```
A list of Working Papers on
the last pages
```

```
No. 118, 1983
THE MOSES MANUAL
    Part 2
THE INITIALIZATION PROCESS
```

by
Fredrik Bergholm

This is a preliminary paper. It is intended for private circulation, and should not be quoted or referred to in publications without permission of the author. Comments are welcome.

CONTEWTS

Page
Preface 3
Section 1 Introduction 6
Section 2 The Initialization, Main Features 9
Section 3 The Input-Output System 14
Section 4 The Initialization, Overview* 25
Section 5 The Data Base* 34
Section 6 The Consistency Control System 38
Section 7 On Simulation Techniques 43
APPENDICES 53
APPENDIX A VARIABLES COMING OUT FROM INITIALIZA- TION AND WORKSPACE VLISTS 53
APPENDIX B MACRO DATA AND MICRO DATA A DOCUMENTATION 78
APPENDIX C THE INITIALIZATION CODE, MAIN PART 90
APPENDIX D THE INITIALIZATION CODE, HELP-FUNCTIONS 125
APPEADIX E A MICRO-TO-MACRO DATA BASE. EXPERI- ENCES FROM THE CONSTRUCTION OF THE SWEDISH MICRO-TO-MACRO MODEL. (MOSES)
by Louise Ahlström 144
Notes 157
Literature 160
NOTE: * The Micro Data Base and the Micro initiali- zation are also described in much detail in Al- brecht-Lindberg (1982).

Preface

MOSES is short for "Model for Simulating the Economy of Sweden". Different versions of the model have been used within the institute for about five years by now. A number of simulation experiments have been performed. The whole model is written in the programming language APL. The present version of the model is installed on a computer in Bergen, Norway. This has come about through cooperation with the industrial institute for economic research, $I \not \subset I$, in Bergen.

For some time there has been a demand for a full documentation of the current version of the model. $"$ "The MOSES Manual" fulfils one part of this request. Anyone interested in a large-scale simulation model of this kind needs to get acquainted with the techniques involved in starting up (initializing) and running the model. Experiments have shown that the initialization procedure, which constructs an initial state of the model economy, is crucial indeed, for the behaviour of the model. This paper is devoted to describing the initialization process. ${ }^{2}$ One can divide the initialization process into three stages: data base work, the initialization procedure and consistency controls.

Quite a tremendous amount of information is needed to start up the model. The main reason for this is the fact that the model simulates the behaviour of the economy mainly by summing up the dynamic performance of individual firms (micro simulation). Each firm is described by about 100 variables. About 150 firms participate (in the present version of the model). There are also a large number
of variables needed to describe the "macro-sectors" in the model, e.g. the household sector, the Government sector, non-industrial sectors etc. The collection of micro data and macro data needed for the initialization has been a drawn out research project at IUI, where a number of people have been involved. ${ }^{3}$ The data base work is documented by the Sections 3, 5 and Appendices B and E.

Micro and macro data have to be transformed in several ways before they finally can be fed into the model. The initialization procedure is the name of this transformation process. In this procedure we also include the task of giving values to parameters affecting the behaviour of households and firms. The initialization procedure is documented by Sections 1, 2, 4 plus Appendices A, C and D. This has also been a lengthy research project at IUI with several people involved. ${ }^{3}$

Finally one has to check that all variables in the model (for the initial year) are consistent and that micro in all senses add up to the macro totals. This consistency checking has been done by the author of this paper, and is described in the Sections 3.2 and 6.

Part 1 of this manual describes how to run the model, in a technical sense. To be able to make experiments with the model one has to know the initialization procedure in some detail. Thus the user of the model must be well acquainted with both Part 1 and Part 2 of the manual. Section 7 of this paper is a bridge between Part 1 and Part 2 where some examples of simulation techniques are presented.

In conclusion, it should be pointed out that this paper has a twofold purpose. It is a documentation of the initialization process and an aid for the future users of the model.

Section 1 Introduction

The "micro-to-macro model" MOSES simulates the economy quarter by quarter from a given starting year. Before one can start a simulation of the Swedish economy with the model one has to initialize a vast number of variables. The starting year is, for the time being, 1976.4 The reason for this is that 1976 is the earliest year for which a complete micro and macro data base exists.
"Initialization" means, mainly, that three kinds of variables are given values.
(1) Variables for 1976 needed to start up the model.
(2) Variables needed to determine the future of certain variables which get their values irrespective of what happens during the simulation.
(3) Certain constants. Some of these are parameters affecting the behaviour of firms, households and market mechanisms.

In what follows, the first kind of variables will be referred to as "start-up variables", the second will be referred to as "exogenous time-series" and the third will simply be called "constants". A constant which affects the behaviour of firms or households is called a parameter.

An example of a "start-up variable" is RU, the rate of unemployment 1976. An example of an "exogenous time-series" is the growth of the government employment in the model. There is a variable ${ }^{5}$ called EXOAREALCHLG, which is a vector (over time) containing the number of people to be added to the government-sector each quarter. An example of a
"constant" is SMT which is a factor determining to what extent profit targets are updated with recent development during the simulation. More precise$1 y:{ }^{6}$
$\operatorname{Targ}(n+1)$ gets the value $\operatorname{Targ}(n) \cdot S M T+M(n) \cdot(1-S M T)$ where

Targ $(n+1)=$ profit target, quarter $n+1$
$\operatorname{Targ}(n)=$ profit target, quarter n
$M(n) \quad=$ actual profit, quarter n

The three mentioned kinds of variables can be
micro variables or macro variables.

A "micro variable" is a variable which is connected with firms. Such variables are often vectors. A micro variable can be some characteristic of the firms (for example the value added share), a behaviour parameter (for example SMT above) or a variable which the firm can influence (for example L below).

Example:
L is the labour force (number of people) in each firm.
$\mathrm{L}(\mathrm{n})$ is the labour force in firm n .
$n=1,2,3, \ldots, 147$ for the present.

The length of the vector is equal to the number of firms participating in the simulation. A micro variable can also be a constant, equal for all firms (a scalar). The constant SMT, mentioned above, determines the way profit target changes in each firm between any two quarters, and is an example of such a micro variable.

Typical macro variables are (for example) the rate of unemployment, the growth of the governmentsector and tax-rates.

Certain macro variables apply to macro-entities but are used as micro variables as well. Such variables obviously lie somewhere between the two categories micro and macro.

An example of this is the variable $I O$, the inputoutput matrix.

IO(i,j) tells how much of production in sector j comes from input from sector i, and is a number between 0 and 1 .

During the initialization $I O$ gets the true values from real data for the economy for 1976. Throughout the whole simulation these shares are used (cf. Section 3) to determine each firm's demand from other sectors.

An alphabetical list of all variables (about 200) coming out from the initialization can be found in appendix A. An alphabetical list of all variables (about 400) in the model itself can be found in Eliasson-Heiman-Olavi (1978).

The main features of the initialization procedure are described in the next section. In Section 3 the input-output system is described, since it is an essential part of the initialization procedure and the data base work. The input-output system is described in rather much detail. The techniques involved are of general interest for builders of large scale simulation models of this kind. Section 4 presents the initialization procedure in more detail. Sections 5 and 6 are devoted to a documentation of the data bases and the consistency control system. Section 7 is of interest for users of the model.

Section 2 The Initialization, Main Features

The "initialization procedure" is a matter of converting raw-data (micro and macro data) to the variables mentioned in the previous section, needed for the model-simulation.

Schematically:

Figure 1

We will refer to "variables which will be input to the model" as "model variables", in what follows.

Micro data, which is data for real firms in the model, are stored in one work-space and macro data in another. Micro variables and macro variables are formed from micro data and macro data.

A more detailed schematic overview of the initialization procedure is shown in Figures 2 and 3. The whole initialization program was rewritten between 1980 and 1981 by the author of this paper. The logical structure of the initialization and the consistency checking were done during this period. An important addition was a part of the program called OUTPUTAOPERATIONS, where the model vari-
ables were sifted from other data. Previously everything - raw data, intermediate variables and model variables - came out together after initialization. This meant that output from the initialization was "hidden" among a lot of redundant data. The new initialization procedure has notably facilitated practical work with the model.

Figure 2 The initialization procedure, input and output

[^0]The contents of each workspace in Figure 2 will be described below. The initialization procedure is written in the programming language APL. In APL both variables and functions are stored in so called workspaces which can be immediately transferred to computer-memory, by aid of certain system commands (cf. Part l of this manual). We write APL-functions in boldface letters in what follows, but not workspace names.

The program for the initialization procedure lies in a workspace called INIT. This program consists of a main-function START and a number of parts, so called sub-functions. Figure 3 shows the structure of the initialization program, in workspace INIT.

Figure 3 The initialization program

Main program	```Sub-functions, level 1a```	```Sub-functions, level 2a```
START	ISTARTXX ${ }^{\text {b }}$	TAXAPARAMETERS
	SIAINIT	PUBLICASECTOR
		MONETARY
		HARKETS
		HOUSEHOLDS
		ESTABLISHAEATS
		DISPOSEAVARAINPUT
		HARKETSADATA
		SECOIDARYADATA
		publicadata
		MONETARYADATA
		HOUSEHOLDSADATA
		OUTPUTOPERATIONS

[^1]The initialization is, as seen from Figure 3, divided into parts (sub-functions, level 2) according to the type of the variable.

Variables connected with taxes are set in TAXAPARAMEIERS. Variables connected with the government sector are set in PUBLICASECTOR. Variables connected with individual firms (micro variables) are given values in the function ESFABLISHMENFS, etc.

SIAIRIT (sub-function, level l) calls all the subfunctions at level 2 , and does some administration. ${ }^{7}$

Let us now turn to Figure 2 again.

Macro data are fetched from workspace MACRO in the beginning of SIAIMIT and micro data are fetched from workspace SI76 in the beginning of the subfunction ESTABLISHRENTSS.

Help-functions for different applications are fetched from workspace FUNCTI.

To know the names of the model-variables variable lists are fetched from workspace VLISTS. In the sub-function OUTPUTAOPERATIONS the variables mentioned in these variable lists are saved in a workspace $R X X$ and the rest are deleted. $X X$ stands for a number given by the user, which refers to the number of the initialization variant. The user gives this number when starting the initialization, by the cal18 START XX.

If one wishes to make an initialization variant, one makes a function ISTARIXX and stores this function in the workspace ISTART. The main-func-
tion START calls ISTARTXX before calling SIAINIT. (See sub-functions, level 1 in Figure 3.) How to make ISTARTXX-functions and initialization variants is described in Part 1 of this manual.

2.1 Summary

What the user particularly should bear in mind is: Nev macro data should be added to workspace MACRO. New micro data should be added to workspace SI76. Micro data are mainly used in the part of the initialization program called ESTABLISHMENTS.

To make initialization variants, use workspace ISTART and check the instructions in Part 1 of the manual. As soon as nev model variables are used, add the names of these in the variable lists in workspace VLISTS according to the instructions in Part 1. (If you forget this, the new variables will be deleted!)

The result from the initialization ($=$ the model variables) winds up in a workspace RXX, where $X X$ is the number used in the call "START XX", which starts the initialization.

A more detailed description of the initialization program will be presented in Section 4.

Section 3 The Input-Output System

It is worthwhile knowing more about the inputoutput system in the initialization and in the model for three reasons:
a) Among macro data (input to injtialization, workspace MACRO) there is an input-output matrix for the Swedish economy for 1976, called IO76. This matrix is used to give many of the model variables (output from initialization) their values. We describe this in Section 3.1.
b) To check up the consistency of the whole initialization the input-output system is used. We describe this in Section 3.2.
c) To be able to understand how the input-output system is used in the model, one has to know more about the model-variable $I O$, which is a matrix of input-output coefficients constructed from IO76. We describe this in Section 3.3.

The input-output system can be described as a matrix with 14 rows and 21 columns. This matrix, IO76, stored in workspace MACRO, has the structure shown in Table 1. The economy is divided into 10 sectors of production (=the first 10 rows and columns) and a number of final demand categories (columns 11, 12...). The first 4 sectors are inhabited by individual firms after the initialization.

Let us first turn our attention to the first 10 columns. This part of the matrix shows the productflows between the 10 sectors and the value added in each sector. For example:

Table 1 Input-output matrix (1076) far the Sredish econcy 1976

(Unit: Million of SEK in 1975 year's prices)
Explanations for column- and row-numbers, see next page
PRODUCTION MATRIX
Row 1,2,..... 14 Column 1,2..... 10

	1	2	3	4	5	6	7	8	9	10
1	5272	2890	5869	1321	245	94	0	4192	942	1943
2	2029	5195	4805	4465	908	117	0	3498	170	2035
3	954	2354	12296	915	503	213	0	6294	171	3079
4	803	2428	2041	14872	2078	87	0	2648	102	6484
5	2400	1964	341	10768	383	1	0	1689	0	312
6	2951	210	79	63	26	140	0	418	5	0
7	4136	600	151	261	130	213	0	1009	488	842
8	1235	1198	2838	961	1383	162	0	10928	708	9874
9	904	941	475	485	238	171	0	1118	328	1010
10	3293	3338	5919	4402	1792	640	0	9143	426	25656
11	63	71	142	-2377	163	10	0	350	5	2261
12	8736	14351	27422	19551	11452	2529	0	50892	6395	64383
13	154	-119	178	51	41	35	0	238	0	1
14	32933	35423	62558	55738	19341	4413	0	92417	9738	117881

FINAL DEMAND MATRIX
Row 1,2..... 14 Column 11,12..... 21

| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 758 | 5399 | 0 | 0 | 0 | 380 | 2754 | 12137 | -11478 | 214 | 32933 |
| 2 | 1953 | 9075 | 558 | 0 | 869 | 2170 | 1135 | 14735 | -12965 | -5329 | 35423 |
| 3 | 3522 | 14903 | 3110 | 0 | 4836 | 10231 | 1687 | 29947 | -24563 | -7896 | 62558 |
| 4 | 5102 | 55944 | 112 | 0 | 175 | 132 | 752 | 7450 | -15980 | -29493 | 55738 |
| 5 | 243 | 6807 | 0 | 0 | 128 | 408 | -95 | 1351 | -3597 | -3763 | 19341 |
| 6 | 81 | 24 | 0 | 0 | 0 | 0 | 67 | 1134 | -3015 | 2230 | 4413 |
| 7 | 374 | 2346 | 0 | 0 | 0 | 0 | 188 | 1778 | -6491 | -6025 | 0 |
| 8 | 2929 | 26970 | 17893 | 12436 | 4682 | 765 | 1067 | 7062 | -4453 | -6221 | 92417 |
| 9 | 973 | 3580 | 0 | 0 | 0 | 0 | -76 | 319 | -306 | -421 | 9738 |
| 10 | 8849 | 30617 | 379 | 0 | 591 | 0 | -316 | 10370 | -16362 | 29496 | 117881 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

[^2]Source: Louise Ahlström, SAF. See also Appendix E.

Table 1 (cont)

Row 1:	Raw material sector
Row 2:	Intermediate goods
Row 3:	Investment goods and consumer durable goods
Row 4:	Consumption goods (excl. consumer durable goods)
Row 5:	Agriculture, forestry, fishing
Row 6:	Mining and quarrying
Row 7:	Oil
Row 8:	Construction
Row 9:	Electricity
Row 10:	Other services
Row 11:	Commodity based indirect taxes (Not value added tax (moms))
Row 12:	Value added in producer's prices
Row 13:	Corrections
Row 14	Vertical sum $=$ production (producer's prices)
Columnl, 2 through 10	Corresponding rows
Column 11:	Government's consumption
Colum 12:	Household's consumption
Column 13:	Government's investments
Column 14:	Investments, buildings
Column 15:	Investments in sector 5..... 10
Colum 16:	Other investments (= Investments made by firms)
Column 17:	Change in stock (inventories)
Columen 18:	Exports
Column 19:	Imports
Column 20:	Moms etc. (Indirect taxes) are deducted
Column 21:	Horizontal sum = production (producer's prices)

Column 1: IO76(m,l), m=1,2,...,10, shows how much sector 1 is buying from the other 10 sectors.

NOTE: Imports are included.

Rows 11 and 13 consist of rather small values and are described further in Appendix E. Row 12 is the value added in each production sector.

Value added (row 12) + Inputs (rows 1,2...10) equals total production in each sector (row 14).

Columns 11, 12 and onwards show the final demandside in the economy.

NOTE: Imports are included.

The division into demand categories follows the usual pattern from national accounting where gross national product is described as $C+I+G+X-M+\Delta L$. (C=household's consumption, $G=g o v e r n m e n t ~ s p e n d i n g, ~$ I=investments, $X=e x p o r t s, M=i m p o r t s$ and $\Delta L=c h a n g e$ in stock.) Investments have been divided somewhat more, though.

The vertical sum of production (row 14, column 1,2...l0) shall by definition be the same as the horizontal sum (rows 1,2...lO; column 2l). Column 20 has to be present to make this work. Columns 11,12... are defined in final prices including indirect taxes, value added taxes (VAT), whereas production in columns 1,2... 10 are defined without these taxes. Thus, these taxes (VAT)* are subtracted in column 20 to make "vertical sum of production" match "horizontal sum of production". Some

[^3]other adjustments of a technical nature are also made in column 20. For a more detailed description, see Appendix E, in this manual.
3.1 How the Input-Output Matrix 1076 is Used in the Initialization

IO76 is a matrix with flows in SEK (Swedish crowns) These flows are, in general, not used directly to give values to model variables during the initialization procedure. In 95% of all cases shares, fractions, based on IO76, are used for this purpose. These shares are called IOCOEFF76 and are defined as:
$\frac{\operatorname{IO} 76(i, j)}{\operatorname{IO} 76(14, j)}=\operatorname{IOCOEFF} 76(i, j)$
$i=1,2,3, \ldots, 13 \quad j=1,2, \ldots, 19$.

The coefficient matrix IOCOEFF76 can be found in Appendix B.

The following model-variables, shown in Figure 4, (cf. Appendix A) get their values from the "inputoutput coefficient matrix" IOCOEFF76.

The first six model variables, in Figure 4, are constants throughout the simulation. The inputoutput matrix IO will be described more thoroughly below, in Section 3.3. QINVG, QINVBLD and QINVIN are start-up variables for the corresponding ${ }^{9}$ exogenous time series, concerning non-industrial investments.

Export and import shares XIN and IMP are estimated from 1076.

Figure 4 Model variables created from 1076

Model variable	Coming from:	
OMEGA	Column 16	IOCOEFF76
OMEGAIN	Column 15	IOCOEFF76
OMEGABLD	Column 14	IOCOEFF76
OMEGAG	Column 13	IOCOEFF76
GKOFF	Column 11	IOCOEFF76
HH76 (household coefficients)	Column 12	IOCOEFF76
IO (input-output matrix)	Columns 1,2,....,10, rows 1,2,...,10	IOCOEFF76
IO2 (submatrix of IO)		IOCOEFF76
IO3 (submatrix of IO)		IOCOEFF76
QINVG		IO76(14,13)
QINVBLD		IO76(14,14)
QINVIN		IO76(14,15)
IMP (import shares)	Estimated from	IO76
XIN (export shares)	Estimated from	IO76

XIN is the export share of production in non-industrial sectors $5,6,7, \ldots, 10$ and is estimated as: IO76(5,18)/IO76(14,5) etc. This is export shares for sectors which are modelled as macro units. Export shares, called X, for individual firms in the model come from micro data.
IMP is the import share of Swedish demand and is estimated as:
$\frac{\text { 1076(i,19) }}{\text { 1076(i,21)-1076(i,20)-1076(i,19)-1076(i,18) }}$
where $i=1,2, \ldots, 10$, and column 19 consists of negative numbers (cf. Table l).

The same import shares apply to both comsumers and firms. We lack information about individual firms' import shares. Hence import shares IMP refer to markets, in contrast to export shares X which
refer to individual firms. Thus the macro shares are used for the individual firms in the import block of the model. In Appendix A one can see that IMP is classified as a micro variable for sectors 1, 2, 3, 4 and as a macro variable for the remaining sectors.

3.2 Consistency checking

For the purpose of checking the consistency of the initialization one would expect that 1076 should be used. This is, however, only the case to some extent. In principle 1076 can not be used since it is expressed in 1975 year's prices instead of 1976 year's prices. All model-variables coming out from the initialization should be in current prices, i.e. 1976 year's prices. This makes a direct comparison between 1076 and the input-output matrix coming out from the initialization a bit difficult.

Even if one managed to express 1076 in 1976 year's prices it would, all the same, be almost practically impossible to check the consistency of the initialization just by direct comparison with IO76. The explanation is as follows:

After the initialization the four industrial sectors (columns 1,2,3,4 in IO76) are inhabited with firms. S and Q are important firm-variables. S is individual firm sales and Q is individual firm production.

To determine the sum of S in each of the four sectors one must use SCB's national accounting statistics. Q is by definition equal to S minus
changes in finished good's inventories. This also determines the sum of Q in each of the four sectors (approximately) and these figures of the production (in sectors $1,2,3,4$) may differ substantially from figures from 1076 (row 14 IO76, reestimated in 1976 year's prices) due to errors ${ }^{10}$ of different kinds.

The consistency of the initialization is instead tested as follows:
a) Form a matrix 1076 II from the initialization by using the sum of micro-variables (for example Q above) when this is possible, and fill in with values from 1076 when this is not possible.
b) 1076 II is considered consistent if (1) the values in $1076_{I I}$ don't differ "unreasonably much" from 1076 and (2) horizontal sum of production \approx vertical sum of production in 1076 II.

For more details about the consistency check, see Section 6.
3.3 How the Model-Variable IO is Used

We now give a short description of how the modelvariable $I O$, which is a 10×10 sub-matrix of IOCOEFF76 (the input-output coefficients), is used in the model.

The variable $I O$, with some exceptions ${ }^{11}$, is not used for the purpose of determining macro variables during the simulation.

IO(i,j) tells how much of production in sector j comes from input from sector i, and is a number between 0 and 1 , and $i=1,2, \ldots, 10$. Thus IO(1, j), $I O(2, j), I O(3, j), \ldots, I O(10, j)$ are the input-shares for each product (input from sectors 1,2,...,10) in sector j. The firms belong to sector $1,2,3$ or 4.

The main use of the input-output matrix during the simulation is to determine each firm's demand for goods from other sectors. Thus, a firm in sector j producing q SEK (Swedish crowns) a certain quarter demands $I O(1, j) \cdot q$. C SEK production from sector 1 and $I O(2, j) \cdot q \cdot c$ SEK production from sector 2, etc.
$c=\frac{\text { the individual firm's input-share }}{\text { average input-share in the sector }}$
The average input-share $=\sum_{i=1}^{10}$ IO(i,j)

The fractions c are only estimated for 1976 and are called SHARE in the initialization procedure.

Note that this specification means that the macro input-output coefficients are variable over time during a simulation. Since firms have individual input-shares (see c above) and firms grow at different rates, the macro input-output coefficients vary endogenously although the coefficients IO are constant over time and exogenous.

This can be clarified by Figure 5.

Figure 5 The production in individual firms

Firm A
Input share $=0,75$

$1=$ input from sector 1
2 = input from sector 2
$3=$ input from sector 3
$4=$ input from sector 4
$5=$ input from sector 5
$6=$ input from sector 6
$7=$ input from sector 7
$8=$ input from sector 8
$9=$ input from sector 9
$10=$ input from sector 10

Production $=$ Total input+value added

1
2
3
4
5
6
7
8
9
10

total
input from
other firms

Firms A and B have different individual input shares. The individual input share is equal to 0.75 for firm A, whereas it is 0.5 for firm B. Information about such shares come from micro data. Thus the value added share is 0.25 and 0.5 respectively. How the inputs are divided onto the 10 sectors is determined from the input output matrix (the variable IO). These proportions are the same for all firms, which means that the quotient (input from sector j)/(total input) is the same, but not the quotient (input from sector j)/(production).

The macro input shares ${ }^{12}$ will in general change if the relative size of the firms changes from one year to another during the simulation.

Let us give a concrete example of this. From a simulation performed in 1983^{13} the following macro input shares were obtained:

Table 2 Simulation results

This illustrates some kind of structural change in the four industrial sectors in the simulated economy. In principle one could describe this structural change by investigating the chains of causes at the macro - and the micro - level during the simulation.

Section 4 The Initialization, Overview

This section will give a more detailed description of the initialization program. Those who wish a complete description of the program may turn to the programming code itself in Appendix C and use this section as a guide. The techniques involved are of general interest for someone wishing to construct a micro-to-macro simulation model.

As was shown in section 2, Figure 3, the initialization essentially consists of 13 parts (subfunctions, level 2 in Figure 3). 11 of these parts are dealing with giving values to model-variables, namely: TAXAPARAMEYERS, PUBLICASECTOR, MOMEYARY, MARKEYS, HOUSEHOLDS, ESTABLISHMESTIS, MARKETSADATA, SECONDARYADATA, HOUSEHOLDSADATA, MONEYARYADATA and PUBLICADATA.

In the programming code, Appendix C, comment lines start with* the symbol A. Such comment lines are there just to make the program easier to understand. In the beginning of each sub-function there is a comment line beginning with "output from initialization". Thereafter follows a list of the names of those model-variables which have been given values in that particular subfunction. This is an important guide to the reader of the program, because he then knows what's to be considered as output from the sub-function. Other variable in the sub-function are either local variables (help-variables used to form the model-variables) or indata from the macro-data workspace or the micro-data workspace. The macro-data workspace and

[^4]the (non-confidential part of the) micro-data workspace are listed in Appendix B.

An alphabetical list of all model-variables can be found in Appendix A. Each of the 11 parts of the initialization program will now be commented.

- TAXAPARAMETHERS
"Start-up tax variables" (=tax last quarter 1976) are transferred directly from workspace MACRO. These variables are TXVAl, TXVA2.

The rest of the tax-variables in this part of the program are "exogenous time-series" which are formed by extending time-series for the period 1976 and onwards from workspace MACRO.

- PUBLICASECTOR

Some model-variables (OMEGAG, QINVG, GKOFF), mentioned in Section 3, get their values from the input-output system.

The number of people to be added to the govern-ment-sector (EXO \triangle REALCHLG) each quarter during the simulation is an exogenous time-series, and is determined as follows:
a) Quarterly labour force in the government sector is estimated from time-series data (1976-), TIM $\triangle O F F$, from workspace MACRO. For the present this determines EXO \triangle REALCHLG for the first 4 quarters of the model simulation.
b) A trend change of the government sector growth, estimated from historical time-series during the

1970s, (from workspace MACRO comes the trend change LGTRENDCH), is used for the remaining quarters in the EXO REALCHLG vector.

