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ABSTRACT

This paper deals with the physicallocation of firms although other interpretations are also
possible. It is a well known fact that firms in certain industries tend to cluster. However,
since you would expect competition to be more intense when goods are less diversified in a
locational sense there must be some explanation to these observations which is not usually
dealt with in standard economie theory. One striking example is of course the American
west coast high-tech industry clustering in Silicon Valley, but others are not difficult to
find. There is a broad range of possible explanations to these phenomena. The focus of this
paper is to explore the possibilities to explain c1ustering in terms of externai effects in the
R&D process. This is done through the introduction of R&D investments into a version of
the Hotelling spatial duopoly model. We consider only cost reducing innovations (Le
process innovations). The investment decisions and the locational decisions are taken
simultanec>llsly. T~en firIIlsSRIIlpe~e in prices, eonditionalon their .. s~oices in the first
~rjod.• N1arg~Ilalcosts .are.r(>,d.ucedh9ththrollg~9wn/iDvestIIlents and 1:>Y.$pilloyersfrom
the· competitorand these spilloversaredecreasing in thedistancebetween firms. The most
surprising finding is that c1ustering will occur onIy if it is totally costless in terms of
competition in the product market, that is, only when both firms act as unconstrained
monopolists. Extending the model into an infinitely repeated game opens up the possibility
to sustain locational equilibria characterized by c1ustering if the discount factor is large
enough. This is so since the optimal collusive locational pattern implies at least some
amount of c1ustering.

1 BACKGROUND

It is a weIl known fact that firms in certain industries tend to cluster geographically.

However, since one would expect competition to be more intense when goods are less

diversified in a locational sense there must be some explanation to these observations which

is not usually dealt with in standard economic theory. One striking example is of course the

American west coast high-tech industry clustering in Silicon Valley, but others are not

difficult to find - the jewelry district of Amsterdam is one, and the optics industry c1uster

of Rochester, New York, is another. There is a broad range of possible explanations to

these phenomena. Geographical concentration of the supply of certain inputs, such as

skilled labor and raw materials is one. Another is when demand is highly concentrated in a



2

physical sense. Producers may also want to reduce consumers' search costs under

conditions of uncertainty regarding prices and/or locations in order to increase the pie of

surpluses. The focus of this paper is to explore the possibilities to explain c1ustering in

terms of externai effects in the R&D process. Of course, these kinds of externalities are

only likely to be of importance in R&D intensive industries, but c1ustering is also a

common feature in precisely these industries.

R&D investments could be given a very broad interpretation, inc1uding any cost reducing

investment. For example, they could be interpreted as training costs in an industry

characterized by a certain amount of turnover in the labor force (where turnover is

negatively related to the physical distance between firms).

In passing, it should be mentioned that an equally interesting way of interpreting the

locational problem is in terms of product differentiation in general. It seems likely that the

cost of taking advantage of a rival's process innovation should be reduced when products

are less diversified, but again, competition in the product market would then be intensified.

(In this framework transportation costs should be thought of as a consumer's cost of not

being able to buy a product with his favorite characteristics. Since we will assume

transportation costs are quadratic in distance, this interpretation might be more realistic

than if distance is thought of as being geographical. In many cases, there is reason to

believe that travelling, in the geographical sense, is characterized by constant returns to

scale, or even by increasing returns to scale but quadratic travelling costs of course imply

decreasing returns to scale. ) AIso in this context , R&D investments could be thought of as

training costs. These should be lower the more familiar a newly employed is with the type

of product being manufactured. With a certain degree of labor turnover within the

industry, training costs would therefore be lower if products are less diversified in product

space.

2 THE MODEL

The most famous model of location, and basically the one to be used in this paper, is due to

Hotelling (1929). However, as was pointed out by d'Aspremont, Gabszewicz and Thisse

(1979), there is a problem with non quasiconcave profit functions in Hotelling's original

paper (which led him wrong in his conc1usion about minimal differentiation) and a slightly

modified version due to these authors will be used instead. One reason why this model is

chosen is its' implication of maximal differentiatian in absence of externalities. This result

seems to be extremely robust to changes in the specification of the model (of which there

are quite a few). If c1ustering can be explained by R&D externalities in this very



3

"conservative" framework, they will seem a more convincing explanation then would

otherwise be the case.

