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Abstract. We analyze an investor who delegates information acquisition

and investment decisions to an agent. The investor cannot monitor the agent’s

effort or information. Optimal pay schemes contain bonuses that increase with

the net return rate of the investment, but, unlike conventional contracts, at

a decreasing rate. Moreover, investments with low return rates are penalized,

again unlike conventional contracts. Nevertheless, it may be optimal for the

investor to reward the agent above the agent’s reservation utility. We examine

the role of the agent’s risk attitude for the shape of the pay scheme, and whether

firing after bad investments is a more effective threat than reduced pay. We also

analyze how the nature of the contract changes if the agent is given bargaining

power.

Keywords: Delegation, principal-agent, principal-expert, investment, in-

formation acquisition, rational inattention, contract, bonus, penalty.

JEL codes: D01, D82, D86, G11, G23, G30.

∗Institute for International Economic Studies, at Stockholm University, and Research Institute

of Industrial Economics, Stockholm. Assar Lindbeck thanks the Jan Wallander and Tom Hedelius

Foundation, and the Marianne and Marcus Wallenberg Foundation for financial support.
†Stockholm School of Economics (SSE), and the Institute for Advanced Study in Toulouse

(IAST). Jörgen Weibull thanks the Knut and Alice Wallenberg Research Foundation, and the Agence

Nationale de la Recherche, Chaire IDEX ANR-11-IDEX-0002-02, for financial support.
‡We thank the editor in charge and two anonymous referees for helpful comments. We also thank

Sylvestre Boittin-Duchesne for excellent research assistance, and Atahan Afsar, Mogens Fosgerau

and Joacim Tåg for helpful comments to earlier versions of this paper. A precursor of parts of this

study is reported in IFN WP 1171, "Investment, rational inattention, and delegation" (Lindbeck

and Weibull, 2017).

1



DELEGATION OF INVESTMENT DECISIONS, 2

1. Introduction

In standard principal-agent models, the task of the agent is to increase the suc-

cess probability of an agreed-upon project. A complementary, and arguably equally

important task for many agents, such as CEOs of large corporations, pension-fund

managers and consultants, is to make a well-informed choice of which project, if

any, to undertake. To be well-informed usually requires skill and effort to acquire,

process, and assess relevant information, and such efforts, as well as the obtained

information, are usually difficult to monitor. This class of moral-hazard problems,

sometimes called principal-expert problems, was noted and discussed already by Dem-

ski and Sappington (1987), but has received less attention among model builders than

standard principal-agent models. We here develop an operational principal-agent (or

principal-expert) model in order to analyze precisely such moral-hazard problems.

In our model, an investor delegates information acquisition and investment deci-

sions to a risk-neutral or risk-averse agent, subject to a limited-liability constraint.

We take the agent to be someone who has a comparative advantage in acquiring and

evaluating pertinent information about projects or investment opportunities. Canon-

ical examples are CEOs of large corporations, division managers, and fund managers.

Other examples exist in the consulting industry, where firms, institutions and wealthy

individuals sometimes delegate information acquisition and, in effect also decision-

making, to a consultant or expert.

Information about investment projects is often a mix of hard and soft pieces. To

assess the relevance and reliability of such information for balanced decision-making

requires expertise, effort and time. Moreover, the information obtained is often dif-

ficult to communicate to a non-expert. There are two obstacles to communication.

First, the principal may not have the expertise or time needed. The project may, for

example, concern a new medical product, technical innovation, or the entry into a

foreign market. Second, it may be in the agent’s self-interest not to share all informa-

tion. The agent may, more generally, opportunistically mis-report, suppress, or even

distort information. For this reason, not only information acquisition but also the

investment decision itself is in practice often formally or informally delegated to the

agent. Even if the principal makes the formal decision, she may have to rely on the

information and advise given by the agent (see Aghion and Tirole, 1997). The key

issue is thus how to motivate the agent to acquire relevant and reliable information

and, when making or recommending the investment decision, to use that information

in the principal’s interest. As pointed out by Demski and Sappington (1987), there

is in general a tension between these two objectives.