Wages in the government sector, the model variables QWG and WG, are determined from wage data in workspace MACRO for 1976-77 (LON \triangle OFF).

- MARKETS

Most of the model variables mentioned in Section 3.1 get their values in this part of the initialization program. It is variables connected with the input-output system, for example input-output coefficients of various kinds ($=$ "constants"), investments in different sectors (="start-up variables"), import shares of Swedish demand (=IMP ="start up variable") and export shares of production in certain sectors (=XIN="constant").

Model variables starting with "EXO" are "exogenous time-series".

The important model variable EXO \triangle QDPFOR (=changes in foreign price index) is set using historical price-behaviour (extrapolation). EXO \triangle QDPFOR is a matrix with the format "4 x number of quarters in the simulation" because it yields foreign price changes in each of the 4 industrial sectors.

All price-indices are equal to $\mathbf{1 0 0}$ for the base year (1976).

- HOUSEHOLDS and MONETARY

Household coefficients HH76, i.e. how the consumers distribute their purchases on products from
the 10 sectors in 1976 , are set. These coefficients are used later on in the initialization procedure (cf. HOUSEHOLDSADAYR below). Some exogenous time-series in connection with the rate of interest (EXO \triangle RI and others) in the bank-system are set.

- ESTABLISHMENTIS

This is the first time micro variables are given values. Real firms are given their values, and the residuals of each variable are splitted up on synthetic firms. By residuals we mean deviations from the national accounting level, 1976. For the present, 1983, we have 97 real firms and 50 synthetic firms. The synthetic firms have been created to be able to model the whole industrial sector by a micro simulation process in MOSES.

Only the 4 industrial sectors consist of microunits, i.e. firms in the model. Micro-data are fetched from workspace SI76 (the first line in this sub-function).

Firm-data from this workspace are mainly stored in two variables: \underline{X} and $F \triangle D A T A$. \underline{X} is a matrix where the first index is the firm index and the second is the number of the variable. For example: $\underline{x}(17 ; 7)$ is export sales (question number 7 in the questionnaire) for the 17 th firm.

The function establishments is rather complicated and only the main features will be described here.

Let us look at the variable sales, to get a picture of how the initialization of this variable is performed. A similar pattern can be found for many other micro variables.
(STEP 1) Realdsales (=help variable) is a vector with R components, where $R=n u m b e r$ of real firms. Realهsales(i) gets the value:

$$
\begin{aligned}
& {\left[x(i, 7)+\frac{X}{x}(i, 12)\right] \cdot 10^{6} .} \\
& \text { export- domestic } \\
& \text { sales sales } \\
& i=\text { firm-index }=1,2,3 \ldots \mathrm{R}
\end{aligned}
$$

The rest of the sales value in each of the 4 industrial sectors is splitted up on the synthetic firms.
(STEP 2) Resهsales (=help variable) is a vector of length 4 and is the rest of the sales value in the 4 sectors. RESAsales(j) gets the value:

SALES76(j) $-\sum_{i=1}^{R} \quad$ (Realdsales(i)) and i belongs to j
$j=1,2,3,4=$ sector-index

SALES76(j) is sales for 1976 in each of the 4 sectors, fetched from SCB national accounting statistics. "i belongs to j" means summation of those real firms ($i=1,2, \ldots, R$) which belong to sector j.
(STEP 3) Synth Δ sales(i) gets the value Scale(i) - res Δ sales(M(i)).
$M(i)$ is the sector to which firm 'i' belongs. $i=1,2,3, \ldots, Q \quad Q=n u m b e r$ of synthetic firms, $M(i)=1$ or 2 or 3 or 4, $\mathrm{R}=$ number of real firms.

and i belongs to j

Scale is a vector with sizes (fractions), within a sector.
(STEP 4) The model-variable s (= individual firm sales) gets the values: $S(i)=$ Realdsales(i) for $i=1,2, \ldots, R$ and $S(i)=$ Synth Δ sales(i) for $i=R+1, R+2, \ldots, R+Q$.

Thus:
STEP 1: Realهsales(=sales for real firms) is set.

STEP 2: Resهsales(=residuals between macro and sum of real firms) are set.
STEP 3: Res Δ sales is distributed onto synthetic firms. Synthロsales(=sales for synthetic firms) is set.
STEP 4: S(=sales=model variable) is the combination of Realdsales and Synthosales.

This 4-step procedure is repeated for many other micro variables. Thus, W(wage-level in firms), L(labour-force in firms), X(export shares in firms) etc are set in much the same fashion.

In connection with "synthetic firm initialization" there are two other important technical points. Namely:

- (a) As soon as ratios appear, there is an inbuilt check that the Synthetic firms get the same mean and dispersion (standard deviation) as the real firms.
- (b) Certain variables ought to co-vary with other variables in the synthetic firms, and this is also taken into account.

Example:
L(i)=labor in each firm
$\mathrm{R}=$ number of real firms
S(i)=sales in each firm
$Q=$ number of synthetic firms
$i=1,2, \ldots, R+Q$.
ratio $=\mathrm{L}(\mathrm{i}) / \mathrm{S}(\mathrm{i})$

This ratio is randomized for the synthetic firms in such a fashion that the mean and dispersion for the synthetic firms ($i=R+1, R+2, \ldots, R+Q$) are the same, as that of the real firms. (Actually, it is a bit more complicated than this, since each sector ($1,2,3,4$) is treated independently.)

The export share for each firm (an important model-variable), X, is set in a similar manner.

Jim Albrecht, Columbia University, has made these randomization procedures in ESTABLISHMESTSS. 14

Production for each firm $Q(i)$ is estimated as
$Q(i)=(S(i)+\Delta K 3 \Delta F I N I S H(i)) / 100$
where $\triangle K 3 \triangle F I N I S H$ is the change in the finished goods stock (a help variable) and $100=$ price index (the index equals 100 by definition 1976). Thus production in both synthetic and real firms is set indirectly, that is, by aid of sales figures and changes in finished goods stocks.

Each firm in the model has an individual input share (input/production), which is estimated from micro-data. Thus the model variable Share(i) is created :
$\frac{\text { the individual firm's input share }}{\text { average input share in the sector }}$.

Section 3.3 describes how this share is used, during the simulation.

- MARKEYSADATA

Most of the constants, mainly parameters, in the model are set in this part of the initialization program. Constants connected with the bank system and the household sector are not here, though. These constants (parameters) are instead created in HOUSEHOLDSADATA and MONEYARYADATA. Inventoryconstants for firms (maximum-, minimum-inventory levels) are set in ESTABLISHMENTS.

- MONEYARYADATA

Constants connected with the bank system are set. If RIDIS $\triangle E X O G E N O U S=1^{15}$ then the bank system is partly set out of function, since the rate of interest in the economy is set exogenously in this case. In that case most of the other constants in this part become redundant. This is the case for the present (1983), since the bank system is not quite ready yet. Even when this module is ready it is of interest to be able to, for analytical simplicity, perform simulations with an exogenous rate of interest.

- SECONDARYADATA and PUBLICADAIR

Certain labour market variables are given values, for example $L U$, the number of unemployed during the last quarter 1976. MTEC, a constant describing "the production function" for firms in each market, is set.

- HOUSEHOLDSADATA

Constants connected with the household part of the model are set here. For example; the coefficientvectors BETAl, BETA2 (cf. Appendix A) are given values. BETAl tells how much consumers tend to stick to historical consumption levels during the simulation and BETA2 are marginal propensities to consume when disposable income varies. Consumption levels last quarter 1976 are set.

QC(j) $=\mathrm{HH} 76(j) \cdot$ QDI
$j=1,2, \ldots, 10=s e c t o r$ index.

QC=consumption, QDI=disposable income, HH76=inputoutput shares (see Section 3).

QDI is estimated in a certain function which takes into account the whole tax system, wage system etc. This is done in the function QDIAIMIF.

Section 5 The Data Base

The macro data for the initialization come from workspace MACRO and the micro data from workspace SI76, see Appendix B.

Below, there is a brief documentation of the variables appearing in these two workspaces.

5.1 Workspace MACRO

In general, most of the variables refer to 1976 or 1976 and a couple of years ahead (to form exogenous time series). The only exceptions are:

	$\frac{\text { Period }}{}$
TLAEXP (export price indices)	$1970-80$
IMPL $\triangle P R I S, ~ I M P L \triangle P R I S \triangle I N ~(d o m e s t i c ~ p r i c e-i n d i c e s) ~$	$1974-77$
HISTATXVA2("moms")	$1974-77$

TLAEXP is a long time series which is used to extrapolate a future time series starting 1977, i.e. the variable EXO $\triangle Q D P F O R$ mentioned previously. IMPL $\triangle P R I S$ etc are a bit longer to be able to quarterlize data for 1976, 1977. The values for 1974 are redundant, though.

Sources:
Reference person for all variables except SALES76, TLAEXP, LON and TIM: Louise Ahlström (previously IUI).

The national accounting statistics from SCB has been used. Reference persons for SALES76, TLAEXP. LON, TIM: Thomas Lindberg, Fredrik Bergholm, IUI.

5.1.1 The Problem of Distributing Macro Data

There is a general problem of a practical nature in connection with the three variables LON(=total wage sum in sector $1,2,3,4$), TIM(=total number of working hours in sector $1,2,3,4$) and SALES76(=total sales in sector $1,2,3,4$). LON, TIM and SALES76 are used for micro initialization, as was mentioned in Section 4. They are the macro totals for model variables like labour L and sales S.

The problem is that from SCB-figures we have
a) total wage sum in the industry
b) total number of working hours in the industry
c) total sales in the industry.

When $a), b)$ and c) are distributed onto the 4 sectors (1-4 in the input-output system) we get the variables LON, TIM and SALES76. There is a so called "weighting matrix" which has been constructed to do this job. However, the result seems to be a bit unsatisfactory. In the consistency check (Section 6) we find residuals indicating that sector 1 is too small and sector 3 and (or) 4 are too large. A consequence of this is that synthetic firms in sector 1 get input shares (FAINKOP=the quotient input/production, see Appendix A) larger than 1. The behaviour of these companies disturb the simulation during the first three-four years in quite a conspicuous manner.

Apparently this problem is a crucial one in order to obtain a proper initialization. In 1983 some measures were taken to improve matters. Of course there can be many reasons for the inconsistencies. However, the distribution process clearly yields different results compared with the figures in the
input-output system 1076 in Section 3. This can be seen as follows:

Total sales in the 4 (industrial) sectors 1976 is 207150 million Swedish crowns. SALES76 is a vector with four components where this amount has been distributed onto the 4 sectors by aid of the weighting matrix mentioned above. The following result is then obtained:

SALES76 $=(0.14,0.18,0.34,0.34) \cdot 207150$

On the other hand, if one distributes total sales according to the proportions for gross production (assuming that sales \approx production and thus neglecting changes in finished goods inventories) in the input-output system 1076 (cf. Table 1 , row 14 , columns 1 through 4) the following result is obtained:

NYSALES76 $=(0.18,0.19,0.33,0.30) \cdot 207150$

In 1983 we started using NYSALES76 instead of SALES76 in the initialization procedure (initialization variant ISTART10). This reduced the inconsistencies in the initialization (cf. Section 6).

Future work in connection with the variables LON, TIM and SALES76 should be directed towards obtaining more precise distribution procedures, which at the same time are reasonably consistent with the input-output system.

5.1.2 Changes in the Input-Output Matrix

If the input-output matrix 1076 is changed (corrected) the function COEFFAIO has to be executed to get new input-output coefficients IOCOEFF76.

5.2 Workspace SI76

A good description of this workspace can be found in Albrecht-Lindberg (1982). Sources: Reference persons: Thomas Lindberg, IUI, Jim Albrecht, Columbia University, New York. The Planning Survey ("Planenkäten"), collected by the Federation of Swedish Industries, has been used (Ola Virin, Kerstin Wallmark).

Section 6 The Consistency Control System

Many micro and macro variables are set during the initialization procedure.

One important question is: Are the variables consistent on the macro level?

To check this one has to sum the micro variables up to country total or sector total (4 industrial sectors) and check whether macro variables obtained in this way "fit the 1976 input-output system". This has already, briefly, been discussed in Section 3.2. The "input-output consistency check" of the initialization is done as follows:
a) Form a matrix $1076_{I I}$, having the same form as the input-output matrix 1076 (see Section 3), from the initialization by using the sum of micro variables when this is possible, and fill in with macro values from 1076 when this is not possible. We will call the input-output matrix 1076 II, the "control matrix" in this section.
b) IO76 $I I$ is considered to be consistent if (1) the values in 1076 II do not differ "unreasonably much"l6 from IO76 and (2) horizontal sum of production \approx vertical sum of production in IO76.

A print-out of the control matrix 1076 II is done during the initialization in the sub function IOAMATRIX, see Appendix C. On the following pages an example from 1982 of such a print-out is presented. It is from the present initialization version (that is, the one which can be found in Appendices C and D).

By definition, the horizontal sum (col 1,2 through 20 in row $1,2, \ldots 10$) should be equal to the vertical sum in col 1,2...10. The residual between the horizontal and the vertical sum is printed out under the headline "residual". The first number is the residual in sector 1 , the second in sector 2 , etc. The residuals in this case indicate that there is too little production in sector 1 and too much in sectors 3 and 4. (sector l: -1820, sector 3: 2573, sector 4: 7611).

This problem has already been discussed in Section 5 and is probably due to a bad distribution of production and sales between the 4 industrial sectors. The values in the "control-matrix" do not, in general, seem to differ unreasonably much from those of IO76. But the values in column 1 (sector 1) are apparently too small and the values in column 17 (yearly inventory changes) seem to be somewhat large in comparison with IO76.

The negative residual values in rows 5,6,.,.,10, are due to that values in columns 5,6,...,10 are expressed in 1975 year's prices. This error need not affect the simulation much, though, since production in sectors $5,6, \ldots, 10$ in the simulation is determined by inverting the input-output coefficient matrix IO.

Some other consistency controls are made in the subfunction CONFROLS, see Appendix C. For example:
a) wages (average wage times number of employees) in firm $i+$ profits 17 in firm $i=$ value added in firm i. (i=firm index).
in
T

\because

-1

4

$=$
 unit $=10^{6} \mathrm{SEK}$

i
"

0

Table 3 (cont)

Rows and columns in the control matrix:

Row 1:	Raw material sector
Row 2:	Intermediate goods
Row 3:	Investment goods and consumer durable goods
Row 4:	Consumption goods
Row 5:	Agriculture, forestry, fishing
Row 6:	Mining and quarrying
Row 7:	Oil
Row 8:	Construction
Row 9:	Electricity
Row 10:	Other services
Row 11:	Commodity based indirect taxes
Row 12:	Value added in producer's prices
Row 13:	Correction
Row 14:	Sum = production
Column 1, 2	through 10: Corresponding rows
Column 11:	Government's consumption
Column 12:	Household's consumption
Column 13:	Government's investments
Column 14:	Investments, buildings
Column 15:	Investments in sector 6..10
Column 16:	Other investments
Column 17:	Change in stock
Column 18:	Exports
Column 19:	Imports
Column 20:	Moms etc.
Column 21:	Horizontal sum $=$ production

Residuals R(i): (million Swedish crowns)

```
    20
Definition: R(i) = A(i,21) - \sum A(i,j)
                        j=1
```

where A is the control matrix in Table 3 .

$R(1)=-1820$	$R(6)$	$=$	-18
$R(2)=$	$R 42$	$R(7)$	$=-154$
$R(3)=$	$R(8)$	$=-3981$	
$R(4)=7611$	$R(9)$	$=$	-447
$R(5)=-3302$	$R(10)=$	-3627	

b) the input share (compare the variables $F \triangle I N K O P$ and BRINKOP in Appendix A) in sectors $1,2,3,4$ obtained by summing the micro-units (Epurchases/ Eproduction) should be equal to the input share from the input-output matrix 1076 .

The printout of the consistency control matrix IO76 II can be made (option) during any initialization, and the user can thus check whether the residuals can be considered to be small enough for performing the simulation experiment afterwards.

Section 7 On Simulation Techniques

This section is a bridge between Part 1 and Part 2 of the MOSES-manual. We give some examples of how this manual could be used in connection with simulation experiments. This section presupposes knowledge of the three first chapters in Part 1.

Let us assume, for example, that we wish to extend the micro data base with more real firms and that we want to make experiments varying the foreign export price index and the growth of the government sector. How do we go about to accomplish this?

To begin with the micro data base must be updated. This means that the 5 variables in the workspace SI76, see Appendix B, must be updated. This can be done according to instructions in Albrecht, Lindberg (1982). There is one problem, though. We cannot repeat old experiments if we simply update SI76 without taking extra measures. Therefore we must look at the function ESTABLISHMENTS where micro data are processed (cf. Section 4). We read the beginning of the function in Appendix C.

There is a line in the beginning where there is a test for whether a firm belongs to the list of firms chosen to be included in the experiment. This is line [31] in Appendix C, function ESTABLISHMENTS. Apparently this means that if we extend all other micro data base variables (i.e. X, F \triangle DATA, FIRMID, R $\triangle M A R K E T$) new firms won't enter the simulation unless LIST is updated as well. If we update LIST during the initialization procedure new firms enter the simulation as an initialization variant, which in turn means that old experi-
ments can be repeated. Therefore we use the ISTARTXX-function (cf. Section 2) to extend LIST. The techniques involved can be found in part 1. The new line needed to update LIST will be (for example)
LIST + LIST, 4.95 4.96.
The numbers 4.95 and 4.96 are code-numbers for new firms. We call the initialization version ll, i.e. we use ISTARTII. ISTART11 is shown in Figure 6.

Let us now change the export price index. From Section 4 we know that it is an exogenous time series called EXO $\triangle Q D P F O R$. We find EXO $\triangle Q D P F O R$ in Appendix C in the subfunction MARKETS on line [56]. In ISTARTII we should swap that line for a new one. The matrix EXO $\triangle Q D P F O R$ is (as we see in Appendix A) the change in the export price index each quarter during the simulation, for each of the 4 industrial sectors. If we, for example, wish to make an experiment with a 2 percent change every quarter for all firms, each component of EXO $\triangle Q D P F O R$ should be given the value 0.02 . The size of $E X O \triangle Q D P F O R$ is not quite obvious. How many quarters ought one to use in the matrix? The maximum number of years to simulate ${ }^{18}$ in the standard initialization is 30 years. Therefore it might be appropriate to use 120 quarters. The export price index must have a start value too. Close inspection of the subfunction MARKETS reveals that the model variables QPFOR and QDPFOR should be given new values too. If we don't care much about the first simulated quarter one could, however, skip this and let QPFOR and QDPFOR keep their values form the standard initialization version.

Let us finally change the government sector employment growth, which also is an exogenous time
series (cf. Appendix A), called EXO \triangle REALCHLG. From Section 4 we know that one line in the subfunction PUBLICASECTOR should be changed. We do this in ISTART11. If we let each component of the vector EXO \triangle REALCHLG take the value 2,500 , this means that 2,500 people will be taken from "the pool of unemployment" each quarter during the simulation (unless the pool is empty). The government sector has priority, i.e. firms take people from the "pool of unemployment" after the government sector has satisfied its demand for people. 19

ISTART11 is shown on the next page, together with
another example, ISTART12.

Let us go on by describing another experiment, corresponding to ISTART12.

In this experiment we wish to change the behaviour of firms in connection with profit targets. We also want to make changes in the production function of individual firms. From section 4 we know that most parameters (definjtion in section 1) can be given values in the function MARKETSADATA. After having checked the parameters in this function with the description in Appendix A we find that $S M T$ is a parameter affecting the profit target behaviour. SMT is not a vector, 20 so we can not change the behaviour of an individual firm, only all the firms at the same time. SMT could be given any value between 0 and 1 . The construction of SMT is described in section 1 , but in general one has to consult the MOSES code, i.e. the simulation program itself, to check the construction of the parameter. The MOSES code is not included in this paper, but is available at IUI. It will be included in another part of the documen-

Figure 6 Initialization variants and experiment variants, examples

```
        GTSTARTU1CWT#
    # TSTART11
[4] SYNTHAFTRMS% 6 1. 1. %
[2# 'ESTABLTSHMENTS' MOMAMO ')COWLTST&LTST, 4.9G 4.96
[S] ATHTS MEANS THAT THE LTNE
[4 п L.TST&TST: 4.95 4.96
[%] A TS TNSERTEW AS A NEW LINE AFTER THE LTNE
"6] & *'>COPY ST76.,
[7] 'MARKETS' MODSUBST 'EXOAOMPFORtwEXOAOLPFORt(4 120)क0.02'
```



```
[97 'MARKETS' MODSUBET 'OUPFOR& (TwOMPFOR&4\rho0.02'
EI0] 'PUBLTCASECTOR' MODTEL 'EXOAREALCHLG*'
HHI 'PUBLTCASECTOR' MOMATMD 'LOEQLOK4TOEXOAREALCHLOF120%2G00'
```

 \(\nabla\)
    ```
        #TSTARTL2MIMV
    O TGART12
[1] SYNTHAFTRMS& 8 16 18 6
[2] 'MARRETSAMATA' MONSURST 'SMT-wSMT-1'
[3] 'MARKETSAMATA' MODAMO 'GAMMA&-6NVEFF:14700.5'
```

 v
 matartizemaw
 7 MSTARTI3
 EL] GEXAMPLE
 [2] 'NuLLTFY' MODADMLAST ' SHRTNK 'GF'.'
 [3] a MODAMDLABT MEANS THAT THE LITNE TS ADOEG AS THE LAGT LTNE
\square

Note: These functions are examples which no longer are stored in ISTART- and MSTART-workspaces.
tation. We set SMT equal to 1 which means that we don't update profit targets over time. Similarly, we find a parameter INVEFF affecting the production function. The parameter INVEFF yields $\triangle Q T O P / I N V$ where QTOP is maximum production capacity and INV is investments in machinery and buildings. Apparently INVEFF describes the marginal efficiency of new equipment, i.e. how much the production frontier is pushed upwards due to investments. Since INVEFF is a vector (length = number of firms) we could change this parameter for individual firms. SMT and INVEFF are changed in ISTART12, in Figure 6.

If new variables are added to the model two extra measures have to be taken. Firstly, add the name of the variable to a variable list in workspace VLISTS (cf. Part l). All model variables coming out from initialization should be registered 21 there. Secondly, add a line in the MOSES-model in a subfunction called NuLLIFY. Say that the new variable is called $Q F$. Then the line:
SHRIEK 'QF'
should be added in the function NULLIFY.

The reason for this procedure is that some firms go bankrupt during the simulation and then all micro variables which are vectors become shrunk (one firm is deleted from the vector). Micro variables which are vectors ${ }^{22}$ must be part of this "shrinking system" and that's why the line above must be added. One should extend NULLIFY by using the function MODADD in a MSIARTXX-function (cf. Part 1). This is done in MSTART13 in Figure 6.

7.2 Experiment variants, exogenous exports

One common experiment variant is to make some endogenous variable in the simulation exogenous instead. One can, for example, make exports exogenous. This was done in connection with experiments concerning multiplier effects on the Swedish economy described in Bergholm (1984).

The necessary changes can be made in a MSTARTfunction. In Figure 7 below some ${ }^{23}$ lines from experiment version 10, MSTARIIO, are shown (cf. Part 1 of the manual):

Figure 7

```
    # MSTARTLO
[10] EXOAEXPORT+XXQS:QP
[12] TTM&1
[14] RATE&(\rhoQ)\rho|,05*(1\div4)
[18] 'EXPORTAMARKETS' MOMAMR 'QSUFOR*GQSUFORTEXOAEXPORTXRATE#TLT
[19] 'EXPORTAMARKETS' MOLALILLAST 'XGQSUFORGQOPTSU'
F20] 'EXPORTAMARKETS' MOMALILAST 'TTHGTTH+1'
[2]] 'NULLIFY' MODAMDLAST ' SHRINK ''RATE'
[2马] 'NULLTFY' MOMAOTLAST ' SHRTNK ''EXOAEXPORT'' '
7
```

Line $[18]$ in MSTART10 makes exports QSUFOR exogenous.

QSUFOR $=E X O \triangle E X P O R T \cdot(\text { RATE })^{T I D,}$
where EXO \triangle EXPORT is the export volume for $T I D=0$, TID is the time variable (measured in simulated quarters) and RATE is the growth rate. The func-
tion MODADDLAST adds the line at the end of the function specified as left hand argument. Note the necessary additions to the subfunction NULLIFY (cf. Section 7.1). To be able to construct and fully understand MSTART-functions like MSTARTIO one has to consult the MOSES code, cf. Eliasson-Heiman-Olavi (1978).

7.3 Change of Starting Year of Simulation

To be able to start the simulation in some other year than 1976, requires the creation of a new data base for that year.

This manual provides the user with essential information for that task. The whole macro data base is described in Appendix B. This should be updated to the year in question. Price indices come (in general) from $S C B$ data and taxes, sales etc. from national accounting statistics. The cumbersome task is, above all, the input-output system. To update this to, for example, 1982 would probably mean months of work. There is, however, a short cut method of updating the input-output matrix (coefficients).

One could simply run the model for five years and let the simulated coefficients be an approximation of the real coefficients. Consistency problems will probably appear, though (cf. Sections 5 and 6).

Micro data can rather easily be fetched from the Planning Survey, since it is collected yearly since 1975 with small changes in the format of the questionnaire.

The initialization procedure (Appendix C) applies, for the time being, only to the starting year 1976. However, one need not change it much to be able to use it in connection with another starting year. Some obvious changes are: New workspaces for macro and micro data should be input to the initialization program. One should not change the names of the variables (for example IO76 etc.)
although that would be natural, or, alternatively, rename them (for example IO82 \leftarrow IO76) in the beginning of the initialization.
7.4 Simulation extension, the ENTRY block

In the MOSES code* there is a function making the entry of firms possible. It is called ADDFIRM and is documented in Appendix D.

The idea behind this facility was to remedy the asymmetry connected with the exit-mechanism in the standard version of the model. Firms (cf. Section 7.1) go bankrupt (exit) during the simulation but no inflow of new firms takes place. The ENTRY module is still rather primitive and improvements are to be made. ADDFIRM should be used in MSTARTfunctions.

[^5]
APPERDIX A VARIABLES COMTEG OUT FROM INITIALIZATIOM, AI ALPEABEETICAL LIST