Consumers are assumed to be uniformly distributed along a line of unit length and there

are two firms located at points a and (l-b) along this line. Firms will be denoted firm a

and firm b (see figure 1.). Consumers buy at most one unit of a good which is homogeneous

in all other respects than the distance between consumer and producer. The utility of a

consumer located at k is:

(l)

Uk = S- t(k - a)2 - Pa

Uk = S - t(l b - k)2 - Pb

Uk = O

if buying from firm a

if buying from firm b

otherwise

where s is the reservation price before travel expenses are deducted, t times the squared

distance gives total travelling expenses and Pa and Pb are the prices charged by the firms.

Of course consumers make their purchases from the firm whose location and price gives

them the highest utility, (if positive) or refuse to buy at all if prices are too high. A typical

demand function is shown in figure 2.

Producers choose a location, an investment in R&D which reduces marginal cost (Le a

process innovation) and a price. There is no uncertainty.

The timing is as follows:

1) Both firms simultaneously choose a location and an investment in R&D

2) Given the locations and marginal costs (which are now considered constant) the

firms compete in prices and payoffs are realized

The equilibrium concept used is the subgame perfect Nash equilibrium. According to that

concept, an equilibrium strategy must be optimal starting from any subgame. This rules

out uncredible threats like "if you invest in period 1, I will set my price to minus infinity in

period 2". Technically, we solve the problem backwards. Given any pair of marginal costs

and locations, what are the Nash equilibrium prices and corresponding profits in period 2?

Given these profit functions, what are the Nash equilibrium locations and investment levels

in period 1 when account is taken of possible R&D externalities? Only symmetric equilibria

are considered. With no loss of generality we assume O< a < 0.5 and 0.5 < (l-b) < L

There is no discounting between the two periods.
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Before going on to the main analysis it might be useful to work through to solution to the

game in absence of any externalities. That is, both firms are assumed to have constant and

identical marginal costs. Figure 3 shows the utility of consumers when there is only one

firm, located at a and charging Pa. The consumer fortunate enough also to be located at a,

has utility (s-Pa), but all others have lower utility leveis, down to consumers (a-w) and

(a+w) who are indifferent between buying and not buying. Consumers to the left of (a-w)

and to the right of (a+w) choose not to buy. The shaded area represents total travel

expenses in the market. It is usually assumed that all consumers earn a positive utility
*from buying in equilibrium as in figure 4a), where i denotes the consumer that is

indifferent between the two firms. This, however, implicitly relies on the assumption that

marginal costs are small compared to s and/or that travelling costs are relatively small.

Given any s, and recognizing that equilibrium prices cannot be greater than costs it is easy

to see that the top of the "utility mountain" in figure 3 approaches the horizontal axis as

marginal costs increase, making full market coverage less likely. Increasing t leaves the

maximum utility unchanged, but makes w increasingly smaller, also making full market

coverage less likely. In all we have four types of potential equilibrium configurations in

absence of fixed costs. These are illustrated in figure 4a)-<i).(Equilibria without market

coverage in the standard Hotelling model are rigorously treated in Economides (1984).)

3 THE EQUILIBRIA IN ABSENCE OF EXTERNALITlES

3.1 Type 1 situation

As said before, this is the standard setting, assumin~ full martet coverage in equilibrium.

Let us call the location of the indifferent consumer i . Then i is given by:

.* 2 .* 2S-t(l -a) -Pa =s-t(1-b-l) -Pb

* * *Solving for i and noting that the demand functions, Da and Db, are given by i and (1-i )

respectively, we have:

(2)

(3)

1 b + a Pb Pa
Da = +

2 2t (1 b - a)

1 - a + b Pa Pb
Db = +

2 2t (1 b - a)

Starting with period 2, firm a maximizes its profit, taking locations and its marginal cost
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Ca as given. (Ila is here clearly continuous in prices, which it was not in Hotelling's original

paper where transportation costs were linear in distance. For a discussion of this, see

d'Aspremont, Gabszewicz and Thisse (1979).)