The topic being rich and complex, we abstract from many important real-life

factors and focus only on a few key elements.1 We assume that the investor cannot

1For recent contributions to the topic of management compensation, see e.g. Kaplan and Ström-
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monitor the agent’s efforts or information. A contract between the two parties can

only be conditioned on whether investment is made or not, and if made, its realized

net return. In particular, the agent’s remuneration in case of non-investment cannot

be conditioned on the return that would have materialized, had investment been

made.2 In order to keep back the agent’s potential eagerness to invest, because of his

hope to earn a bonus, the agent has to be paid also for not investing, and has also

to face some sort of penalty if making a loss-creating investment. The penalty may

take pecuniary form or take the form of firing. We require pecuniary penalties to

meet the limited-liability constraint of never resulting in a net pay from the agent to

the principal. To deter the agent from investing when prospects–about which he has

private information–are not good is just as important for the principal as to motivate

the agent to invest when prospects are good. Under the mentioned limited-liability

constraint, the magnitude of pecuniary penalties after bad investments is bounded by

the pay after non-investment, since the harshest pecuniary penalty is to withhold all

payment, a loss for the agent equal in size to his pay when not investing. Firing may

be a more powerful penalty, especially if this is harmful for the agent’s future career,

and if it is not very costly for the principal. The limited-liability constraint causes

an asymmetry between bonuses and pecuniary penalties, even for risk neutral agents

facing investment projects that are ex ante symmetric in terms of the probability

distribution of potential losses and gains.

We show that optimal contract for risk-neutral agents belong to a family of well-

behaved non-linear functions known in physics, but, to the best of our knowledge,

not known in economics. Our model’s optimal contracts, for risk-neutral as well as

risk-averse agents, are non-linear and reward investments with very high return rates

less than proportionally. Investments that result in low or negative return rates are

penalized. The reason for the non-linearity is that contracts here serve two distinct

purposes: to incentivize the agent’s information acquisition, and, once information

has been obtained, to align the agent’s incentives with those of the principal at the

investment decision (had the principal then had access to the agent’s private infor-

mation). It is the first objective, giving incentives for information acquisition under

the limited-liability constraint that lies behind the additional non-linearity, also for

risk-neutral agents. We model the agent’s information acquisition within a rational-

inattention approach, whereby the agent optimally reduces his uncertainty, given the

cost of uncertainty reduction and given prior beliefs and contract. Uncertainty is

berg (2002,2004), Friebel and Rath (2004), Gabaix and Landier (2008), Terviö (2008), Kaplan and

Rauh (2010), Murphy (2012), Kaplan (2013), Ibert et al (2018), and Ma, Tang and Gómez (2019).
2This restriction is natural in many situations, since it is usually not possible to know and in court

verify, ex post, what the return to by-passed investment opportunities would have been However,

in some situations, such as investment in stocks, this information may be available and, if verifiable,

can then be part of a contract. This is assumed in Carroll (2019).
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measured by the Shannon entropy, whereby the marginal cost of uncertainty reduc-

tion is low when there is lots of uncertainty and tends to plus infinity as uncertainty

vanishes.

The threat of firing the agent after an unprofitable investment may be more effec-

tive than the threat to reduce his pay, especially for agents for whom career concerns

are important (assuming that being fired acts as a negative signal in the future market

for the agent). We also find that if the agent has bargaining power when the con-

tract is set up, then this enhances his salary more than the bonuses. As for the risk

attitude of the agent, one might conjecture that it is more profitable for the principal

to hire a risk-neutral than a risk-averse agent, since the latter will need to be better

insured against bad outcomes. But this is not the case. On the contrary, the princi-

pal benefits from hiring a risk-averse agent. The reason is that the above-mentioned

asymmetry between bonuses and penalties (due to the limited-liability constraint) is

mitigated, since for a risk-averse agent income reductions are more painful.

We use numerical simulations throughout in order to illustrate the nature of opti-

mal contracts, and to show how they depend on the nature of the return distribution

and other factors. We find that the presence or absence of extremely rare and high re-

turn rates ("black swans") does not much influence the shape of optimal contracts. In

such rare states of nature, optimal contracts reward investment by way of only a small

share of the realized net return (unlike the fixed share under standard profit-share or

stock-based contracts).

