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Abstraet

This paper shows how changing patterns of change

and irregular or chaotic fluctuations arise in

deterministic, competitive markets with production

lags using (l) the standard cobweb model with a

backward bending supply function and (2) the

Robertson-Williams cobweb model with financial ly

constrained supply.

The question arises whether there
are any fluctuations at all which
arise out of the behavior of busi
ness communities as such and would
be observable even if the insti
tutionai and natural framework of
society remained absolutely invari
able.

J.A. Schumpeter

production and prices fluctuate
greatly from year to year and there
is a good deal of irregularity in
these fluctuations too

G. S. Shepherd
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1

In this paper we show how changing patterns of

change and irregular or chaotic fluctuations can

arise in deterministic, competitive markets with

production lags. Two forms of the cobweb model are

used for this purpose, one with a backward bending

supply function and one in which supply depends on

"working capital" or " re investment income". As in

other examples of economic chaos investigated by

various authors, complicated dynamics do not occur

because of random, exogenous shocks, which are not

present, but because the feedback effect of past

output on current supply and demand exhibits non

linearities that bring about a causa l effect re

versal. l

Of course economic history involves a host of

variables that come from outside the strictly econ

omic domain and whose more or less random impulses

can be propagated when the deterministic system

upon which they impinge is stable, as shown in the

classic works of Frisch (1933) or Lucas (1975).

But it is also of interest to inquire under what

conditions irregular fluctuations of the kind we

experience in daily economic life could also be

generated in isolation of exogenous perturbations.

The present paper is concerned with such intrinsic

mechanisms in still another classic or standard

context.

The cobweb model presents, of course, a highly

simplified picture of supply, demand and of price

expectations. In the case where periodic fluctu

ations occur and suppliers are consistently wrong

in their forecasts, i t has long been argued that

more rational expectations would evolve. If, how-
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evert intrinsic instability exists it is not clear

that the usual methods of statistical inference t

let alone typically used rules of thumb and learn

ing procedures t could help producers avoid cease

less error. That is an intriguing question for

which the present analysis begs an answer t and

which may stand as a challenge for further theo

retical research. A probe in this direction has

recently been made by Brock and Chamberlin (1984).

See also Tokens (undated).
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2 PRODUcrIOII LAGS ARD DRJ.(E'!' FEEDBACK:

"!BE BASIC COBIIEB MODEL

Consider a set of micro supply functions that

describe the dependence of supply of a given firm,
i Ai

say Yt+l' on that firm's expected price, say Pt+l'

i A

= S (Pt+l)

Each firm is assumed to have

price expectations, and these

adaptive form

( l )

exactly the same

have the naive,

( 2 )

where Pt is the market price of period t. 2 Aggre

gate (macro) market supply is then defined to be

(3 )

The model is completed by adding the inverse

demand function representing temporary market

clearing prices,

(4 )

The micro-macro linkage occurs through market feed

back when (4) is substi tuted into (2). Substitut

ing in turn into (l) the behavior of the ith firm

is given by

(5 )
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so that what each firm does in a given period

turns out to depend on what the aggregate of firms

did in th~ previous period.

If each firm satisfies a proportionality condition

then there exists a representative supply function

S(·) and constants ~. for each firm such that
].

i
S (p) = ~.S(p), L:.~. = l

]. ]. ].
(6 )

Equations (2) and (6) are aggregation conditions

which simplify the micro-macro linkages implicit

in the aggregate model. With this assumption aggre

gate supply is simply

(7 )

Moreover , each side of (7) can be divided by l/n

to get the micro behavior of the "average" firm

( 8 )

Now consider a situation in which, if the price is

low enough, production will be negligible, but as

price rises supply increases rapidly, reaching a

maximum. Beyond this point output decreases as

price increases. This could happen if in this

range farmers (say) would prefer to sustain, or

modestly improve their material standard of living

while at the same time, by substituting leisure

for work, increase the time they have to enjoy it.

Given this "backward bending" supply curve, un

stable oscillations can occur if the local stabil

ity condition at equilibrium ye is violated, that
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is, if S' (pye)D-' (ye) < -l. However, unlike the

linear case usually used to illustrate the cobweb

model these oscillations do not "explode" but are

bounded because of the nonlineari ty in the supply

function. They may converge to periodic cycles

or they may wander in apattern that can have

irregular sequences of turning points and with

erratic amplitudes, a by now weIl known phenomenon

called "chaos" by the mathematicians Li and Yorke

(1975). A sufficient condition for the existence

of such market solutions can be derived directly

from Li, Misiurewicz, Pianigiani and Yorke (1982).