Pa
]

b - a)2t (1
+

+ a
[
1 - b

Ila = (Pa - ca) 2(4)

The first order condition is;

arra
aPa 2t (a + b-I)

o

From this it is easy to see that the second order condition for a maximum is satisfied for

a < (I-b). From the first order condition we have the following reaction function for firm

a:

and by symmetry, for firm b:

These reaction functions have all the expected properties of a Bertrand game with

differentiated products. They are upward sloping, implying that prices are strategic

complements, and their intercepts are increasing in cost. Solving for the equilibrium prices

of period 2 we have:

P: - ~ [ t(3 - 4b - 2. + b' - .') + 2ca + Cb ]

P: = ~ [ t(3 - 4. - 2b + .2 - b2
) + 2Cb + Ca ]

Substituting the equilibrium prices into (4) and rearranging, we end up with:



(5) *Ila
l t(a2

- b2 + 2a + 4b - 3) + Ca - Ch r
l8t(1 - a - b)

6

*Knowing this will be the equilibrium payoff in period 2, firm a maximizes Ila with respect

to a in period 1, treating (l-b) as a constant. (The profit function is elearly continuous in

location.) Letting Ca = Ch constant:

(6)
*alla t(a

aa
b + 3) (3a + b + 1)

18
<O ,Vb

That is, no matter where firm b is located, firm a would want to keep as far away from him

as possible. The same is true for firm b so the unique subgame perfect Nash equilibrium is

a = b = O. How could this be explained? There are two effects present in this context. The

first effect can be called the business-stealing effect. It is tempting for both firms to locate

elose to the rival in order to steal customers from him. The second effect is the competition

effect. The eloser the firms, the more intense is competition, and the eloser prices to

marginal cost. Whenever a = (l-b) and marginal costs are the same we know from the
* *expressions for Pa and Pb that price equals marginal cost so profits are zero, as should also

be expected in a Bertrand game when products are no longer differentiated. The maximum

distance result indicates that the competition effect dominates over the business-stealing

effect. If, on the other hand, prices were regulated, the business-stealing effect would of

course dominate, changing the unique equilibrium to a = (l-b) = 0.5. In other words, we

would have a minimum distance result.

3.2 Type 2, 3 and 4 situations

In the type 2 situation, the firms are local monopolies and consequently, no strategic

interaction is present. Hence, they could move inwards, gaining customers at the center

without losing demand at the tails. In other words, this cannot be a Nash equilibrium. The

incentive to deviate inwards would remain until the firms start competing, or until they do

lose customers at the tails.

The type 3 situation can be a Nash equilibrium when costs are high. In this case, demand

and profits are independent of locations. The locational choices are therefore unessentiai

and the number of possible equilibrium configurations are infinite.

In the type 4 situation, each firm must be unhappy with itts choice of location. This is so,
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simply because they would loose fewer customers from the center than they would win at

the tails, when moving towards "their own" corner. In other words, there is no business

stealing effect present here (quite the contrary) and hence the competition effect must

dominate. Consequently this is not an equilibrium.

4 EQUILIBRIA WHEN INTRODUCING R&D EXTERNALITlES

4.1 Type 1 situation

In absence of externalities and with full market coverage we know that the only possible

subgame perfeet Nash equilibrium is a = b = O. When introducing externalities, the game

starting in period 2 is essentially unchanged since marginal costs and locations are treated

as constants after period 1. Thus, firm a still maximizes equation (5), but now with an

additional term representing R&D expenses, Xar, where Xa is the amount of R&D

conducted by firm a and r is the cost of R&D capitaL

(5')
* _ l t(a2

- b2 + 2a + 4b -3) + Ca - Cb 12

ITa - - - Xar
18 t (1 - a - b)

Of course, Ca and Cb are now functions of the R&D intensities of both firms as well as of the

distance between firms. The general specification of the cost function is;

(7) Ca = f(K, a, b, Xa, Xb, z)

with Cb defined analogously. Kis the constant marginal cost in absence of any R&D

activity. As explained above, Xa denotes the amount of firm a's own R&D, while Xb is firm

b's R&D expenditure. z represents the intensity of R&D spillovers, and (a+b) measures the

distance between the firms. This term is maximally equal to unity when a = (l-b), that is

when both firms locate at the same spot. Thus a firm can lower it's cost both by investing

in R&D and by locating eloser to his rival, taking advantage of spillovers. However, he

must take into account that some of his own R&D will benefit the rival and that moving

eloser to the rival increases spillovers in both directions.