The presentation of the material is organized as follows. In Section 2 we outline

the base-line model and provide a necessary first-order condition for optimality when

the agent’s participation constraint is slack. Section 3 is devoted to the case of a

risk-neutral agent, and we show that optimal contracts take a certain mathematical

form that, to the best of our knowledge, has not appeared before in contract theory.

Section 4 defines a class of risky projects that we use to illustrate the nature of

optimal contracts. Section 5 compares optimal contracts with standard profit-share

and stock-based contracts. Section 6 analyzes bargaining between a principal and a

risk-neutral agent. In Section 7 we analyze optimal contracts for risk averse agents.

Section 8 provides a generalization of the base-line model by allowing for firing clauses

in contracts. Section 9 discusses the related literature, and Section 10 concludes.

Mathematical proofs and complementary numerical results are given in an appendix

at the end of the manuscript.

2. Model

A risk-neutral investor faces an indivisible investment opportunity, or project. The

project requires a fixed lump-sum investment,   0, and gives a random return (or



DELEGATION OF INVESTMENT DECISIONS, 5

cash flow), . The project’s net return rate is defined as

 =
 − 


−  (1)

where  is the investor’s unit cost of funds (a risk-free interest rate or the return to

treasury bonds). This net return rate  from the project is taken to be a random

variable with finite support  = {1  }, where 1  2    . The in-

vestor’s prior probability for each state of nature  = Ω = {1 2 } is positive
and denoted . The vector  = (1  ) is thus the investor’s prior belief con-

cerning the true state of nature. This may e.g. be based on public information, or

knowledge about the economy at large, or about the industry in question, and/or on

freely available information about the project at hand. We assume throughout that

1  0  .

The investor considers the possibility of hiring an agent who has some compar-

ative advantage in obtaining and processing relevant information about investment

projects. We assume that the principal knows the agent’s information cost-function

and risk attitude. The agent strives to maximize the expected utility from his re-

muneration. His Bernoulli function of income,  : R+ → R+, is taken to be twice
differentiable with  (0) = 0, 0  0 and 00 ≤ 0.3 The agent’s outside option has
expected utility ̄.

We assume that the agent shares the principal’s prior. However, if the agent

is hired, then the principal will not know the agent’s effort to acquire and process

information, the quality of the information so obtained, or what that information is.

The only verifiable information upon which a contract can be based is whether or

not investment was made, and, if made, its subsequently realized return. In view

of this informational asymmetry, it is immaterial for the subsequent analysis if the

principal asks the agent for investment advice or if the principal instead delegates the

investment decision to the agent.

In the base-line model, outlined in this section, we focus on purely pecuniary

contracts. In a Section 6, we analyze contracts with a firing clause. Hence, for now,

a contract is a vector  = (0 1  ) ∈ R+1, where 0 is the agent’s pay if he

does not invest, and , for  = 1 , is his pay if he invests and the state of

nature turns out to be  ∈ Ω. We focus on contracts that meet the limited-liability

constraint of never requiring the agent to make a net payment to the principal; all

components of the vector  have to be non-negative. Such contracts will be called

feasible. A contract  can be interpreted as a salary and a package of bonuses and

penalties. In this interpretation, 0 is the salary and, for each state  ∈ Ω, the

3We will later make one exception and consider the case when  is logarithmic and thus only

defined for strictly positive arguments.
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difference  =  − 0, if positive, is the agent’s bonus for investing in state , while

the difference 0 − , if  =  − 0 is negative, is the agent’s penalty for investing

in that state. Expressed in these terms the limited liability constraint thus requires

no penalty to exceed the salary.

