. To state our revealed-
preference characterization of the law of demand, we introduce the maximin quasilinear
preference function, which is a maximin preference function where, for any reference
point indexed by i, j ∈ U , the local utility function ui,j is continuous, strictly increasing,
concave, and quasilinear. This model is a special case of the maximin quasihomothetic
preference model, in which the functions aij(p) and b(p) in the indirect local utility function
vij(p, w) = w

b(p) −
aij(p)
b(p) takes the more restrictive forms: aij(p) = plφ(p) and b(p) = pl,

where pl is the price of a numeraire good and φ is a function that is homogeneous of
degree one. The next theorem provides a revealed-preference characterization of the law
of demand:

Theorem 5. Consider a finite data set OT = {pt, xt}t∈T. The following statements are
equivalent:

(i) The data OT can be rationalized by a locally nonsatiated, skew-symmetric, and
quasilinear preference function.

(ii) The data OT satisfies the law of demand.

(iii) There exist numbers Rt,s, for all s, t ∈ T, with Rt,s = −Rs,t, such that inequalities:

Rt,s ≥ pt(xt − xs),

hold for all s, t ∈ T.

(iv) The data OT can be rationalized by a maximin quasilinear preference function.

(v) The data OT can be rationalized by a continuous, strictly increasing, concave, skew-
symmetric, and quasilinear preference function.
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6. Recoverability of Preferences

Next, we tackle the question of when one can use the direct revealed-preference
relation elicited from the observed consumer behavior in order to make inferences about
her true preferences. We begin by showing that recovering preferences using WGARP
does not follow as a trivial corollary of the original approach proposed by Varian (1982).
Subsequently, we propose an alternative method to recover bounds on preferences using
WGARP.

6.1. Varian’s Approach to Recover Bounds on Preferences Using WGARP

At this point, it is useful to briefly recall the classical approach from Varian (1982),
which finds upper and lower bounds to the true preferences of a consumer. These are
captured by the strict upper contour set of a commodity bundle x according to the true
preference function r:

Definition 16. (Set of strictly better alternatives) We define the set of strictly better
alternatives than a (possibly unobserved) commodity bundle x ∈ X as:

Ur(x) = {y ∈ X : r(y, x) > 0},

for the true preference function r.

Varian (1982) defines the supporting set of prices for any new commodity bundle
x ∈ X, so that the extended data set, OT ∪ {p, x}, satisfies GARP as:

S(x) = {p ∈ P : OT ∪ {p, x} satisfies GARP}.

Varian then uses the set S(x) to create upper and lower bounds for the set of interest
Ur(x). We need to define two new sets. The revealed worse set is:

RW (x) = {y ∈ X : ∀p ∈ S(x), x �R,DOT∪{(p,x)} y}

for �R,D, defined on the extended data set OT ∪ {(p, x)}. The nonrevealed worse set
NRW (x) is the complement of RW (x). The revealed preferred set is:

RP (x) = {y ∈ X : ∀p ∈ S(y), y �R,DOT∪{(p,y)} x}.

Varian (1982) shows that, in the case of utility maximization (i.e., r(x, y) = u(x)− u(y)),
for some u : X → R and all x, y ∈ X, we have:

RP (x) ⊆ Ur(x) ⊆ NRW (x).

28



One would be tempted to use the same construction for WGARP by replacing the definition
of the supporting set S(x) with one where the extended data set satisfies WGARP. Of
course, when the data consists of two goods (i.e., L = 2), this does not cause any problems
since, in such a case, WGARP and GARP are equivalent (See Theorem A). However, if
L > 2, as we show, performing such an exercise is generally not advisable. In particular,
we illustrate this by means of an example that, in some cases, yields an uninformative
upper bound set NRW (x).

Example 6. Consider again the data set O3 with prices p1 = (4, 1, 5)′, p2 = (5, 4, 1)′,
p3 = (1, 5, 4)′, and bundles x1 = (4, 1, 1)′, x2 = (1, 4, 1)′, x3 = (1, 1, 4)′. It is easy to verify
that this data set satisfies WGARP. Given the observed behavior, suppose the goal is to
recover the preferences of this consumer for a new commodity bundle, xT+1. Suppose that
the unobserved commodity bundle is:

xT+1 = 1
3(x1 + x2 + x3) = (2, 2, 2)′.

If one were to use the methods in Varian (1982), it is necessary to recover all prices pT+1

such that the extended data set O3 ∪ (pT+1, xT+1) satisfies WGARP. In the extended data
set, we have pt(xt − xT+1) = 2 > 0, for all t = 1, 2, 3. However, there is no p ∈ P for
which p(xT+1 − xt) < 0, for all t = 1, 2, 3. This implies that the extended data set violates
WGARP. This presents a problem if the goal is to recover preferences using Varian’s
(1982) approach, because this method implicitly assumes that there always exists at least
one such vector of prices satisfying WGARP.

In this example, Varian’s supporting set is empty, i.e., S(xT+1) = ∅. Moreover, it
directly follows that the set Ur(x) may contain any monotonically dominated bundle
such as x− = (1, 1, 1). Consequently, the upper bound of Ur(xT+1) is uninformative, i.e.,
NRW (xT+1) = X \ xT+1. Thus, any analysis based on this approach is problematic,
since the observed behavior can be rationalized by a preference function that is strictly
increasing (in the first argument). In other words, Varian’s method to bound preferences
does not provide any valuable information in Example 6.

We can also clarify the source of this failure, traced to a violation of convexity of
preferences. Consider once again Example 6, and note that the observed data satisfies
WGARP, which implies that there is a preference function r rationalizing the data.
Moreover, we have r(x1, x2) > 0, r(x2, x3) > 0, and r(x3, x1) > 0. In addition, we know
that the new bundle, xT+1, is a convex combination of the observed bundles. In our
case, convexity of preferences is implied by the assumption that the preference function
is quasiconcave in its first argument, in which case, we must have r(xT+1, xT+1) = 0 ≥
mint=1,2,3{r(xt, xT+1)}. This implies that xT+1 must be revealed to be weakly better than
at least one of the three observed bundles x1, x2, or x3. However, note that, for all t = 1, 2, 3,
we have pt(xt − xT+1) = 2 > 0. Thus, if the consumer were maximizing a quasiconcave
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preference function, then all observed commodity bundles must be strictly preferred to
the new bundle, i.e., r(xt, xT+1) > 0 for all t = 1, 2, 3. Hence, the extended data set
O3 ∪ {p, xT+1} cannot be weakly rationalized by a quasiconcave and skew-symmetric
preference function.

Interestingly, this example shows that quasiconcavity of the preference function is,
in fact, a testable property in finite data sets. As such, this is also a counterexample
to Samuelson’s eternal darkness conjecture, saying that any finite data set always can
be rationalized by a convex preference relation. Summarizing these results, the lack of
convexity of preferences, which can be inferred from behavior consistent with WGARP,
limits the applicability of the tools developed in the classical treatment by Varian (1982).

6.2. A New Approach to Recover Bounds on Preferences Using WGARP

In this subsection, we use the new notion of maximin preference rationalization as a
way to provide new informative bounds on the true preferences. We show that these new
bounds escape the problems associated with Varian’s approach.

The proof of Theorem 1 shows that, without loss of generality, we can identify the
set of reference points in U with the set of observations T, such that the true global
preferences for any x′, x ∈ X are given by:

r(x′, x) = max
µ∈∆(T)

min
λ∈∆(T)

∑
t∈T

∑
s∈T

λsµt(ust(x′)− ust(x)).

The proof also shows that any data set OT satisfying WGARP can be broken into T 2

pairwise data sets O2
st = {(pt, xt), (ps, xs)}, and we argue that each one of these data sets

satisfies GARP. For any pair of observations s, t ∈ T, we define the local support set
Sst(x) for any x ∈ X as in Varian (1982). Hence, for a data set of T observations, we
have a collection of T 2 such local support sets. Note, by definition, that everyone of these
sets is never empty. Thus, consider the following two definitions:

Definition 17. (WGARP-robust revealed preferred set) For each s, t ∈ T let

RPst(x) = {y ∈ X : ∀p ∈ Sst(y), py > px}

be the pairwise revealed preferred set. We define the (WGARP-)robust revealed preferred
set as:

RPW (x) = ∪s∈T ∩t∈T RPst(x).

Next, we argue that the robust revealed preferred set is a lower bound of Ur(x) for
all x ∈ X. If x′ ∈ RPW (x), this implies x′ ∈ RPst(x) for all t ∈ T and for some s∗ ∈ T.
Thus, it must be the case that, for s∗ and for all t ∈ T, us∗t(x′) > us∗t(x), which means
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that r(x′, x) ≥ minµ
∑
t µt(us∗t(x′)− us∗t(x)) > 0. Hence, if x′ ∈ RPW (x), then we have

r(x′, x) > 0, which can be equivalently stated as: RPW (x) ⊆ Ur(x).

Definition 18. (WGARP-robust (non)revealed worse set) For each s, t ∈ T, let

RWst(x) = {y ∈ X : ∀p ∈ Sst(x), px > py}

be the pairwise revealed worse set. Let NRWst(x) be the complement of RWst(x). Define
the (WGARP-)robust nonrevealed worse set as

NRWW (x) = ∩s∈T ∪t∈T NRWst(x).