```
The concepts "start-up variable", "exogenous time
series, "constants", "parameters" and "micro vari-
ables" from Section l are used to describe type of
variable.
```

This variable list is of utmost importance in connection with simulation experiments. To be able to set parameter values, change exogenous time series or start-up variables, this list must be consulted.

This list also specifies the result of the initialization. To be able to check this result Appendix A is a guide which considerably facilitates work with the model. Previously a lot of "time consuming detective work" was needed for almost any little change in the initialization procedure or the simulation. Knowledge about the meaning of the model variables below was, in the lack of written documentation, based on experience and scattered notes.

Appendix A is also needed if one wants to extend the model. In such a situation one must do a lot of checking up on the input to the model, i.e. the variables below.

Note that Appendix A yields a specification of input needed to start the model any year, not necessarily the present starting year 1976. Thus, this appendix is a piece of information needed when constructing another starting year for the simulation.

All the variables below (with exception for FAINKOP och BRINKOP), are inputs to the model. Start-up variables usually refer to the last quarter 1976 since the model is running by quarters. Some variables also refer to the whole year 1976, though. In the "code-column" we write vectors and matrices with indexes, i.e., we write $v(i)$ instead of v, if v is a vector. In the "type-column" we tell the range of the index i.

MODEL VARIABLES

- An Alphabetical List

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| ALFABW | Constant, micro variable, parameter | INVFIN to determine firms' desired change in borrowing. INVFIN = investment part of model |
| ALFA3
 ALFA4 | Constants, parameters | The household sector part of the model |
| AMAN (i, j) | Start-up variable $i=1,2,3 \ldots$ number of firms $j=1,2,3$ micro variable | For each firm, a three component vector accomodating the two-quarter lag of layoffs |
| AMANDYear | ```Technical vari- able, needed for simulation``` | |
| BAD (i) | Start-up variable, micro variable. $i=1,2$...number of firms | Investment financing part of the model. Counts number of quarters a firm has negative net worth. If $B A D>6$ then it is nullified in the model |
| BETA | Constant, micro variable parameter | Constant used to compute optimum finished-goods inventory level |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| BETA1 (j) | Constant.
 Vector of
 length 12 $j=1,2, \ldots 12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint |
| BETA2 ${ }^{\text {(}}$) | Constant, $j=1,2, \ldots 12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint $\operatorname{SUM}(B E T A 2)=1$ |
| BETA3 (j) | Constant, $j=1,2, \ldots 12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint. All BETA3 (j) $=0$ for the present |
| BETABW | Constant, micro variable, parameter | INVFIN to determine firms desired change in borrowing. INVFIN = investment financing part of the model. |
| BIG (i) | Constant, micro variable $i=1,2,3 \ldots$ number of firms | Maximum inventory level (fraction of sales). Finished goods. |
| BRINKOP(j) | ```Information variable j=1,2,3,4``` | Average input share in each industrial sector. For the definition of input share, see Section 3.3 in this manual.
 BRINKOP=input/production |
| BW (i) | Start-up variable, micro variable $i=1,2, \ldots$, number of firms | A firm's total borrowing Last quarter 1976. |
| CHM (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable, } \\ & \text { micro variable } \\ & i=1,2,3 \ldots \text {... } \\ & \text { number of firms } \end{aligned}$ | Yearly change in M (profit margin). Change 1975-76. |
| CVA (${ }^{\text {) }}$ | Start-up variable $j=1,2, \ldots 11$ | CVA $=Q C$ but in fixed prices |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| DELAY $\triangle I N V(i, j)$ | Start-up variable micro variable $i=1,2, \ldots$, number of firms $j=1,2,3$ | Investments between plan and fulfilment. Three stages. |
| $\begin{aligned} & \text { DP (i) } \\ & \text { DW (i) } \\ & \text { DS (i) } \\ & \text { DQ (i) } \end{aligned}$ | ```Start-up variables, micro variables i=1,2,..., number of firms``` | Yearly change
 (a fraction) of P, W, s and Q respectively |
| DVA (i) | ```Start-up variable, micro variable i=1,2,..., number of firms``` | Change in VA
 (a fraction) |
| DUR | Index | DUR $=3$ |
| $\begin{aligned} & \text { E1 } \\ & \text { E2 } \end{aligned}$ | Constant, micro variable, parameter | Used in YEARLY EXPECTATIONS in the model. E2=0 at present (Jan. 1982) |
| ELINV | Constant, micro variable, parameter | An elasticity, reducing firms' desired new borrowing (and hence in vestments) whenever capacity utilization is low. Used in INVFIN. |
| ENTRY | Constant, parameter | A parameter regulating the inflow of new persons to the labour market (quarterly fraction of the total labour force). |
| EPS | Constant, micro variable, parameter | EPS $=0$ and thus redundant at present (Jan. 1982). |
| EXO $\triangle Q C H T X V A I(j)$ | Exogenous
 time-series | TAXVA2 = value added tax rate = |
| EXOAQCHTXVA2(j) | $j=1,2, \ldots \text { NQR, }$
 NQR = number of quarters in the simulation. | "MOMS "EXO $\triangle Q C H T X V A 2$ is change in the "MOMSrate". TXVAl refers to investment goods. EXO $\triangle Q C H T X V A 1$ is the change in that tax rate. |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXOAQDINVBLD (j$)$ | Exogenous
 time-series $j=1,2$. NQR
 $\mathrm{NQR}=$ number of quarters in the simulation | Quarterly change (a fraction) of QINVBLD = investments in residential construction |
| EXOAQDINVG(j) | Exogenous time-series $j=1,2, \ldots \mathrm{NQR}$
 $\mathrm{NQR}=$ number of quarters in the simulation | Quarterly change (a fraction) of QINVG = investments in the government sector |
| EXOADINVIN(j) | Exogenous time-series $j=1,2, \ldots N Q R$ NQR = number of quarters in the simulation | ```Quarterly change (a fraction) of QINVIN = investments in sectors 5,6,...l0.``` |
| EXOAQDPFOR (i,j) | Exogenous
 time-series
 (a matrix)
 $i=1,2,3,4$
 $\mathrm{j}=1,2,3$. NQR .
 $\mathrm{NQR}=$ number of quarters in the simulation.
 micro variable | ```The change (a fraction) in foreign price index, for each of the 4 industrial sectors``` |
| EXOAQDPIN (i, j) | Exogenous timeseries $\begin{aligned} & i=5,6,7,8,9,10 \\ & j=1,2, \ldots \mathrm{NQR} \end{aligned}$
 $\mathrm{NQR}=$ number of quarters in the simulation | Quarterly change in domestic price index in sectors $5,6,7,8,9,10$. |
| EXOAREALCHLG (j) | Exogenous time-series $j=1,2, \ldots N Q R$ $\mathrm{NQR}=$ number of quarters in the simulation | A variable (vector) telling the number of people to be added to the government sector each quarter. (Government demand) |
| EXOARI(j) | Exogenous
 time-series
 $\mathrm{NQR}=$ number of $j=1,2 \ldots N Q R$
 quarters in the simulation | The rate of interest. |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXO \triangle RIBWFOR(${ }^{\text {j }}$) | Exogenous
 time-series $j=1,2 \ldots N Q R$
 $\mathrm{NQR}=$ number of quarters in the simulation | The foreign lending rate of interest |
| EXOARIDEPFOR(j) | Exogenous time-series $j=1,2 \ldots N Q R$ $N Q R=$ number of quarters in the simulation | The foreign deposit rate of interest |
| EXO \triangle RSUBS (i, j) | Exogenous
 time-series, micro variable $\begin{aligned} & i=1,2,3,4 \\ & j=1,2, \ldots, N Q R \end{aligned}$
 $\mathrm{NQR}=$ number of quarters in the simulation. $i=$ sector index | Subventions to the individual firm, expressed as a fraction of sales. Equal for all firms in a sector. |
| EXOATXC (${ }^{\text {) }}$ | Exogenous time-series $j=1,2 \ldots N Y R$ NYR=number of years in the simulation | Corporate tax-rate. (Tax on firms) |
| EXO \triangle TXII (${ }^{\text {j }}$) | Exogenous time-series $j=1,2$, . NYR NYR=number of yearsin the simulation | Income-tax rate (for households) |
| EXO \triangle TXI $2(\mathrm{j})$ | Exogenous time-series | Some kind of income tax rate used in another version of the MOSESmodel than the present (Jan. 1982). Can't be omitted for technical reasons but redundant |
| EXO $\triangle T X W$ (${ }^{\text {j }}$) | Exogenous time-series j=1, 2...NYR NYR=number of years in the simulation | Payroll-tax rate for the non-government sectors. |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXO \triangle TXWG (${ }^{\text {j }}$) | Exogenous time-series $j=1,2$...NYR NYR=number of years in the simulation | Payroll-tax rate for the government sector. |
| $\begin{aligned} & \text { EXPDW (i) } \\ & \text { EXPDS (i) } \\ & \text { EXPDP (i) } \end{aligned}$ | Start-up variables, micro variables $i=1,2 \ldots$ number of firms etc. | Expected change (a fraction) in P, W and S. |
| EXPXDP | Constants, micro variables | Expected rate of price-change |
| EXPXDW | parameters | Expected rate of wage-change |
| EXPXDS | | Expected rate of sales-change
 These are the constant components of expectations, entered exogenously |
| FASS | Constant | Bank-parameter |
| FD | Constant | Bank-parameter |
| $\begin{aligned} & \text { FIP } \\ & \text { FIW } \\ & \text { FIS } \end{aligned}$ | Constants, micro variables parameters | Used in "QuarterlyExpectations" in the model |
| First Δ sim \triangle year | ```Technical vari- able, needed for simulation``` | |
| Funds Δ are Δ enough | Constant | Bankparameter |
| F $\triangle I N K O P(i)$ | ```Information variable i=1,2,... number of firms``` | $\mathrm{F} \triangle I N K O P$ is not used in the model. Each firms's input share (fraction of production) of input goods, 1976. See Section 3.3, Part 2. |
| GAMMA | Constant, micro variable, parameter | A constant telling how big a wage increase is needed, for making a person leave his job for another job. GAMMA $=0.1$ at present |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| GKOFF (${ }^{\text {) }}$ | Constant $j=1,2, \ldots 10$ | Government purchasing (less investments) in each sector, as a fraction of Government wage sum. GKOFF is a vector. |
| $\begin{aligned} & \operatorname{HISTDP}(i) \\ & \operatorname{HISTDW}(i) \\ & \operatorname{HISTDS}(i) \end{aligned}$ | Constants, micro variables $i=1,2, \ldots$ number of firms | For each firm a timesmoothed average of its experienced (historical) price changes (HISTDP), wage changes (HISTDW) and sales changes (HISTDS) |
| $\begin{aligned} & \text { HISTDPDEV (i) } \\ & \operatorname{HISTDSDEV}(i) \\ & \operatorname{HISTDPDEV}(i) \end{aligned}$ | ```Start-up variables, micro variables i=1,2,... number of firms``` | For each firm a timesmoothed average of the difference between actual and expected increase in price level, wage level and sales |
| HISTDPDEV2 (i) HISTDSDEV2 (i) HISTDWDEV2 (i) | Constants, micro variables $i=1,2, \ldots$ number of firms | Redundant at present because E2 = 0 |
| IMBETA | ```Constant, micro variable, parameter``` | Constant used to compute optimum input-goods inventory level $=0.5$ |
| IMBIG(i) | ```Constant, micro variable i=1,2,... number of firms``` | ```Maximum inventory level (fraction of sales). Input goods.``` |
| IMP (i) | ```i=1,2,3,4 Start-up variable micro variable``` | Import share in sectors 1,2,3,4 (the industrial sectors). Start-up value |
| $\operatorname{IMP}(\mathrm{j})$ | $j=5,6, \ldots 10$
 Constant,
 macro variable | Import share in external sectors 5,...10. Constant.
 NOTE: IMP is a start-up variable and a constant at the same time! |
| IMPLP \triangle REF | Technical variable needed for simulation | |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| IMSMALL (i) | Constant, micro variable $i=1,2, \ldots$ number of firms | Minimum inventory level (fraction of sales). Input goods. |
| $\operatorname{IMSTO}(i, j)$ | Start-up variable (matrix), micro variable $i=1,2,3 \ldots$
 number of firms $j=1,2,3, \ldots 10$ | Inventory level of input goods for each type of product (10 sectors). Fixed (1976 year's) prices |
| IN | Vector-index | Index for external sectors $I N=5,6,7,8,9,10$ |
| INVEFF (i) | Start-up variable micro variable $i=1,2,3 \ldots$ number of firms | ```The quotient change in QTOP investment QTOP = potential maximum production level. Production function parameter``` |
| IO(i, j) | ```Constant, micro variable i=1...l0 j=1...l0``` | ```Input-output coeffi- cients, l0xl0 matrix. Tells the share of pro- duction in sector j coming from sector i 10 \Sigma IO(i,j) + value i=1 added share = 1``` |
| IO2 (i, j) | Constant, $\begin{aligned} & i=1,2,3,4 \\ & j=5,6, \ldots 10 \end{aligned}$ | Input-output coefficient Submatrix of $I O(i, j)$ |
| IO3 (i, j) | Constant, $\begin{aligned} & i=5,6 \ldots 10 \\ & j=5,6, \ldots 10 \end{aligned}$ | Input-output coefficients. Submatrix of IO(i,j), which is inverted during simulation |
| IOTA | Constant, micro variable, parameter | A constant used by firms to form their initial
 wage offer in
 LABOUR SEARCH.
 IOTA=0.5 at present |
| K1 (i) | Micro variable start-up variable $i=1,2 \ldots$ number of firms | For each firm, the replacement value of its production equipment |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| K2 (i) | Micro variable start-up variable $i=1,2, \ldots$ number of firms | For each firm, its current assets last quarter 1976 |
| Kappal Kappa2 | Constants | Bankparameters |
| K1BOOK (i) | Start-up variable micro variable | For each firm, the book
 value (1976) (for
 taxation purposes) of its production equipment |
| KSI | Constant, micro variable, parameter | A constant, used in LABOUR SEARCH which tells by how much a firm raises its own wage level after it has performed an unsuccessful attack
 KSI $=0.25$ at present |
| L (i) | Start-up variable $i=1,2 .$. number of firms micro variable | Number of people in each firm.
 Last quarter 1976 |
| Lamdal
 Lamda2 | Constants | Bank-parameters |
| Last \triangle TXI $2 \Delta y$ year | Technical variable needed for simulation | |
| Lastsyear | Technical variable needed for simulation | Lastayear $=1976$. |
| LEFT (i) | Logical vector (start-up variable) $i=1,2 \ldots$ number of firms | Logical vector indicating whether a firm is out of business or not. During simulation LEFT(i) takes the value zero if firm i is nullified (deleted) |
| LG | Start-up variable | Number of people employed in the government sector last quarter 1976 |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| LIQB | Start-up variable | The bank's holdings of "liquidity" of an unspecified nature. Updated in BANK UPDATE |
| LIQBFOR | Start-up variable | The bank's current holdings of foreign "liquidity" of an unspecified nature. Updated in BANK TRANSACTIONS |
| LOSS | Constant, micro variable, parameter | Used in connection with production function |
| LU | Start-up variable | Number of people unemployed last quarter 1976 |
| M (i) | ```Start-up variable micro variable i=1,2... number of firms``` | Profit margin (profit/value added) for each firm the whole 1976 |
| MARKET (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 \ldots \\ & \text { number of firms } \end{aligned}$ | $\operatorname{MARKET}(i)=1$ or 2 or 3 or 4. This variable tells to which sector a certain firm belongs |
| MARKET $\triangle I T E R$ | Parameter | Telling the number of iterations in the product market process in the model |
| MAXDP | Constant, micro variable, parameter | ADJUST-PRICES in the model |
| Maxqchri | Constant | Bank-parameter.
 Maximum change in rate of interest |
| Maxri | Constant | Bank-parameter |
| Maxridiff | Constant | Bank-parameter |
| MB | Constant | Bank-parameter |
| Minri | Constant | Bank-parameter |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| MHIST (i) | Start-up variable micro variable $i=1,2,3 \ldots$
 number of firms | For each firm, an average of past profit margins (a fraction) |
| MKT | $\begin{aligned} & \text { "Vector index" } \\ & \text { MKT=1,2,3,4 } \end{aligned}$ | Index for industrial sectors $=1,2,3,4$. In the APL-language "vector indices" are allowed. |
| $\operatorname{MTEC}(\mathrm{j})$ | ```Start-up variable micro variable j=1,2,3,4``` | On each market, sector $1,2,3,4$, a technology factor of modern equipment (potentially produced units per person and quarter). Last quarter 1976. Production function parameter |
| NDUR | $\begin{aligned} & \text { "Vector-index" } \\ & =1,2,4,5 \ldots 11 \end{aligned}$ | |
| NDUR \triangle DUR | $\begin{aligned} & \text { "Vector-index" } \\ & =1,2,3,4 \ldots 11 \end{aligned}$ | |
| NITER | Parameter | Telling the number of labour-market iterations in the labour market process in the model |
| NH | Constant | The number of households in the model |
| NMARKETS | Index | The number of industrial sectors in the model=4 |
| NWB | Start-up variable | The net value of the bank. Residual between assets and liabilities |
| OMEGA (${ }^{\text {) }}$ | ```Constant, micro-variable j=1,2,...10``` | A distribution vector indicating how firms' outlays for investments are allocated on purchases from different model sectors. Assumed to be equal for all firms |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| OMEGABLD (j) | Constant $j=1,2, \ldots 10$ | A distribution vector indicating how investments in residential construction result in purchases different model sectors |
| OMEGAG (j) | Constant $\mathrm{j}=1,2$... 10 | A distribution vector indicating how government investments result in purchasing from different model sectors |
| OMEGAIN (${ }^{\text {(})}$ | Constant $j=1,2, \ldots 10$ | A distribution vector indicating how investments from external sectors $(5,6,7 \ldots 10)$ (less residential construction) result in purchases from different model sectors |
| ORIGMARKET (i) | $\begin{aligned} & \text { Vector } \\ & i=1,2 \text {. . } \\ & \text { number of firms } \end{aligned}$ | Copy of the vector MARKET. Needed because MARKET will be changed during simulation |
| P(i) | Start up variable $i=1,2,3 \ldots$ micro variable | ```Yearly price index 1976 =100 for all i (IMPORTANT)``` |
| POSG | Start up variable | The government's net position in the bank |
| POSGFOR | Start up variable | The government's net foreign deposit/borrowing position 1976 |
| $\mathrm{P} \triangle$ REF (j) | Constant $\mathrm{j}=1,2 . .10$ | Reference-price level. QPDOM+"value added tax" (=MOMS) value |
| Q (i) | Start up variable micro variable $i=1,2,3 \ldots$ number of firms | Yearly production in each firm 1976,
 in fixed (1976) prices |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QC (j) | Start up variable $j=1,2 \ldots 11$ | Each household's consumption of products from the 10 sectors. QC. (number of households) yields aggregate consumption. The llth component is redundant. Last quarter 1976. Current prices |
| QCHRI | Start up variable | Change in RI (rate of interest) |
| QCPI | Start up variable | Quarterly consumer price index. Last quarter 1976 |
| QDCPI | Start up variable | Quarterly change (a fraction) of quarterly
 price index QCPI.
 Last quarter 1976 |
| QDI | Start up variable | Disposable income per household. QDI•(number of households)=aggregate disposable income. Last quarter 1976 |
| QDMTEC (j) | ```Constant micro variable j=1,2,3,4 parameter``` | On each market, the rate of technology upgrade for production equipment (a fraction on quarterly basis).
 Entered exogenously |
| QDPDOM (i) | ```Start up variable micro variable i=1,2...10``` | Change in QPDOM.
 A fraction.
 Last quarter 1976.
 10 sectors |
| QDWIND | Start-up variable | Average wage increase in the industry (sector $1+2+3+4$) during one quarter (a fraction) |
| QIMQ(i,j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 \ldots . . \\ & \text { number of firms } \\ & j=1,2 \ldots 10 \end{aligned}$ | Each firm's quarterly purchases of each kind of product (10 sectors). Fixed (1976) prices. Last quarter 1976 |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QINPAY | Start-up variable | Households' aggregate wage and capital income from the external sectors (sectors 5,6...10) during one quarter. Computed in EXTERNAL SECTORS. Last quarter 1976 |
| QINV (i) | Start-up variable micro variable $i=1,2,3 \ldots$
 number of firms | Each firm's investments during a quarter. Will enter the bookkeeping next quarter (last quarter 1976). NOTE: QINV is in current prices. |
| QINVBLD | Start-up variable | Investments in the construction sector last quarter 1976 |
| QINVG | Start-up variable | Government investments last quarter 1976 |
| QINVLAG (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 . . \\ & \text { number of firms } \end{aligned}$ | Each firm's investment plans during a quarter. (There is a couple of quarter's delay between plan and fulfilment of investment.)
 Last quarter 1976 |
| QINVIN | start-up variable | Investments in sectors 5,6...10.
 Last quarter 1976 |
| QP(i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & i=1,2 . . . \\ & \text { number of firms } \\ & \text { micro variable } \end{aligned}$ | Quarterly price-index for each firm.
 Last quarter 1976 |
| QPDOM (j) | Start-up variable (micro-variable to some extent) $j=1,2,3,4 \ldots 11$ | Domestic quarterly price index in the four industrial sectors last quarter 1976. Each firm has the same domestic price in a sector |
| QPFOR(j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & j=1,2, \ldots 4 \\ & \text { micro variable } \end{aligned}$ | The foreign price index last quarter 1976. 4 sectors. Each firm has the same foreign price in a sector |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QPH (${ }^{\text {(}}$) | Start-up variable $j=1,2 \ldots 11$ | Domestic prices for households for 10 sectors. The 11:th component is redundant, but must be there for technical reasons |
| QQ (i) | Start-up variable micro variable | Same as Q, but applies to quarter instead of year. Last quarter 1976 |
| QS (i) | ```Start-up variable micro variable``` | Same as S, but quarterly variable. Last quarter 1976 |
| QSAVHREQ | Start-up variable | One quarter's reduction in aggregate household borrowing |
| QTOP (i) | Start-up variable micro variable $i=1,2,3 \ldots$ number of firms | Potential maximum production in each firm's production function Last quarter 1976 |
| QTDIV | Start-up variable | One quarter's aggregate payments of dividends from firms to households Last quarter 1976 |
| QTTAX | Start-up variable | Total tax receipts by the government during one quarter. Updated in GOVERNMENT ACCOUNTING. Last quarter 1976 |
| QVA (i) | ```Start-up variable micro variable``` | Same as VA, but last quarter 1976 instead of the whole year |
| QW (i) | Start-up variable micro variable | Same as W, but refers to quarter instead. (Waqe is expressed as the yearly wage-sum though) |
| QWG (i) | ```Start-up variable micro variable i=1,2... number of firms``` | Same as WG, but refers to last quarter 1976. (Still expressed as early wage-level) |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| R | Constant, micro variable parameter | Used in
 YEARLY-EXPECTATIONS
 in the model |
| REDCHBW | ```Constant, micro variable parameter``` | Maximum allowed change in borrowing (fraction of borrowing) |
| RES (i) | Start-up variable micro variable $i=1,2 \ldots$ number of firms | Parameter connected with the production function |
| RESDOWN | ```Constant, micro variable parameter``` | Used in connection with production function |
| RESMAX | Constant micro variable, parameter | ```A constant telling maximum slack any firm can possibly have RESMAX = 0.2 (Jan. 1982)``` |
| RET | Constant, parameter | Retirement rate on the labour market (a fraction on quarterly basis) |
| RHO | ```Constant micro variable parameter``` | Physical depreciation rate of production equipment (a fraction on quarterly basis) |
| RHOBOOK | ```Constant micro-variable, parameter``` | Maximum allowed depreciation rate of production equipment, for taxation purposes. A fraction quarterly basis |
| RHODUR | Constant, parameter | Depreciation rate of consumer durable goods (a fraction on quarterly basis) |
| Rfundl Rfund2 | Constant | Bank parameters |
| RI | Start-up variable | Rate of interest (a fraction).
 Last quarter 1976 |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| RIDIS \triangle EXOGENOUS | Logical variable | Means that EXO \triangle RI will be used, i.e rate of |
| R1 $\triangle 15 \triangle E X O G E N O U S$ | $=1$ | interest will be exogenous |
| RLU | Constant, parameter | Fraction used in HOUSEHOLD INIT to compute unemployment compensation in proportion to average wage level in the industry. RLU=0.6 (Dec.1982) |
| RSUBS \triangle CASH (i) | Constant micro-variable $i=1,2,3 \ldots$ number of firms parameter | Government subventions to individual firms. Temporary subvention. The amount is expressed as a fraction of sales |
| RSUBS $\triangle E X T R A(i)$ | Constant micro variable $i=1,2 \ldots$ number of firms parameter | Government subventions to individual firms expressed as a fraction of sales in the firm. Nontemporary subvention |
| RTD | ```Constant micro variable parameter``` | Ratio between firms' dividend payments and corporate taxes |
| RTRANS | Constant, parameter | Ratio between total transfer payments to households (less unemployment compensation) and total taxes. Used in HOUSEHOLD INIT; assumed constant |
| RU | Start-up variable | Rate of unemployment (fraction of total labour-force) last quarter 1976 |
| RW (i) | Constant, micro variable $i=1,2 \ldots$ number of firms parameter | A constant giving firms' desired amount of work ing capital (K2) as a fraction of current yearly sales |
| S (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 \ldots \\ & \text { number of firms } \end{aligned}$ | Yearly sales in each firm (current prices) 1976 |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| SAV | Index. SAV=12 | |
| SHARE (i) | Constant, micro variable $i=1,2 \ldots$
 number of firms | ```SHARE(i) = individual firm's input share average inputshare in sector See Section 3.3``` |
| SKREPA | Constant, parameter | A constant factor by which the probability for the pool of unemployed to be selected at a labour market attack is upgraded, as compared with the probability for any firm to be selectd. Used in CONFRONT |
| SMALL (i) | Constant, micro variable $i=1,2,3 \ldots$
 number of firms | Minimum inventory level (fraction of sales) Finished goods |
| SMOOTH (${ }^{\text {j }}$) | Constant $j=1,2 \ldots 12$ | Used in the household part of the model |
| SMP | Constant, micro variable, parameter | This variable is used by firms to (each year)
 time-smooth their priceexperiences. Equal for all firms |
| SMS | Constant micro-variable parameter | This variable is used by firms to (each year)
 time-smooth their sales experiences |
| SMT | Constant micro variable value jan-82: 0.5 parameter | This variable controls how quickly the profittarget is changed between two quarters. Equal for all firms |
| SMW | ```Constant, micro variable, parameter``` | Used by firms to (each year) time-smooth their wage experiences |
| STO (i) | Start-up variable micro variable $i=1,2,3 \ldots$
 number of firms | Inventory level of finished goods. Fixed (1976 year's) prices. Last quarter 1976 |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| STODUR | Start-up variable | Each household's stock of durable goods, current prices, last quarterl976 |
| TEC (i) | ```Start-up variable i=1,2... number of firms``` | Parameter connected with the production function of the individual firm |
| THETA | ```Constant micro-variable parameter``` | ```Parameter used in the labour market-process in the model``` |
| This ${ }^{\text {year }}$ | Technical
 variable needed
 for simulation | $=1976$ |
| TMFASS | Constant | Bank-parameter |
| TMFD | Constant | Bank-parameter |
| TMIMP (${ }^{\text {) }}$) | ```Constant j=1,2,3,4 micro variable parameter``` | Time constant for swedish consumers to adjust import share (of demand) in each of the 4 industrial sectors |
| TMIMSTO | Constant micro variable parameter | Constant used for inventories. See the PLANQRE-VISE-part of the model. Has to do with adjust-ment-speed to optimum inventory level |
| TMINV(j) | Constant micro variable $j=1,2,3,4$ parameter | Average delay time to install investments in new production equipment Used in INVFIN; assumed to be equal for all firms in a sector. Sectors 1,2,3,4 |
| THMSTO | Constant micro variable parameter | Constant used for inventories. See the PLANQRE-VISE-part of the model. Has to do with adjust-ment-speed to achieve optimum inventory level |
| TMX (${ }^{\text {j }}$) | ```Constant micro-variable j=1,2,3,4 parameter``` | Time constant for firms when they adjust export share. Common to all firms in a sector |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| TSTOCURF (j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & j=1,2,3,4 \end{aligned}$ | For each industrial sector (1..4) the aggregate finished goods inventories at current factor prices |
| TSTOCURM (${ }^{\text {j }}$) | Start-up variable $=1,2,3,4$ | For each industrial sector, the aggregate finished goods inventories at current market prices |
| TXI3 | Technical
 variable needed
 for simulation | |
| TXVAI | Start-up variable | Value added tax, last quarter 1976. Compare with EXO $\triangle Q C H T X V A 1$ |
| TXVA2 | Start-up variable | Value added tax rate $=$ "Moms".
 Last quarter 1976 |
| VA (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro-variable } \\ & i=1,2,3 \ldots \\ & \text { number of firms } \end{aligned}$ | Valued added for each firm 1976. Current prices in the model |
| UTREF | Constant micro-variable | A "reference" level of capacity utilization. Used in INVFIN when firms form their desired new borrowing and correct it for their current degree of utilization. Assumed equal for all firms |
| W (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro-variable } \\ & i=1,2,3 \ldots \\ & \text { number of firms } \end{aligned}$ | Wage-sum per employee (expressed as wage sum per year) the whole 1976 |
| WG | Start-up variable | Wage level in government sector 1976. Expressed as: yearly wages/number of people |

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| WG \triangle REF | Copy of WG for technical
 reasons | |
| WH | Start-up variable | Each household's wealth last quarter 1976 (current value of its bank deposits) |
| WHRA | Start-up variable | Each household's so called wealth ratio (quotient between bank deposits and quarterly disposable income) |
| WSG | Start-up variable | Total government wage sum last quarter 1976. Expressed as yearly wage sum |
| WTIX | Constant WTIX=1 | Probably redundant, at present |
| X (i) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro-variable } \\ & i=1,2,3,4, \ldots \\ & \text { number of firms } \end{aligned}$ | Export share (exports/ production) for each firm in the 4 industrial sectors.
 Last quarter 1976 |
| XIN(j) | Constant $j=5,6, \ldots 10$ | ```Export share (exports/ production) in external sectors (5,6...10).``` |
| Z | $\begin{aligned} & \text { Index } \\ & \mathrm{Z}=11 \end{aligned}$ | |

The names of all the model-variables are stored in a workspace VLISTS.

The contents of this workspace is listed below. The names are stored in the text-variables:

VARIABELGRUPP1,...VARIABELGRUPP5, GRUPP1.

Two functions COPYSAVE and KILL are also stored in this workspace (documented in Appendix C).

APPENDIX A:
 WORKSPACE VLISTS