Acquisition and processing information is costly to the agent. We analyze this

within a rational-inattention approach. This currently very active research field was

pioneered by Sims (2003, 2006), followed up and developed further by Woodford

(2008), Cabrales, Gossner and Serrano (2013), Matejka and McKay (2015), Yang

(2015), Lindbeck and Weibull (2017), Caplin, Dean, and Leahy (2019), Yang and

Zeng (2019), and Fosgerau et al. (2020). This approach views information acquisition

as a choice of a joint probability distribution over signals and states of nature under

the constraint that the marginal distribution over states equals the decision maker’s

– here the agent’s prior – and with information costs represented in terms of entropy

reduction.4

Using this approach, and adapting it to a principal-agent setting, we obtain invest-

ment probabilities that depend on the agent’s optimal choice of how well-informed he

wants to be, given the project, his risk attitude, his information costs and contract.

By spending more time and effort on information acquisition, the agent can reduce

the risk of investing in states of nature where he earns little, and enhance the chances

for investing in states where he earns much. An information-cum-investment strategy

for the agent consists of (i) a decision of how much effort to spend on acquiring and

processing information, (ii) a decision rule that specifies what investment decision to

make conditional upon the information obtained.

If the contract specifies the same or similar pay to the agent from investment in all

states of nature, or if information acquisition is very costly, then it may be optimal for

the agent not to acquire any information. He will then base his investment decision

directly on his prior and his pay after investment and non-investment, respectively.

Likewise, if the agent is always or never paid more when investing than when not

investing, he will optimally chose not to acquire information. However, if investment

in some states of nature pays below non-investment and investment in other states

pays above, and information costs are not very high, then it may be optimal for the

agent to make an effort to acquire and process information about which states are

more likely to prevail. The agent then strives to obtain a precise binary signal that

essentially says "invest" when his pay exceeds the pay from not investing, and "do

not invest" in the opposite case.

By thus acquiring and processing information, the agent will replace his prior belief

4The information-theoretic interpretation of entropy is due to Shannon (1948), who axiomatized

entropy as a measure of uncertainty. The approach was further developed by Shannon and Weaver

(1949), Jaynes (1957), Kullback (1959) and Hobson (1969).
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about the state of nature by a more precise (and ex ante random) posterior belief.

Within the rational-inattention approach, this intricate information acquisition cum

investment problem becomes analytically tractable. In this approach, the information

costs associated with a more precise posterior is measured in terms of the expected

entropy reduction. When choosing how much effort to make, the agent optimally

trades off the (certain and immediate) cost or disutility of acquiring and processing

information against the (uncertain and future) benefit from making a well-informed

investment decision. At that second stage, when the agent’s refined probabilistic

belief has been formed, he will face a standard Bayesian decision problem and will

decide for or against investment depending on his then expected utility from investing

or not investing.5

Let  denote the probability for investment at the ex ante stage when the agent

has accepted the contract and chosen his information-cum-investment strategy, but

before his private information has been obtained. This ex ante investment probability

is zero or one if his expected benefit from information acquisition cannot outweigh the

cost of obtaining the information. If he thus opts for  ∈ {0 1}, he will choose  = 1
( = 0) if, according to his prior belief , his expected utility from payment when

investing exceeds (falls short of) the utility from his (certain) pay when not investing.

If he instead opts for  ∈ (0 1), then he will acquire and process information, and
base his investment decision upon the so obtained information. From Theorem 1,

Lemma 2 and Corollary 2 in Matejka and McKay (2015), one obtains (after some

algebraic manipulation) that the agent’s optimal information - cum - investment

strategy then induces the following conditional investment probabilities in all states

of nature  ∈ Ω:

 = Pr [invest |  = ] =
()

() + (1− ) (0)
 (2)

where   0 is the agent’s unit cost of information (to be detailed below). We note

that this conditional investment probability is a continuously and strictly increasing

function of the agent’s utility difference  ()− (0) between investing in that state
and not investing. Moreover, this probability  exceeds (falls short of) the prior

investment probability  if the payment  after investment in that state exceeds

(falls short of) the "salary" 0 obtained when not investing. We also note that the

conditional investment probabilities (2) are non-linear in the payments to the agent

even if the agent is risk-neutral.