From this definition, it directly follows that, if r(x′, x) > 0, then x′ ∈ NRWW (x).
In particular, note that, if r(x′, x) > 0, then there must be some t∗ ∈ T such that
ust∗(x′) > ust∗(x) for all s ∈ T. By a direct application of the results in Varian (1982), we
have x′ ∈ NRWst∗(x) for all s ∈ T. Then, by Definition 18, it follows that x′ ∈ NRWW (x).
Hence, this proves that Ur(x) ⊆ NRWW (x). The following theorem summarizes these
results, confirming that the bounds recovered using Varian’s approach in this context are
not sharp:

Theorem 6. The upper contour set of the true preferences at any given x ∈ X is:

RPW (x) ⊆ Ur(x) ⊆ NRWW (x).

Moreover, (i) the upper bound, NRW (x), recovered using Varian’s approach is not sharp,
i.e., NRWW (x) ⊆ NRW (x) for all x ∈ X (with strict containment for some x ∈ X);
and (ii) the lower bound, RP (x), recovered using Varian’s approach is not sharp, i.e.,
RP (x) ⊆ RPW (x) for all x ∈ X (with strict containment for some x ∈ X).

We note that, in the context of Example 6, NRWW (xT+1) does not contain the
dominated bundle x− = (1 1 1)′. In fact, NRWW (xT+1) excludes all commodity bundles
that are monotonically dominated by xT+1, which is a desirable property, lacking in
Varian’s analogous set NRW (xT+1) = X \ xT+1. Similar statements can be made about
the RPW (x−) set.

Thus, the first part of Theorem 6 shows that the new method of using subsets of
data sets to calculate bounds on preferences yields informative bounds. The second
part highlights that a naive application of the methodology in Varian (1982), when the
assumption of convex preferences does not hold, is problematic.
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7. Infinite Data Sets: Characterizations of WGARP, WARP, and the
Law of Demand

Thus far, our results have been derived under the assumption that the researcher only
observes a finite number of choices. In the original formulation of revealed-preference
theory, Samuelson (1938) and Houthakker (1950) implicitly assume that the entire demand
function, or a demand correspondence, is observed. In this section, we show that our
main results from the previous sections can be transported to the case of infinite data
sets, namely, when we observe a demand correspondence x : P ×W → 2X \ ∅, where
w ∈ W ≡ R++ denotes wealth. We focus on compact sets of prices and consumption
bundles, where, by abusing notation slightly, we denote P ⊂ RL

++ and X ⊂ RL
+ \ 0, as the

sets of prices and consumption bundles, respectively. We continue to assume Walras’ law,
so that x ∈ x(p, w), px = w. We define the image of x as X = ∪p∈P,w∈Wx(p, w). A central
assumption throughout this section is that we can write the demand correspondence as
a data set consisting of an infinite number of demand observations, which we denote by
O∞ = {p, x}p∈P,x∈X:x∈x(p,px).

7.1. WGARP and WARP

We begin by providing revealed-preference characterizations for WGARP and WARP.
In doing so, we define the direct-preference relations for infinite data sets as:

Definition 19. (Direct Revealed Preferences) We say that x ∈ X is directly revealed
preferred to y ∈ X, written x �R,D y, when px ≥ py such that x ∈ x(p, px). Also, x ∈ X
is directly and strictly revealed preferred to y ∈ X, written x �R,D y when px > py and
x ∈ x(p, px).

Under this definition, the data O∞ satisfies WGARP if there is no pair x, y ∈ X such
that x �R,D y and y �R,D x. Analogously, the data O∞ satisfies WARP if there is no pair
x, y ∈ X such that x �R,D y and y �R,D x with x 6= y.

We begin by generalizing the maximin rational preference function to the case of
infinite data sets. For this, we need some preliminaries. For any reference point in the
data set O∞, we rearrange the observations into a vector o = (p′ a′ q′ b′)′ ∈ O2, with
O ⊆ P ×X and x ∈ x(p, px), such that each reference point can be viewed as a column
vector. In addition, we define o1 = (p′ a′)′ and o2 = (q′ b′)′, such that o = (o′1 o′2)′.

We assume that the set of reference points O is compact, i.e., closed and bounded.
There are several examples satisfying this condition; for instance, when there are a finite
number of reference points, or when the demand correspondence that generates the data
set is compact-valued. In the latter case, compactness of O follows from assuming that
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x(p, px) is a compact set, which ensures that the entire set P ×X is compact.15

We consider a reference-dependent utility function, u• : O2×X → R, which rationalizes
the data. That is, for every pair o = (o′1 o′2)′ ∈ O2 and for all y ∈ X, if px ≥ (>)py, then
it must be the case that uo(x) ≥ (>)uo(y). We further assume that u• is continuous, or
more precisely, that it is continuous at the reference point for every commodity bundle.
Moreover, we assume that the reference-dependent utility functions are independent of
permutations, so that uo1o2 = uo2o1 for all o1, o2 ∈ O.

Let Σ denote a Borel σ-algebra defined on O, and let ∆(O,Σ) denote the simplex
of Borel probability measures defined on O (We write ∆(O) = ∆(O,Σ)).16 The next
definition introduces the generalized maximin preference function:

Definition 20. (Generalized Maximin (strict) preference model) We say that the preference
function r(x, y) is a generalized maximin (strict) preference function if, for any x, y ∈ X,
it can be written as:

r(x, y) = max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

(uo1o2(x)− uo1o2(y))dλ(o1)dµ(o2),

where, for any reference point o ∈ O2, the local utility function, uo1o2(·), is continuous,
strictly increasing, and (strictly) concave.

First, we have:

Lemma 4. If r is a generalized maximin preference function, then for any x, y ∈ X, we
have:

r(x, y) = min
λ∈∆(O)

max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

(uo1o2(x)− uo1o2(y))dλ(o1)dµ(o2)

= max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

(uo1o2(x)− uo1o2(y))dλ(o1)dµ(o2),

and moreover, r is skew-symmetric.

The first part of Lemma 4 follows from the continuous version of Von-Neumann’s
minimax theorem in Glicksberg (1950), and by the definition of u• that guarantees that
it is a continuous mapping.17 In this framework, we can obviously define the concept of
rationalization as before.

15Note that compact-valuedness of the demand correspondence graph is a very general assumption and
holds for the case of continuous preferences maximized over linear budget sets when the sets of prices and
wealth are compact.

16The set ∆(O,Σ) is endowed with the usual weak∗ topology. Specifically, since O is a metrizable
space, the topology is endowed with the Prokhorov metric. Also note that ∆(O,Σ) is a compact metric
space, because O is assumed to be a compact metric space. This follows from Alaoglu’s theorem (See
e.g., Dunford and Schwartz 1958, p.424, Theorem V.4.2).

17Note that we can always construct a continuous u•, if we build the utilities associated with each
reference point following Varian (1982). We elaborate this technical point in the proof of the main
theorem of this section.
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The next theorem shows that WGARP (WARP) is a necessary and sufficient condition
for an infinite data set to be rationalized by a generalized maximin (strict) preference
function:

Theorem 7. Consider an infinite data set O∞. The following statements are equivalent:

(i) The data O∞ can be (strictly) weakly rationalized by a locally nonsatiated and
skew-symmetric preference function.

(ii) The data O∞ satisfies (WARP) WGARP.

(iii) The data O∞ can be (strictly) weakly rationalized by a generalized maximin preference
function.

(iv) The data O∞ can be (strictly) weakly rationalized by a continuous, strictly increasing,
(strictly) piecewise concave, and skew-symmetric preference function.

Some remarks are pertinent:
First, if the data O∞ satisfies WARP, then it must hold for any observation (p, x) ∈ O∞

that x = x(p, px), in which case the demand correspondence is actually a demand function.
Hence, in the weak sense, Theorem 7 rationalizes demand correspondences satisfying
WGARP, and in the strict sense, it rationalizes demand functions satisfying WARP.

Second, Theorem 7 generalizes the results in Kim and Richter (1986) and Quah (2006).
Specifically, the key assumption in these papers is that the demand correspondence satisfies
an invertibility condition, i.e., that for every commodity bundle x ∈ X, there exists a price
p ∈ P at which x is demanded (with wealth px). In contrast, the results in Theorem 7
are not based on any such invertibility condition. Note that this condition is violated in
our motivating example (Example 6).

Third, as discussed above, our main assumption is that the graph of the demand
correspondence is compact. Note that, for the case of demand functions, this is trivially
true. For demand correspondences, maximizing a continuous preference function on
compact sets of prices and wealth, implies, by Berge’s maximum theorem, that the
correspondence is compact-valued. Consequently, this assumption is indeed a very weak
condition.18

Finally, we have not explicitly assumed homogeneity of degree zero. In fact, homo-
geneity can be imposed, since it is implied by maximin rationalization, and as such, we
can normalize wealth to 1 without loss of generality.