```
GOKUMENTATION
IOKUMENTATION
A IOCUMENTATION:
A
A COMPLETE LISTS OF OUTPUT-VARIABLES FROM INITIALIZATION
A VARIABELLISTAI = EXOGENDUS VARIAELES
a VARIABELLISTA2= ENIOGENOUS VARIAELES
A VARIAEELLISTAZ = CONSTANTS
A VARIAELELISTA4, VARIABELLISTAS= OTHER VAFIABLES (TECHNICAL)
A GRUPPI \(=\) VARIABLES WHICH ARE TAKEN IIIRECTLY FROM INPUTWORKSPACE MACRO.
A
A IF NEW VARIABLES ARE ADIHEI TO THE INITIALIZATION, THE
a VARIABLELISTS ABOVE HAVE TO BE UPIATEI WITH THE NEW
a VARIABLES, OTHERWISE THE VARIABLES WILL EE IELETEI
A IN THE FUNCTION OUTPUTAOPERATIONS.
A
A FREIRIK BERGHOLM, IIEC 1981
```


APPENDIX A: WORKSPACE VLISTS

VARIABELGRUPPI
EXOARSUES QINVG EXOAREALCHLG EXOAQIINVG GKOFF OMEGAG XIN IMP ID IOZ IOZ OMEGA OMEGABLI QINVBLI QINVIN EXOAQITNVIN EXOAQIINVELI QPFOR EXOA QIPFOR EXOAQIPIN SHARE QDMTEC EXPXIP EXPXIW EXPXDS RET ENTRY EXO $\triangle Q C H T X V A 1$ EXOAQCHTXVAZ MTEC WSG RSUESAEXTRA RSUBSACASH NH OMEGAIN EXOATXC EXOATXII EXOATXW EXOATXWG EXOARI EXOARIEWFOR EXOARIIEPFOR RET ENTRY EXOAQDINVELI

LG QWG WG LU IMP QPHOM X HISTLP HISTHW HTSTIS HISTIPDEVZ HISTDWLEV2 HI STHSIEVZ MHIST QIMQ L EXPIP EXPIW EXPIS IIP IW ISS HQ QP QW QS QQ Q VA Q P 5 W VA M IVA AMAN IMSTO STO QTOP TEC RES K1 K2 EW INVEFF QINV QINVLAG IELAYAINV QTDIV KIBOOK QIWIND TSTOCURF TSTOCURM QPH WH WHRA QC CVA QDCPI STONUR QSAVHREQ QCPI KIBOOK QIP IOM HISTIPIEV HISTDWIÉV HISTLSDEV CHM QDI

APPENDIX A: WORKSPACE VLISTS

VARIABELGRUPF3
beta tmsto imbig imsmall tmimsto imbeta rho rhobook resmax loss resiown WTIX RW ALFAEW EETABW ELINV RTI TMINV EPS TMX TMIMP RLU MAXIIP UTRE F - E E E SMP SMW SMS FIP FIW FIS GAMMA THETA KSI SKREPA IOTA SMAL - L BIG RTRANS POSGFOR TMFASS TMFI FI FASS KAPPA1 KAPPAZ RFUNII RFU NH2 LAMIAA1 LAMIIA2 MAXQCHRI ME MAXRIDIFF MINRI MAXRI FUNDSAAREAENOU GH RHONUR ALFA3 ALFA4 BETA1 EETA2 BETA3 SMOOTH SMT BALI REDCHEW

VARIAEELGRUPP4
riatsaexagenous market mkt in nduradur nur niter marketaiter sav z ntur LEFT: FAINKOP ERINKOP

GRUPP1
TXVA1 TXVA2 RI NWB LIQB POSG LIGBFOR RU QCHRI QTTAX QINPAY LASTAYEAR T HISAYEAR FIRSTASIMAYEAR AHANAYEAR LASTATXI2AYEAR NMARKETS EXOATXI2 IMPLPAREF TXI3

APPREIDIX B MACRO- AND MICRO-MATA

DOCUMENTATION DEC. 1983
WORKSPACE MACRO AND SI76

All variables (dec 83) in workspace MACRO are listed in this appendix.This is a complete documentation of the macro data base. The micro data base is also complete, although firm variables are not printed since they are confidential. This appendix is needed, as a pattern, if one wants to initialize the micro-to-macro model for another starting year.

There are also 3 functions in workspace MACRO. They are used to form certain variables during the initialization procedure (AGGRITAX and TLAEXPAPRISA76) or before the initialization (COEFFAIO).

The variables are:

| AMAN \triangle YEAR | BLD \triangle RATE1 | $B L D \triangle R A T E 2$ | EXO \triangle QTXVAI |
| :---: | :---: | :---: | :---: |
| EXO \triangle QTXVA2 | EXO \triangle RI | EXO \triangle RIBWFOR | EXOARIDEPFOR |
| EXO $\triangle T X C$ | EXO \triangle TXII | EXO \triangle TXI2 | EXO $\triangle T X W$ |
| EXO \triangle TXWG | FIRSTASIM \triangle YEAR | G \triangle RATEl | $\mathrm{G} \triangle$ RATE2 |
| HISTATXVA 2 | HOURS \triangle PER $\triangle Y E A R$ | HUSHALLSDEP | IMPL $\triangle P R I S$ |
| IMPL \triangle PRIS $\triangle I N$ | IMPLP \triangle REF | IN \triangle RATEl | IN \triangle RATE 2 |
| INIT \triangle GROWTH | IO76 | IOCOEFF76 | LAST $\triangle T X I 2 \triangle Y E A R$ |
| LASTAYEAR | LGTRENDCH | LIQB | LI QBFOR |
| LON | LON \triangle OFF | MACROLIST | NMARKETS |
| NWB | POSQ | QCHRI | QINPAY |
| QTTAX | RI | RU | SALES76 |
| THI S $\triangle Y E A R$ | TIM | TIM \triangle OFF | TL \triangle EXP |
| TRENDM | TXC | TXII | TXVAI |
| TXVA2 | TXVAZ | TXW | RSUBS |

APPENDIX B WORKSPACE MACRO

APPENDIX B WORKSPACE MACRO

1.08732
1.03068RATE?
1.03269

HISTATXVA?

| 0.15 | 0.12 |
| :--- | :--- |
| 0.15 | 0.15 |
| 0.15 | 0.15 |
| 0.15 | 0.15 |

HOURSAPERAYEAR
1600
HUSHALSSNEF
1.133900000 E 11

IMPLAPRIS
88.27192527
84.99043977
80.23072889
82.23609535
94.18785677
96.36711281 89.77451494 89.78433598

First year of simulation. 77 stands for 1977.
Growth-rate of investments in the Goverment-sector,1976.
Long term growth-rate, investments in the government-sector, yearly change.

```
0.15
0.15
0.15
0.15
0.171
VALUE-ADDED TAX, "moms".
Rows: Years , starting with 1974. Columns: Quarters.
```

Average number of working hours per year, 1976. Roughly.
Household"s bank deposits 1976.
YEARLY PRICE-TNDEX SERIES, domestic prices.
ROWS: Sector $1,2,3,4$ (Industrial sectors)
Columns: Years; $1974,1975,1976,1977$

APPENDIX B WORKSPACE MACRO

INPUT-OUTPUT matrix , 1976 ,in $k r$, expressed in 1975 year"s prices. 14 rows and 21 columns.

Documentation see section 3.

| 1076: | | The first 10 columns. | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5272 | 2890 | 5869 | 1321 | 245 | 94 | 0 | 4192 | 942 | 1943 |
| 2029 | 5195 | 4805 | 4465 | 908 | 117 | 0 | 3498 | 170 | 2035 |
| 954 | 2354 | 12296 | 915 | 503 | 213 | 0 | 6294 | 171 | 3079 |
| 803 | 2428 | 2041 | 14872 | 2078 | 87 | 0 | 2648 | 102 | 6484 |
| 2400 | 1964 | 341 | 10768 | 383 | 1 | 0 | 1.689 | 0 | 312 |
| 2951 | 210 | 79 | 63 | 26 | 140 | 0 | 418 | 5 | 0 |
| 4136 | 600 | 151 | 261 | 130 | 213 | 0 | 1009 | 488 | 842 |
| 1235 | 11.98 | 2838 | 961 | 1383 | 162 | 0 | 10928 | 708 | 9874 |
| 904 | 941 | 475 | 485 | 238 | 171 | 0 | 1118 | 328 | 1010 |
| 3293 | 3338 | 5919 | 4402 | 1792 | 640 | 0 | 9143 | 426 | 25656 |
| 63 | 71. | 142 | -2377 | 163 | 10 | 0 | 350 | 5 | 2261 |
| 8736 | 1.4351 | 27422 | 19551 | 11452 | 2529 | 0 | 50892 | 6395 | 64383 |
| 154 | -119 | 178 | 51 | 41 | 35 | 0 | 238 | 0 | 1. |
| 32933 | 35423 | 62558 | 55738 | 19341 | 4413 | 0 | 92417 | 9738 | 117881 |

The 11 remaining columns. Final Demand side of the matrix.

| 1076 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 758 | 5399 | 0 | 0 | 0 | 380 | 2754 | 12137 |
| 1953 | 9075 | 558 | 0 | 869 | 2170 | 1135 | 14735 |
| 3522 | 14903 | 3110 | 0 | 4836 | 10231 | 1687 | 29947 |
| 5102 | 55944 | 112 | 0 | 175 | 132 | 752 | 7450 |
| 243 | 6807 | 0 | 0 | 128 | 408 | -95 | 1351 |
| 81 | 24 | 0 | 0 | 0 | 0 | 67 | 11.34 |
| 374 | 2346 | 0 | 0 | 0 | 0 | 188 | 1778 |
| 2929 | 26970 | 17893 | 12436 | 4682 | 765 | 1067 | 7062 |
| 973 | 3580 | 0 | 0 | 0 | 0 | -76 | 31.9 |
| 8849 | 30617 | 379 | 0 | 591 | 0 | -316 | 10370 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 24785 | 1.55664 | 22052 | 12436 | 1128. | 14085 | 7163 | 86284 |

APPERIDIX B WORKSPACE MACRO

INPUT-OUTPUT coefficients estimated from 1076. Vertical sum=1.13 rows, 19 columns. See function COEFFAIO on p. 12 in this appendix. See also section 3.

| | IOCOEFF76 | The first lo columns | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.16 | 0.08 | 0.09 | 0.02 | 0.01 | 0.02 | 0.00 | 0.05 | 0.10 | 0.02 |
| 0.06 | 0.15 | 0.08 | 0.08 | 0.05 | 0.03 | 0.00 | 0.04 | 0.02 | 0.02 |
| 0.03 | 0.07 | 0.20 | 0.02 | 0.03 | 0.05 | 0.00 | 0.07 | 0.02 | 0.03 |
| 0.02 | 0.07 | 0.03 | 0.27 | 0.11 | 0.02 | 0.00 | 0.03 | 0.01 | 0.06 |
| 0.07 | 0.06 | 0.01 | 0.19 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
| 0.09 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.13 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.05 | 0.01 |
| 0.04 | 0.03 | 0.05 | 0.02 | 0.07 | 0.04 | 0.00 | 0.12 | 0.07 | 0.08 |
| 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.01 | 0.03 | 0.01 |
| 0.10 | 0.09 | 0.09 | 0.08 | 0.09 | 0.15 | 0.00 | 0.10 | 0.04 | 0.22 |
| 0.00 | 0.00 | 0.00 | -0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
| 0.27 | 0.41 | 0.44 | 0.35 | 0.59 | 0.57 | 0.00 | 0.55 | 0.66 | 0.55 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |

APPENDIX B WORKSPACE MACRO

INPUT-OUTPUT coefficients, continued
0.03
0.08
0.14
0.21
0.01
0.00
0.02
0.12
0.04
0.36
0.00
0.00
0.00 OCOEFF76

| Column 11, 12. | 19 . Final | Demand coefficients. | |
| :---: | :---: | :---: | :---: | :---: |
| 0.03 | 0.38 | 0.14 | 0.12 |
| 0.15 | 0.16 | 0.17 | 0.13 |
| 0.73 | 0.24 | 0.35 | 0.25 |
| 0.01 | 0.10 | 0.09 | 0.16 |
| 0.03 | -0.01 | 0.02 | 0.04 |
| 0.00 | 0.01 | 0.01 | 0.03 |
| 0.00 | 0.03 | 0.02 | 0.07 |
| 0.05 | 0.15 | 0.08 | 0.04 |
| 0.00 | 0.01 | 0.00 | 0.00 |
| 0.00 | -0.04 | 0.12 | 0.16 |
| 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 |

$\angle I Q B$
$4.630900000 E 10$
LIQEFOR
LIQEFOR
10924000000
LON
8376281000 1,065502900F10 2.400718000F10 1.450328000E10

APPEEIDIX B WORKSPACE MACRO

LONAOFF
$5.807200000 \mathrm{E} 10 \quad 6.994700000 \mathrm{E} 10$

4
NMARKETS
NWE
7.779457670E10 POSG
-7.396300000 E10 QCHRI
0.0002

QINPAY
3.240000000 E 10

QTTAX
3.780000000 E 10
0.0979^{RI}
RU
0.016

SALEST6*)
$2.913290600 E 10 \quad 3.788546400 E 10 \quad 7.025235800 E 10 \quad 6.988083000 E 10 \quad$ Total sales in the 4 industrial sectors, THISAYEAR TJM
$204338800 \quad 264942430 \quad 606865110 \quad 398119570$ TIMAOFF
14659500001498760000

Total wage-sum in the goverment-sector. 1976 and 1977.

Number of industrial sectors in the model. $(=4)$
See appendix A. 1976.

See appendix A. 1976.
Change in rate of interest,last quarter 1976.
See appendix A.Last quarter 1976.
Total tax receipts by the government, last quarter $1976 . \quad$ I
Rate of interest,last quarter 1976 . on
Rate of unemployment, 1976 .
"Year counter"in the model.

Total number of working-hours
during a year, in the governmentsector. 1976 and 1977 .
*) Since 1983 the following variable is,usually,used instead of SALES76:

NYSALEST6
$3.660000000 \mathrm{E} 10 \quad 3.930000000 \mathrm{E} 10 \quad 6.950000000 \mathrm{E} 10 \quad 6.180000000 \mathrm{E} 10$

Export price index, the four industrial sectors. (sector $1,2,3,4$) Price-series, 38 quarters. 1971:1 ..1980:2
These series are used to form future price-series. See function TL $\Delta E \operatorname{PK} \triangle^{P R I S} \Delta^{76}$ on p. 12 in this appendix.

APPEIDIX B WORKSPACE MACRO

| $0_{0.0133237}$ | |
| :---: | :---: |
| | |
| 0.0084091 .6 | |
| 0.01729822 | |
| 0.0124923 | |
| 0.00989622 | |
| 0.0141188 | |
| $0.561{ }^{1 \times 1}$ | |
| | |
| | TXII |
| 0.354 | |
| | TXVA1 |
| 0 | |
| | TXVA2 |
| 0.15 | |
| | TXW |
| 0.267 | |
| | TXWG |
| 0.277 | |
| | RSUES |
| 0 - | |
| 0 | |
| 0 | |
| 0.035 | |

Trend change (quarterly change) in domestic price index for sector 5,6..10
Corporate tax-rate. 19761
Income tax-rate (households). 1976.$\stackrel{\infty}{3}$
Value added tax, investment goods.Last quarter 1976.

Wage-tax rate . 1976
Wage-tax (government-sector) rate. 1976.

Subventions to the 4 industrial sectors, (sector $1,2,3,4$). 1976-. "Food subventions " to sector 4.
Subventions are expressed as fractions of sales in each sector.

APPENDIX B WORKSPACE MACRO

```
        \nablaAGGRITAXC[I]
[1]
R+TXIIXY
\nabla
This function estimates income-tax ,in kr.
Usage: See function QDI_INIT,subfunction in appendix C.
\nablaCOEFFATOL[I] 
COEFFAIO;G;SUMMA; SUMMAMAT
5+(13 19) 41076
This function estimates input-output coefficients
SUMMAt+/[1]S
SUMMAMAT+(13 19)\rhoSUMMA from the input-output matrix IO76
IOCOEFF76+S\divSUMMAMAT
A 0\div0 GER 1,MASTE KORRIGERAS
IOCOEFF76[;7]+0
V
VTLAEXPAPRISATGLGJV
\infty
A 1971:1 THROUGH 1980:2
CYCL +(-16+1+\rhoTLAEXP
[10] [UMMY+(-1+(TLAEXP[;1+\AR-1]\divTLAEXP[; (AR-1]))
[11] DUUM& 0 22 +DUMMY
[11] IUUMt 0 22 tIUMMY
[12] DUt(4,FUT)p((1,FUT)p(DUMMY[1;15+\CYCL])),[1]((1,FUT)\rho(DUMMY[2;15+,CYCL])),[1](Q(FUT,2)p(+/DUMMY[3 4;])
    \div(AR-1))
[13] [UL; IFUT]+[UU[; IFUT] \2\div3
[14] ATENPORARY CHANGE 4/12 1990,TO LOWER FOREIGN INFLATION RATE
[15] R&T!jM,IIU
```

DUTPUT IS QUARTERLY CHANGES FROM 1Q-7G UP TO END OF
A SIMULATION $=$ ARG. N. DUR AND NDUR ON THE AVER-
A AGE TRENI 1971-76. RAW AND IMEII WITH A CYCLE FROM
A 1980:3 AS THE ONE FROM 1975:1.
$A R+(1 \downarrow \rho T L \triangle E X P)$
FUT\& $(1+4 \times N)-(-1+A R-22)$
CYCL+($16+1+\rho T L \Delta E X P)$
UMMYF($1+($ TLAEXPL; $1+\backslash A R-1] \div T L A E X P[; A R-1]))$
2 tLUMM
$\div(A R-1))$
[UL; ; FUT] + LU[; , FUT $] \times 2 \div 3$
ATEMPORARY CHANGE $4 / 121990$, TO LOWER FOREIGN INFLATION RATE
R\&EUM, DU

This function estimates
future export price-changes.

APPENDIX B WORKSPACE SI76 - MICRO DATA

A vector telling what firm-group a certain firm belongs to.

Firm-code.
$2.262 .272 .282 .32 .312 .322 .332 .352 .42 .422 .442 .462 .472 .512 .612 .723 .01 \quad 3.05 \quad 3.063 .073 .083 .093 .1$
$1.911 .921 .93 \quad 3.914 .914 .924 .934 .94$
A vector telling what sector $(1,2,3$ or 4$)$ a certain firm belongs to.
1434444

All firm-data lie in an enormous matrix with 122 rows and 50 columns.
4026
All firm-group data lie in an enormous matrix with 40 rows and 26 columns.
X and $F \triangle D A T A$ are not listed in this documentation, because the figures are given by the firms provided that the figures aren"t published.

APPENDIX C THE IEITIALIEATIOA CODE, MATI CODE

The functions listed below are the functions stored (jan 82) in workspace INIT. They are described in Sections 2 and 4, in Part 2.

The functions have line-numbers leftmost. A function stands between the symbols ∇ (upside-down delta).

Local variables in each function can be found on line zero after the semicolon (i). After the func-tion-name a parameter to the function may appear. For example: START N. N is a parameter (an integer) to the function START.

APPENDIX C FUNCTION START

```
    # START N
[1] #'MMAXCORE 160 .
[2] A NEEDED SPACE IN COMPUTER..,
[3] WORKSPACENAKE&'R',TN
```



```
[5]
[6]
[7]
[8] AW
[9] A
[10] NYR&30
[11] ANUMBER OF YEARS TO INITTALTZE VARTABLES.
[12] ACAN BE CHANGED IN FUNCTION ISTARTXX.
[13] A
[14] &')COPY FUNCTI MOMADII MOMLEL MOISUBST SCANMAT PACK ENS EQUALS ABOVE*
[15] NAME&'TSTART',TN
[1.6] &')COPY TSTART'
[17] ASTART-FUNCTTONG SHOULI LTE IN WORKSPACE TSTART
[18] ENAME
[19] ATHE LINE ABOVE MEANG THAT THE FUNCTION TSTARTXX WTLL RE EXECUTED.
[20] AXX IS THE NUMBER OF THE TNITIALIZATION, (XX=N)
[2IJ ATSTARTXX IS SPECTFTE FOR A CERTAIN EXPERTMENY.
[2.] ATN TGTARTXX ONE CAN CHANGE LTNES BELOW WITH 3 SPECTAL.
[23] AFUNCTIONS MOMADIN,MODSUBGT, MOLMEL.
[24] ATHUS ISTARTXX CAN CHANGE THE PROGRAM BELOW GURING EXECUTION.
[25] A
[26] A
[27] S]\DeltaINTT NYR
[2G] TNITIALIZATTON COMPLETEII
129] &')CLEAR'
r30% E'BWG CLEAR'
V
```


APPENDIX C FUNCTION SIAINIT

```
    * STAINIT NYR:TOMMY
[1] A DUMMY&E')COPY SIZ6 FAOATA X FIRMTO'
[2] ALTNE AEOVE EXECUTEO TN FUNCTTON ESTAELTSHMENTG
[3] IUM兴的')COPY MACRO'
[4] RUMMY&-)COPY FUNCTIONS'
[5] A
[G] AFIRMOATA FROM WORKSPACE ST7G
[7] AMACRODATA FROM WORKSPACE MACRO
\Gamma8I AHELPFUNCTIONS FROM WORKSPACE FUNCTIONS
[9] A
[10] A
[11] TESTUTSKRTFTE0
[12] ANYR=NUMBER OF YEARS TO RUN THE STMULATTON,
[13] A
[J4] A
[15] NQR&4XNYR
[16] ANQR=NUMBER OF QUARTERS
[17] NMARKETS44
[18] A
[19] A
[20] TAXAPARAMETERS
[21] PUBLICASECTOR
[2こ] MONETARY
[23] MARKETS
[24] HOUSEHOLIS
[25] ESTABLTSHMENTS
[267 AFUNCTION IISPOSEAVARAINPUT IELETES VARIAELES FROM WORKSPACE MACRO...
[27] AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
[2g] A SECONL PART OF INTTIALIZATTON
[29] & XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
[30] ATHE FOLLOWTNG VARTABLES ARE NEELEN IN THE SECONM PART
[3N] AOF THE INITTALIZATION, COPTES ARE TAKEN BECAUSE TT SEEMS LOGTCAL.
[32] ATO FORBTI REALING FROM TNPUTFJLES IN SECOND PART OF
[33] aTNTTIALTZATTON...
[34] GROWTHEINITAGRONTH
[35] TXVAZCOPY&TXVAZ
[36] RUSCOPY&RU
[37] TXWCOPY&TXW
```


APPENDIX C FUNCTION SIAINIT (cont.)