By Bayes’ law, the ex ante investment probability, , equals the weighted sum

of the conditional investment probabilities, each weighted by the likelihood of that

5For excellent discussions, analyses and extensions of the rational-inattention approach, see Mate-

jka and McKay (2015), Caplin, Dean and Leahy (2019), and Fosgerau et al. (2020).
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state: X
∈Ω

 =  (3)

This equation is always met if  = 0 or  = 1. However, for values of  between these

extremes, (3) is met if and only ifX
∈Ω


()

() + (1− ) (0)
= 1 (4)

This equation characterizes the agent’s optimal choice of investment probability 

under any given contract.6 Once  has been solved for, the conditional investment

probabilities are immediately obtained from (2). It is easily verified that the left-hand

side of (4) is a continuous and strictly convex function of  that takes unit value at

 = 1. Hence, there exists at most one  ∈ (0 1) satisfying (3), or, equivalently, (4).
In sum, under any contract , the agent will either choose ∗ = 0, ∗ = 1, or, if it

exists, the unique ∗ ∈ (0 1) that satisfies (4).
It follows that ∗ = 1 if there are no penalties in the contract (that is, if  ≥ 0 for

all  ∈ Ω), since then the left-hand side in (4) exceeds unity for all   1). Likewise,

∗ = 0 if there are no bonuses in the contract (that is, if  ≤ 0 for all  ∈ Ω),

since then the left-hand side in (4) falls short of unity for all   1. In the first case,

the agent invests with probability one in all states of the world, while in the second

case he never invests. However, these two extreme behaviors occur also under less

extreme contracts. We will say that a contract  provides sweet investment conditions

to the agent if it is optimal for him to always invest, ∗ = 1, and sour investment

conditions if it is optimal for him to never invest, ∗ = 0. In all other cases, that is
when 0  ∗  1, the agent’s investment conditions will be called normal. Then the
agent sometimes invests, and sometimes not, depending on the information he has

acquired. Clearly, this is the only case of interest for the principal, since the principal

could otherwise do just as well without the agent.

The following result characterizes the three mentioned investment conditions.7

Writing  for the random payment to the agent after investment (that is,  =  if

the state of nature is  ∈ Ω):

Lemma 1. Investment conditions are normal for the agent if

− lnE £−( )¤   (0)   lnE
£
( )

¤
 (5)

6The equation also agrees with the necessary and sufficient optimality condition in Proposition

1 in Caplin, Dean and Leahy (2019).
7For other results that provide conditions under which a rationally inattentive decision-maker

will not acquire any information, see Lemma 2 in Woodford (2008), Proposition 1 in Yang (2015),

and, for a recent, general and thorough treatment of this issue, see Caplin, Dean and Leahy (2019).
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sour if

 (0) ≥  lnE
£
( )

¤
 (6)

and sweet if

 (0) ≤ − lnE
£
−( )

¤
 (7)

In other words: with probability one the agent will not invest if his salary is too

high, as expressed by inequality (6). Information acquisition being costly for him, he

will not acquire any information under such contracts. Likewise, with probability one

he will invest if his salary is too low, as expressed by inequality (7). Also in this case

it is optimal for him to acquire no information. For contracts that satisfy (5), he will

acquire some information and thereafter invest if and only if the obtained information

is sufficiently favorable for investment, in terms of his expected utility from investing

as compared with not investing under the contract.

The agent’s achieved expected utility, when acting optimally under any contract

 that provides normal investment conditions for the agent, is

 () =
X
∈Ω


∗
 · [ ()−  (0)] +  (0) (8)

−  ·
Ã
 (∗)−

X
∈Ω

 (
∗
)

!


where ∗ is the unique solution in (0 1) to (4), the probability that the agent will
invest, and ∗, for each  ∈ Ω, is the associated conditional probability that the

agent will invest, given the state  (see (2)).  : [0 1] → R+ is the (Shannon)
entropy function for a binary probability distribution, defined by

 () = −  ln − (1− ) ln (1− )  (9)

with the convention 0 ln 0 = 0.8 Consequently, the difference  (∗)−P  (
∗
) is

the expected entropy reduction when moving from the prior investment probability,

∗, to the (ex ante random) posterior investment probability, ∗, in the current state
of nature,  ∈ Ω.9 Maximal entropy reduction would be obtained if the agent were

to know the true state of nature, and thus invest precisely in those states in which

he obtains a bonus. However, it is prohibitively costly, and hence suboptimal for

8The marginal cost of reducing entropy is thus infinite at the boundaries:  0 ()→ +∞ as  ↓ 0
and  0 ()→ −∞ as  ↑ 1.