18We note that the compactness condition can be relaxed to some degree if we substitute the min and
max operators by supremum and infimum. However, this will result in some additional technicalities that
are not of any practical interest.
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7.2. The Law of Demand

This subsection is devoted to a characterization of the law of demand for infinite data
sets, defined as:

Definition 21. (Law of demand) The law of demand holds if, for all x, y ∈ X:

(p− q)(x− y) ≤ 0,

such that x ∈ x(p, px) and y ∈ x(q, qy).

Under this definition, with the notation and assumptions from the previous subsection,
we define the generalized maximin quasilinear preference function as follows:

Definition 22. We say that the preference function r(x, y) is a generalized maximin
quasilinear preference function if, for any x, y ∈ X, it can be written as:

r(x, y) = max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

(uo1o2(x)− uo1o2(y))dλ(o1)dµ(o2),

where, for any reference point o ∈ O2, the local utility function, uo1,o2(·), is continuous,
strictly increasing, concave, and quasilinear.

Of course, we can then adapt the definitions of rationalization and state the following
theorem:

Theorem 8. Consider an infinite data set O∞. The following statements are equivalent:

(i) The data O∞ can be rationalized by a locally nonsatiated, skew-symmetric, and
quasilinear preference function.

(ii) The data O∞ satisfies the law of demand.

(iii) The data O∞ can be rationalized by a generalized maximin quasilinear preference
function.

(iv) The data O∞ can be rationalized by a continuous, strictly increasing, concave,
skew-symmetric, and quasilinear preference function.

8. Related Literature

In this section, we extend our discussion of the relationship with previous works. Afriat
(1967) and Varian (1982) show that the classical notion of rationality is equivalent to
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the Generalized Axiom of Revealed Preference (GARP). In the current study, we show
that a data set that satisfies WGARP, but perhaps not GARP, is consistent with a local
(reference-dependent) notion of rationalization. Of course, classical utility maximization
is a special case, when there is a (global) utility function u that is capable of rationalizing
the data set OT . In that case, r(x, y) = u(x) − u(y) for all x, y ∈ X; in other words,
u = uij for all i, j ∈ U .

The closest works to our paper are Kim and Richter (1986) and Quah (2006). Both
works provide rationalizations of demand correspondences, or functions, consistent with
WGARP or WARP, using additional conditions on the invertibility of demand, with
preferences that are convex (in a certain sense).19 Our paper generalizes these contributions
by (i) providing a rationalization of WGARP/WARP for finite data sets, and (ii) relaxing
the invertibility requirement that for every commodity bundle in X, there is a price in its
supporting set (i.e., the set of prices at which the commodity bundle is chosen is nonempty)
for the case of infinite data sets. As we have seen in Example 6, there are commodities
with an empty supporting set.20 Instead, our work imposes the weak technical condition
of compactness of the graph of the demand correspondence.

It is worth briefly stressing this point made in the introduction. Preference functions
with the skew-symmetry property were introduced by Shafer (1974). We have shown
that rationalization by skew-symmetric preferences is essentially equivalent to WGARP.
Moreover, we have also shown that WGARP is equivalent to rationalization by a new
kind of preference function, the maximin preference function, and our results answer in
the negative the conjecture posed in Kihlstrom et al. (1976), concerning the equivalence
between Shafer’s skew-symmetric preference functions and WGARP.

Krauss (1985) provides a representation of 2-monotone operators (effectively equivalent
to the law of demand), by means of a skew-symmetric preference function. To our
knowledge, our results regarding WGARP are new in the mathematical literature on
monotone operators as well, extending the contribution of Krauss (1985) to 2-cyclical
consistent operators (effectively equivalent to WGARP). We also provide an extension for
the original representation of the law of demand, connecting it with maximin quasilinear
rationalization, as in Brown and Calsamiglia (2007), as well as covering the case of limited
data sets.

Some papers have extended Varian’s (1982) method to recover preferences to different
types of consumer demand models. One notable example is Blundell et al. (2003, 2008)
which show that it is possible to substantially enhance recovery and prediction results by
combining revealed-preference theory with the nonparametric estimation of Engel curves.

19The notions of convexity of preferences in Kim-Richter and Quah are strictly weaker than standard
convexity of preferences.

20Mariotti provides a study of WGARP in abstract environments with complete data sets (all choice
sets are observed), and shows that WARP is equivalent to the maximization (in a new sense that he calls
justified, of a binary preference relation that is asymmetric). Mariotti does not provide a representation
theorem for WGARP nor does he deal with limited data sets.
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However, their analysis is based on WARP, which we have shown may be problematic in
a setup with more than two goods (Blundell et al. (2003) considers 22 goods and Blundell
et al. (2008) uses three goods in their empirical applications). Blundell et al. (2015) shows
how the methods in Blundell et al. (2003, 2008) can be modified to derive sharp bounds
on welfare measures under SARP (i.e., global rationality).

Finally, Halevy et al. (2017) shows that Varian’s method to recover preferences under
GARP does not apply to nonconvex preferences, and suggests an alternative method based
on monotonicity. However, when GARP holds, concavity is not a testable restriction. Our
analysis provides a different solution based on local concavity (i.e., piecewise concavity),
which, being more informative than monotonicity, is also robust to the possible lack of
convexity of preferences, when the data satisfies WGARP but violates GARP. Note that,
in our setup, convexity of preferences is, in fact, a testable condition.

9. Conclusion

This paper has provided a new notion of rationalization, the maximin preference
function, which is equivalent to Samuelson’s WGARP. It has built a comprehensive theory
of revealed preference on the basis of this notion. Our findings should be helpful for
practitioners of revealed preferences since, from an empirical perspective, WGARP is
significantly easier to work with than Varian’s GARP. In applications, it is common
for practitioners to use WGARP as a synonymous of GARP. However, as shown in
Cherchye et al. (2018), this is only true if price variation is limited.21 For example, it may
happen that a finite data set of prices and observed consumption choices is consistent with
WGARP, but cannot be rationalized by a utility function. If this occurs, the interpretation
of the direct revealed-preference relation is unclear, yet we have shown that meaningful
welfare and counterfactual analysis is possible.
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Appendix

Proofs of Section 3: Characterizations of WGARP and WARP

Proof of Theorem 1

(i) =⇒ (ii).– Let r(x, y) be skew-symmetric utility function that weakly rationalizes the
data. Suppose there is a violation of WGARP, so that ptxt ≥ ptxs and psxs > psxt for
some pair of observations s, t ∈ T. Then by weak rationalization in Definition 8 we have
r(xt, xs) ≥ 0. Suppose first that r(xs, xt) > 0. But this results in a contradiction, since by
skew-symmetry −r(xs, xt) = r(xt, xs), which implies r(xt, xs) ≥ 0 > −r(xs, xt) = r(xt, xs).
Suppose next that r(xs, xt) = 0. But then by local nonsatiation there exists y ∈ B(xt, ε)
for some small ε > 0 such that psxs > psy with r(xs, y) < 0, which contradicts that r
weakly rationalizes the data. Thus, there cannot exist a locally nonsatiated function
r(xs, xt) = 0 such that psxs > psxt.

(ii) =⇒ (v).– Suppose that WGARP in condition (ii) holds. For every pair of observations
in the data set OT , we let O2

st denote the data set consisting of the two observations s, t ∈ T.
Overall, we have T 2 such data sets, which exhausts all possible pairwise comparisons
in OT . For the two observations in every data set O2

st, we define the Afriat function
ust : X → R as in Afriat’s theorem (See e.g., Varian 1982). From Afriat’s theorem we
know that ust is continuous, concave and strictly increasing. Next, for all x, y ∈ X, we
define the mapping: rst : X ×X → R as:

rst (x, y) =

 ust (x)− ust (y) if s 6= t,

pt (x− y) if s = t.

Clearly, rst is continuous in x and y, concave in x and convex in y (since ust is continuous
and concave). Moreover, it is skew-symmetric since rst(y, x) = ust(y)−ust(x) = −rst(x, y).
Notice that since the function rst is constructed for every (s, t)− pair of observations in
OT we have a collection of T 2 functions rst.

Let the T − 1 dimensional simplex be denoted as ∆ = {λ ∈ RT
+|
∑T
t=1 λt = 1}. Define

the preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y).

We prove that the function r weakly rationalizes the data set OT . Consider y ∈ X and
some fixed t ∈ T such that ptxt ≥ pty. Let µt ∈ ∆ be the T − 1 simplex such that µtj = 0
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if j 6= t and µtj = 1 if j = t. Then we have:

r(xt, y) = max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(xt, y)

≥ min
λ∈∆

∑
i∈T

∑
j∈T

λiµ
t
jrij(xt, y)

= min
λ∈∆

∑
i∈T

λirit(xt, y).

It suffices to show that rit(xt, y) ≥ 0 whenever ptxt ≥ pty for each data set O2
it. But this

follows directly from the definition of rit and Afriat’s theorem. Hence, r(xt, y) ≥ 0.