It is the existence of a point, say yC, such that

either

or (9)

for some odd n where yO = yC, Yl = S[D-(YO) J, ... ,
Yt +l = S[D-(Yt )]·

These sufficient conditions do not depend on any

particular functional form for the basic differ

ence equation (7) so it is not very restrictive so

far as the underlying conditions of demand and

supply are concerned.

As an example consider the supply function

A

Y = S (p) =
o , p < c

p ~ c

(10)

(where for simplicity we will set c = o) and let

demand be

p = D-(y) = a(l-b)y.

( Il)
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The adjustment equation for output is then

(12 )

Figure l presents a simulation of this equation. 3

Supply increases at a decreasing, then increasing

rate until it switches to an oscillating mode. 4

The under lying supply and demand curves are shown

in la, the phase diagram in lb and a specific

solution in lc. A further analysis of this case

shows that once the oscillatory mode is entered

price and quantity changes reverse sign every

period, in this sense following a two period oscil

lation. But the amplitudes are highly irregular as

can be seen in Figure 2a where no periodic motion

is evident even after 100 iterations.

Consider the

period. If we

labelled A on

find that

behavior of supply every second

begin for example with the point

Figure lc and let it be ya then we

This means that the second iterated map

y = e(e(y »t+2 t

derived from (12) satisfies the sufficient con

dition (9a) for chaos. This explains why the ampli

tudes are so highly irregular even though the

turning points occur every period! We then have

the appearance of a regular 2 period cycle with

random shocks superimposed even though the model

is deterministic.
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Figure 2b shows a histogram of 10,000 i terates in

this solution. There are 28 nonzero cells indi

cating that if the solution converges it must very

likely be to a cycle of periodicity of at least

28. Indeed, the periodicity would have to be much

greater than that because the bars of the histo

gram would all be exactly the same height if the

number of nonzero cells were exactly equal to the

period of the cycle. This possibility deserves

emphasis because high periodicity looks like

short-run irregularity. Our simulations really

can't distinguish between very high periodicity

and chaos even when we know chaotic trajetories

exist.

Figure 3a shows the time path for a second example

in which the demand parameters "a" and "b" have

been shifted slightly. 5 The ampli tudes are highly

irregular and points satisfying the sufficient con

ditions for chaos are readily found, an exercise

that may be left to the reader. In addition turn

ing points now occur at irregular intervals, some

times every period, sometimes after three periods

and occasionally, with somewhat diminished fre

quency, after two periods. The histogram of 10,000

i terates in this solution is shown in Figure 3b.

There are 57 nonzero cells with highly varying

frequencies indicating that the fluctuation, if

periodic, has a period much greater than that

number. Again, as the sufficient conditions for

chaos are satisfied we may have here an example of

chaos, though strictly speaking, we can't be sure.

The backward bending supply curve used here to

obtain unstable, yet bounded oscillations is not

entirely a theoretical curiosity. It has been

thought to have some empirical relevance for labor
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Figure 3 An ez.aJlp~e with irrego~ar tarning
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markets (Friedman, 1962) for examp1e. the idea

that farmers and others might behave in accordance

with it does not seem who1ly imp1ausib1e either.

For our purposes, however, it is merely a pedagogi

ca11y convenient way to show howevolving modes of

behavior and the emergence of irregular, unpredict

able fluctuations can be explained endogenously,

results not realized by the early developers of

the cobweb theory (Hanau, 1927~ Tinbergen, 1931~

Kaldor, 1934~ Leontief, 1934~ Ezekie1, 1938) or

even by its later expositors (Baumo1, 1959~ Hender

son and Quandt, 1958~ Samuelson, 1983). Obvious1y,

given appropriate configurations of supply and

demand, all of the other types of cobweb paths,

inc1uding converging and periodic cycles can be

found.
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".!'BB ROBER'rSOll-wILL:r.AMS COBWEB MODEL

In order to dispell the notion that our results

derive solely from the backward bending supply

function and could not occur otherwise, we con

sider an alternative version of market dynamics

based on the "Robertsonian Lag", that is the idea

that current expenditures must come from previous

incomes. As in the standard cobweb model prices

are determined by market clearing, while anticip

ated prices are assumed (again for convenience of

analysis) to be based on naive, adaptive expec

tations. Given that firms attempt to maximize anti

cipated profits (when the latter are positive) or

to maximize sales (Baumol, 1959a) when anticipated

profits are negative, output is determined by the

equation: Current Production Costs = Reinvestment

Income, where Reinvestment Income = Lagged Total

Revenue - Overhead Costs - (Dividends or Consump

tion Expenditures). See Williams (1967).