Differentiating equation (5') with respect to a, treating b as a constant, gives us,

(6')
*oITa

oa

t(a - b + 3)(3a + b + 1) 1 [ oCa
- -(a- b + 3) -

18 9 oa

OC b ]

oa
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when evaluated at a point where Ca = Cb. (Due to symmetry, investment leveis, and

therefore marginal costs, are assumed to be equal in equilibrium.) Compared to (6), (6')

has an additional term, partIy consisting of the derivatives of the cost functions with

respect to firm als location. It is likely that shortening the distance between firms will

affect spillovers in a symmetric way, so that it does not matter which one of the firms who

initiated the move. Then the term in brackets will be zero so (6') equals (6). Then, since

(6') is negative for any location, firm a would want to locate as far away as possible from

firm b and vice versa. The only subgame perfect Nash equilibrium is a = b = o. X a = Xb

can be solved for recursively, differentiating (5') with respect to Xa and letting a = b = o.

Introducing R&D spillovers obviously does not change the results from section 3.1. Moving

towards your rivallowers costs symmetrically, and therefore lowers product prices in the

second period. Moreover, it intensifies competition, leaving your products less

differentiated, also lowering product prices. Here, the gains from lowering costs through

increased spillovers and the business stealing gains are not sufficient to offset the losses

from the price reductions in the second period. However, this finding is not all that

surprising. The way the demand functions are specified it is implicitly assumed that the

entire market will be covered no matter what prices are charged. If for instance /),=00 in

equation (7) and r=oo, both firms willlocate at the tails, charging infinitely high prices

without loosing any customers. In that sense, cost is basically unessential. This can also be

seen from equation (5'). What drives the result is the fact that only cost differences are of

importance in the reduced profit function. Thus, as long as externalities are symmetric

they will have no influence on profits.

4.2 Type 2, 3 and 4 situations

Already in section 3.2 it was shown that a situation as described in figure 4b) (the type 2

situation) cannot be an equilibrium. Given any set of prices, deviating towards the center

would unambiguously increase profits as long as firms are not competing directly and as

long as no customers are lost at the tails. Introducing R&D externalities only gives an

additional reason for wanting to deviate. Not only is demand increased but costs are also

reduced. Thus, it cannot be an equilibrium in this context either.

When it comes to the type 3 situation there is again no strategic interaction taking place.

Demand is not a function of location but so is cost now. As long as the firms can lower

their costs by moving eloser without competing for customers, they will want to do so. The

only configuration that could be an equilibrium in this case is if the market segments of the

two firms are tangent. Below, it will be shown that there will be no incentive to move
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closer once the market segments are tangent so this is indeed the unique Nash equilibrium

in absence of full market coverage and with externaI effects in the R&D process. X a = Xb

can be found recursively by differentiating profits with respect to Xa, letting locations be

given by the tangency condition and the unconstrained monopoly price.

Finally, we have the type 4 situation. In section 4.1 we saw that in the full market

coverage case, the incentives to part were stronger than the incentives to cluster given any

value of a=b. This was so even though demand was not increasing when moving outwards.

In this case there is an additional incentive to part, namely that given any price, total

demand will increase, just as was the case in section 3.2. In all other respects the situation

is the same, so this configuration can not constitute an equilibrium.

5 DISCUSSION

In absence of R&D externalities, there is a unique subgame perfect Nash equilibrium with

maximal differentiation in the case of full market coverage. However, this result rests on

the assumption that marginal costs are small compared to the reservation price gross of

travelling expenses and/or that travelling costs are relatively small. When the market is

not fully covered, there is an infinite number of equilibria corresponding to the situation in

figure 4c), where both firms act as local monopolies, unconstrained geographically.

When R&D externalities are introduced, the maximal differentiation result survives in the

case of full market coverage. On the other hand, there is now a unique equilibrium when

the market is not fully covered. There is a tendency wanting to deviate inwards if loeations

are as in figure 4e) while the firms would want to deviate outwards if locations were as in

figure 4d). Thus, the unique equilibrium is having both firms acting as loeal monopolies

with tangent market segments.

The situations described in figures 4b) and 4d) are no equilibria, regardless of what

assumptions are made about R&D externalities.

The maximum distance result seems to be surprisingly robust in a setting with R&D

spillovers. No matter what magnitude these externalities are, we would only expeet

c1ustering (in some mild sense) if it is totally eostless in terms of competition in the

produet market. Otherwise, the gains from R&D spillovers and the business stealing gains

are eompletely outweighed by the losses in terms lowered product prices when a firm is

contempIating moving towards his rival. (Prices are lower both because costs will be lower

and because products will be less differentiated. )
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Partly, the explanation to these results must be found in the way product market

competition is modeled. Having Bertrand competition, it is a priori possible to exclude

total clustering from the set of potential equilibria. By definition, prices will equal

marginal costs when products are not differentiated, as is the case when firms locate at the

same spot. Having zero profits in the second period, no firm would make an R&D

investment in the first period, so no question of externalities would arise. Knowing this,

firms would prefer to maximize the distance as in the standard solution to this model.