(v) =⇒ (vi) .– Here, we verify that the preference function r constructed in condition
(v) is skew-symmetric, continuous, strictly increasing and piecewise concave (in x and also
piecewise convex in y). First, we show skew-symmetry. We have:

−r(x, y) = −min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
λ∈∆

min
µ∈∆

∑
s∈T

∑
t∈T

λsµt(−rst(x, y)),

Since rst is skew-symmetric (i.e., −rst(x, y) = rst(y, x)), we have (using Lemma 1):

−r(x, y) = max
λ∈∆

min
µ∈∆

∑
s∈T

∑
t∈T

λsµt(−rst(x, y))

= max
λ∈∆

min
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(y, x)

= min
µ∈∆

max
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(y, x)

= r(y, x),

which proves that r is skew-symmetric.
Second, we show that r is continuous. The simplex ∆ consists of a finite number of

elements and is therefore compact. Moreover, from above, we know that rst is continuous.
Hence, for any λ, µ ∈ ∆, the function

f(x, y;λ, µ) =
∑
s∈T

∑
t∈T

λsµtrst(x, y),

is continuous. By a direct application of Berge’s maximum theorem (e.g., Moore 1999,
p.280) it follows that r(x, y) = minλ∈∆ maxµ∈∆ f(x, y;λ, µ) is a continuous function of
x, y ∈ X.

Third, we show that r is strictly increasing. Consider any x, y, z ∈ X such that x > y.
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Then:

rst(x, z) = ust(x)− ust(z)
> ust(y)− ust(z)
= rst(y, z),

where ust(x) > ust(y) follows by Afriat’s theorem. This implies:

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, z) > max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(y, z),

for all λ ∈ ∆. Thus, r(x, z) > r(y, z).
Fourth, we show that r is piecewise concave in its first argument (and piecewise

convex in its second argument). Consider any x ∈ X and a fixed z ∈ X. The function
rst(x, z) = ust(x) − ust(z) is concave in x since ust(x) is concave by Afriat’s theorem
and the difference between a concave function and a constant is concave. Moreover, the
function fz(x;λ, µ) = ∑

s∈T
∑
t∈T λsµtrst(x, z) is concave for any λ, µ ∈ ∆, since the linear

combination of concave functions is concave. Since concavity is preserved under the
pointwise minimum operator, it follows that the function gz(x;λ) = minµ∈∆ fz(x;λ, µ)
is concave in the first argument for all λ ∈ ∆. Thus, by Definition 7 the function
hz(x) = maxλ∈∆ gz(x;λ) is piecewise concave, proving that r is piecewise concave. By
skew-symmetry the mapping r is piecewise convex in the second argument.

(vi) =⇒ (i).– Trivial.

(ii) =⇒ (iii).– Suppose that WGARP holds. Consider once again the data set O2
ts, and

recall that we have T 2 such data sets, which exhausts all possible pairwise comparisons in
the data set OT . Obviously, for the two observations in each data set O2

ts, WGARP is
equivalent to GARP. By a direct application of Afriat’s theorem, the following conditions
are equivalent: (i) the data set O2

st satisfies WGARP, (ii) there exist numbers Uk
ts and

λkts > 0 for all k ∈ {t, s} such that the Afriat inequalities: Uk
ts − U l

ts ≥ λktsp
k(xk − xl) hold

for all k, l ∈ {t, s}. Now, notice that the two data sets O2
ts and O2

st contain the same
two bundles and that permuting the data is insignificant for Afriat’s theorem. Thus,
without loss of generality, we can set Uk

ts = Uk
st and λkts = λkst for all k ∈ {t, s}. By defining

Rt,s = U t
ts − U s

ts and Rs,t = U s
ts − U t

ts, we get the inequalities in condition (iii).

(iii) =⇒ (iv).– Suppose that condition (iii) holds. Since λtts > 0, if pt(xt − xs) ≥ 0 then
Rt,s ≥ 0, and if pt(xt − xs) > 0 then Rt,s > 0. Define W t,s = Rt,s for all s, t ∈ T and the
proof follows.

(iv) =⇒ (ii).– Suppose that the inequalities in condition (iv) holds, but that WGARP is
violated, i.e., pt(xt − xs) ≥ 0 and ps(xs − xt) > 0 for some s, t ∈ T. Then W t,s ≥ 0 and
W s,t > 0. Thus, W t,s +W s,t > 0, which violates the inequalities in condition (iv).
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Remarks.– The numbers W t,s in condition (iv) can be constructed directly from WGARP
by considering the following simple proof that condition (ii) implies (iv). Suppose that
WGARP holds. For all s, t ∈ T set W t,s = pt(xt − xs) − ps(xs − xt). We verify that
this construction works. First, notice that W s,t = ps(xs − xt) − pt(xt − xs). Thus,
W t,s +W s,t = 0 since:

W t,s +W s,t = (pt(xt − xs)− ps(xs − xt)) + (ps(xs − xt)− pt(xt − xs))
= pt(xt − xs)− pt(xt − xs)− ps(xs − xt) + ps(xs − xt)
= 0.

Second, notice that if pt(xt − xs) ≥ 0 then ps(xs − xt) ≤ 0, otherwise we would have a
violation of WGARP. Thus, W t,s = pt(xt − xs)− ps(xs − xt) ≥ 0. Also, if pt(xt − xs) > 0
then W t,s = pt(xt − xs)− ps(xs − xt) > 0.

Proof of Theorem 2

(i) =⇒ (ii).– Let r(x, y) be skew-symmetric utility function that strictly rationalizes the
data. Suppose there is a violation of WARP, so that ptxt ≥ ptxs and psxs ≥ psxt with
xs 6= xt for some pair of observations s, t ∈ T. Then, by strict rationalization in Definition
8, we have r(xt, xs) > 0 and r(xs, xt) > 0. But this violates skew-symmetry.

(ii) =⇒ (v).– Since this proof is very similar to the proof of Theorem 1, we only give the
main parts (and the parts that differ).

Suppose that WARP in condition (ii) holds. For all s, t ∈ T, we let the data set O2
st

consist of the two observations s, t ∈ T. Overall, this gives T 2 such data sets. For the
two observations in each data set O2

st, we define the function ust : X → R as in Matzkin
and Richter’s (1991) theorem. From this, we know that each function ust is continuous,
strictly concave and strictly increasing. Next, for all x, y ∈ X, we define the mapping:
rst : X ×X → R as:

rst (x, y) =

 ust (x)− ust (y) if s 6= t,

pt (x− y)− ε(g(x− xt)− g(y − xt)), if s = t.

for some small ε > 0 and where the function g is defined in Matzkin and Richter (1991).
Clearly, each function rs,t is continuous, strictly concave and skew-symmetric.

Define the preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y).
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We prove that the function r strictly rationalizes the data set OT . Consider y ∈ X and
some fixed t ∈ T such that xt 6= y and ptxt ≥ pty. Let µt ∈ ∆ be the T − 1 simplex such
that µtj = 0 if j 6= t and µtj = 1 if j = t. By the same argument as in the proof of Theorem
1, we have

r(xt, y) ≥ min
λ∈∆

∑
i∈T

∑
j∈T

λiµ
t
jrij(xt, y)

= min
λ∈∆

∑
i∈T

λirit(xt, y).

It suffices to show that rit(xt, y) > 0 whenever xt 6= y and ptxt ≥ pty for each data set
O2
it. But this follows directly from the definition of rit and Matzkin and Richter’s (1991)

theorem. Hence, r(xt, y) > 0.

(v) =⇒ (vi).– We verify that the preference function r constructed in condition (v) is
skew-symmetric, continuous, strictly increasing and piecewise strictly concave in x (and
piecewise strictly convex in y).

By the exact same arguments as in the proof of Theorem 1, it can be shown that the
function r(x, y) is skew-symmetric, continuous and strictly increasing. Thus, it suffices
to show that it is piecewise strictly concave in x (and piecewise strictly convex in y).
Consider any x ∈ X and a fixed z ∈ X. The function rst(x, z) = ust(x)− ust(z) is strictly
concave in x since ust(x) is strictly concave and ust(z) can be treated as a constant. Since
the linear combination of strictly concave functions is strictly concave, it follows that
the function fz(x;λ, µ) = ∑

s∈T
∑
t∈T λsµtrst(x, z) is strictly concave for any λ, µ ∈ ∆. It

then follows that the function gz(x;λ) = minµ∈∆ fz(x;λ, µ) is strictly concave in the first
argument for all λ ∈ ∆. Hence, the function hz(x) = maxλ∈∆ gz(x;λ) is piecewise strictly
concave, proving that r is piecewise strictly concave By skew-symmetry the mapping r is
piecewise strictly convex in y.

(vi) =⇒ (i).– Trivial.

(ii) =⇒ (iii).– Suppose that WARP holds. Consider the T 2 data sets O2
ts for every

pair of observations s, t ∈ T. By a direct application of Matzkin and Richter’s (1991)
theorem, the following conditions are equivalent: (i) the data set O2

st satisfies WARP,
(ii) there exist numbers Uk

ts and λkts > 0 for all k ∈ {t, s} such that the inequalities:
if xk 6= xl then, Uk

ts − U l
ts > λktsp

k
(
xk − xl

)
, and if xk = xl then, Uk

ts − U l
ts = 0 hold for

all k, l ∈ {t, s}. Since permuting the data is insignificant for Matzkin and Richter’s (1991)
theorem, we can without loss of generality set Uk

ts = Uk
st and λkts = λkst for all k ∈ {t, s}. We

obtain the inequalities in condition (iii) by defining Rt,s = U t
ts − U s

ts and Rs,t = U s
ts − U t

ts.