```
E387 TXWGCOPY&TXWG
[39] QTNPAYCOPYEGINPAY
[40# RTACOPY&FT
[41] TX[1COPY&TXII
[42] AFFROM NOW ON NO MORE READING FFRM INPUT-WORKSPACES
[43] A(MACRO AND ST76).THERE WILL EE,ONLY,FURTHER WORK WTTH
[44] AVARTABLES ANIJ PARAMETER-SETTTNG.
[4E] [TSPOSEAVARATNPUT
[46] MARKETGALATA
447. SECONDARYAGATA
"4Q7 PUBLTCALATA
[49] MONETARYAOATA
[50] HOUSEHOLDSETIATA
[51] &
E2] A
[53] OUTPUTAOPERATIONS
[54] ATHIS FUNCTTON HANILES OUTPUT, (UNNECESSARY VARIABLES ARE MELETETI).
[5%]
V
```


APPENDIX C FUNCTION TAXAPARAMIETERS

\# TAXAPARAMETERS

```
[1] AVARTABLES IN WORKGPACE MACRO WHTCH TS FTNAL, OUTPUT FROM TNTTTALIZATTON:
[2] a TXVAI,TXVA2
[3] A
[4] A OTHER VARTABLES IN TAXAPARAMETERS WHICH WTLL BE FTNAL
[5] A OUTPUT FROM INTTIALIZATTON:
[6] A ALLL EXO-VARTAELES TO THE LEFT OF '&' BELON ANII TXIZ
[7] A
[8] EXOAQCHTXVAJWNQRTDIFF EXOAQTXVAI
[9] EXOAQCHTXVA2&NQRTOTFF EXOAQTXVA2
[10] EXOATXC&NYR CONTTNUEI EXOATXC
[11] EXOATXIJFNYR CONTINUE: EXOATXII
[12] EXOATXW4NYR CONTTNUEJ EXOATXW
[13] EXOATXWGGNYR CONTTNUET EXOATXWG
[14] TXI341.6
\nabla
```


APPENDIX C FUNCTION PUBLICASECTOR

```
    7 PUELTCASECTOR;ALG;QLG;WAGES;RATEI;RATES;QCHLO
    A VARTARLES IN PUBLTCASECTOR WHTCH WTLL BECOME
    A FINAL OUTPUT FROM INTNTTALTZATION:
[3] A FINAL,OUTPUT FROM ININTLALIZATION:
[G] AGKOFF,EXOAREALCHLG
[6] A
!"% a
EQ# OMEGAG+10^TOCOEFF7GL;13%
[9] TNVG+T076!14;133
[10] RATE1&GARATE]
[11] RATEO4-GARATE?
[12] A RATEI=YEARLY PERCENTAGE CHANGE IN TNVG,RATEZ=TRENLI CHANGE
[13] AL.G世TIMAOFF\divHOURSAPERAYEAR
[14] A
[15] WAOES&-2\rho0
[1.6] WAGES[1]&LONAOFF[1]\divALG[1]
[IZ] WAGESL2]+LONAOFF[2]\divALGL2]
[18] A
[19] QLGt(4x(\rhoALG)) 00
[20] QLG&MAKEQUARTERS ALG
[21] ARESUL.T FROM MAKEQUARTERS:QLG=
[22] AAVERAGE LAEOUR FORCF IN EACH OUARTER,QLG(1):=
[23] AQUARTER 1 BASE YEAR AND SO ON...
[24] QCHLG&-DTFF QL.G
[25] LO&QLG[4]
[26] EXOAREALCHLG4NQR CONTINUEI (3&QCHLG),LGTRENIMCH
[27] EXOAREALCHLOKEXOAREALSHLAOX0.4
[2G] AATTEMPT TO MODTFY GOVERNMENT LEMAND FOR LABOUR DUE TO
[29] AFTCTHOUS LAROUR-FORCE TN THE MOMEL...
[30] A(GOVERNHENT LABOUR+TNDUSTRY LABOUR)\div(TOTAL LAGOUR FORCE)=1.7%4,1 MTLLTON PEOPLE
[3I] ATHAT IS: FTCTTOUS L.AROURFORCE=1,7 MTLL, PEOPLEE IS
[327 AAPPROXTMATELIY 0.4XTOTAL. LABOUR FOORCE,
[33] ATHAT'S WHY LEMANII IS MULTTPLTEEI WTTH 0,4,.,
1:34.7 AFFREIARTK E
[35] А
[36] QWG&WAGES[1]+0.375x(WAGES[2]-WAGES[1])
[37] WG&WAGES[1]
```

```
APPENDIX C FUNCTION PUBLICASECTOR (cont.)
```

```
〔38] ค
[39] QTNVG&(0.25X]NVGX1000000) XRATE1*(1.5%4)
[40] AQUARTER1: RATE1*(-2.5%4)
[41] AQUARTER2: RATEI*(-1,5\div4)
[42] AQUARTER3: RATE1*(0.5%4)
[43] AQUARTER4: RATE1* 1.5\div4)
[44] ASUM := <APPROX,) 4 ,WHTCH MEANS THAT SUM(QTNVG)=TNVO
[45] EXOAQLTNVG&(NQR\rho(RATE2*(1%4)))-1
[46] EXOARSURSHNYR CONTINUE2 RSUBS
[47] GKOFF*(10*6) < (10^1076L; 1JT])"(WG\timesLG)
[48] А
[49] WGAREF-WG
7
```


APPENDIX C FUNCTION MARKETS

```
    \nabla MARKETS;PROM;MAFRJCE
        AFINAL OUTPUT FROM THIS FUNCTTON:
[2] AXIN,IO,TO2,TOZ,OMEGA,OMEGABLD,OMEGAIN,IMP,
[4] AQPLOM, QUPLOM,EXOAQLIPTN,PAREF,QPFOR,EXOAQRPFOR
[5] A
[G] AOUTPUT TO FUNCTYON HOUSEHOLMSAMATA:
[7] AQLPIN,QLPFOR
[8] ค
[9] A
[.1.0] A
[11] A
[12] A
[13] [MP+10\rho0
[14] X1N&600
[15] XTN[3]&0
[167 XIN[1, 3,4,5,6]4]076[5,6,8,9,10;18]\div1076[14;5,6,8,7,10]
[17] AXIN=EXPORT SHARES IN SECTORS OUTSIOE OUR & MARKETS
```



```
[19] ASWETISHAMEMANO&PROHUCTTON(TNCL. TMPORTS)-(ITFF+THPORTS+EXPORTG),
[20J ANOTE THAT TMPORTS IS STORED WITH NEGATIVE SIGN IN IOTG...
[21] A
22% TMP&(1TO76L,10;19.1) GWEDISHANEMAND
[23] ATMP== TMPORT-SHARE OF..SWEOTSH.ICONSUMER'S MEMANK , .
[24] A TMP=TMPORTS VECTOR FOR MARKETS-1,2,.10
[25] A
[26] A
[277 A
[28] TO&TOCOEFF76[110;1]0]
[29] T02+IOCOEFF76L:4;4+16]
1.30] T034TOCOEFF76[4+66;4+667
[31] OMEGA+10^10COEFF76L;16]
[32] OMEGABLIH 104TOCOEFF76[;14]
[33] OMEGAIN&10\uparrowIOCOEFF76[;15]
[.34] A
[35] A
!36] ค
[37] f
```


APPENDIX C FUNCTION MARKETS (cont.)

TNVELTHKO76[14;14]
TNVTNETO76[14; 15]
QTNVBLIH(0.25xTNVELIXI.000000) XRLTIARATEI* (1, 5:4)
QINVINF (0.25×INVTNX1000000)×TNARATE1* (1, 5:4)
EXOAQDINVIN\& - I + (NQRo (INARATE2* (1.4)))
EXOAQIINVELIITA+(NQRp(BLIARATE2\# (1:4)))
A
A
A HISTATXVARCYEARS; QUARTERSI YEAR=1,2,3,4 YEAR $1=1974$
A P[MARKETS;YEARSIYEAR=1,2,3,4
P世IMPLAPRTS,IIJTMPLAPRTSAIN
PロOM\&P UTVE 1-0.25x+/HTSTATXVA2[14: $]$
ENS P[; 3$]=100$
AQPFOR ESTTMATEI FROM VARTAELE EXPORTAPRTS TN
AOLII INTTTALTZATION (BEFORE JULY 1990), .
QPFORt $101,4100.8 \quad 102,1.101$
QRPFORt(TLAEXPAPRTSA76 NYR)E:1]
EXOAQDPFOR\& 0 1 +TLAEXPAPRTSA76 NYR
A
ATHOMAS LJNDEERG HAS MALE THE FUNCTJUN TLAEXPAPRISA7G
AWHTCH YTELTS QUARTERLY EXPORTPRTCE-CHANGES.,
ค
QPLOM PRLOMC; $3,47+, \times 0.6250,375$
QLPDOMz $-1+(P \mathrm{POML} ; 4] \div \mathrm{PDOM}[; 3]) *(1 \div 4)$

MAPRTCE\& ($6,4 \times(\rho T M P L A P R T S A T N)[2 T) \rho 0$
$\mathrm{J} f \mathrm{~J}$.
ST: $+(J=7) / S 1$
MAPRTCE[J; J MAKEQUARTERS IMPLAPRTSATN[J;]
$3+J+1$
\rightarrow - 9
SL:
MAPRTCE $-(0,11) \downarrow$ MAFRTCE
ϑ

APPENDIX C SUBEUNCTION MONETPARY AND HOUSEHOLDS

VMONETARYCDIV
∇ MONETARY
A VARTABLES FROM WORKGPACE MACRO WHICH WILL REMAIN
A UNCHANGED AND WHICH WTLL BECOME FINAL OUTPUT FROM
[3] AINITIALIZATJON: RI,LIQB, POSG,LIQEFOR
[4] A OTHER VARTABLES WHICH WTLL.
[G] A BECOME FINAL OUTPUT FROM TNTTTALTZATTON: ALL EXO-VARIABLES HERE
[6] A
[7] EXOART\&NQR CONTTNUEI EXOART
[8] EXOARIEWFOR E ENQR CONTTNUEI EXOARTHWFOR
[9] EXOARTMEPFORTNQR CONTTNUEI EXOARTHEPFFOR
∇

- HOUGEHOLTS
[1] AOUTPUT FROM TNTTTALIZATION: SEE HOUSEHOLLSADATA INSTEAII
[2] AWHSUM AND HH7G WTLL BE USEII IN HOUSEHOLDSANATA TN
[3] ATHE SECOND PART OF TNTTTALTZATJON.,.
[4] HH7G\&TOCOEFF7GL:10;12]
$[5]$
∇

APPENDIX C FUNCTION ESTABLISEMIENTS

```
[1]
[2]
[3]
$
[4]
[5]
6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
|17
4.17
[18]
[19]
[20]
T21]
aINFORMATION abOUT JNIATA
[22] AX IS FTRM-DATA.
[23] aFALATA IS INLATA ABOUT FTRM-GROUPS.
[24] AX IS A MATRIX W]TH FTRST COMPONENT= FIRM
[25] AANI SECONI COMPONENT= VARIABLE (SALES,LABOUR,ETC..).
[26] aX CONSISTS MAINLY OF GATA FOR THE YEAR 197G.
[27] A
[28] 
[29] a REDUCTION ON LIST
[30] aFIRMS WITH INCONSTSTENT VARIABLES ARE OMITTEO,
[31] L0:F&FTRMTLL(X[;1]eLIST)/1pXL;1]]
[32] NAMNAMARKET&R\triangleMARKETL(XL;1]ELIST)/1pX[;1]]
[33] ALPHAt(+/X[(X[;1]&LTST)/, EX[;1]; 7 12])\divFADATA[FF;15]
[34] a CHECK ON ALPHA
[35] ->(0=\rhoFLAG+(1%ALPHA+, XFO,=|「/F)/\「/F)/L2
[36] HELP&:0
[37] a OLI: LJ:HELP&HELPF,F:1^FLAG
```


APPENDIX C FUNCTION ESTABLISHMENTES (cont.)

```
[30] L1:HELP&HELP,ALPHA:L/ALPHAL((1, FFLAG)=FF)/ipF]
[39] +(0%\rhoFLA[G&1+FLAG)/LI
[40] ' GROPPTNG ', (S 2 FLTSTEHELPT),'FROM LIST.'
[41] LTST-(N(1\rhoLTST) EHEL.P)/LJST
[42] +L0
[43] L.2:X&X[(X[;1] L.TST)/1pX[.1];]
[44] A
[45] A
[46] А
[47] A R=NUMEER OF REAL FIRMS.
[48] AMARKET=VECTOR WTTH MARKET NUMEERS FOR EACH FTRM,
[49] AFOR EXAMPLE: 1. 1 1 2 1 3 j. 4 1. & ..,ETC.
[G0] ASAMARKET=VECTOR UITH MARKETWNUMBERS FOR SYNTHETIC FTRMS.
[51] A
[52]
[53]
[54
[45%]
[56]
*T7
[57]
[58]
[59]
[60] A
[61] A SETTTNG SCALE FOR SYNTHETTC FTRMS:
[G2] SCALE*:0
[63] SCALE&GCALE,SYNTHAF]RMS[1]SCALEE 0.02
[64.] SCALE&SCALE,SYNTHAF]RMST2]SCALE 0.001.
[65] SCALE&SCALE,SYNTHAFIRMS[J]SCALE 0.02
[66] SCALEFSCALE,SYNTHAFTRMST4]SCALEE 0,0001.
[67] ENS 1=GYNTHASUM1 SCALE
[68] A
[69] []RL&-123476
[70] ADRLL YIELUS START-VALUE FOR PGEULO-RANDOM-NUMEERS:
[71] ATHIS MEANS THAT THE SAME 'RANDOM-NUMEERS' WTLLL [E
[72] AGENERATEL IN MIFFERENT EXECUTJONG ,AS LONG AS ONE
[73] ALIOESN'T CHANGE DRL.,
[74] ARANDOMNUMBERS OCCUR IN THE FUNCT]ONG 'USTNG' AND 'RANDOMTZE'.
[75] A
[76]
[77]
```


APPENDIX C FUNCTION ESTABLISHMENTS (cont.)

```
[78] ค
[79] A
[80] ASALES:
[81] ASUM1, REALASUM1,SYNTHASUM1 ETC, SUM FIRMVARIARLEEG TO
[82] AMARKET-VARIARLES,A FIRM-VECTOR IS SUMMEI UP TO A
[83] AMARKET-VECTOR OF LENGTH 4.
[84] REALASALES&(+/XL; 7 127x1000000)
[85] RESASALES&SALESTG-REALASUM1 (REALASALES)
[86] SYNTHASALESGSCALEXRESASALESLSAMARKET]
[87] S4REALASALES,SYNTHASALEG
[88] А
r89] А
[90] A
[91] ALABOUR:
[92] REALALAEOUR*-X[;3]
[93] RESAL.ABOURG(TTM\divHOURSAPERAYEAR)-REALASUMI (REALALABOUR)
[94] SYNTHALABOUR&R+SXRATTO& (REALALABOUR\divREALASALLES)USINGS
[95] a
[96] AFUNCTTON 'USTNG' HAS THE FORM 'A UGTNG B'
[97] AFUNCTION 'USTNG' LOES:
[9G] A(1) EXTENDS VARTABLE A WTTH RANDOMTZEN VALUES FOR
[99] a SYNTHETIC FTRMS.
[100] A (2)THE RANDOMTZETI VALUEG OF A COVARTES WTTH B.
[101] A THE VARIABLES A ANOI B ARE FTRM-VECTORS...
[102] А
[103] SYNTHALABOURtSYNTHALABOURX(RESALABOUR\div(SYNTHASUMJ SYNTHALAEOUR))EGAMARKETZ
[104] L&REALALABOUR,SYNTHALABOUR
[105] A
[106] A
[107] ค
[10GT AEXPORT FRACTTONG (EXPORTG\divGALES) :
[I09] AXM= EXPORT-SHARE (MARKET-AVERAGE), FROM
[110] aTO-MATRTX. XM IS A VECTOR OF LENGTH=4.
[111] ASALES IS APPROXIMATED WITH PROLUCTION,
[112] XM+4\rho0
[113] X X&T076[14;18]\divT076[14;44]
[114] AXM&EXPORTS (MARKETS 1,2,3,4) % PRONUCTION (MARKETS 1,2,3,4)
[I15] REALARATTO4-(X[;7]\div(+/XE; 7 12]))
[116] SYNTHARATTOLREALARATTO RANDOMTZE G
[117] RESAEXPORTG(XMX(SUML S))-REALASUMA(REALARATIOXREALASALES)
```


APPENDIX C FUNCTION ESTABLISHAENTS (cont.)

```
E118I SYNTHARAT1O&SYNTHARATIOX(RESAEXPORT\div(SYNTHASUMI(SYNTHARATTOXSYNTHASALES)))ESAMARKETJ
[118] X&REALARATIO.SYNTHARATIO
[120] 'TEST PA EXPORTANDEL, X:0.95
[121] (X:0)\vee(X:0.95)
[122] X&-0Г0.95LX
[123] A
[124] A
[125] А
[12&] &
[127] APRTCES
[128] P&(\rhoMARKET)pl00
[129] A
[130] &
[131] ATNUENTORIES
[132] ARAT]O=ACTUAL STOCK--RATIO=STOCK\divSALEG
[133] RATTO&(XL;48]\div100)USTNG 3
[134] STO&(S\divP)XRATTO
[135] ARATTOJ=NORMAL LEVEL OF STOCK-RATTO
[136] RATTOI*(XIF;50]\div100)USING RAT]OT0.0.
[137] A NOTE WE ARE GETTTNG ETG, SMALL, ETC FOR EACH FIRM
[138] EIG+RATIOT(1+\Delta40,5) xRAT101
[139] SMALL&RATTOL(1-A) xRATTO1
```



```
[141] ETG&0「0.51ETG
```



```
[143] SMALL{0\SMAL
[J44] AK 3AFINTSH&-SXRATIO-RATTOI
[145] A THAT WAS PROLUCT INVENTORTES., NEXT TS TNPUT GOOLG TNVENTORTES.
[146] A
EI47] AINFUTRATIO=(PURCHASES OF RAW MATERTALS)\divSALES
[148] TNPUTRATTO&(X[;17]*+/X[; 7 12])USING S
[149] А
[150] RATTOL&(X[;44]\div100)USING INPUTRATTO
[15J] a RATTOI=ACTUAL STOCK-RATTO.
[45] RATTO2*(XL;46]\div100)USTNG RATTOIT0.0I
[453] ARATLO2= NORMAL STOCK LEVEL.
[154] K3AIFEIHESTNPUTRATIOXRATTOJ.
[155] TMBTG&RATION\(1+A) XRATTO2
[156] TMSMALI&RATTOLL(1-A) 人RATTO2
```


APPENDIX C FUNCTION ESTABLISHMENTS (cont.)

```
\158] TMETG&0%0,SLTMETG
```



```
[160] IMSMALL+OTTMSMALL
[161] BETA&TMBETAt0.5
[162] AK3ATMELGGXINPUTRATTOXRATTOL-RATTO2
[163] ATMSTO JS A FTRMXPROMUCT-MATRIX (#FTRMX10-MATRTX)
E1G4] AMULT7 MULTIPLIES A MATRTX WTTH A COLUMN-VECTOR.
[165] ค
[166] &M MULTTV V ,MmMATRIX M(I,J) V=VECTOR V(I.)
[167] aRESULT: A MATRIX WTTH ELEMENTS M(I,J)XV(I)
[168] A
[1.69] A NEXT: SPREAIH K SAIMED ACROSS SECTORG USING IOMMATRIX
[170] IMSTOH((<(&TO)OTV7+/QIO)IMARKET;])MULT7 K3ATMEM)\div100
[171] A NOTE: WE HAVE UTVTOER GY 1.00 ASSUMTNG RASE YEAR=GTART YEAR.
[172] ATMSTO SHOULI RE TN FTXEII PRTCES,THUS IIVTSJON BY IOO
[173] A,WHICH TS THE PRTCETNDEX FOR 1976
[J.74] A THE TMEA BEHIND THAT COMPUTATION WAS AS FOLLOWS:
[175] A (GTO)[1;] LOOKS LTKE ALI,I],.,.,.ALI,IOT, WHERE
E176] A A[1,J]=FRACTJON OF GROSS PRODUCTTON IN SECTOR I ACCTIIFOR BY
[177] a INPUTS FROM SECTOR J.
[178] A THEN ALI,J]%SUM ON J OF ALI,J] = FRACTTON OF TNPUT GOOLIS
[179] A COMTNG FROM SECTOR J
[.180] А
[181] ค
[182# A
[183] A
FIg47 A COMPUTATION OF TNPUT GOOLS PURCHASES
[185] REALATNPEX[;17]X1000000
[186] QCURR+S+\DeltaK 3AFTNTSH
[187] ค
[188] AQCURR=PROMUCTION IN CURRENT PRTCES:SALES+CH. IN STOCK
[189] AHELP (BELOW) IS TOTAL. TNPUT CONSUMPTION BY THE
[190] ASYNTHETIC FIRM UN]TS PER SECTOR (1,2,3,4),
[191] A
[192] HELP&(+/(#IO)[:4;IMULT7 SUMJ QCURR)-(REALASUML(REALAINP-WAAKBATMEDI))
[193] HELP&HELPPSYNTHASUML(R\downarrowAKSATMETI)
EIG4T A HELP=TOTAL INPUT GOOLS PURCHASES BY THE SYNTHETTC UNITS (\rhoHELP=N)
[195] a IN EACH SECTOR
[196] A INP=INPUT GOOL PURCHASES FOR EACH PRODUCTJON UNTT, SLJMEI OVER GECTORS
E1.97T A PINP = PMARKETS
```


APPENDIX C FUNCTION ESTABLISHMENTS (cont.)

```
II987 TNP&REAL.ATNP,(R\downarrowSXTNPUTRATTO)X(HELP*(SYNTHASUM1 R&SXINPUTRATTO))ESAMARKETJ
[199] &
[200] A QTMQ=INP SPREAD ACROSS THE JO SECTORS, JUST LTKE IMSTO AKOVE,
[201] QIMQ*((((*IO)LIV7+/QIO)[MARKET; ])MULTT INP)\div100
[202] QIMQ+QIMQ\div4
[203] A SAME COMMENT AS APPLIES TO THE LEFLATTON OF IMGTO
[204] A VALUE ADINED
[205] VATQCURR+AKBAIMEL-TNP
[206] [ISPOSEEAFTRMS
[207] A
[208] ACONSUMPTION=INP-AKZAIMEI=PURCHASES-CHANGE IN STOCK
[2097 A VALUE ADIEL=PROMUCTION-CONSUMPTTON
[210] A
[211] RESAFORVF-SYNTHASUM1(R+VA)
[212] FORVF&SUMI(VA)
[213] REALAFORVF&R^VA
[214] SYNTHAFORVF&R&VA
E2S.G AFORVF,REALAFORVF ETC, ARE USEII TN FUNCTTON CONTROLS EELOW..,
[216] A
[217] A
[218] A
[219] а
[220] &
"2217 ค WAGES
[222] REALAKRALON&XL;5] 1000000
[223] REALAW&REALAKRALON\div(RYL)
[224] SYNTHAW*RLSX(RATTO& (REALAKRALON\divREAL.ASALES)USTNO L) L. 
[22G] RESAKRALON+LON-REALASUMI.(REALAWX(RTL))
[226] SYNTHAWGGYNTHAWX(RESAKRALON\div(SYNTHASUMI (R+L) XSYNTHAW))[SAMARKET]
[227] WtREALAW, SYNTHAW
[228] SYNTHAKRALON&SYNTHAWX(R\downarrowL)
[209] LW&("1+(x/XE; 2 5]) -x/XE; 3 4])USTNG W
[230] QOW& MW%4
[231]] QW&((Q(<2, (oW))p(W,W+DW)))+, x(0,625,0,375))
[232] आ\A&-ISt(*1+(+/XL; 7 1.2])\div+/X[; 6 1I])USTNG MW
```



```
[234] QVA4VAX(1+[VA\div4)\div4
[235] &
[236] A
[237] 6
```


APPENDIX C FUNCTION ESTABLISHMENTS (cont.)

```
[2387 A
[239] a MARGTNS
K240] M+1-WWL\divVVA
[241] M754]-(X[;4.]\div+/X[; 6 11])xR^5\divVA
[242] & M7E=PROFIT MARGIN 1975.
[243] HELPP4(RTM)-M75
[244] MHIST<0,5\times(2XM)-CHM*HELP USTNG [1S
[245] AVARIABLES FOR FUNCTION CONTROL BELOW
[246] ค
[247] OVERSKOTT&SUMI (MXVA)
[248] SYNTHAOVERSKOTT&R\downarrow (MXVA)
[2497 REALAOVERSKOTT&RT(MXVA)
[250] [1P-((R1LS)-XL;26]\div100)USING .US
```



```
[252] a QUANTITIES
[53] Q+(S+AKBAFINTSH)\divP
[254] QQ+(QS+AK3AFTNTSH\div4)\divQP
[255] [Q&-15-mP
H25G] A SOME VARTAELES AMLEI 27 OCT 1.980...
[257.] FATNKOP&(TNP-AK3ATMEIN)\div(100*Q)
L.2S日I APURCHASING-SHARE PER FIRM =FATNKOP
[359] BRTNKOP44+(+/L1110)
[260] APURCHASTNG SHARE PER MARKET =ERTNKOP
[261] SHAREGFATNKOPGBRTNKOP[MARKET]
[262' ASHARE IS USEH IN THE MONEL IN THTS WAY:
[263] ASHAREX (MARKET AVERAGE TNPUT GHARE)=
[267 ATHE INDTVIDUAL INPUT SHARE FOR EACH FTRM.
[265] AMARKET AVERAGE TNPUT SHARE=ERTNKOP[I],.BRTNKOPL4]
[260] ค
[267] a
[268] A
[269] A
[270] &
[271] & A2] ANI A22
[272] A22&(-/XE; 30 32]\div100)USTNG A21&&-/X[; 32 26]\div100)USING M
[273] A2140%0.ELA21.
[274] A22*0.025T0.5LA22
[27E] A MUST ENGURE A22:0 SO TEC CAN BE COMPUTEH.,
[276] A AMAN--EASEL ON APPROXTMATTON GTUEN TN TNOUSTRTKON.JUNKTUREN PAPER
[277] AMAN*-Q(3,\rhoL)\rho(LXA21%1+A21)\div3
```


APPENDIX C FUNCTION ESTABLISEMMENTS (cont.)