Hence, a minimum distance equilibrium is not possible. (For that we would need products

to be differentiated in some other dimension as well.) Modeling product market

competition in a Cournot fashion is possible in a spatial model, but it is generally a very

complex task (see Salant (1986)). Nevertheless, it would be an interesting experiment since

this would allow profits to be strictly positive even when products are no longer

differentiated. My presumption is that clustering due to R&D spillovers would be a much

more important feature in such a model.

An approximate minimum distance equilibrium would result if travel expenses are

extremely high (or brand preferences are strong) and/or if the reservation price, gross of

travel expenses, is very low compared to marginal costs. An empirical implication of the

model would be to expect firms to compete in prices, without clustering, in industries

where the willingness to pay is high. The opposite would be true in industries with a low

willingness pay.

6 EXTENSIONS

It is apparent that the mere introduction of R&D externalities will not effect the maximum

distance result in any significant way. A natural question to ask is what alternative

specifications are needed to make firms cluster. There are a number of possible extensions

in this context. Introducing sequential entry adds an extra amount of commitment

possibilities to the game which might change the behavior of firms. Exogenous cost

asymmetries could make the high-eost firm more willing to cluster while the opposite

might be true for the low-eost firm. This could possibly lead to the non-existence of

equilibrium. The rules of entry are probably of great importance in this case. Finally, one

has reason to believe that making the game dynamic would open up the possibilities to

more cooperative solutions by the use of trigger strategies. This should increase the

clustering tendencies since it would be in both firms' interest to lower costs as cheaply as

possible.

For the rest of the paper we investigate the properties of a supergame version of the
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original game. In other words, the two-period game is assumed to be repeated an infinite

number of times. Throughout the remaining sections full market coverage will be assumed.

Essentially, that is the same as assuming that the reservation price is "high enough". This

is not too a restrictive assumption to make since the calculations are basically unchanged

by changes in the reservation price once it is "high enough". Furthermore, this assumption

guarantees that there will always be a certain amount of strategic interaction present and

those situations are surely the most interesting ones.

6.1 The supergame version

When a game is repeated an infinite number of times the "Folk Theorem" assures us that

any pair of average payoffs, between the worst one-shot Nash equilibrium payoffs and the

best cooperative payoffs, can be sustained as a Nash equilibrium for a high enough discount

factor. The intuition behind this is quite dear. The strategies that form the equilibrium is

that you stick to the cooperative solution as long as your rival does and otherwise you play

the one-shot Nash equilibrium (which will always also be a Nash equilibrium to the

supergame when repeated an infinite number of times). You will not take advantage of the

fact that the cooperative solution is not a one-shot Nash equilibrium if the one-shot gain

by deviating (given the rival's action) is smaller then the losses in terms of reduced future

profit streams. Furthermore, you can do nothing to avoid the punishment since the

punishment strategies themselves form a Nash equilibrium of the entire game. Thus

making the discount factor ,D ,arbitrarily large will also make the discounted stream of

profit reductions arbitrarily large so no deviation will take place for a Dhigh enough.

We now proceed by ca1culating the best cooperative solution in terms of maximizing joint

profits with respect to R&D investments, locations and prices. Solving for the endogenous

variables as functions of the exogenous variables only seems to be a very complex task so

we will have to illustrate the solution by means of a numerical example. Having done that,

we go on ca1culating the gains from deviating and the punishment payoffs, still in the

context of the numerical example. Finally we ca1culate what restrictions have to be made

on the value of the discount factor for the optimal cooperative solution to be a Nash

equilibrium.

The assumptions of the supergame must now be specified more carefully. First, locations

are fixed only in the very short run. Thus, it is the two-stage game that is repeated an

infinite number of times and not just the price game. Second, deviations take place in the

price-game and not in the 10cationjR&D investment period. This is not too a restrictive

assumption to make. If a deviation took place in the first period the strategy would be to
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play the one-shot Nash equilibrium prices in the second period. The resulting

non-eooperative payoff would in most cases be lower then the payoff of an optimal

deviation in the cooperative price game. Certainly, there are cases in which it would be

more appropriate to modellocations as fixed also in the very long mn but this will not be

done in this paper.