(iii) =⇒ (iv).– Suppose that condition (iii) holds. If x 6= xt and pt(xt − xs) ≥ 0 then
Rt,s > 0. We obtain condition (iv) by defining W t,s = Rt,s for all s, t ∈ T.
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(iv) =⇒ (ii).– Suppose that the inequalities in condition (iv) holds, but that WARP is
violated, i.e., pt(xt − xs) ≥ 0 and ps(xs − xt) ≥ 0 with xt 6= xs for some s, t ∈ T. Then
W t,s > 0 and W s,t > 0. Thus, W t,s+W s,t > 0, which violates the inequalities in condition
(iv).

Proofs of Section 4: Demand Counterfactuals.

Proof of Lemma 2

Consider the data set O3 with prices p1 = (4 1 5)′, p2 = (5 4 1)′, and p3 = (1 5 4)′, and
bundles x1 = (4 1 1)′, x2 = (1 4 1)′, x3 = (1 1 4)′. This data set satisfies WGARP. Notice
that ptxt = 22 for all t = 1, 2, 3. Define the out-of-sample price: pT+1 = 22

k
(p1 + p2 + p3)

for some k ≥ 60, and the income level wT+1 = pT+1xT+1 = 22. Then we have:

pT+1 = 220
k

(1 1 1)′,

(xT+1
1 + xT+1

2 + xT+1
3 ) = k

10 .

More important, we observe that:

22 = pT+1xT+1 ≥ pT+1xt = 22 · 60
k

.

Assume towards contradiction that xT+1 is in D(pT+1, wT+1), then it must be that,
ptxt < ptxT+1 for t = 1, 2, 3. Adding up inequalities we obtain, 66 = (p1x1 +p2x2 +p3x3) <
10(xT+1

1 + xT+1
2 + xT+1

3 ) = k. This produces a contradiction whenever 60 ≤ k < 66 for
WGARP, and WARP. There is a continuum of examples.

Proof of Theorem 3

If x ∈ D↓(p, w), then there is an r that is a maximin preference function, in fact, r is
also in the set of decisive maximin preference functions that rationalizes the data R. Then
this means that x ∈ ∪r∈Rxr(p, w). If x ∈ ∪r∈Rxr(p, w), this means that there is some r
for which x ∈ xr(p, w), for this r and for the budget p, w, there is a set Vp,w ⊆ T that
characterizes the decisive maximin preference model. This is true by analogous arguments
to the proof of Theorem 1, because we can identify U with T and therefore we can identify
Vp,w with some subset of T. Hence, x ∈ DT\S(p, w) for some S ⊆ T . This implies that
x ∈ D↑(p, w).
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Proofs of Section 5: Shape Constraints: Concave Rationalization and the Law of
Demand

Proof of Theorem 4

John (2001) proves the equivalence of conditions (i), (ii), and (iv). We establish the
equivalence of conditions (ii) and (iii). Our proof makes use of a result in Cherchye et al.
(2016), which is stated in Theorem F.

Theorem F. (Cherchye et al. 2016) Consider a finite data set OT = {pt, xt}t∈T. The
following statements are equivalent:

(1) The data OT can be rationalized by a locally nonsatiated, continuous, strictly
increasing, concave and quasihomothetic utility function.

(2) There exist numbers V t > 0, at and bt > 0 for all t ∈ T such that the inequalities:

V t − V s ≥ 1
bt
pt(xt − xs),

V t = ptxt − at

bt
,

hold for all s, t ∈ T, with at = δas and bt = δbs if pt = δps, where δ > 0.

We can now prove the following lemma:

Lemma 5. Consider any pairwise data set O2
st in OT = {pt, xt}t∈T. The following

statements are equivalent:

(a) There exist numbers V t > 0, at and bt > 0 for all observations t in O2
st such that

the inequalities:

V t − V s ≥ 1
bt
pt(xt − xs),

V t = ptxt − at

bt
,

hold for both observations s, t in O2
st, with at = δas and bt = δbs if pt = δps, where

δ > 0.

(b) The data O2
st satisfies WGARP.

Proof. We first prove (b) =⇒ (a). For notational convenience, we rename the observations
in O2

st as 1 and 2. By Afriat’s theorem, if the data set O2
st satisfies WGARP, then there

exist numbers U1, U2, λ1 > 0 and λ2 > 0 satisfying Afriat’s inequalities.
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There are two cases of interest: First, we consider p1 6= δp2 for some δ > 0. In that case,
Cherchye et al. (2016) prove that Afriat’s inequalities and the inequalities in condition (2)
of Theorem F are equivalent.

Consider the second case when p2 = δp1 with δ > 0. Using Algorithm 3 in Varian
(1982), we can compute the Afriat numbers U1, U2, λ1, λ2 as follows: Without loss of
generality we assume that:

p1(x1 − x2) ≥ 0.

Hence, Afriat’s inequalities can be written as:

U1 − U2 ≥ λ1p1(x1 − x2),
U2 − U1 ≥ λ2δp1(x2 − x1).

Applying Algorithm 3 in Varian (1982), we can calculate the numbers U1 and U2 as
follows:

U1 = 1 + min(δp1(x1 − x2), 0) = 1,
U2 = 1 + min(p1(x2 − x1), 0) = 1 + p1[x2 − x1].

Now, note that we must have p1x2 = p2x2

δ
, in which case U2 can be computed as:

U2 = p2x2

δ
− p1x1 + 1. Also, notice that U1−U2 = p1(x1− x2) and U2−U1 = p1(x2− x1).

Next, applying Algorithm 3 in Varian (1982) once again to compute λ1 > 0, we have:

λ1 = max(1, U2 − U1

p1(x2 − x1)) = 1.

To compute λ2 > 0, there are two cases. First, if p1(x1 − x2) > 0, then:

λ2 = max(1, U1 − U2

δp1(x1 − x2)) = max(1, 1
δ

).

Second, if p1(x1 − x2) = 0, then λ2 = 1.
Now, we define the numbers a1 = p1x1 − 1, a2 = δa1 = δ(p1x1 − 1), b1 = 1 and

b2 = δb1 = δ. As such, it is easy to verify that V 1 = U1, V 2 = U2 and λ1 = 1
b1 = 1, which

implies that the first inequality in condition (a) of Lemma 5 holds, i.e.,

V 1 − V 2 ≥ 1
b1p

1(x1 − x2).

To verify that the second inequality holds, simply note that V 2 − V 1 = U2 − U1 =
p1(x2 − x1) = 1

b2 δp
1(x2 − x1), which implies:

V 2 − V 1 ≥ 1
b2p

2(x2 − x1),
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since p2 = δp1. Hence, condition (b) imply (a).
Next, we prove (a) =⇒ (b). Define λ1

12 = 1
b1 , λ

2
12 = 1

b2 , R
21 = V 2−V 1 andR12 = V 1−V 2,

in which case we have R12 = −R21, and moreover,

R12 ≥ λ1
12p

1(x1 − x2),
R21 ≥ λ2

12p
2(x2 − x1),

which implies by Theorem 1 that WGARP holds. �

Now we are ready to prove Theorem 4.

(iii) =⇒ (ii).– Consider the number:

r(xt, xs) = max
λ∈∆(U)

min
µ∈∆(U)

∑
i∈U

∑
j∈U

λiµj(uij(xt)− uij(xs)),

where uij is a continuous, strictly increasing and concave utility function that admits a
Gorman indirect utility function, vij(p, w), with reference-independent marginal utility
of wealth, i.e., vij(p, w) = w

b(p) −
aij(p)
b(p) , such that aij = aji for all i, j ∈ U . We have

uij(xt) = vij(pt, ptxt) = ptxt

b(pt) −
aij(pt)
b(pt) . Then, any λ∗ and µ∗ that solves the maximin

optimization problem produces an aggregate of Gorman utility functions that is a Gorman
utility function as well, such that:

r(xt, xs) =
∑
i∈U

∑
j∈U

λ∗iµ
∗
j(ui∗j∗(xt)− ui∗j∗(xs)) = u(xt)− u(xs) ≥ 1

b(pt)p
t(xt − xs),

for all t, s ∈ T, where u is the Gorman utility function, which follows by Theorem 2 in
Cherchye et al. (2016). Let Rst = r(xt, xs) and λt = 1

b(pt) , in which case condition (ii)
holds.