Suppose output is initially very small but suffi

cient to· cover overhead and other deductions so

that initial reinvestment income is positive. A

period of growth may occur so long as demand is

elastic and total revenue increasing. Eventually,

however, when supply reaches the inelastic portion

of the demand curve revenues fall; reinvestment

income declines so that output must subsequently

be reduced. Later, because market supplies are

reduced, prices increase and revenues recover.

That firms may over-expand and "spoil their

market" is not news to any student of Marshall.

That the resulting fluctuation could appear to be

highly irregular may come as something of a sur

prise.
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Let Ci (yi) be the total cost function and let k~

be the reinvestment income or working capital of

the ith firm. By consumption output in time t+l is

determined as the solution y~+l to the problem

(15 )

or by the solution of the implicit function in yi

i i
C (Yt+l) =

Suppose the reinvestment function is

(16)

(17)

i
Solving for Yt+l in (16) and using (17) we get the

supply function corresponding to (3)

(18)

Substituting the inverse demand equation (4) we

get

(19 )

which is analogous to (5).

Our aggregation conditions (6) will hold if each

firm has identical cost and distribution functions

c i and Hi and identical initial conditions. In

this way we can arrive at a difference equation

representing the dependence of aggregate supply

(or that of the representative firm) on output for

the preceding period.
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Indeed, if for simplicity we assume identical,

constant uniteosts, c, and a degenerate distri

bution funetion (Hi(yi, p.) = O) then the model
~

boils down to the equation

( 21)

Given the simplifieations we have imposed, the

dynamies of industry output must depend on uni t

eos t and on the parameters of demand.

This is most easily seen by considering the linear

inverse demand eurve (11) so that (12) beeomes

(22)

Setting x = by we obtain the differenee equation

(23)

which shows that behavior is eompletely determined

by the ratio m = a/c.

The parameter "m" has a simple intuitive meaning:

i t is the extent of the market "a" divided by an

"effieieney index", "c"; or, we eould say that "m"

is the "extent of the market" measured in "cost

efficieney" units.

-oIt is easy to show that when m .. l, x = O is the

single nonnegative and stable stationary state.

For l < m .. 2 we have monotonic growth eonvering

t th ... -l ( l) /o e pos~t~ve stat10nary state x = m- m =
(a-e)/e; and for 2 .. m < 3 damped eyeles must even

tually oecur (after a period of growth if xo is
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elose to zero), eonverging to the positive station

ary state xl. Thus, the parameters m = l and m = 2

are bifureation points at whieh the qualitative

properties of trajeetories satisfying (3) suddenly

ehange.

When m > 3 two things oeeur simultaneously: the

positive stationary state beeomes unstable and a

stable, two period eyele emerges. For O < (m+l)·

(m-3) ~ l the two period eyele is approaehed mono

tonieally, i.e., from "inside" or from the "out

side". For l < (m+l)(m-3) ~ 2, or m = 1+ 16, the

two period eyele beeomes uns table and a four

period eyele emerges. We have thus found new bifur

eation points at m =3, M = l + I~ and m = l + 16.

In this manner bifureation point s are generated at

eaeh of whieh the qualitative dynamies of the

model ehange. Thus, as the extent of the market

inereases ( "a" gets larger) or as uni t eost de

ereases ("c" gets smaller) eontraetion is replaeed

by growth, then eye les of higher and higher even

order emerge. Day (1967), who worked direetly with

a version equivalent to the equation (22), left

the bifureation analysis here, having shown how

the qualitative dynamies of the market can ehange

abruptlyas the parameters of demand and/or eost

are ehanged.