In absence of externalities and assuming that full market coverage is profitable (s large) it

is obvious that the joint profit is maximized when firms are located at (0.25, 0.75) since the

average surplus of the consumers is then minimized. (This would also be the social

optimum since travel expenses are minimized.) Introducing externalities can only imply

this amount of clustering or more. Thus a,b ~ 0.25. Due to symmetry it is also obvious that

actions that are optimal for one firm will also be optimal for the other when maximizing

joint profits. Otherwise the more profitable action could be replicated. We can therefore

ignore the subscripts, treating P, X and a as the endogenous variables. The cost function,

convex in all arguments, is specified in equation (8);

~= - -c
k + Xa + z(a+b)Xb k + X + 2zaX

(8)
1 1

with Cb defined analogously. The general description of the function is found i section 4.l.

(K corresponds to (1 /k) in this specification.) The firms maximize,

1
II = P - -2Xr

k + X + 2zaX

p + ta2 ~ s

p + ta2 - ta ~ s - t~

subject to

As before, r denotes the cost of R&D capital. The restrictions guarantee that the entire

market will be served. It will not be profitable to leave a strictly positive surplus to every

consumer since, given locations, you could always increase the price without violating the

full market coverage restrictions. Hence, at least one of the restrictions will be binding in

equilibrium. Since we know that a ~ 0.25 we see that the first restriction imply the second

one so this one only (or both) will in fact be binding, leaving the customers at the

end-points with a zero surplus and everybody else better off (The second restriction makes

the consumers in the middle have a weakly positive surplus. ) The lagrangean is given by;
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1
L=P- -2Xr+ 1'1(s-P-ta2)+ /2(S-P ta2 +t(a-:\:))

k + X + 2zaX

where /t and /2 are the lagrange multipliers. The first-order conditions are (9)-(13) (with

P, X, a, /1, /2 ~ O).

(9)

(10)

(11)

(12)

(13)

öL
= 1 - /1 - /2 ~ O

öP

öL 1+2za
-= -2r <O
öX (k+X+2zaX)2 -

öL 2zX
- = - /t2ta + /2(t-2ta) ~ O
öa (k+X+2zaX)2

öL
- = s - P - ta2 >O
Ö/t -

öL
- = s - P - ta2 + t(a-:\:) ~ O
Ö/2

öL
-P=O
öP

öL
-X=O
öX

öL
-a=O
öa

öL
/t = O

ö/t

öL
- /2 = O
Ö/2

Note that the objective function is concave in the endogenous variables while the

restrictions are convex so the Kuhn-Tucker sufficiency conditions for a maximum are

satisfied. Hefore turning to the numerical example, some general properties of the optimal

solution will be discussed. First, we know that a~0.25 so compared to the non-eooperative

solution there will at least be some elustering here. It is also possible to show that the

investment level will be lower than in the non-eooperative case whenever spillovers are

large (z elose to one or even larger than one) and initial marginal costs are high (k elose to

zero). That is, if the investment incentives are large, there will be less investment in the

collusive case than in the competitive case. Intuitively, it is not surprising that the lack of

externalities in the non-eooperative case has to be compensated for by agreater amount of

R&D. Another interesting feature of the collusive solution is that "extra" elustering

(a>0.25) will only occur for intermediate values of z and r. If spillovers are non-existent

(z=O), a=0.25 will surely be optimal, but this will also be true for Z=oo since then marginal

costs are zero for a=0.25 and X arbitrarily small. Thus, spillovers are of no importance.

Similarly, if r=O marginal costs can be reduced to zero at no cost at all, so again, spillovers

do not matter. For large values of r, no R&D investments will be made so marginal costs

are independent of locations. Consequently, a=O.25 is optimal. Finally, if travelling costs
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are small, the solution will be characterized by full clustering. This can be seen if (10) and

(11) are used to solve for a as a function of X and the parameters. It is easy to show that

öal åt < Oin equilibrium and that a=0.5 for some t>O. When it comes to the high-tech

industry, it seems plausible that transportation costs are small (compared to total costs).

Thus, collusive agreements could be able to explain phenomena of the Silicon Valley type,

both when externalities are thought of as turnover in the labor force or as traditional R&D

spillovers.