(ii) =⇒ (iii).– First, we break OT into T 2 pairwise sub data sets O2
st. Without loss of

generality, let U = T. For any O2
st, condition (ii) implies that WGARP holds. By directly

applying Lemma 5 and Theorem 2 in Cherchye et al. (2016), we can construct local utility
functions uts that weakly rationalizes O2

st and are quasihomothetic (i.e., consistent with
the Gorman polar form) given by:

vts(p, w) = w

bts(p)
− ats(p)
bts(p)

,

where ats(p) = ast(p), and a and b are both homogeneous of degree 1.
Condition (ii) implies by Theorem 3 in Cherchye et al. (2016) that we can always set

bts(p) = b(p) for all t, s ∈ T. Specifically, this holds because 1
bts(pt) = λt for all t ∈ T. Then,

we can construct a quasihomothetic preference function, r, with a reference-independent
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marginal utility of wealth, i.e., bts(p) = b(p), as:

r(x, y) = max
λ∈∆(T)

min
µ∈∆(T)

∑
t∈T

∑
s∈T

λtµs(uts(x)− uts(y)),

where each local utility function uts is continuous, strictly increasing, concave and quasi-
homothetic such that it admits a Gorman polar form with reference-independent marginal
utility of wealth, i.e., vts(p, w) = w

b(p) −
ats(p)
b(p) , where ats = ast for all t, s ∈ T.

Finally, since each local utility function, ust, rationalizes O2
st, we have by the same

arguments as in Theorem 1 that r weakly rationalizes the data set OT .

Proof of Theorem E

(i) =⇒ (ii).– By the definition of quasilinear rationalization, we have for any observation
s ∈ T with x = xs,

u(xt)− ptxt ≥ u(xs)− ptxs.

Thus, after rearranging terms, for any sequence of distinct choices of indices (1, 2, 3, ..., n) ∈
T, we have:

p1x2 − p1x1 ≥ u(x2)− u(x1),
p2x3 − p2x2 ≥ u(x3)− u(x2),

...
pnx1 − pnxn ≥ u(x1)− u(xn).

Adding up both sides, we get:

(p1x2 − p1x1) + (p2x3 − p2x2) + · · ·+ (pnx1 − pnxn)
≥ (u(x2)− u(x1)) + (u(x3)− u(x2)) + · · ·+ (u(x1)− u(xn))
= 0.

Thus,

p1(x1 − x2) + p2(x2 − x3) + · · ·+ pn(xn − x1) ≤ 0,

which is cyclical monotonicity.
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(ii) =⇒ (iii).– Suppose that condition (ii) holds and define:

U t = min
{1,2,3,...,n,t}∈T

{p1(x2 − x1) + p2(x3 − x2) + · · ·+ pn(xt − xn)},

for all t ∈ T. That is, U t is a minimum of the given expression over all sequences starting
anywhere and terminating at t. Note that there are only finitely many sequences because
their elements are distinct. Hence, the minimum always exists. To show that the numbers
U t do satisfy the inequalities in statement (iii), suppose that:

U t = p1(x2 − x1) + p2(x3 − x2) + · · ·+ pn(xt − xn),
U s = pa(xb − xa) + pb(xc − xb) + · · ·+ pm(xs − xm),

for some distinct sequences {1, 2, 3, ...n, t} ∈ T and {a, b, c, ...,m, s} ∈ T. Then:

U t = p1(x2 − x1) + p2(x3 − x2) + · · ·+ pn(xt − xn)
≤ pa(xb − xa) + pb(xc − xb) + · · ·+ pm(xs − xm) + ps(xt − xs)
= U s + ps(xt − xs),

since the value on the left-hand side of the inequality is a minimum over all paths to t.
Hence,

U t ≤ U s + ps(xt − xs),

for all s, t ∈ T, which are the inequalities in statement (iii).

(iii) =⇒ (iv).– Suppose that condition (iii) holds. For all x ∈ X, define the function:

u(x) = min
s∈T
{U s + ps(x− xs)}

Since u is defined as the lower envelope of a set of linear functions, it is continuous, strictly
increasing and concave. Moreover, it is easy to show that u(xt) = U t for all t ∈ T. Finally,
for all x ∈ X and all t ∈ T:

u(x)− ptx = min
s∈T
{U s + ps(x− xs)} − ptx

≤ U t + pt(x− xt)− ptx
= U t − ptxt

= u(xt)− ptxt.

Thus, u rationalizes the data set OT .

(iv) =⇒ (i).– Trivial.
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Proof of Theorem 5

(i) =⇒ (ii).– If the data set OT can be rationalized by a skew-symmetric and quasilinear
preference function, then for all t ∈ T and all y ∈ X,

r(xt, y) ≥ pt(xt − y).

In particular, it must be that for y = xs, r(xt, xs) ≥ pt(xt − xs). Analogously, we have
r(xs, xt) ≥ ps(xs − xt) for all s, t ∈ T. Adding these inequalities, and by skew-symmetry,
we have:

0 = r(xt, xs) + r(xs, xt) ≥ pt(xt − xs) + ps(xs − xt).

Rearranging terms, we get:
(pt − ps)(xt − xs) ≤ 0,

for all s, t ∈ T, which is the law of demand.

(ii) =⇒ (iii).– Assume that condition (ii) holds and define:

Rs,t = 1
2(ps(xs − xt)− pt(xt − xs)).

Clearly, Rs,t = −Rt,s for all s, t ∈ T. Moreover,

Rs,t = 1
2(ps(xs − xt)− pt(xt − xs))

= 1
2(ps(xs − xt) + pt(xs − xt))

= 1
2(ps(xs − xt)− pt(xs − xt) + 2pt(xs − xt)).

By condition (ii), we have

ps(xs − xt)− pt(xs − xt) = (ps − pt)(xs − xt) ≤ 0.

Hence,

Rs,t = 1
2(ps(xs − xt)− pt(xs − xt) + 2pt(xs − xt)

= 1
2(ps(xs − xt)− pt(xs − xt)) + pt(xs − xt)⇐⇒

Rs,t − pt(xs − xt) = 1
2(ps(xs − xt)− pt(xs − xt))

≤ 0,
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implying:

−Rs,t ≥ −pt
(
xs − xt

)
⇐⇒

Rt,s ≥ pt
(
xt − xs

)
,

which are the inequalities in statement (iii).

(iii) =⇒ (iv).– As in the proofs of Theorems 1 and 2, we break OT into T 2 pairwise data
sets O2

st = {(pt, xt), (ps, xs)} for all s, t ∈ T. For the two observations in every data set O2
st,

we define the function ust(x) : X → R as in the proof of Theorem E. From Theorem E,
we know that ust is continuous, strictly increasing, concave, quasilinear and rationalizes
the data O2

st.
For all x, y ∈ X, we define the mapping: rst : X ×X → R as:

rst (x, y) =

 ust (x)− ust (y) if s 6= t,

pt (x− y) if s = t.

Next, we define the maximin quasilinear preference function, r, for any x, y ∈ X, as:

r(x, y) = min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y).

We show that the maximin quasilinear preference function rationalizes the data set OT .
Consider y ∈ X and some fixed t ∈ T. Let µt ∈ ∆ be the T − 1 simplex such that µtj = 0
if j 6= t and µtj = 1 if j = t. We have:

r(xt, y) = max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(xt, y)

≥ min
λ∈∆

∑
i∈T

∑
j∈T

λiµ
t
jrij(xt, y)

= min
λ∈∆

∑
i∈T

λirit(xt, y).

It suffices to show that rit(xt, y) ≥ ptxt − pty, for each data set O2
it. But this follows

directly from the definition of rit and weak rationalization. Hence, r(xt, y) ≥ ptxt − pty
for all y ∈ X and all t ∈ T.

(iv) =⇒ (i).– Using the same arguments as in the proof of Theorem 1 it follows that
the maximin quasilinear preference function r constructed above is continuous, skew-
symmetric, strictly increasing (in x), piecewise concave in x, piecewise convex in y and
quasilinear.
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(iii) =⇒ (v).– Suppose that condition (iii) holds and define for all x, y ∈ X the functions:

rst (x, y) = Rs,t + ps (x− xs)− pt
(
y − xt

)
.

Clearly, the function rst is continuous, strictly increasing and concave in x and convex in
y. Since Rs,t = −Rt,s, we have:

−rst (x, y) = −
(
Rs,t + ps (x− xs)− pt

(
y − xt

))
= Rt,s + pt

(
y − xt

)
− ps (x− xs)

= rts (y, x) .

Let the T − 1 dimensional simplex be denoted ∆ = {λ ∈ RT
+|
∑T
t=1 λt = 1}. Define the

preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
µ∈∆

min
λ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y).

We show that the function r is skew-symmetric, continuous, strictly increasing and
concave. First, we show skew-symmetry:

−r(x, y) = −min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst(x, y)

= max
λ∈∆

min
µ∈∆

∑
s∈T

∑
t∈T
−λsµtrst(x, y)

= max
λ∈∆

min
µ∈∆

∑
s∈T

∑
t∈T
−λsµtrts(y, x)

= r(y, x),

since −rst(x, y) = rts(y, x).
Second, we show that r is continuous. The simplex ∆ consists of a finite number of

elements and is therefore compact. Moreover, from above, we know that rst is continuous.
Hence, for any λ, µ ∈ ∆, the function

f(x, y;λ, µ) =
∑
s∈T

∑
t∈T

λsµtrst(x, y),

is continuous. By a direct application of Berge’s maximum theorem it follows that
r(x, y) = minλ∈∆ maxµ∈∆ f(x, y;λ, µ) is a continuous function of x, y ∈ X.