```
[27B] G EXPECTATTONS., NOTE THAT EXPDW SHOULD BE FTXEG
1279] HTSTMStEXPDSt("1+(+/XL; Q 13])\div+/XL; 7 12J)USING MS
K280] HJSTHSLEV2*(HTSTHSTEVM-0.02 EETWEEN(\rhoHTSTLS)\rho0.02)*2
[281] HTSTOP&EXPRP&((R\uparrowEXPHS)-X[G2G]\div100)USTNG EXPTS
[2g2] HISTUPDEV2+(HTSTGPOEV*-0.02 EETUEEN(\rhoHTSTMP)\rho0.02)*2
[283] HTSTDW+EXPDWHEXPTS-EXPDP
[2g4 H HTSTOWOEV2-(HTSTOWDEVt-0.02 EETWEEN( OHTSTHW)p0.02)*2
[28E] A PROMUCTTON FUNGTTON PARAMETERS.
[286] QTOP&(QQX1+A21+A22)\div1-RES+(\rhoQQ)\rho0.5XRESMAX&0.2
[287] TEC&-1x(0)A22\div1+A21+A22) 人QTOP\divL
[288] ENS(QQ-QFR1 L) ©0.5
[289] A FINANCJAL VARTABLEES
[290] K1EOOK&Sx(%/FANATALF; 5 15])USTNG S)
\291] K1&Sx(%/FAOATAEF; 26 151)USING K1BOOK)
[292] K2&KIEOOKX((&+/FARATALF; 1 2 4 6J) FFARATALF;5])USTNG KL)
[293] A&K1+K2+K1EOOKX((\div/FADATA[F; 3 5])USING S)
```



```
[295] EA[L4-(\rhoBW)\rho0
[296] QTMTV&GUM2 -0.25xK1BOOKX(% %/FAIATACF; 20 G])USTNG M)
[297] TNVEFF&QTOPXQP\divKL
[29g] QTNV&5x(((+/AE; 21 24J)\div+/X[; 7 127)USING 5)\div4
[299] (TNVLAGtQINVXI+(VA AVGI IUP IITV 4)[IURt-3]
[300] TMTNU&21 1 0.5
[30J] DELAYATNV&&(3, %QTNV) pQTNV MULTI(4XTMTNV)\div3
[302] RSURSACASHERSURSAEXTRA&LLO
[303] A
[304] 月
[305] CONTROLS
[306] A
[307] &
[308I A CONSISTENCY-CONTROLS ARE MADE IN FUNCTTON CONTROLG
[309] A
[310] TOAMATRTX
[311] ATO-MATRJX IN FLOWS IS WRITTEN OUT
[312] A
[313] MTSPOSE2AFTRMS
[314] ATHIS FUNCTION IELETES VARTABLES OF NO FURTHER USE
[315] ค
[316] A SOME VARIAELES NEETEM FOR NULLIFY ANLI SHRTNK
[317] LEFT&MARKET:OORIGMARKET&MARKET
[318] 'SIZEUTSKRIFT 3'
[319] *')STZE'
[3207 A
\nabla
```

Note: Line $290, . .302$ FINANCIAL variables.
Function CONTROLS is listed on the following page. Function IO-MATRIX is listed on the following pages.

APPENDIX C SUBFUNCTION CONTROLS

(subfunction to ESTABLISHMENTS)
Consistency Control

```
    V CONTROLS;GTFF
[1]
    A
F2] ENS(LON+OVERSKOTT)=FORVF
[3] ENS LON=(REALASUM1 REALAKRALON) +(SYNTHASUML GYNTHAKRALON)
[4] ENS OVERSKOTT=(REALASUM1 REALAOVERSKOTT) +(SYNTHASUM1.
    GYNTHAOVERSKOTT)
        ENS FORVF=(REALASUML REAL.AFORVF)+(SYNTHASUMS SYNTHAFORVF)
6] [ITFF゙&SALES76-(SUM1 S)
[7] ENS WTFF`I,000000000E"6 x(GUMJ S)
[B] ENS(TTH%HOURSAPERAYEAR)=(REALASUMI REALALAEOUR) +SYNTHASUMI
    SYNTHAL.ABOUR
[9] ENS(REALAFORVF-(REALAKRALON+REALAOVERSKOTT))`1,000000000E - "%
[10] ENS(SYNTHAFORVF--(SYNTHAKRALON+SYNTHAOVERSKOTT))&1,000000000E"7
[11] ENS(SYNTHASUML (SYNTHAWXSYNTHALABOUR))=GYNTHASUMI (SYNTHAKRALON)
[12] ENS(REAL.ASUMI (REALAWXREALALAEOUR))=REAL.ASUMI (REALAKRALON)
[13] ENS(SYNTHASUM1((R+M) SYNTHAFORYF))=GYNTHASUMI (SYNTHAOVERSKOTT)
[14] ENS(REALASUMI((RTM) XREAL,AFORVF))=REALASUMI(REALAOVERSKOTT)
[15] ENS X:0
[16] ENS X\leq1
[17] ENS((SUM1 VA)\div(SUMI QCURR))=(1--BRTNKOPC,4])
[18] ENS((SUMI(INP\cdotsAKBATMEM))\div(SUMI QCURR))=(ERTNKOPL,4.])
IG7 TIFF%(XMXGUM1 G)-(SUM1 X S S)
[20] ENS [TFF:(0.01\timesSUMI G)
\nabla
```

Note: The subfunction ENS is documented in Appen-
dix D.

APPENDIX C SUBFUNCTION IOAMATRIX

```
(subfunction to ESTABLISHMENTS)
(Consistency Control is performed)
```

```
[1]
    \nabla TOAMATRIX;MA;PROD;CHAR;RESIDUAL;SWERISHADEMANI
    ATHIS FUNCTION DOES:
[2] A(1) AN INPUT-OUTPUT MATRIX FOR THE SWEDISH
[3] a ECONOMY IN FLOWS IS PRINTEU OUT.
[4] a THE INITIALIZEN VARIABLES ARE USEO.
[5]
[6]
[7]
[8.]
[9]
[.10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19] A THE FTRST 4 COLUMNS IN MA ARE REPLACED WITH FLOWS
[20] a COMING FROM INITIALIIZATION.
[21] a COLUMN 5.,10 UNCHANGEM.
[22] MA[,13;11]4*(GKOFFXWGXLG*10*6), (0,0,0)
[23] MA[14;11]&+/F.]MAR:13;11]
[24]
[25]
[26]
[27] MA[:13]&COMEGGAGXQINVGX4-10
MA[;13]f(OMEGAGXQINVGX4\div10#6), (0,0,0,4\timesQINVG\div10#6)
[28]
[29]
[30]
[31] A
[.32]
[3:3]
[34] &
[35]
[36] [37] 
[37]
    MA[14;18]f+/[1]MA[113;18]
    A
```


APPENDIX C SUBFUNCTION IOAMATRIX (cont.)

> SWETISHALEMANLI\&+/MAL:10; 117]

MAL , 13;19]\& (TMPXSWEDTSHADEMANO) $(0,0,0)$
MAC1.4;1.9]4+/[1] 1 AL[1.3;1.9]
MAL;19]+("1)×MAL";19]
ค
MA[$113 ; 21]$-MAC1.4; 110$],(0,0,0)$
MA[14;21] + +/[1]MA[:13;21]
A
RESTHUAL $-M A[; 21]-((+/ M A[110 ; 120]),(0,0,0),(+/ M A[14 ; 1207))$
A

ค
DPW4-110
APAQE WTDTH
'INPUT-OUTPUT MATRIX FROM JNITIALIZATION:
$80 \rho^{\circ}$
80p.
(8,0) TMAL; 10. 07
$80 \rho^{\circ}$
$80 p^{\prime}$.
$\begin{array}{llll}11 & 12 & 13 & 14\end{array}$
$14 \quad 15$
51.6

16
17
1.8

20
10^{\prime}
(8,0) $7 \mathrm{MAL} ; 10+11]$

- ROW 1: RAW MATERTAL SECTOR •
-ROW 2: INTERMEITATE GOODS
- ROW 3: TNVESTMENT GOONS AND CONSUMER IURABLE GOOMS'
- ROW 4: CONSUMPTION GOOLS •
- ROW 5 : AGRTCULTURE,FORESTRY,FISHING
'ROW 6: MTNTNG ANI QUARRYING '
- ROW 7: OTL.
- ROW 8 : CONSTRUCTION
- ROW 9 : ELECTRTCTTY.
'ROW 10: OTHER SERVTCTEG
- ROW LI: COMMOMITY GASEO TNLIRECT TAXES
'ROW 12: VALUE ADHED IN PRODUCER' S PRTCES *
'ROW I. 3 : CORRECTTONS
'ROW 14: SUM = PROMUCTION
'COLUMN 1,2 THROUGH $10=$ CORRESPONITNG ROWS \cdot
'COLLMN 1.1: GOVERNHENT' S CONSUMPTION '
'COLUMN 12: HOUSEHOLIG' ' C CONSUMPTION '

APPENDIX C
 SUBFUNCTION IOAMATRIX (cont.)

```
[7g] 'COLUMN 13: GOVERMMENT''S INVESTMENTS
[80] 'COLUMN 15: INVESTMENTS IN SECTOR 6..10
[81] COLUMN 16: OTHER INVESTMENTS
[82] 'COLUMN 17: CHANGE IN STOCK
[83] COLUMN 18: EXPORTS.
[84] COLUMN 19: IMPORTS '
[85] COLUMN 20: MOMS ETC.
[86] COLUMN 21: HORTZONTAL GUM=PRODUCTION '
[97] 900.'
[88" 'RESTMUAL
[89] RESIDUAL
[90] ค
[g1. amADE BY FREDRTK BERGHOLM INEC 198J.....
```


APPENDIX C SUBFUNCTION MARKFTS-DATA

```
    v mARKETSADATA;TMEXP;TMTARO
[1]
        output from initialization:All variables below except TMEXP,TMTARG,NPER
[2] NPER&4
[3] RUUR43
[4] MKT4-14
[5] IN44+16
[6] a
[7] RET4-1+1.035*(1\div4)
[8] ENTRY+RET+0.0068\divNPER
[9] EXPXPP&-0.03
[10] EXPXOW40.07
[11] ExpXOS&0.07
[12] R&0.5
[13] E1&0.1
[14] E2+0
[15] SMP+SMW+SMS+1-2+1+TMEXP+3
[16] FTP&FTWtFTSt-(1-R) 22*1+NPERXTMEXP
[17] SMT4-2\div1+TMTARG+3
[18] ค
[19] GAMMAF0.1
[20] THETAF0.01
[21] KSI40.25
[22] SKREPATG0
[23] TOTA&0.5
[24] NITER&G
[25] A
[26] TMSTOH-1
[27] A
[28. TMTMGTO&1
[29] ค
[30] RHO&-1+(1+1\div35)*(1\div4)
[3.] RHOLOOK&-1+(1,15)*(1\div4)
[32" QDMTEC& 1+(1.056 1.03 1.026 1.004)*(1*4)
[33.] a RESMAX&0.2 [S SET IN ESTABLTSHMENTS...
[34] Los540.1
[35] RESUOWN*0.9
[36] WTIX%1
[377 A
```


APPENDIX C SUBFUNCTION MARKETS-DATA (cont.)

```
L.39# RW+K2\div5
[39] ALFAEN&0.075%NPER
[40] BETABW41
[41] UTREF&0.85
[42] ELINV&-3
[43] RTH&-1
[44T ATMTNV IS SET IN ESTABLTGHMENTS
[45] A
[46] EPG40
[477] TMX&-3 3
[48] TMIMP4 3 3 3 3
[49] A
[50] RLU40.6
[51] MAXIPP-0.06
```

```
APPENDIX C
SUBFUNCTIONS
PUBLIC-DATA
AND
SECONDARY-DATA
    v publicadafa
[1] a VARTABLES WHTCH WILL BE OUTPUT FROM INTTTALTZATION: WGG,RTRANS,T
    STOCURF, TSTOCURM
[2] WGG+WGxLG
[3] RTRANS+0.5
[4] ATSTOCURF IS A MARKET-VECTOR (4 MARKETS),FUNCTION SUMI TRANSFORMS
    FIRMS-mATA TO MARKET-MATA...
[5]
[6]
\nabla
\(\nabla\) Secondaryanata; mtecaperafirm
    GVARIABLES WHICH WTLL EE OUTPUT FROM INITTALIZATION:
[1] GVARIAELES WHICCH
[3] ARU\triangleCOPY IS A COPY OF RU WHICH COMES FROM INPUTFTLEE.
[4] AL,QW,QOW,QDMTEC,TEC COMES FROM ESTABLITHHENTG
[5] AGROWTH COMES FROM INPUTFTLE (JNITAGROWTH=GROWTH)
[6] alG COMES FROM FUNCTION PUBLICASECTOR
    [7] LU+(LG+SUM2(L)) xRUACOPY\div(1- RUACOPY)
    [8] ALG+SUM2 L=WORKING LABOUR FORCE=TOTAL LABOUR FORCE--UNEMPLOYEEI
    [9] GUNEMPLOYED=:RX'WORKING LABOUR FORCE'
    [10] AWHERE R SHOULT EE UNEMPLOYETOWORKTNG LABOUR FORCE
    [11] ASINCE RU IS DEFINED AS UNEMPLOYED:TOTAL LABOUR FORCE R== RU\div(I-R
    (1)...
    [12] QLWINDt 1.+(L AVG2 QWX(1+QDW)) -(L AVG2 QW)
    [13] MTECAPERAFTRM&TEC UTVI(1-QNMTEC\div((RHO+GROWTH)*(1*4)))
    [14] MTEC&L, AVGI MTECAPERAFIRM
    [15] AAVG1 YJELIS MARKET-AVERAGES FROM FIRMS-IATA (MTECAPERAFIRM) WEJGH
        TEO BY LABOUR-GHARES (L:SUM L)
    [16] ENS 0<MTEC
    \nabla
```


APPENDIX C SUBFUNCTION MONEYPARY-DAYA

```
    * MONETARYATIATA
[1] AALL VARIABLES EELOW WTLL BE OUTPUT FROM INITIALTZATION
[2] POSGFOR+0
[3] TMFAS54-3\div12
[4] TMFD+2%12
[G] FH&FASSG(SUM2 XXS) \TMFASS
[6] KAPPA140.02
[7] KAPPA2-0.3
[8] RFUNOL&0.5
[9] RFUNH240.25
[10] L.AMDA1&0.6
[11] LAMLAZ&-0.8
[12] MAXQCHRT -0.01
[13] ME&0.01.5
[14] MAXRTNTFF&0.05
E15% RTAISAEXOGENOUS*-1
[16] MINRI4ME
E17] MAXRI40.25
[18] FUNISAAREAENOUGH&0
[19] REICHBW&-0.15
```

```
    \nabla HOUSEHOLOSADATA;PRTCECHANGES; IUR
[.]] AINPUT TO THIS FUNCTTON:
R2] AGKOFF,LG,WG,L,QW,QTMIV,LU,QLWTND FROM FUNCTION PUBLTCASECTOR,EGTA
    BLISHMENT, SECONMARYANATA
[3] AQPIOM, QIPFOR,QLPIN FROM FUNCTTON ESTABLISHMENTS
[4] ARTRANS,RLU,RHO FROM FUNCTTON MARKETSAIATA
[5] ATXIL,TXW,TXWG,QINPAY,RI (INDIRECTLY) FROM WORKSPACE MACRO
[6] aHH76,WHSUM FROM HOUSEHOLIS.,.
[.7] AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
[B] GOUTPUT FROM THTS FUNCTJON,WHTCH WTLL. BE FINAL OUTPUT FROM TNTTTAL.
    IZATION
[9] AZ,SAV,NDUR,NDURAMUR,NH,WH,WHRA,QPH,QC,CVA,QLCPI,QCPI,QDT
[10] AQSAVHREQ,RHOLUR,STODUR,ALFA AND BETA-COEFFTCTENTS,GMOOTH ,MARKET
    ATTER...
[11] A
[12] [UUR&3
13] NOURAMUR4-\II
[14] Z&1]
[15] SAV*12
[LG] NDUR&(DUR;E,11)/111
[17] ANOUR,Z,SAV ARE TNDEX-VARTABLES..,
[.18] NHtLG+(SUM2 Ls)+LU
[19] WHFWHSUM\divNH
[20] QHTATNTT
E2IJ aFUNCTION QHTATNTT TS CALLEO TO GTVE A VALUE TO QMT,ANH THTS IS TH
    E ONLY PURPOSE OF THTS FUNCTTON, OLTWITSPOGAELE TNCOME
E22] WHRA&WHOQRT
[23] OPH&QPGOM,0
[24] AQPH USET TO BE A VECTOR OF LENGTH II,QPH(I1) WAS THE PRTCE JN THE
        SERVTCE SECTOP,THERE IS NO LONGER AN ELEVENTH SERVICE-- SECTOR,SO
    QPH=QPLOM FOR TECHNTCAL REASONS WE SEE TO THAT QPH
[SEG GHAS THE LENGTH II UESPITE THIS,FOR THE TGME GETNG, WHERE WE WTLL. H
    AVE A REIUNTANT O AT THE ENT,.,
[26.] QC+(HH76xQIT),0
[27. QC&(1, 人QC)\rhoQC
<g] बCtmQC
I29# AQC ANO CVA MUST BE COLUMN-VECTORS FOR TECHNTCAL REASONS.,.
[30] ASEE MOSES-FUNCTTON CPTE.,.
[1] CVA&QC MTV7 QPH
#32] QCPT+CPIJ(QPH)
[33] PRTCECHANGESEQDPFOR,OLPTN,0
[34 QUCPT& (PRTCECHANGES+, x,QC)\div(+/,QC)
```

Note: QDI-INIT is a subfunction listed later on.

APPENDIX C SUBFUNCTION HOUSEHOLDS-DATA (cont.)

```
[36] A
[37] RHONUR&RHO
15387 STODUR&QPHELURJXCVALXUR; I % RHOMUR
[39] &
F40] ALFAB40.3
[41] ALFA4*0.5
[42] EETA1& 1. 1 0.7 0.75 0.9 1. 1. 0.9 1. 1. 0.75 1 0.5
[43] BETA24 0 0.02 0.1. 0.22 0.01. 0 0 0.08 0 0.36 0 0.21
[44] EETAB&0\timesEETA2
[45] SMOOTHt(11p0.9),1
[46% A
[47] MARKETA]TER&3
[48] AMARKETATTER TELLS HOW MANY TTERATLONS WTLL. BE IIONE IN THE MARKET
    PROCESS MURTNG STMULATION. ..
[49] NH+1\rhoNH
V
```


APPENDIX C SUBFUNCTION DISPOSEL-FIRMS

```
(deletes a number of variables)
This function is called in subfunc-
tion ESTABLISHMENTS.
```

 'SYNTHASALES'
 ETMTHASALES
[12J SLUT PA TESTUTSKRTFT T OTSPOSEIAFTRMS
[13] START:
「1. 1 A
KIEI KTLL ' SCALE MAKEQUARTERS'
EHGI KTLL RAMARKET FTRMTO RESALAEOUR SYNTHASALEG REGASALEG RATTOI RAT
TOZ INPUTRATIO'
[JTI KTLL REEALARATTO GYNTHARATTO RESAEXPORT REALATNP LTST KZATMER•
FLQ] ATHTG FUNCTTON GELETES VARTABLES ANO FUNCTIONS OF NO FURTHER USE.
∇
VHISPOSEAAFTRMSLDIV
\square DTSPOSETAFIRMS
$\rightarrow($ TESTUTSKRIFT $=0$)/START
'REAL.ARATIO'
REALARATTO
- gYntharateo'
GYNTHARATIO
- Inputratto.
INPUTRATIO
'REALASALES'
REALASALES

APPENDIX C SUBFUNCTION DISPOSE2-FIRMS

(deletes a number of variables) This function is called in subfunction ESTABLISHMENTS.

```
    \nablaIISPOSE2AFIRMSCDIV
    \nabla misposezafirms
[1] ->(TESTUTSKRIFT=0)/START
[2] 'SAMARKET.
[3] SAMMARKET
[4] T A21.
[5] A21
[6] 'A22'
17] A22
[g] 'INP'
[97 TNP
[10] 'gCuRR'
I.1.I QCURR
412] 'M7%'
[13I M75
[14] 'AKZATMEM'
[15] \triangleKSAIMED
[16] '\triangleKBAFTNTSH'
[17] AK3\triangleFINISH
[18] 'REALAFORVF'
[19] REALAFORVF
[20J 'SYNTHAFORVF.
[2I] SYNTHAFORVF
[22] 'FORVF'
[23] FORVF
[24] REALALABOUR.
[25] REALALABOUR
[26] 'GYNTHALABOUR'
[27] SYNTHALAEOUR
[28] 'REALAW'
[29] REALAW
[30] 'SYNTHAW'
[31] SYNTHAW
[32] 'REALAOVERSKOTT'
[33] REALAOVERGKOTT
[34] 'SYNTHAOVERSKOTT'
[35] SYNTHAOVERSKOTT
[36] 'OVERSKOTT'
[37] OVERSKOTT
[38] REALAKRALON.
[39] REALOKRALON
[40] 'SYNTHAKRALON'
[4I] SYNTHAKRALON
[42] 'LON'
[43] LON
```


APPENDIX C SUBFUNCTION DISPOSE2-FIRMS (cont.)

```
[45] START
[46] KJLL 'X FADATA SAMARKET NAMNAMARKET A21 A22 INP QCURR MTK
[47] KTLL '\triangleKBATMEII AKBAFINTSH REALASALEG REALAFORVF SYNTHAFORVF FORVF
        REALALABOUR SYNTHALABOUR .
[48] KILL. 'REALAW SYNTHAW REALAOVERSKOTT GYNTHAOVERSKOTT OVERSKOTT'
[49] KTLL 'REALAKRALON GYNTHAKRALON LON GCALEE HEL,P'
[50] KTLL 'JOAMATRIX CONTROLS REALASUML GYNTHASUMI D]GPOSEIAFTRMS RAND
    OMTZE USTNG QFRI HTSTORY BETWEEN'
[51] A
[52] ATHIS FUNCTION OELETES FUNCTIONS ANI VARTABLES OF NO FURTHER USE.,
    7
```

 FKTLLLDIV
 \(\square\) KILL NAMES; POS; MUMMY
 \(L:+(0=\rho N A M E S) / 0\)
 $[2]$ POS\&NAMES:
[3] TUMMY $+[E X(P O S-1)$ TNAMES
[4] NAMES P-POSLNAMES
[5]
\rightarrow
∇
This function is stored in workspace VLISTS.

APPENDIX C SUBFUNCTION DISPOSE-VAR-INPUT

```
    \nablaUTSPOSEAVARATNPUTEGID
    GTGPGGEAVARAJNPUT;COPARI; COPATXW; COPATXWG; COPARTMEPFOR;
    COPARTBWFOR; COPATXC; COPATXTI
    ATHIS FUNCTION GETS RIN OF INPUTVARTABLES FROM
[12] AMACROLTST CONTAINS VARTABLENAMES FOR TNPUT--VARIABLES
[13] KTLL MACROLTST
[14] EXOARIDEPFOR&COPARIDEPFOR
[1S] EXOARTBWFORECOPARTEWFOR
[16] EXOART&COPART
[17] EXOATXWECOPATXW
[18] EXOATXWG4COPATXWG
[19] EXOATXC&GOPATXO
[20] EXOATX]I-COPATXII
[2I] AVARIABLES FROM WORKSPACE MACRO HAVE GOMETIMES THE GAME
[22] A NAME AS AN OUTPUT-WARTABLE, SUCH VARTABLES MUST NOT
[23] ABE DFLETEN EY THE CALL. 'KILL. MACROLTST'',
\nabla
```

[1]
[2]
[.3]
$[4]$
$[5]$
[6]
[.7]
[8]
[9]
[10]
[11]
$[24] A$

```
APPENDIX C SUBFUNCTION QDI-INIT
This function is called in subfunc-
tion HOUSEHOLDS DATA
QGTIATNTTCGIV
    V QTTATNTT;QTWS;QTT;QWTAX;QTNTH;QTRANE;QITAX;TXII
[1] ATNPUT TO THIS FUNCTTON:
E2] AGKOFF,LG,WG,L,QTITV,GW,LU FROM PURLTCASECTOR,ESTABLTSHMENTS,SECON
    IIARYAIATA, :%
[3] ARTRANG, RLU FROM MARKETGALATA
[4] ATXIL,TXW,TXWG,QTNPAY,RT COME (TNOTRECTLY) FROM TNPUTFTLE MACRO.,
[5] ALOCAL COPTEG OF TXW,TXWG..,ARE USED,..
EGI ANH,WH FROM HOUSEHOLISADATA
[7] A
```



```
    TXWCOPY
[9] QINTH&NHX(RIACOPY-MB) XWH\div4
[10] QTWS+(LGXQWG\div4),SUM2 LXQW\div4
[11] QTWSGOTWS+(0,QINPAYCOPY)
L12] QWTAX+QTWS+,X(TXWGCOPY,TXWCOPY)}\div1+(TXWGCOPY,TXWCOPY)
[13] QT]&QTUTV+QINTH+QTRANS+((+/QTWS)-\cdotsWTAX)
[14] TXII&TXIICOPY
[15] QTTAXt0.25XAGORTTAX 4X0TI
[16] QMT+(QTT-QTTAX)\divNH
```

```
APPENDIX C SUBFUNCTION QDI-INIT2
This function is called in subfunc-
tion IO-MATRIX.
```

```
    VQLIAINITECDIV
    \square ZZ&QUTATNTT2;QTWS;QTI;QWTAX;QINTH;QTRANS;QITAX;LU;NH;MB;RTRANS;
        RLU
    AINPUT TO THIS FUNCTION:
[2] AGKOFF,LO,WG,L,QTLIV,QW,LU FROM PUBLTCASECTOR,ESTABLISHMENTS,SECON
    HARYALATA, , -
        RTRANS-0.5
        RLUS-0.6
        MB6-0.015
        ATXII,TXW,TXWG,QTNPAY,RT COME (TNOTRECTLY) FROM INPUTFTLEE MACRO,,
        LU&(LG+SUM2(L)) xRU\div(1-RU)
        NH+LG+SUM2(La) + L_U
        WH+WHSUM\divNH
    a
```