Let z=l, k=O, t=0.5, r=O.l and s=2. Assuming a>0.25, we will have 1'1=1 and 1'2=0 (from

(9)). Furthermore (9)-(12) will hold with equality since investments have to be positive for

a>0.25 to be optimal. Then the solution is;

The optimally collusive outeorne

a = 0.382 c = 0.336

X = 1.684 P = 1.927

Da= 0.5 Db= 0.5

IT = ITa + ITb = 2 x 0.627 = 1.254

Thus, the assumption a>0.25 proved to be right given these parameter values. Just as

should be expected, the solution is characterized by some amount of clustering, with firms

taking advantage of externalities. Total clustering does not occur since the spillover gains

are not sufficient to compensate for the price reduction which is necessary to keep the

market covered.

To calculate under which conditions these payoffs are possible to sustain as a subgame

perfect Nash equilibrium we also have to compute the payoff resulting from deviation in a

single period and the payoffs that follow in the punishment phase. When deviating, firm a

maximizes (4) taking everything exogenous except for Pa. It is easy to show that in this

case aITa/Pa < Ofor all Pa > 1.19. But for Pa < 1.809 demand is totally inelastic because

then firm a has captured the entire market as shown in figure 5. (The problem is that (4),

and its counterpart for firm b, does not exclude the possibility of a negative demand for one

firm and a demand greater then one for the other.) The optimal deviation strategy

therefore yields;

The optimal deviation outcome

p a= 1:809 Pb= 1.927

Da= 1.0 Db= 0.0

ITa= 1.305 ITb=-Q.168
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It is worth noting that the deviation profit is in fact greater than the total collusive profit

in this case. This might seem counter-intuitive but the explanation is of course that firm b

subsidizes the production cost of firm a through R&D spillovers without sharing the

profits. Industry profits are certainly lower when the cooperation breaks down as it should

be by definition of optimal collusion.

Finally, the payoffs of the punishment phase are computed. These are just the payoffs of

the two-period game analyzed in section 3. Differentiating (5') with respect to Xa, letting

a=b=O, Xa=Xb and Ca=Cb, yields Xa= 1.826. Plugging this into (8) together with the
*parameter values, gives us Ca. Then it is easy to solve for Pa from the expression for P a on

page 5 and to solve for Ila from (5').

The one-shot Nash eguilibrium outcome

a = b = O c = 0.548

X = 1.826 P = 1.048

Da= 0.5 Db= 0.5

II = Ila + IIb = 2 X 0.067 = 0.135

So, compared to the optimal cooperative solution, investment levels are higher, but this

does not fully compensate for the lower degree of spillovers so marginal costs are also

higher in this case. Profits are considerably lower for those reasons and also because prices

are lower.

Let us denote the optimally collusive (per firm) profit by lIc, the optimal deviation profit

by lId and the punishment Nash equilibrium (per firm) profit by IInc. For lIc to be a

sustainable as a subgame perfect Nash equilibrium payoff, then the gains from deviating

must be smaller than the gains from continuing the cooperation. With an infinite time

horizon and with a discount factor 8, this means that;

- 0.55
lIc

IInc

lId

lId
8 >or

lIc
<

8IInc
lId +--

1 8 1 - 8
(14)

Hence, for a discount factor greater than 0.55 (an interest rate less than 0.83) we will in

this case be able to sustain any pair of average payoffs between IInc and lIc as a subgame

perfect Nash equilibrium of the repeated two-period game.
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There are of course limits on what can be learnt from numerical examples and a more

general treatment of the problem would certainly have been preferred. However, there are

are at least some conc1usions that can be made. First, the intuition that introducing an

infinite time horizon (making trigger strategies possible) could lead to agreater amount of

c1ustering is verified. One could argue that it is even likely that the firms try to coordinate

on an equilibrium maximizing joint profits (which implies a=b=O.5 for small travelling

costs). However, lots of other equilibria are of course also possible to sustain. It is

self-evident that there is a social waste of both R&D resources and travelling expenses

when the distance between firms is maximal. In the example we saw that the maximum

distance equilibrium had both higher research costs and a higher marginal cost. Second, we

saw that externalities could lead to the counter-intuitive result that the payoff from

deviating from the optimal1y cooperative equilibrium could in fact be greater than the

industry profits of that equilibrium. A priori, this would mean that col1usive outcomes

could be more difficult to sustain in industries characterized by a great deal of positive

externalities.
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