Third, we show that r is strictly increasing. Consider x, y, z ∈ X such that x > y.
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Since each function rst is strictly increasing we have:

max
µ∈∆

∑
s∈T

∑
t∈T

λtµsrst(x, z) > max
µ∈∆

∑
s∈T

∑
t∈T

λtµsrst(y, z),

for all ∆. Hence,

min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λtµsrst(x, z) > min
λ∈∆

max
µ∈∆

∑
s∈T

∑
t∈T

λtµsrst(y, z),

which shows that r is strictly increasing in the first argument x.
Fourth, we will show that r(x, y) is concave in x. Fix y and λ ∈ ∆, and consider the

function:
rλ (x) = max

µ∈∆

∑
s∈T

∑
t∈T

λsµtrst (x, y) .

We have:

rλ (x) = max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst (x, y)

= max
µ∈∆

∑
s∈T

∑
t∈T

λsµt
(
Rs,t + ps (x− xs)− pt

(
y − xt

))

= max
µ∈∆

∑
s∈T

λs

∑
t∈T

(
µtR

s,t + µtp
s (x− xs)− µtpt

(
y − xt

))
= max

µ∈∆

∑
s∈T

λs

ps (x− xs) +
∑
t∈T

(
µtR

s,t − µtpt
(
y − xt

))
=

∑
s∈T

λsp
s (x− xs) + max

µ∈∆

∑
s∈T

∑
t∈T

(
µtR

s,t − µtpt
(
y − xt

))
.

Clearly, rλ (x) is linear in x and, as such, concave. Hence, r (x, y) = minλ∈∆ rλ (x) is the
minimum over a set of linear function and is therefore also concave.

Finally, we show that r is a quasilinear preference function that rationalizes the data.
For all y ∈ X and all t ∈ T:

r
(
xt, y

)
= min

λ∈∆
max
µ∈∆

∑
s∈T

∑
t∈T

λsµtrst
(
xt, y

)
≥ min

λ∈∆

∑
s∈T

∑
v∈T

λsµ
t
vrsv

(
xt, y

)
= min

λ∈∆

∑
t∈T

λsrst
(
xt, y

)
,

where µtv = 1 when v = t and zero otherwise. Note that the term pt(y − xt) does not
depend on s, which implies:
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r(xt, y) ≥ min
λ∈∆

∑
s∈T

λsrst
(
xt, y

)
= min

λ∈∆

∑
s∈T

λs
(
Rs,t + ps

(
xt − xs

)
− pt

(
y − xt

))
= −

∑
s∈T

λsp
t
(
y − xt

)
+ min

λ∈∆

∑
s∈T

λs
(
Rs,t + ps

(
xt − xs

))
= −pt

(
y − xt

)
+ min

λ∈∆

∑
s∈T

λs
(
Rs,t + ps

(
xt − xs

))
.

Thus, r is a quasilinear preference function that rationalizes the data OT since:

r
(
xt, y

)
− pt

(
xt − y

)
= min

λ∈∆

∑
s∈T

λs
(
Rs,t + ps

(
xt − xs

))
≥ 0,

because Rs,t + ps (xt − xs) ≥ 0 by condition (iii) and λs ≥ 0 for all s, t ∈ T.

(v) =⇒ (i).– Trivial.

Proofs of Section 6: Recoverability of Preferences

Proof of Theorem 6

The proof of the first part of the theorem follows from the discussion in Section 6.2.
We prove the second part. Since RWst(x) ⊇ RW (x), we have that NRWst(x) ⊆ NRW (x).
Thus, by construction NRWW (x) ⊆ NRW (x). We are going to show that NRWw(x) ⊂
NRW (x) for some x ∈ X. We will do this in the context if Example 6. Clearly, the bundle
x− = (1 1 1)′ is monotonically dominated by xT+1. First, note that the upper bound using
Varian’s method contains this dominated option, i.e., x− ∈ NRW (x) = X \ xT+1. Second,
note that for all s, t ∈ T and by strict monotonicity, we must have ust(xT+1) > ust(x−) (this
follows by Afriat’s theorem applied to the data O2

st). This implies that x− /∈ NRWst(xT+1)
for all t, s ∈ T. It also follows that RP (w) ⊆ RPW (x), since RP (x) ⊆ RPst(x) holds for
all s, t ∈ T.

Consider again, in the context of Example 6, the bundle x− = (1 1 1)′. We are going
to show that xT+1 = (2 2 2)′ is not in RP (x−), but that it is in RPW (x−). From Example
6, we know that S(xT+1) = ∅, which implies xT+1 /∈ RP (x−). However, we also have
that p(xT+1 − x−) > 0 for all p ∈ P , which means that for the rationalizing local utility
function, we have ust(xT+1) > ust(x−) for all s, t ∈ T. This means that xT+1 ∈ RPst(x−)
for all s, t ∈ T. Hence, xT+1 ∈ RPW (x−).
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Proofs of Section 7: Infinite Data Sets: Characterizations of WGARP and WARP.

In order to prove Theorem 7, we need an auxiliary lemma, which is a modification of
Algorithm 3 in Varian (1982).

Lemma 6. Consider a finite data set OT , and suppose that OT satisfies SARP. Then:

(i) There exist numbers U t and λt > 0 for all t ∈ T, such that the inequalities:

U t − U s ≥ λtpt(xt − xs),

hold for all s, t ∈ T, with a strict inequality when xt 6= xs.

(ii) There exists a continuous function that maps the data set OT to the numbers U t, λt

for all t ∈ T.

Proof. We begin with (i). Let g : RL → R++ be any continuous function such that
g(x) = 0 if and only if x = 0, and let ε > 0 be a scalar. For any subset I of T, let max I
denote the index of a maximum element of OT relative to the revealed preference order.
Consider the following algorithm:

Input: A set of price-quantity observations OT satisfying SARP.
Output: Numbers U t and λt > 0 for all t ∈ T satisfying the inequalities in statement (i).

1. Let I = {1, ..., n} and B 6= ∅.

2. Let m = max(I).

3. Set E = {i ∈ I : xi �R xm}. If B = ∅, then set Um = λm = 1 and go to step 6; else
go to step 4.

4. Set Um = mini∈E minj∈B min{U j + λjpj(xi − xj)− εg(xi − xj), U j}.

5. Set λm = maxi∈E maxj∈B max{(U j − Um + εg(xj − xm))/pm(xi − xm), 1}.

6. Set I = I \ E and B = B ∪ E. If I 6= ∅, then stop; otherwise, go to step 2.

We now prove that this algorithm generates numbers U t and λt > 0 for all t ∈ T that
satisfies the inequalities in statement (i). From step 4, we have:

Um ≤ U j + λjpj(xm − xj)− εg(xm − xj),

and

λm ≥ (U j − Um + εg(xm − xj))/pm(xj − xm),
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for all m, j ∈ T. This implies:

U j − Um ≤ λmpm(xj − xm)− εg(xm − xj),

for all m, j ∈ T. Hence, this shows that the algorithm guarantees that there exist numbers
U t and λt > 0 for all t ∈ T satisfying the inequalities in statement (i).

Moreover, it is clear that this algorithm provides a continuous function that maps the
data set OT to the numbers U t, λt for all t ∈ T, which proves statement (ii). �

Proof of Theorem 7

(i) =⇒ (ii).– Trivial.

(ii) =⇒ (iii).– Suppose that WGARP in statement (ii) holds. For every pair of observa-
tions in the data set O∞, we let O2 = {(p, a), (q, b)} denote the data set consisting of any
pair (p, a), (q, b) ∈ O∞. Overall, we have a continuum of such data sets, which exhausts all
possible pairwise comparisons in O∞. We rearrange O2 into a vector o = (p′ a′ q′ b′)′ ∈ O2,
where the set of reference points is defined to be O = P ×X with x ∈ x(p, px), such that
each data set O2 can be thought of as a column vector (Recall that under our assumptions
O is a compact and metric space). We define o1 = (p′ a′)′ and o2 = (q′ b′)′, such that
o = (o′1 o′2)′.

Since every data set o satisfies WGARP, we can directly apply Algorithm 3 in Varian
(1982), which specifies a continuous function that maps finite data sets to the numbers Uoi

and λoi
> 0 for i ∈ {1, 2} satisfying the Afriat inequalities for every data set o. We can then

use these numbers to define the utility function uo1o2(x) = mini∈{1,2}{Uoi
+ λoi

pi(x− xi)}
as in Afriat’s theorem that is continuous for all x ∈ X, strictly increasing and concave on
o (In the case of strict rationalizability, we simply apply Lemma 6, and then define the
function uo1o2 as in Matzkin and Richter’s (1991) theorem. As such, we know that uo1o2 is
continuous, strictly concave and strictly increasing).22

Next, we define the mapping: ro1o2 : X ×X → R as:

ro1o2(x, y) = uo1o2(x)− uo1o2(y),

for all x, y ∈ X. Clearly, ro1o2 is continuous (since uo1o2 is continuous) and (strictly)
concave in the first argument (since uo1o2 is (strictly) concave). Moreover, it is skew-
symmetric since ro1o2(y, x) = uo1o2(y)− uo1o2(x) = −ro1o2(x, y). Notice that since ro1o2 is
constructed for every o−vector of observations in O∞ we have an infinite collection of

22If o1 = o2 then we set uo1o2 = p(x− y) in the weak case and uo1o2 = p(x− y)− ε(g(x− a)− g(y− b))
in the strict case, for some small scalar ε > 0 and a function g defined in Matzkin and Richter’s (1991)
theorem.
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functions ro1o2 .
Define the preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆(O)

max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

= max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2),

where the second equality follows from Lemma 4.23

We prove that the function r weakly (strictly) rationalizes the data set O∞. Consider
y ∈ X and some fixed o1 = (p′ x′)′ ∈ O such that px ≥ py. Let µo1 ∈ ∆(O) be the
probability measure such that µo1(q, b) = 0 if (q′ b)′ 6= o1 and µo1(q, b) = 1 when (q′ b)′ = o1.
We have:

r(x, y) = max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

≥ min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµo1(o2)

= min
λ∈∆(O)

∫
o1∈O

ro1o1(x, y)dλ(o1).