9We note that entropy reduction is symmetric in the sense that it is invariant under permutation

of the states of nature. This is arguably a strong assumption, since in practice some states may be

harder to identify than others. See Fosgerau et al (2020) for a new generalized entropy that permits

asymmetry.
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the agent to obtain such precise information. The agent thus has to trade off his

information costs against the benefit for him of making a better informed investment

decision.

What contract, if any, will a rational and risk-neutral principal propose the agent?

First, the contract has to meet the agent’s participation constraint that his ex ante

expected utility under the contract does not fall short of his reservation utility:

 () ≥ ̄ (10)

where ̄ is the agent’s reservation utility.

Second, the contract must be such that it provides normal investment conditions

for the agent. This is, precisely, (5). In essence, this condition requires that the salary,

bonuses and penalties should in a precise sense be "well balanced". In particular,

there should be enough bonuses (positive differences  − 0) and penalties (positive

differences 0 − ) to incentivize the agent to acquire information.

Third, if there are contracts that meet the above two requirements, then an opti-

mal contract should yield the highest possible expected profit to the principal among

these. In order to state this condition, we need to step backwards in time to the

moment when a contract is offered to the agent, and identify the principal’s expected

profit from hiring the agent under any given contract . This expected profit is

Π () =
X
∈Ω


∗
 · ( − ) − (1− ∗) 0 (11)

In words, this is the sum of the net profits to the principal in all states of nature,

each weighted by the probability that the agent will invest in that state, minus the

pay to the agent if he does not invest, ’s the probability for that event.

Under (5), the agent acquires information before making the investment decision

and then ∗ ∈ (0 1) is uniquely determined by (3). If the contract is such that the
agent’s investment conditions under the contract are sour, then the agent, if hired,

will acquire no information and will not invest. In that case ∗ = 0, and the principal’s
net profit is simply Π () = −0. Likewise, if the contract would render the agent’s
investment conditions sweet, then the agent would invest "blindly", ∗ = 1, resulting
in expected profit Π () =

P
  ( − ). However, neither "sweet" nor "sour"

contracts are of interest to the principal. We are now in a position to state the

third condition, that the contract should be optimal for the principal from among all

feasible contracts that meet the agent’s participation constraint. It should solve the

program

max
≥0 s.t. (10)

Π ()  (12)

This brings us to the fourth and final condition, namely, that all of this should be

worthwhile for the principal. Suppose, thus, that ∗ solves program (12) and results
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in expected profit Π∗. It is optimal for the principal to hire the agent under contract
∗ if and only if Π∗ ≥  ·max {0E []}. The last expression is the profit obtained
by the principal single-handedly.10

We will henceforth proceed step by step, and consider some special cases, and a

variant of this model in which the agent is fired rather than given a penalty.

2.1. A necessary first-order condition. We first identify a necessary condition

for a contract to be optimal in situations when the agent’s participation constraint is

not binding.

Proposition 1. Suppose that  is an optimal contract and that the agent’s partici-

pation constraint is not binding. Then there exist parameters   ∈ R such that (a)
 ≤  ⇒  = 0, (b)    ⇒   0, and (c) every   0 is uniquely determined

by the equation

 =  − 

0 ()

µ


1− 
[()−(0)] + 1

¶
+  (13)

where  ∈ (0 1) is uniquely determined by (4). This defines the after-investment pay
 as a continuous function of the net return rate , strictly increasing wherever

positive. Moreover, 1  0  .

In other words, optimal contracts are characterized by a critical net return rate, ,

such that the agent is paid nothing if he invests and the net return rate falls short of

. By contrast, at net return rates above , the agent is paid something if investing,

and that pay is continuously and strictly increasing in the realized net return rate.