In the meantime Hoppensteadt and Hyman (1977), who

were motivated by Lorenz (1963), (1964), earried

out a definitive bifureation analysis of equation

(23). Let ~ be the value of m at whieh the stable

eyele of order k emerges and the eyele of order

k - l beeomes unstable. Hoppensteadt and Hyman

showed that limJ. +ex> m2J. ~ 3.57. Moreover by direet

ealeulation they found the value m
3

= 3.83 and a
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sequence of values k = 3 - 2R , R = 0,1,2,3 ... such

that < m
3

_2R+l < m3 _2R < ••• m3 and such that

lim m
3

2R ~ 3.57. Thus as m increases from 3
R+oo -

toward the value of 3.57, higher and higher order
neven cycles emerge of order 2, n = 1,2, ....

Beyond 3.57, very high odd cycles of order 3 - 2n

appear. These diminish in order until at 3.83 a

cycle of order 3 exists.

Clearly, as m increases beyond 3 the behavior of

(23) becomes very complicated. Just how complex

was already evident in computations of this model

conducted by Richard Benson under the first

author' s direction in the mid 60s. Re simulated

equation (22) for various parameter values. Some

of the computations displayed unusual irregular

ities. Figure 4 presents two examples of this kind

which we have reproduced for this paper using the

canonical form (23). Diagram (a) shows a two

period oscillation that appears to jump to a

seven-period cycle. The latter approximately repro

duces itself several times; the pattern is broken

and then apparently reestablished only to wander

away in a quite different, irregular pattern. Dia

gram (b) develops extreme fluctuations with pe

riods of growth followed by cycles and occasional

plunges at erratic intervals that nearly eliminate

the industry altogether. It is easy to find examp

les of points satisfying the sufficient conditions

(9a) in either of the two series so we "know"

chaotic trajectories exist, though, of course, as

in the examples of Section 2, we can't be entirely

sure these are not just trajectories with extreme

ly high periodicity.

Using an argument developed by one of us elsewhere

(Day, 1982, 1983) a sufficient condition that is
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very easy to construct for a large clas s of demand

functions can be developed. Fix all the parameters

of the industry demand curve except for one repre

senting the extent of the market "a" so that we

can write (21) as

(24)

where m = al c, the extent of the market in cost

efficiency units. Suppose also that inverse demand

is continuous, downward sloping and such that

lim O + yD-(y) = lim yD-(Y) = O. Then 0(y~ m)
y-+ y-+oo

has a single-humped shape with maximizer y* inde-
m,() m hpendent of m and maximum y m = my w ere

ym = y*D- (y*). Finally let yC be the smaller of

the two roots (if m is big enough for them to

exist) of the equation myD(y) = y*.

m mObviously when m is big enough y (m) = my becomes

bigger than y* which is a sufficient condition for

yC(m) to exist and for yC(m) < y*. Clearly 8(y~ m)

E J = [O, ym(m)]. Hence, from the Li-Yorke (1975)

condition chaos exists for all Robertson-Williams

cobweb models such that

(25)

Consider the semi-log linear demand form

Substituting in (24) we get

-By
=mye' tt

(26)

(27)
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or multiplying both sides by ~

xt = ~Yt'

and setting

(28)

= me. Ac-

= min{x I
for all
xc}, or

for all

estimate

The maximizer is x* = l with maximum xm

cording to our definition above xC
-x }mxe = l so chaotic trajetories exist

models with (a/c) E A = {m>O I m2e me - l ~

using a numerical result of May (1975)

m > 2.692. Mueller and Day (1978, p. 240)

II a II for West German demand for pork circa 1970 to

e 2 . 875 Accordingly, chaotic cobweb cycles could

exist for average uni t production costs below

e2.875/2.692.

Of course when the extent of the market is small

enough, all trajectories fall to zero: the indus

try dies out. When m is big enough growth converg

ing to the stationary state x = log m emerges.

When m is increased still more cycles of period

doubling orders occur until eventually the chaos

condition is satis fied where cycles of all orders

and a chaotic set of initial conditions exists.

Thus, the rising complexity of industry behavior

depends on the extent of the market (now measured

by a) and the cost coefficient, c, in exactly the

same way as for the linear demand case.

The effect of (a/c) on market dynamics can be

dramatic as shown by May in the reference cited.