It suffices to show that ro1o1(x, y)(>) ≥ 0 whenever px ≥ py, for each data set o = (o′1 o1)′.
But this follows directly from the definition of ro1o1 and Afriat’s theorem (In the case of
strict rationalizability, it follows from Matzkin and Richter’s (1991) theorem). Specifically,
notice that if px ≥ py then x �R,D y for o1 = (p′ x)′ since, in such case, uo1o1(x)(>) ≥
uo1o1(y). Hence, r(x, y)(>) ≥ 0.

(iii) =⇒ (iv).– We verify that the preference function r is skew-symmetric, continuous,
strictly increasing and (strictly) piecewise concave in x (and (strictly) piecewise convex in
y). First, we show skew-symmetry. We have:

−r(x, y) = − min
λ∈∆(O)

max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

= max
λ∈∆(O)

min
µ∈∆(O)

∫
o1∈O

∫
o2∈O

(−ro1o2(x, y))dλ(o1)dµ(o2).

Since ro1o2 is skew-symmetric (i.e., −ro1o2(x, y) = ro1o2(y, x)), we have −r(x, y) = r(y, x),
which proves that r is skew-symmetric.

Second, we show that r is continuous. The simplex ∆(O) is a compact set and since
ro1o2 is defined as the difference between two continuous functions (by Afriat’s theorem),

23The minimax theorem in Glicksberg (1950) requires that ∆(O) is a compact metric space, and that
r• is a continuous function. We have already shown that this holds by construction, so we can directly
apply this version of the minimax theorem.
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it is continuous itself. Thus, for any λ, µ ∈ ∆(O), the function

f(x, y;λ, µ) =
∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2),

is continuous. By a direct application of Berge’s maximum theorem it follows that
r(x, y) = minλ∈∆(O) maxµ∈∆(O) f(x, y;λ, µ) is a continuous function of x, y ∈ X.

Third, we show that r is strictly increasing. Consider any x, y, z ∈ X such that x > y.
Then:

ro1o2(x, z) = uo1o2(x)− uo1o2(z)
> uo1o2(y)− uo1o2(z)
= ro1o2(y, z),

where uo1o2(x) > uo1o2(y) follows by Afriat’s theorem. Hence, r(x, z) > r(y, z).
In the case of strict rationalizability, it follows that r satisfies skew-symmetry, continuity

and strict monotonicity simply by replacing Afriat’s theorem with Matzkin and Richter’s
(1991) theorem in the proofs above.

Finally, we show that r is (strictly) piecewise concave in x (and (strictly) piecewise
convex in y). Consider any x ∈ X and a fixed z ∈ X. The function ro1o2(x, z) =
uo1o2(x)− uo1o2(z) is (strictly) concave in x since uo1o2(x) is (strictly) concave by Afriat’s
theorem (Matzkin and Richter’s (1991) theorem) and the difference between a (strictly)
concave function and a constant is (strictly) concave. Moreover, the function fz(x;λ, µ) =∫
o1∈O

∫
o2∈O ro1o2(x, z)dλ(o1)dµ(o2) is (strictly) concave for any λ, µ ∈ ∆, since the linear

combination of (strictly) concave functions is (strictly) concave. It then follows that the
function gz(x;λ) = minµ∈∆(O) fz(x;λ, µ) is (strictly) concave in the first argument for
all λ ∈ ∆(O). Thus, by definition the function hz(x) = maxλ∈∆(O) gz(x;λ) is (strictly)
piecewise concave, proving that r is piecewise (strictly) concave. By skew-symmetry the
mapping r is (strictly) piecewise convex in the second argument.

(iv) =⇒ (i).– Trivial.

Proof of Theorem 8

(i) =⇒ (ii).– Suppose that the data O∞ satisfies statement (i), in which case, for all
x, y ∈ X:

r(x, y) ≥ p(x− y),

and
r(y, x) ≥ q(y − x),
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such that x ∈ x(p, px) and y ∈ x(q, qy). Adding these inequalities, and by skew-symmetry,
we have:

0 = r(x, y) + r(y, x) ≥ p(x− y) + q(y − x).

Rearranging terms, we get:
(p− q)(x− y) ≤ 0,

which is the law of demand.

(ii) =⇒ (iii).– Suppose that statement (ii) holds. Define o1 = (p′ a′)′ and o2 = (q′ b′)′,
such that o = (o′1 o′2)′ as in the proof of Theorem 7. Since the law of demand holds by
definition, we can use the algorithm in the proof of Theorem E to find numbers that
satisfies the inequalities in statement (iii) in Theorem E. As shown in the proof of Theorem
E, these numbers can then be used to construct a continuous, strictly increasing, concave
and quasilinear utility function uo1o2 for all x ∈ X and every o.

We define the mapping: ro1o2 : X ×X → R as:

ro1o2(x, y) = uo1o2(x)− uo1o2(y),

for all x, y ∈ X. Clearly, ro1o2 is continuous, concave (in the first argument and convex in
the second argument), and skew-symmetric.

Next, define the preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆(O)

max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

= max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2).

We prove that the function r rationalizes the data set O∞. Consider y ∈ X and some
fixed o1 = (p′ x′)′ ∈ O. Let µo1 ∈ ∆(O) be the probability measure such that µo1(q, b) = 0
if (q′ b)′ 6= o1 and µo1(q, b) = 1 when (q′ b)′ = o1. We have:

r(x, y) = max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

≥ min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµo1(o2)

= min
λ∈∆(O)

∫
o1∈O

ro1o1(x, y)dλ(o1).

It suffices to show that ro1o1(x, y) ≥ p(x − y) for each data set o = (o′1 o1)′. But this
follows directly from the definition of ro1o1 and Theorem E. Hence, r(x, y) ≥ p(x− y).

(iii) =⇒ (i).– It follows directly from the proof of (ii) =⇒ (iii) that the constructed
generalized maximin quasilinear preference function is also locally nonsatiated and skew-
symmetric.

61



(ii) =⇒ (iv).– Suppose that statement (ii) holds. Define o1 = (p′ a′)′ and o2 = (q′ b′)′,
such that o = (o′1 o′2)′ as in the proof of Theorem 7. Since the law of demand holds by
definition, we can use the algorithm in the proof of Theorem E to find numbers that
satisfy the inequalities in statement (iii) in Theorem E. We can define for every data set
oi, i = 1, 2:

uo1(x) = uo1 + p(x− a),
uo2(y) = uo2 + q(y − b).

Next, we define the mapping: ro1o2 : X ×X → R as:

ro1o2(x, y) = uo1(x)− uo2(y)
= (uo1 + p(x− a))− (uo2 + q(y − b))
= Ro1,o2 + p(x− a)− q(y − b),

for all x, y ∈ X, where Ro1,o2 = uo1 − uo2 . Clearly, ro1o2 is continuous, linear in both
arguments and satisfies −ro1o2 = ro2o1 .

Next, define the preference function r(x, y) for any x, y ∈ X as:

r(x, y) = min
λ∈∆(O)

max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2)

= max
µ∈∆(O)

min
λ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2).

Exactly as in the proof of (ii) =⇒ (iii), we conclude that r is strictly increasing and
continuous. We show that r is concave: Fix y and λ ∈ ∆(O). Consider:

fλ,y(x) = max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

ro1o2(x, y)dλ(o1)dµ(o2).

We have:

fλ,y(x) = max
µ∈∆(O)

∫
o1∈O

∫
o2∈O

[Ro1,o2 + p(x− a)− q(y − b)]dλ(o1)dµ(o2)

=
∫
o1∈O

[p(x− a) max
µ∈∆(O)

∫
o2∈O

[Ro1,o2 − q(y − b)]dµ(o2)]dλ(o1).

Note that fλ,y(x) is linear in x and therefore concave. Hence,

r(x, y) = min
λ∈∆(O)

∫
o1∈O

fλ,y(x)dλ(o1),

is the minimum over a set of linear functions and therefore concave.
We omit the proof that r rationalizes the data O∞ because it is completely analogous

to the proof of (iii) =⇒ (v) in Theorem 5.
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(iii) =⇒ (i).– It follows directly from the proof of (ii) =⇒ (iii) that the constructed
generalized maximin quasilinear preference function is also locally nonsatiated and skew-
symmetric.

(iv) =⇒ (i).– Trivial.
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