```
        QINTH&NHX(RI -MB) xWH\div4
[13] QTHS&(LGXQWG\div4),SUM2 LXXQW\div4
[14] QTWS+QTWS+(0,QINPAY)
[15] QWTAX&QTWG+,X(TXWG,TXW)\div1+(TXWG,TXW)
[IG] QTT&QTTTV+QTNTH+QTRANS+((+/QTWS)-QWTAX)
E17] QTTAX&0.25xAGGRITAX 4XQTI.
[18] ZZ&(QTT-QTTAX)
V
```


APPENDIX C SUBFUNCTION OUTPUT-OPERATIONS

```
    VOUTPUTAOPERATIONSCDIV
    O OUTPUTAOPERATIONS;LIST;TOTLIST
    AOUTPUT FROM INITIALTZATION IS BEING GROUPER:
    AVARIABELGRUPPI,VARIABELGRUPPS,.,COME FROM WORKSPACE VLTSTS,
    AAND ARE TEXT-UECTORS ,THIS WORKSFACE ALSO CONTAINS SOME
    A EXTRA VARTABLES ANL FUNCTTONS.,.
        E')WSTD TEMPORARY'
        *')SAVE"
        LTST4DNL, 2,3
        LIST4,L.TST
        *')COPY VLISTS'
        MN-WORKSPACENAME
        KTLL LIST
        DRL4123467
        ':'')COPY MACRO ',GRUPPI,'.''
        TOTLTSTGVARTABELORUPPL,' ',VARTABELGRUPPS,' ',VARTABELGRUPPG
        TOTLIST&TOTLIST," ',VARTABELGRUPP4,' ',VARIABELGRUPFE
        GJERASE VARTABELGRUPPI VARTABELORUPPY VARTABELGRUPPZ'
        *')ERAGE VARTABELGRUPP4 VARIAEELGRUPPE GRUPPI LTGT'
        E* ERASE LOKUMENTATTON
    A
    A
    MN GOPYGAVE TOTLTGT
[22] AOUTPUT FROM TNTTTALTZATTON, ANT NOTHTNG ELSE,IS SAVED
[24] A
[25] A
[26] *') DROP TEMPORARY*
    \nabla
```

 \(\nabla\) Y COPYSAVE \(X\)
 EII ATHTS FUNCTTON TAKES VARTABLES FROM WORKSPACE TEMPORARY
EST A TAKTNG ONLY THOSE GPECTFTEL IN LTST X.ANL SAVES THEM TN A WORKSP
ACE WITH NAME Y.,.
A^{\prime} \&' ' COPY TEMPORARY ', X, '.'.

: SSAVE'
7
This function is stored in workspace VLISTS.

APPEADIX D THE INTTMALIEATIOH CODE, HELAP-FUECCTIOXS

The help-functions, in general, perform operations which occur many times during the initialization or which are so technical that they preferably should not be part of the main initialization code.

The help-functions are, in alphabetical order:

ABOVE, AVG1, AVG2, BETHEEA, CONTINUE1, CONTINUE2, CPII, DDIV, DEV, DIPF, DIV1, DIV7, DIV8, DUP, EAS, EQUALS, HISTORY, MAKEQUARTERS, MODADD, MODDEL, MODSUBST, MULT1, MULT7, MULT8, PACK, QFR1, RANDOMIEE, REALASUMI, RELDDIFF, SCANMAT, SUM1, SUM2, SYAIHASUM1, USIEG, SCAKE

They are stored in workspace FUNCTI.

A short description of what some of the help-functions do:

AVG1:

Has 2 parameters W (=vector) and $D(=v e c t o r)$.

i in 1 means: Summation over index i (usually number of firms) but only taking those i which belongs to sector 1 , etc...

Thus we get a weighted average in each industrial sector ($1,2,3,4$) of a micro-variable. The result is a vector of length equal to 4.

SUM1:

Has 1 parameter $V(=v e c t o r)$. (V=micro-variable).

Result: A vector of length=4 with the sum of V in one and each of the four industrial sectors. (compare with AVGI above).

MODADD, MODDEL, MODSUBST:

These functions can change lines in another function, i.e. the programming code itself.* They are described in Part 1 , section 2.

MUHT7:

Example:
M MULT7 $\mathrm{V}=\left[\begin{array}{ll}\mathrm{v}_{1} \mathrm{~m}_{11} & \mathrm{v}_{1} \mathrm{~m}_{12} \\ \mathrm{v}_{2} \mathrm{~m}_{21} & v_{2} \mathrm{~m}_{22}\end{array}\right]$
where $M=\left[\begin{array}{l}m_{11} m_{12} \\ m_{21} m_{22}\end{array}\right]$ and $V=\left(v_{1}, v_{2}\right)$
MULT7 is an operator which performs a kind of multiplication between a matrix and a vector.

* The possibility of changing lines in one program by aid of another program is a particular feature of the APL-language.

APPENDIX D

Vaboverijo

- MaM1 ABOVE M2
[1] a TO FORM A MATRTX WITH M1 ABOVE M2, PAUDING WITH BLANKS OR ZEROES IF NEERED.
[2] a EACH OF M1 AND ME IS MATRIX, VECTOR, OR SCALAR.

∇
vavoremap
∇ Ad.W AVGI II
[1] 1
[2] a TO GET MARKET AVERAGES FROM FIRM MATA:
[3] A 'D' IS THE FTRM (VECTOR) DATA TO BE AVERAGEN.
[4] a 'W' IS A WEIGHTING VECTOR.
[E] A Global vector 'market' tellgs market number of Each firm.
[6] a GLOBAL 'NMARKETS' TELLS NUMBER OF MARKETS.
$[7]$ A 'A' TS THE (VECTOR) AVERAGE,
[0] \rightarrow

∇

APPENDIX D

```
        \nablaAVG2C[D]7
    \nabla A&W AVG2 II
C1%
O% A TO OET A COUNTRY AVERAGE FROM FTRM IATA:
```



```
[4] A 'W' JS A WETGHTTNG VECTOR.
[5] A 'A' IS THE (SCALAR) AVERAGE,
[6] ค
[7] A<-(+/W\times0)\div(+/W)
    V
```

 习日ETWEENCUT7
 V RtA BETWEEN B
 $[1] \quad R+A+(E-A) \times 0.01 \times-1+? 101 \times 8=B$
∇

```
        \nabla R&N CONTINUEI V
[1]
        R&NTV,N\rho-1+V
```

 QCONTTMUEICDIV

APPENDIX D

ZCONTTNUE2CIIV
∇ R\&N CUNTTNUE2 M
$[1] \quad R \epsilon((1 \uparrow \rho M), N) \uparrow M, Q(N, 1 \uparrow \rho M) \rho M E ;(\rho M)[2]]$
y

VCPI1世DIV
\checkmark Z\&CPTI PRTCES
$[1]$ AA $-B$ WHERE A $=Q C I \times N H+Q C 2 \times N H . . . A N D$

[3] ค
$[4] \quad Z+(+/ Q C+, X N H) \div((Q C+, X N H)+, \div P R] C E S)$
∇

APPENDIX D

```
    \nablaIMIVED]V
    \nabla Z&A IIIVV E
[1] A
[2] A TO 'IIVIDE' A TREND PERCENTAGE.
[3] A 'Z' IS COMPUTEI AS THE SOLUTION TO: ( }1+A)=(1+Z)*
[4] A
[5] Z- Z-1+*(由1+A)\divE
\nabla
```

 VIIFFEGIV
 [1]
$\dot{R}+((((-1+\rho \rho F) \rho 0), 1) \downarrow F)-((((-1+\rho \rho F) \rho 0),-1) \nmid F)$
∇

APPENDIX D

```
    \nabla0TV1C07%
    % Z&FHMTVI M
[1]
[2] A TO ITVIUE FIRMS' IATA WTTH A MARKET VECTOR:
[3] A 'F' IS THE FIRMS' IIATA VECTOR.
[4] A 'M' TS THE MARKET VECTOR.
ESJ A GLOBAL VECTOR 'MARKET' CONTATNS MARKET NUMBER OF EACH FTRM,
[G] A 'Z' IS THE RESULTING (FIRM VECTOR) DATA.
[7] ค
[8]
7
    V01V7LDTV
    Z4-M 0TY7 y
        ENS(py)=(\rhoM)[1]
[1]
[2] A
[3] a TO MTVIDE A MATRTX WTTH A VECTOR
|4] a EACH ELEMENT 'MET;JJ' IS OTVIMEM EY 'VLTI'.
[G] A THUS, 'M' MUST HAVE AS MANY ROWS AS 'V' HAS ELEMENTS.
[6] a
[7] Z4N:8(Q\rhoM)\rhoV
V
```


APPENDIX D

vorvergiv
\square zem dive V
[1] ENS $(p \vee)=(p M)[2]$
[2] a TO OTVIDE A MATRTX WITH A VECTOR:
[3] A EACH ELEMENT M[I;J] IS DTVTDED BY V[J].
[4.] a thus, m must have as many columns as y has elements.
[5] Z世M $\mathrm{Z} \div(\rho M) \rho V$
∇

VDupeciag

- ZFNUM DUP EL
[1] A Z\&(NUM[1]pEL[1]), (NUM[2]pELE2]), .., (NUM[N]pELEN])
[2] ENS (12ppNUM) (1 EppEL)
[3] ENS (1ऽ $0, N \mathrm{NH}),(2 \mathrm{E} p, \mathrm{EL})$
[4] $\operatorname{ENS}(1=\rho, \operatorname{NUM}) \vee((\rho$, NUM $)=(\rho, E L))$
[5] NUMt ($\rho E L$) FNUM
[6] ${ }^{[7}$

APPENDIX D

VENSCDIV
∇ ENS STRING
[17 \rightarrow (A/STRING=1)/0 \quad ERROR METECTEA FYNCTION ENS'
$[3] 1 \div 0$
[4. ALINE ABOVE STOPG EXECUTITON
-

VEQUALSETIV
\checkmark Z4A EQUALS B
$\begin{array}{ll}{[1]} & \rightarrow((\rho \rho A) \neq \rho \rho B) / Z \& 0 \\ {[2]} & +(C, \rho A) \vee, \neq, \rho B) / 0\end{array}$
$\left[\begin{array}{ll}{[2]} & 7((, \rho A) \cup, A, B \\ Z-(, A) \wedge, \cdots, B\end{array}\right.$
∇

DHTGTORYEGJy
∇ RfsM HISTORY mata; W
[. 1.
RTDATA+, $x W++W+\phi x \backslash(\cdots 1 \uparrow \rho D A T A) \rho S M$

APPENDIX D

VMAKEQUARTERSCGIV
V W-MAKEQUARTERS V;FUNKA;FUNKB;DELTA;DIFF;F0;FI;F2;NIVA0;NIVAI;R;I; J;K;M;N;LEVEL;EXPR1;EXPR2;FUNKX;FTKTIVI;FTKTTV2
[1] athis FUNCTTON dISTRIEUTES VARIABLES ON QUARTERE.Flow-VARTABLES MU ST EE UTVIDED EY 4 AFTERWARDG...
FUNKB4' DELTAXX* ((DELTA-N) $\div N)^{\prime}$

ค
FTKTIVI\&V[1]-(V[2]-v[1])
FIKTIV2+V[pV]+(V[$\rho V]-V[-1+p V])$
VGFIKTIVI, V,FIKTIV2
$M+(\rho V)-1$
[11] R+4p0
[12] ${ }^{\text {A }}$
[13] $\mathrm{T}+1$
[14] START: \rightarrow (ImM/SLUT
[15] F0tV[J]
[16] FitV[IT+1]
[17] F24-V[I+2]
[18] $K+4 \times(I-1)$
$[19]$ NIVAO $+F 0+(F 1-F 0) \div 2$
[20] NIVA1+FI+(F2-F1) -2
[21] DELTAKNIVAI-NIVAO
[22] $N \leftarrow(F 1-F 0) \div 2$
[23] \rightarrow
[24] FUNKX:FUNKB

[26.] A
[27] J J 1
[28] $5:+(J=5) / L$
[29] $x+(J-1) \div 4$
[30] LEVEL\{:FO+N+',FUNKX
「31] EXPR1\&FUNKX
[32] $\quad x 4 \div 4$
[53] EXPR2taFUNKX
[34] R[J]\&LEVEL+(EXPR2-EXPR1) -2
[35] J4-J J .
[36] $\rightarrow 5$
[37] $\mathrm{L}:$
[38] UTFFAFJ-($+/ R$) 4
[39] $\rightarrow($ TESTUTSKRIFT: 0)/L3
[40] 'TEETUTEKRTFT'

APPENDIX D

```
[4%] RE1],R[2],R[3],R[4]
[42] | < O|FF'
[43] 0TFF
[44] L3:
[45] W[K+14]&R+GTFF
[46] I&T+I
[47] -5TART
[4g] SLUT:
[49] }->\mathrm{ (TESTUTSKRTFT=0)/EX]T
[50] [] * RESULTAT'
[5]. T*0
[2% 52:+(T:#(M-1))/L2
[53] [] &-V[T+1]
[54] [] 6[0[4)+I\times4.]
[55-1 T&T+1
[56] -5%
[%7 L?:OK'
[58] EXIT:
```


APPENDIX D

QMODADMLD7V
\square NAME MOLARD OLTNEW; BREAK;CR;ROWS
ENS 'MOH' V, F STAME 4 , NAME
ENS $3=$ INC NAME

ENS $1=p R O W S+(C R \& D C R$ NAME)SCANMAT (BREAK-I) AOLINEW
ENS [EX NAME
ENG(PACK NAME)EQUALS [IFX CRE ROWS; JABOVE (EREAK $\downarrow O L D N E W) A B O V E(R O W S, ~$ $0) \downarrow \mathrm{CR}$
∇

VHODNELEDIV

- N-NAME MOLDEL GTRTNG;CR;ROWS

ENS ' MOI' $A,=3$ NNAME + , NAME
[2] ENS $3=[\mathrm{INC}$ NAME
[Z] N+*ppROWSH(CR\&TCR NAME)SCANMAT STRTNG
[リ] E\|G*1enfum
[5] ENS DI: NAME

APPENDIX D

Qmonsubstrag
∇ NAME MODSUBST OLDNEW;BREAK;CR;ROWS
ENS MOO'V, $\neq 3$ TNAME + , NAME
ENS $3=[1 N C$ NAME

ENS $1=-2 R O W S+(C R+D C R$ NAME)SCANMAT (BREAK-1) AOLINEW
ENS DEX NAME
ENS (PACK NAME:)EQUALS [FFX CRE, ROWG-1; IAEOVE(BREAK +OLDNEW)AROVE(
ROWG, 0) ICR
v
Fscanmatcutg
\square RGM SCANMAT S
[1]
VPACKLDIV

APPENDIX D

```
    FMULTME|#V
    Z Z-F MULT: M
[1.]
[2] A TO MULTIPLY FIRMS' IATA WITH A MARKET VECTOR:
[3] A 'F' TS THE FIRMS' MATA VECTOR,
[4] A 'M' TS THE MARKET VECTOR,
ESI A GLOBAL VECTOR 'MARKET' CONTATNS MARKET NUMBER OF EACM FTRM.
KGI A 'Z' IG THE RESULTING (FIRM VECTOR) IIATA.
[7] A
[8]
\nabla
    #MULT7LDIV
    Z Z-# MULT7 V
        ENS((\rhoV)=(\rhoM)[J]),(2=\rho\rhoM),(1= \rho\rhoV)
[1]
[2]
[3] A TO MULTTPLY A MATRTX WITH A VECTOR:
[4] A EACH ELEMENT 'MET;J]' TS MULTTPLTED WTTH 'VETJ'.
[S] A THUS, 'M' MUST HAVE AS MANY ROWG AS 'V' HAS ELEMENTS.
[6] ค
[%] ZtMXQ($pM)\rhoV
V
    7MULT8LD]7
    \nabla Z&M MULTB V
        ENS((\rhoV)=(\rhoM)[2]),(2=\rho\rhoM), (1=\rho\rhoV)
        A TO MUL.TTPL.Y A MATRIX WITH A VECTOP:
        A EACH ELEMENT 'MET;JT' TS MUL.TTPLTEN WITH 'VEJH'.
        A THUS, 'M' MUST HAVE AS MANY COLUMNS AS 'V' HAS ELEMENTS.
        A
        Z&MX(\rhoM)\rhoV
\nabla
```


APPENDIX D

∇ Qtetiviv
∇

VRANDOMIZECIID

\checkmark C+A RANDOMTEE BifisiATH
$[1]$ C\&-(REALASUM1 A) + / NAMNAMARKETO: =14)ESAMARKET]
[2] a EACH ELEMENT OF C EQUALS CORRESPONOITG REAL MARKET AVERAGE
[3] $\rightarrow((0=B) \wedge 1=\rho \mathrm{B}) / E N \mathrm{Ca}$
[4] A IF B=0, SKIP CORRELATION ASPECT
[5] [I\& (PNAMNAMARKET) †B
[6] Ef($\rho \mathrm{D})+\mathrm{B}$
[7] A HELP VBLES: R=REAL PART OF B, E=SYNTHETIC PART OF B

[9] A ATOUEVTATRON OF ELEMENTS OF E FROM THETR MKT AVERAGES

[11] A THAT USEL THE APPROXIMATION COV (C,E) $=\operatorname{COV}(A, \mathrm{~B})$
[12] END:ATM-A-((A+, XNAMNAMARKET:, =14) $\div+$ NAMNAMARKETO. $=14$ [[NAMNAMARKET]
[13] a AIGEDEYIATION OF ELEMENTS OF A FROM THETR MKT AVERAGES
 0.5)[SAMARKET]

[16] A WHERE: CCII=C FOR MARKET I AS COMPUTEL ABOVE
$[17]$ a EPSEI.J] TS UNTFORM OVER ["0.5. 0.5$]$
[18]

APPENDIX D

FREALASUMJEDIV
∇ AtREALASUMI V
[1] $\quad \rightarrow$
[2] A TO SUM FROM FTRMS TO MARKETS:
[3] A 'V' IS THE FTRM IIATA TO EE AGGREGATED, TF TT HAS MORE THAN
[4] A ONE AXIS, FIRST ITMENSION MUST TNTICATE FIRM NUMEER.
FGI A GLOBAL VECTOR NAMNAMARKET'TELLS MARKET NUMEER OF EACH FIRM,
[6] A GLOBAL 'NMARKETS' TELLS NUMBER OF MARKETS.
[7] A 'A' IS THE AGGREGATE.
[B] A
[.9]
∇

QRELITTFFEGIV
$\nabla \quad R \in R E L D E F F$
[1]
∇

GSUM1LGIV
\checkmark AtSUM V
[1] \quad a
世". \because TO SUM FROM FIRMS TO MARKETS
[3] A 'V' IG THE FTRM TATA TO BE AGQREGATED, IF IT HAS MORE THAN
[4] A ONE AXJS, FTRST TIMENSION MUST INDICATE FIRM NUMBER,
[5] A GLOBAL VEGTOR 'MARKET' TELLS MARKET NUMEER OF EACH FIRM.
[G] A GLOEAL 'NMARKETS' TELLS NUMEER OF MARKETS,
-7. A 'A' $1 S$ THE AGGREGATE
[8] \quad -

∇

APPENDIX D

```
    vSumaLGIV
    A A-SUM2 V
        A
[2] A TO SUM FROM FIRMS TO A COUNTRY TOTAL:
[3] A 'V' IS THE FIRM DATA TO GE AGGREGATEN. TF ITT HAS MORE THAN
[4I A ONE AXIS. FIRST OTMENSION MUST INDICATEE FIRM NUMBER.
[S] A 'A' TS THE ÁGGREGATE.
[6] &
[7] A++AV
\nabla
    \nablaSYNTHASUMICIJV
    \nabla R+SYNTHASUMA V
        R&((,NMARKETS)*,=SAMARKET)+,XV
    \nabla
        \nablaUSINGCOJV
    \nabla OUT&REAL USING V
        OUTtREAL, (REAL RANDOMIZE V)
[1]
    \nabla
        \nablaSCALECDIV
    \ERSCALE PAR
        ENS (0&PAR), (1\anglePPAR),(PARSS+1,"1\downarrowPAR)
        a TO GET N SCAlLEO NUMBERS IN DESCENDING ORDER.
[3] A ("1.PAR) ARE SIZES OF NUMBERS 2,3,.., RELATIVE TO FTRST NUMBER.
[4] a AFTER THAT, MORE NUMBERS ARE GENERATED IN A LOGARITHMTCALLY MECL
    INING FASHION DOWN TO ("1^PAR),
[5] a NUMEERS ARE NORMALIZEO TO HAVE SUM=1.
[6] +(N=0st(NLpS)\uparrowS)/L
[7 S&G,\phi(-1\uparrowPAR)\times((\div7-2\uparrow1,PAR)**N-pS)* (1+N-NS
[8] L:S+G%+/S
```


APPEADIX D ENTRY VARTAITT

 a TO INGERT NEW FTRM(S) TNTO ONE MARKET; TO BE USEK AT A YEAR LIMTT ONLY.
 NEWSYMBOL (MMM-2 RMMM)[2]
MMEMCIT
AsPARMC[1]
RELSIZE $-1 \downarrow$ PARMS
a MM IS MARKET NUMBER
a NEWSYMBOL GIVES NUMERTCAL CODE FOR PLOTTING
a A IS PROFTT-MARGIN ADVANTAGE COMPARED TO THE AVERAGE FIRM
a RELSTZE IS STZE OF NEW FIRM(S) AS A FRACTION OF CURRENT MARKET AGGREGATE ENS $0=[$ INC 'NRS'
a THAT WAS TO ENSURE A YEAR LIMIT
A
RWtRW, (ρ RELSTZE) RES AVGS RW
A
A214VA AVGS A21
A22+VA AVG5 A22
-
TNVEFF - INVEFF, (\quad RELSTZE) R 1 AVGS TNVEFF KI\&KI, RELSTZEXSUME KI
KIEOOK $-K I B O O K, ~ R E L S I Z E X S U M S ~ K I B O O K ~$
K2+K2, RELSTZEXSUMS K2
BW6BW, RELSTZE×SUMS BW

APPENDIX D ENTRY VARIANT (cont.)

```
GTNU*GTNY:RELSTZEXSUME ETNY
QTNVLAO&OTNVLAG, REL.STZEXGUME QTNVLAO
```



```
0
X+X, (pRELSTZE)pS AUGS X
月
```



```
WP&TP, पि+(oRELSTZE)ps AVQS MP
n
W+W,W+(\rhoRELSTzE)pL, AvGE W
WW&TW, (&RELSTZE) QA AVOE MW
```



```
OU*QW, (\rhoRELSTZE)PL AUOS QW
ด
* (0#ONC 'CHM'%'GHM-CHM, (pRELSTZE)pS AVGG OHM'
M&M,M&(pRELSTZE)pA+S AVOG M
ด
DVA&DUA, DVA<(&RELSTZE)\rhoVA AVGS TVA
```