His resul ts may be interpreted for the Robertson

Williams Industry as follows. As the extent of the

market increases or as unit costs decrease, stable

growth gives way to successively

until the chaos regime is reached.

higher cycles

As those par-
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ameters change still more, the cycles eventually

display irregular sharp peaks separated by periods

of extremely slow growth, somewhat in the manner

of clothing fashions or faddish sporting goods

such as hula hoops or roller skates. In the pre

sent model these cycles are not due to changing

tastes but to a Marshallian "spoiling the market"

phenomenon. Each cornpetitor, in an effort to pro

duce all he can, ploughs back working capital in

an effort to maximize sales. Total revenues in

crease explosively leading to an eventual collapse

in the market. The result is an industry character

ized by a very small output much of the time but

which enjoys great booms at sporadic intervals. 7
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4 COBCLDSIORS

Two forms of the basic cobweb model have been

investigated, one in which a backward bending

supply function is used, and one in which supply

depends on reinvestment income or "working capi

tal". Although both versions have limitations, par

ticularly in their use as a simplifying device, of

naive, adaptive expectations, they still serve

very weIl the pedagogical purpose of showing how

complicated dynamics can be generated within a

completely deterministic framework, one in which

shocks play no role and in which all the changes,

structural ones and even those of an essentially

random nature, are explained entirely by the en

dogenous forces of supply and demand.

Paraphrasing a passage by the physicist P.W.

Bridgeman, Schultz (1982) remarked that" econ

omic behavior is much more complex than our

thoughts about it." That, unfortunately, is likely

always to remain a problem. Still, progress along

the lines illustrated here may enable our thoughts

to become complex enough eventually to provide a

better foundation for policy formulation and

evaluation.



- 23 -

* The first author' s work on this paper was con

ducted at The Netherlands Institute for Advanced

Study while that of the second was carried out at

the Industrial Institute of Industrial Research in

Stockholm. The model in Section 2 was presented at

the Institute Henri Poincare in Paris in the

spring of 1982. Related works by Jensen and Urban

(undated), Cigno and Montrucchio (1984) and Ga

bisch (undated) have recently come to our atten

tion. The model of Section 3 was originally stud

ied by Day (1967). The new results obtained here

were first presented to the NBER Conference on

General Equilibrium Theory in the spring of 1981.

See Dury (1981).

l For discussions of mathematica1 chaos in an econ

omic context see Benhabib and Day (1982), Day

(1982, 1983), Dana and Malgrange (1984), Grandmont

(1983), Stutzer (1981), and Pojohla (1981). Refer

ences to the related technical literature will be

found in these papers.

2 Obviously, alternative, more "rational" expecta

tions might be introduced, and such alternative

assumptions wouId, of course, affect the analysis.

But they would either force us to assume a station

ary equilibrium in the case of perfect foresight

or introduce considerable analytical complications

in the case of adaptive or other kinds of more

sophisticated expectation models • Such considera

tions have to be taken up eventually but we shall

not do so here.
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3 We should note that this example is quite a

tractable one from the econometric point of view.

Indeed, (12) may be expressed in the semi-log

linear form log yt+l = log A + ex log Pt - ~ B +

~YYt which with (11) gives an identifiable system.

4 The parameters for this example are ex = 4,

~ = l, Y = 1.6, A = l, B = la, c = o, y(O) = O.

5 The parameters are the same as the previous

example (note 4) except y = 1.8 and B = 10.3.

6 Benson, now an investment banker on Wall Street,

was then an undergraduate student at the Universi

ty of Wisconsin.

7 Returning to the linear demand function (11)

which

(23)

gives the

we have

quadratic

x* = 1/2

difference equation or
m

and x (m) = m/4. Con-

sequently, chaotic trajectories exist when

(a/c) = m E A = {m(m/4)2 (4-m) ~ m-1m2-2m, m < 4}.

From the resul ts of Hoppensteadt and Hyman drawn

above we know that A contains the interval

[3.83, 4J. Moreover, if we use iterates of e(·) in

(25) instead of e(·) itself then we know that an

3 54 d l f d 3. 2n Thus l.' fm -+ • an cyc es o or er emerge.
2nwe consider the map e (y~ m) then the set A is

approximately [3.57~ 4J and in this sense m = 3.57

is the threshold for chaos for the Robertson-

Williams cobweb model when demand is linear and

has the form (11).
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