```
QVA+GVA, QUA+RELSTZEXSUME %VA
0
```



```
M@HQ, पVA-DP
n
0s+MS, (\rhoWELST&E)
S+5.0xp
9क-8.gexgp
#
```



```
LU6LUW.%7,L
ENS LuE0
AMAN*((\rhoAMAN)+(\rhoRELSTZE):0) TAMAN
A
EXPMP&EXPQP, (qRELSTZE)pS AVGE EXPMP
EXPDG*EXPDS (pRELSTZE)pS AVGE EXPTS
EXPTW&EXPTU, (\rhoRELSTZE)\rhoUA AVGE EXPMW
HTSTTP&HTSTOP, (\rhoRELSTZE)pS AUGS HTSTMP
HTSTMPGEV&HTSTMPMEV, (\rhoRELSTZE)\rhoS AVGE HTSTMPGEV
HISTDPDEV2&HISTDPDEV2, (\rhoRELSIZE) &S AVG5 HISTDPDEV2
HISTDS&HISTDS, (PPRELSIZE) &S AVG5 HISTDS
```


APPENDIX E A MICRO-TO-MACRO DATA BASE. EXPERIENCES FROM THE CONSTRUCTION OF THE SWEDISH MICRO-TO-MACRO MODELI (MOSES)

by Louise Ahlström

Economists frequently have failed to explain economic developments in the seventies. Consequently a need has been felt for new and improved theory as well as statistical methods to come to grips with old problems. It has been suggested that if information regarding the individual decision makers and their role in the market process is taken into account while constructing a model of the economy as a whole, the information base for macro analysis can be improved. The results obtained in such a model could prove to be quite different from those brought forward by traditional theories and methodologies. Thus it might be possible to develop better guidelines for economic policies than those that have been used during the past decade. Above all it would be possible to treat the supply side and the structural adjustment process in a much more realistic fashion in a micro based macro model. The utilization of assumptions about the behavior of individual decision makers consequently would give the system dynamic features not provided by traditional simulation methods.

It is obvious that although it is easy to point to some advantages of micro simulation over traditional simulation methods, there are difficulties that have to be over-come before such a model project can be expected to bear fruit. One such major obstacle is the necessity to successfully handle the vast amount of data that this method calls for. The presence of advanced high-speed computers can be seen as a necessary but not sufficient condition for the development of micro simulation models. More importantly there is the obstacle of the need to develop a methodology for incorporating micro data into a macro model format. Anyone taking on the task of constructing a micro-based macro
model will soon learn that the difficulties intrinsic to setting up an operable design for the micro and macro data bases, are quite substantial. Since one in order to fulfill the objective of developing the micro simulation model is forced to come up with a functioning scheme, it is necessary to make a series of decisions as to how to by-pass the problems. The process of making these decisions is a painful one, expecially since one does not know which problem will come next. Frequently, after having successfully dealt with one problem, it is necessary to rip it up since the solution of the problem that one stumbles on thereafter is not in line with the solution chosen for the first. The construction of a data base thus can be described as a tedious process of two steps forward and one step backward - sometimes one step forward and two steps backward. By necessity there will be many versions of the model and the corresponding data bases before the model project is terminated.

The structure we have finally chosen for the construction of the data bases must be seen as one way among a theoretically vast number of ways to deal with an operation analysis problem. We dare not claim that we have managed to find the best one. Our endevours ought to be judged only in the light of the objectives for our particular project. We will now point to some aspects of a general character.

The objectives for the construction of the Swedish micro-to-macro model were

1. to formulate a micro explanation for inflation and
2. to study the relationships between inflation, profits, investment and growth.

The chosen problems relate to typical dynamic processes and place heavy emphasis on the market process and its importance for price and income determination and growth at the macro level. For this reason an aggregation scheme that centers on markets and the use of industrial products rather than on the
ordinary classification according to the production technique and raw material base is necessary. The aggregation scheeme includes four industrial production sectors:

Raw Material Processing Industries (RAW) Intermediate Goods Industries (IMED)
Investment and Consumer Durable Goods Industries (DUR) Non Durable Consumption Goods Industries (NDUR)

Each industrial sector hoids a large number of individual firms which constitute the micro feature in MOSES. The market processes in the model operate both between and within the four sectors. The aggregation scheme has been designed on the same format as that of the Annual Planning Survey of the Federation of Swedish Industries. This means that the capacity utilization data of this survey can be directly incorporated into the micro data base. Regarding the macro data base we have had to develop a market oriented classification scheme of our own in order to adapt the national accounts macro statistics to our micro based sector classification. Lack of some firm data necessitates the use of industrial macro data as substitutes. The input-output matrix is one example where such simplifications have been necessary. ${ }^{1}$

In the early stages of constructing the model it was built around a 1968 base year macro data base. It was our ambition to be able to start the model in any year from 1950 and onwards. Thus a great deal of effort was put into collecting time series for macro variables. Due to lack of relevant data it was difficult to obtain time series that were consistent over time as well as with each other. The calibration of the model was done by starting simulations in 1968 and running them for a 10 -year period. We compared the behavior of key macro variables in the model with reality, adjusted the parameters according to the results and started the process over again.

1 For a description of how macro data are combined with real firm data see Eliasson, G, A Micro Simulation Model of a National Economy, Chapter 3 on estimation methods, in A Micro-to-Macro Model of the Swedish Economy, IUI Conference Reports 1978:1

We have had to put in substantial effort to overcome inconsistencies in the data base that have crept in not only because of our new aggregation type but also because of inconsistencies between the various parts of the national accounts statistics themselves. We have found by experience that a consistent data base for the first period of a simulation is imperative for a proper tracking by the model of historic macro test data. During the next stage of model life we wanted to update the data base in order to be able to start simulations in 1976 - we therefore decided to concentrate our efforts on obtaining a good base year. For this reason it was necessary to create an accounting system as a framework for the construction of the macro data base.

As the core around which we chose to build the accounting system (see Tables $1: 1$ through $1: 3$) we used the input-output system. The input-output coefficient matrix for 1976 used in the model is calculated from an input-output matrix expressed in producer's prices. Since the final demand on the other hand is expressed in purchaser's prices we have had to adjust the accounting system for the difference in price levels (DIF, Column 20). On the macro level the difference (DIF) is equal to the total of the commodity based indirect taxes on final demand. The production value in market prices is identical to the production value in purchaser's prices on the macro level, since the transport and trade margins are included in the production value of the trade sector. For the individual sectors this is not true, which in turn depends on the existence of margins as well as on the mix-up of industrial sectors in the basic statistical material. The residual (RES, row 13) arises from differences in the gross production data if calculated from the demand side or from the production side. Since there is reason to believe that the data on the demand side have greater reliability we have chosen to treat the residual as a row vector.

Table 1:1

The Aecounting gystem in MOsEs

Table 1:2
The Accounting System in MOSES

| Vertically: | Row | |
| :---: | :---: | :---: |
| Inputs into sectors 1-10 | 1-10 | |
| Total inputs | | INPUTS |
| Commodity based indirect taxes, net | 11 | TAX |
| Value added in producers' prices | 12 | VA |
| Residual | 13 | RES |
| Gross production in producers' prices | 14 | TOTAL |
| Horizontally: | Column | |
| Input deliveries into sectors 1-10 | 1-10 | |
| Total input deliveries | | INPUTS |
| Government consumption | 11 | GOVT |
| Private consumption | 12 | CONS |
| Investments | 13-16 | INV |
| Change in stocks | 17 | \triangle STO |
| Exports | 18 | EXP |
| Total use | | USE: |
| Imports and duties | 19 | IMP |
| Gross production | (USE-IMP) | TOT |
| Difference | 20 | DIF |
| Gross production in producers' prices | 21 | TOTAL |
| | (TOT-DIF) | |
| Sectors 1-10:* | | |
| Agriculture, Forestry and Fishing | 1 | A/F/F |
| Mining and Quarrying | 2 | ORE |
| Petroleum Products Imports | 3 | OIL |
| Raw Material Processing Industries | 4 | RAW |
| Intermediate Goods Industries | 5 | IMED |
| Investment and Consumer Durable Goods Industries | 6 | DUR |
| Construction | 7 | CONSTR |
| Non Durable Consumption Goods Industries | 8 | NDUR |
| Electricity | 9 | EL |
| Other Services | 10 | SERVICE |

* The column and row numbers for sectors 1-10 have been altered in the pre-
sent (March 1983) data base.

Table 1:3

The Accounting System in MOSES - A Schematic Description

| INPUTS | TAX | VA
 $\begin{array}{l}\text { in producers } \\ \text { prices, incl. } \\ \text { imports and } \\ \text { duties }\end{array}$ $\begin{array}{l}\text { commodity based } \\ \text { indirect taxes, } \\ \text { net }\end{array}$ | wages | $\begin{array}{l}\text { operating } \\ \text { surplus incl. } \\ \text { depreciation }\end{array}$ | $\begin{array}{l}\text { non commodity } \\ \text { taxes, net }\end{array}$ | $\begin{array}{l}\text { commodity based } \\ \text { indirect taxes } \\ \text { on final demand, } \\ \text { net }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| trade margins | | | | | | |$\}$

Comment: On the macro level the production value in market prices is identical to the production value in purchaser's prices, since transport and trade margins are included in the production value of the trade sector (part of SERVICE).

The input-output system has been created through the aggregation of input-output matrices expressed in producer's prices, provided by the Central Bureau of Statistics. Since data in producer's prices were only available for 1975, we had to project the 1976 I/O matrix by assuming the same change between 1976 and 1975 in the coefficients expressed in producers prices as in those in purchaser's prices. The inputoutput matrices shown in Section 3 of this manual were constructed in this way. The aggregation scheme consisting of a weighting matrix based on value added is documented in Table 2.

Technically speaking the input-output coefficients are kept constant over time in the model. The model is not solved by inverting the input-output matrix in the traditional way. For the four industrial production sectors the production volume is determined in the business system block while the corresponding input-output coefficients determine the amount of inputs needed to make this level of production possible. At both ends of these sectors, that is at both ends of each individual firm, there are buffer stocks to even out production flows. For the remaining six "external sectors" on the other hand the input-output matrix is operating as in a conventional macro input-output model complemented with a Keynesian demand system.Since individual firms within and between markets meet with success and failure differently they grow at very different rates. Consequently the macro input-output coefficients in the model vary endogenously over time.

Table 2 The MOSES Aggregation Scheme According to the Standard for Swedish Classification of Economic Activities (SNI) with Comparisons to the Industry Group in the Input-Output Statistics (I/0), the National Accounts Statistics (SNR) and the Classification Used in the IUI Long Term Survey (LB)

| I/O | Sector | SNR | LB | $\begin{gathered} 1 \\ \mathrm{~A} / \mathrm{F} / \mathrm{F} \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | $\begin{aligned} & 3 \\ & \mathrm{OIL} \end{aligned}$ | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | $\stackrel{5}{\text { IMED }}$ | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | 7
 CONSTR | 8 NDUR | $\begin{array}{r} 9 \\ \text { EL } \end{array}$ | 10 SERVICE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Agriculture | 1100 | 1 | 11 | | | | | | | | | | 11 |
| 2 | Forestry | 1200 | 1 | 12 | | | | | | | | | | 12 |
| 3 | Fishing | 1300 | 1 | 13 | | | | | | | | | | 13 |
| 4 | Mining and quarrying | 2000 | 3 | | $\begin{aligned} & 20 \text { excl. } \\ & (220) \end{aligned}$ | $(220){ }^{\text {a }}$ | | | | | | | | 20 |
| 5 | Sheltered food manufacturing | 3111 | 4 | | | | | | | | $\begin{aligned} & 3111 / 2 \\ & 3116-8 \end{aligned}$ | | | $\begin{aligned} & 3111 / 2 \\ & 3116-8 \end{aligned}$ |
| 6 | Import - competing food manufacturing | 3112 | 5 | | | | | | | | $\begin{aligned} & 3113-5 \\ & 3119-22 \end{aligned}$ | | | $\begin{aligned} & 3113-5 \\ & 3119-22 \end{aligned}$ |
| 7 | Beverage and tobacco manufacturing | 3120 | 6 | | | | | | | | 313/4 | | | 313/4 |
| 8 | Textile and leather industries | 3200 | 7 | | | | - | $321 \cdot 0.25$ | $321 \cdot 0.25$ | - | $\begin{aligned} & 321 \cdot 0.5 \\ & 322-324 \end{aligned}$ | | | 32 |
| 9 | Manufacture of wood and wood products | 3410 | 8 | | | | 33111 | 3312/9 | $3320 \cdot 0.4$ | 33112/9 | 3320•0.6 | | | 33 |

Table 2 The MOSES Aggregation Scheme According to the Standard for Swedish Classification of Economic Activities (SNil) with Comparisons to the Industry Group in the Input-Output Statistics (I/0), the National Accounts Statistics (SNR) and the Classification Used in the IUI Long Term Survey (LB)

| 1/0 | Sector | SNR | LB | $\begin{gathered} 1 \\ \mathrm{~A} / \mathrm{F} / \mathrm{F} \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | $\begin{gathered} 3 \\ \mathrm{OIL} \end{gathered}$ | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | $\stackrel{5}{\text { IMED }}$ | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | 7 CONSTR | $\begin{gathered} 8 \\ \text { NDUR } \end{gathered}$ | 9 $E L$ | 10 SERVICE | SNI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10a | Manufacture of pulp | 3420 part | 8 | | | | 34111 | 34112 | - | 34113 | - | | | 34111-3 |
| 10b | Manufacture of paper products | 3420 part | 8 | | | | - | 3412 | - | - | 3419 | | | 3412/9 |
| 11 | Printing and publishing | 3430 | 9 | | | | - | - | - | - | 3420 | | | 342 |
| 12 | Manufacture of chemicals and chemical products | 3520 part | 11 | | | | - | $\begin{aligned} & 351 \\ & 3521 / 9 \end{aligned}$ | - | - | 3522/3 | | | 351/2 |
| 13 | Petroleum refineries, manufacture of products of petroleum and coal | 3530 | 12 | | | (353/4) ${ }^{\text {a }}$ | $\begin{aligned} & 353 / 4 \text { excl. } \\ & (353 / 4) \end{aligned}$ | - | - | - | - | | | 353/4 |
| 14 | Manufacture of rubber products | 3510 | 10 | | | | - | $355 \cdot 0.8$ | * | - | 3550.0 | | | 355 |
| 15 | Manufacture of plasticproducts | 3520 part | 11 | | | | - | 35601 | - | - | 35609 | | | 356 |
| 12 | Manufacture of non-metallic mineral products | 3600 | 13 | | | | - | 36202 | - | $\begin{aligned} & 36201 / 9 \\ & 369 \end{aligned}$ | $\begin{aligned} & 361 \\ & 36203 \end{aligned}$ | | | 36 |

Table 2 The MOSES Aggregation Scheme According to the Standard for Swedish Classification of Economic Activities (SNI) with Comparisons to the Industry Group in the Input-Output Statistics (I/0), the National Accounts Statistics (SNR) and the Classification Used in the IUI Long Term Survey (LB)

| I/O | Sector | SNR | LB | $\begin{gathered} 1 \\ A / F / F \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | $\begin{aligned} & 3 \\ & \mathrm{OlL} \end{aligned}$ | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | 5 IMED | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | 7 CONSTR | 8
 NDUR | $\begin{array}{r} 9 \\ \text { EL } \end{array}$ | 10
 SERVICE | SNI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | Iron-, steeland ferroalloys industries | 3700 part | 14 | | | | 37101/2 | 37103 | - | - | - | | | 371 |
| 18 | Non-ferrous metal industries | 3700 part | 14 | | | | 37201-3 | 37204 | - | - | - | | | 371 |
| 19 | Manufacture of fabricated metal products, machinery and equipment | 3810 | 15 | | | | - | $\begin{aligned} & 3811 \\ & 38199 \\ & 38191 / 2 \end{aligned}$ | $\begin{aligned} & 3812,382 \\ & 3842-9 \\ & 385 \end{aligned}$ | $\begin{aligned} & 3813 \\ & 38193 / 4 \end{aligned}$ | 38195 | | | $\begin{aligned} & 381 / 2, \\ & 385 \\ & 3842-9 \end{aligned}$ |
| 20 | Manufacture of electrical machinery, apparatus appliances and supplies | 3830 | 15 | | | | - | $\begin{aligned} & 3839 \\ & 3521 / 9 \end{aligned}$ | 3831-3 | _ | $3522 / 3$ | 351/2 | | 383 |
| 21 | Shipbuilding and repairing | 3843 | 16 | | | | | | 3841 | | | | | 3841 ; |
| 22 | Manufacturing industries not elsewhere classified | 3900 | 17 | | | | | | | | 39 | | | 39 |
| 23 | Repair of household applicances and motor vehicles etc. | $\begin{aligned} & 3600 \\ & 3842 \\ & 9511 / 3 \end{aligned}$ | 13 15 | | | | 36202 | | 36201/9- | | 361 | | 951 | 36 951 |

Table 2 The MOSES Aggregation Scheme According to the Standard for Swedish Classification of Economic Activities (SNI) with Comparisons to the Industry Group in the Input-Output Statistics (I/0), the National Accounts Statistics (SNR) and the Classification Used in the IUI Long Term Survey (LB)

| I/O | Sector |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

83101/3
83101/3
Letting of
$\begin{array}{lll}\text { premises } & 8400 & 23\end{array}$
83102
83102,

Private ser-
vices not
elsewhere
9600 excl.
952. 9

952-9
a The SNI code within parentheses refers to imports.

BIBLIOGRAPHY, Appendix E

Ahlström, L, 1978, The Market Oriented Inter-Industry Stock and Flow Aggregation Scheme Used in the Swedish Model in A Micro-to-Macro Model of the Swedish Economy. IUI Conference Reports 1978:1

1980, Input-output systemet och dess utveckling in Kalkyler för 80 -talet. Specialstudier för IUI:s långtidsbedömning 1979. Del 2

Dorfman, R, Samuelson, P, and Solow, R, 1958, Linear Programming and Economic Analysis, New York

Höglind, B och Werin, L, 1964, The Production System of the Swedish Economy. An Input-Output Study, IUI, Stockholm

Statistical Reports N 1972:44. Input-Output Tables for Sweden 1968. National Central Bureau of Statistics

Statistical Reports N 1980:3. Input-Output Tables for Sweden 1975. National Central Bureau of Statistics

NOTES

1 An earlier version of the model is described in full detail, in Eliasson (1978, abbreviated in (1981)). A new, updated presentation of the full model plus a complete bibliography will be presented in Eliasson (1984).

Documentation on the economic contents of MOSES is complete for an earlier version which is still quite accurate as far as the core micro-to-macro machinery is concerned. An important addition is the individual firm purchasing process, which is described in this manual. The need for a full, updated documentation, should, however, be remedied in a forthcoming research report, Eliasson (1984).

2 A more detailed description of the micro (firm) database can be found in Albrecht-Lindberg (1982). In this working paper the micro initialization is also described.

3 See Albrecht-Lindberg (1982), Ahlström (1978), Bergholm (1982), and Eliasson-Heiman-Olavi (1978).

4 Comments about choosing another starting year are made in Section 7.

5 For example:
EXO \triangle REALCHLG (1) $=3000$ means that 3000 persons will be added to the sector the first quarter 1977.

EXO \triangle REALCHLG (5) $=2500$ means that 2500 persons will be added to the fifth simulated quarter (=first quarter 1978)

EXO \triangle REALCHLG etc is a vector with a number of components $=$ the number of quarters to be simulated ...

6 For the present $\operatorname{SMT}=1 / 2$ so $\operatorname{Targ}(n+1)$ is an ordinary average of $\operatorname{Targ}(n)$ and $M(n)$. Targ is specified for the individual firm.

7 The only thing the function SIAINIT does is to fetch data from workspace MACRO and FUNCTI and to call the sub-functions on level 2 in Figure 3.

8 Formally $X X$ is a parameter to the main-function START.

9 The corresponding exogenous time-series are EXO $\triangle Q I N V G, E X O \triangle Q I N V B L D$ etc.

10 a) Statistical errors in SCB statistics.
b) IUI computation errors when distributing total industry sales on the 4 sectors in the model.

11 In the sectors $5,6, \ldots, 10$, where there are no firms in the model, IO is used to determine these sector's demand for products. This is done in a conventional input-output fashion by inverting a sub-matrix of IO.

12 Both the share (total input)/(total production) and the share (input from sector j)/(total production) will change at the macro level.

13 Initialization version 19 and experiment version 11 were used. The experiment is labelled SllV19 (cf. Part 1 of this manual).

14 The sub-functions RAFDOMIZE and USIFG. August 1980. See Appendix D. See also "The micro initialization of MOSES" by Albrecht-Lindberg (1982).

15 The variable RI $\triangle I S \triangle E X O G E O U S$ is a logical variable being zero or one.

16 Remember that 1076 is in 1975 year's prices (see Section 3) whereas $1076_{\text {II }}$ should be in 1976 year's prices.

17 Profits = gross operating surplus.
18 To simulate more than 30 years one has to set the variable NYR equal to that number, in a ISTARTXX-function. For example NYR $\leftarrow 50$.

19 This is behaviour of the government sector in the labour market in the present version of the model. One could think of other possibilities.

20 If a parameter is a vector of length = the number of firms, one can change the behaviour of individual firms, otherwise it's much more tricky, i.e. one must make changes in the model to be able to do that.

21 However, if one is sure that the new variable does not affect the initialization procedure and the consistency in any way, one can introduce the new variable directly in a MSTART-function.

22 i.e. vectors of length $=$ number of firms in the simulation.

23 MSTARTIO is a function stored (since 1983) in the MSTART-workspace.

LITERATURE

"The APL Reference Manual": For example: APLSF programmer's reference manual, DEC system 10, DEC-10-LPLSA-A-D, 1976.
Albrecht-Lindberg, The Micro Initialization of MOSES, IUI, 1982, Working Paper No. 72.

Ahlström, L., 1978, "The Market Oriented InterIndustry Stock and Flow Data Aggregation Scheme Used in the Swedish Model" in Eliasson (1978), op.cit.

Bergholm, F., 1982, How to Run the MOSES Model The MOSES Manual, Part 1 , IUI Working Paper No. 75.

Bergholm, F., 1984, "De utlandsetablexade företagens multiplikatoreffekter på svensk industri - några simuleringar" i De utlandsetablerade företagen och den svenska ekonomin, Eliasson (1984), IUI, Stockholm.
Eliasson, G, 1978, A Micro-to-Macro Model of the Swedish Economy, IUI Conference reports, Stockholm.

Eliasson, G, 1980, Experiments with Fiscal Policy Parameters on a Micro-to-Macro Model of the Swedish Economy, Reprint from Robert H. Haveman and Kevin Hollenbeck, eds., Microeconomic Simulation Models for Public Policy Analysis, vol. 2, pp.49-95.
Eliasson, G., (forthcoming 1984), The firm and financial markets in the Swedish Micro-toMacro Model (MOSES), IUI.

Eliasson, G. with the assistance of Heiman, M., Olavi, G., 1976, A Micro Macro Interactive Simulation Model of the Swedish Economy, Preliminary Documentation, Economic Research Reports B15, Federation of Swedish Industries, Stockholm.

Eliasson, G., Heiman, M., Olavi, G., 1978, "Technical Specifications for the Swedish Micro Based Macro Model" in Eliasson (1978), op.cit.

WORKING PAPERS (Missing numbers indicate publication elsewhere)

1976

1. Corporate and Personal Taxation and the Growing Firm by Ulf Jakobsson
2. A Micro Macro Interactive Simulation Model of the Swedish Economy.
Preliminary model specification
by Gunnar Eliasson in collaboration with Gösta Olavi
3. Estimation and Analysis with a WDI Production Function by Göran Eriksson, Ulf Jakobsson and Leif Jansson

1977
15. Pay Differentials between Government and Private Sector Employees in Sweden
by Siv Gustafsson

1980
25. On Unexplained Price Differences
by Bo Axell
34. Imperfect Information Equilibrium, Existence, Configuration and Stability
by Bo Axell

1981
36. Energi, stabilitet och tillväxt i svensk ekonomi (Energy, Stability and Growth in the Swedish Economy) by Bengt-Christer Ysander
38. Utiliy in Local Government Budgeting by Bengt-Christer Ysander
40. Wage Earners Funds and Rational Expectations by Bo Axell
42. The Structure of the Isac Model by Leif Jansson, Tomas Nordström and Bengt-Christer Ysander
43. An Econometric Model of Local Government and Budgeting by Bengt-Christer Ysander
44. Local Authorities, Economic Stability and the Efficiency of Fiscal Policy
by Tomas Nordström and Bengt-Christer Ysander
45. Growth, Exit and Entry of Firms by Göran Eriksson
52. Swedish Export Performance 1963-1979. A Constant Market Shares Analysis by Eva Christina Horwitz
56. Central Control of the Local Government Sector in Sweden by Richard Murray
59. Longitudinal Lessons from the Panel Study of Income Dynamics
by Greg J. Duncan and James N. Morgan

1982
61. Var står den nationalekonomiska centralteorin idag? av Bo Axell
63. General Search Market Equilibrium by James W. Albrecht and Bo Axell General Equilibrium without an Auctioneer by James W. Albrecht, Bo Axell and Harald Lang
64. The Structure and Working of the Isac Model by Leif Jansson, Thomas Nordström and Bengt-Christer Ysander
65. Comparative Advantage and Development Policy Twenty Years Later by Anne O. Krueger
67. Computable Multi-Country Models of Production and Trade by James M. Henderson
69. Relative Competitiveness of Foreign Subsidiary Operations of a Multinational Company 1962-77 by Anders Grufman
71. Technology, Pricing and Investment in Telecommunications by Tomas Pousette
72. The Micro Initialization of MOSES by James W Albrecht and Thomas Lindberg
75. The MOSES Manual by Fredrik Bergholm
76. Differential Patterns of Unemployment in Sweden by Linda Leighton and Siv Gustafsson
77. Household Market and a Nonmarket Activities (HUS) - A Pilot Study by Anders Klevmarken
78. Arbetslöshetsersättningen i Sverige

- motiv, regler och effekter
av Anders Björklund och Bertil Holmlund

1983
79. Energy Prices, Industrial Structure and Choice of Technology; An International Comparison with Special Emphasis on the Cement Industry by Bo Carlsson
81. ELIAS - A Model of Multisectoral Economic Growth in a Small Open Economy by Lars Bergman
84. Monopoly and Allocative Efficiency with Stochastic Demand by Tomas Pousette
86. The Micro (Firm) Foundations of Industrial Policy by Gunnar Eliasson
87. Excessive Government Spending in the U.S.: Facts and Theories
by Edward M. Gramlich
88. Control of Local Authority Expenditure - The Use of Cash Limits by Noel Hepworth
89. Fiscal Containment and Local Government Finance in The U.K. by Peter Jackson
90. Fiscal Limitations: An Assessment of the U.S. Experience by Wallace E. Oates
91. Pricing and Privatization of Public Services by George E. Peterson
92. Export Performance of the Nordic Countries 1965-82 by Eva Christina Horwitz
94. Job Mobility and Wage Growth: A Study of Selection Rules and Rewards by Bertil Holmlund
95. Sweden's Laffer Curve:

Taxation and the Unobserved Economy by Edgar L. Feige and Robert T. McGee
96. The Machine Tool Industry - Problems and Prospects in an International Perspective by Bo Carlsson
97. The Development and Use of Machine Tools in Historical Perspective by Bo Carlsson
99. An Equilibrium Model of Search Unemployment by James W. Albrecht and Bo Axell
100. Quit Behavior under Imperfect Information: Searching, Moving, Learning by Bertil Holmlund and Harald Lang
102. Collecting Data for Micro Analysis. Experiences from the Hus-Pilot Study by N. Anders Klevmarken
103. The Swedish Micro-To-Macro Model

- Idea, Design and Application
by Gunnar Eliasson

104. De utlandsetablerade företagen och den svenska ekonomin av Gunnar Eliasson
105. Estimation of Wage Gains and Welfare Gains from Self-Selection Models by Anders Björklund and Robert Moffitt
106. Public Policy Evaluation in Sweden by Bengt-Christer Ysander
107. The Largest Nordic Manufacturing Companies by Lars Oxelheim
108. Entry, Industry Growth and the Microdynamics of Industry Supply by John C. Hause and Gunnar Du Rietz
109. Capitalist Organization and Nationalistic Response; Social Dynamics in Age of Schumpeter by William Parker
110. A Nonwalrasian Model of the Business Cycle by J.-P. Benassy
111. Disequilibrium Economic Dynamics A Post-Schumpeterian Contribution by Richard Day
112. Schumpeterian Competition in Alternative Technological Regimes by Sidney Winter
113. The Industrial Finance Systems; Europe, U.S. and Japan by Tad Rybczynski
114. The Microeconomics of Organization and Productivity Change - The Use of Machine Tools in Manufacturing by Bo Carlsson
115. On the Behavioral and Rational Foundations of Economic Theory by Herbert Simon
116. Schumpeterian Dynamics by Erik Dahmén
117. A Dynamic Micro-to-Macro Model of an Industrial Economy by Gunnar Eliasson
118. The Initialization Process - The Moses Manual, Part 2 by Fredrik Bergholm

[^0]: a SI stands for the "Federation of Swedish Industries", which collected the micro data, through the so called Planning Survey. Reference persons: Ola Virin, Kerstin Wallmark.

[^1]: a The greek letter "delta", Δ, is used in functionnames in the APL-code instead of blanks, if the function-name consists of several words. Thus PUBLICASECTOR should be read "public sector" etc.
 b XX in ISTARTXX stands for a number indicating different initialization variants.

[^2]: $14 \quad 2478515566422052124361128114085 \quad 716386284-99209-27209430440$

[^3]: * In Swedish called MOMS.

[^4]: * This symbol looks like an A, which is smoother than an ordinary A. For typographical reasons we write this as a boldface A, in this text.

[^5]: * Not documented in this manual. See Eliasson-Heiman-Olavi (1978). A full documentation will appear (not published yet).