The after-investment pay  is lower than the "salary" 0 in the worst state of nature,

 = 1, and higher than the salary in the best state of nature,  = . We also note

that the shape of the optimal contract does not depend in any direct way on the

shape of the prior distribution; the latter enters only in so far as it influences the

investment probability  and the parameters  and .

2.2. Private benefits to the agent. Our model presumes that the agent’s only

concern is his pay. In practice, the agent may derive private benefits from investment

in certain states of nature, and potentially also from non-investment. One major

example is career concerns. As is well-known such concerns may reduce the need

for monetary incentives (see e.g. Ma, Tang and Gomez, 2018). Suppose that the

realized net return rate after investment become publicly known ex post. This return

rate may then influence the agent’s future career. This incentive channel may be

10Recall that  is defined as the net return rate, that is the return rate net of the risk-free interest

rate  available to the principal.
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particularly important for young agents. How does such career concerns affect the

nature of optimal contracts in the present model?

In order to illustrate the role of private benefits in a tractable form (and in line

with Tirole and Aghion, 1997), suppose that the agent’s utility from investing in state

 ∈ Ω is  ()+ and from not investing is  (0)+0, where 0, 1,...,  represent

the agent’s private benefits. In the case of career concerns,  may be the present

utility to the agent from future earnings. Arguably, the higher the realized net return

rate  after investment, the higher is then . Proposition 1 and the subsequent

analysis easily generalizes to allow for such additive private benefits.

See Appendix for a numerical example in which it is shown how the agent’s career

concerns enhance the principal’s expected profit. The reason simply being that this

intrinsic motivation for good performance makes it optimal for the principal to pay

smaller or no bonuses after good investments.

3. Risk-neutral agent

Suppose that the agent is risk neutral. An application of Proposition 1 enables us to

obtain a closed-form expression, in terms of a transcendental function used in physics,

for optimal contracts when the participation constraint is slack, and also when it is

not "binding too hard". For any feasible contract , all payments  after investment

can be written in the form

 = max {0 0 +  ()} ∀ ∈ Ω, (14)

where  : R→ R is a transfer function that specifies the net transfer  =  − 0 =

 () to the agent if he invests in state  ∈ Ω. When positive (negative),  ()

can be interpreted as a bonus (penalty or "malus"). It turns out that if a contract

 is optimal and the the agent’s participation constraint does "not bind too hard"

(in a precise sense), then the transfer function  can be explicitly represented in

terms of the so-called Lambert W function,  : (−1+∞) → R+.11 The optimal
transfer function  is strictly increasing and strictly concave. Hence, since the after-

investment payments  according to the contract are given in the form (14), these

payments are a non-increasing function of the net return rates , but a function that

is neither concave nor convex. Formally:

Proposition 2. If a contract  is optimal and the Lagrangian associated with the

agent’s participation constraint does not exceed unity, then  = max {0 0 +  ()}
11To be precise, this is a correspondence used in theoretical physics (when analyzing the Planck,

Bose—Einstein, and Fermi—Dirac distributions), in biochemistry (when analyzing enzyme kinetics),

and in combinatorics. See Appendix for its definitoin and basic properties.
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for all  ∈ Ω, where  : R→ R is defined by

 () =  ·
h
ln

³

(−)

´
− ln 



i
∀ ∈ R, (15)

for parameters   ∈ R, with   0. Moreover,  is twice differentiable, strictly

increasing and strictly concave, from minus to plus infinity, with 0  0  , 00  0,
lim→−∞ 0 () = , and lim→+∞ 0 () = 0, and  (( + ) ) = 0. Furthermore,

if the agent’s participation constraint is slack, then  =  (1− ), where  is the

unique solution in (0 1) to (4).

In other words: irrespective of how many potential outcomes the project has, what

their magnitudes and prior probabilities are, the optimal payment schedule always

belongs to a family of mathematically well-known functions, where each member of

the family, for given  and  is completely characterized by only two parameters,  and

 . It follows that the agent receives a bonus (penalty) if and only he invests in a state

of nature with net return rate above (below) ( + ) . In states of nature where

his total pay (salary plus net transfer) is positive, the payments to the agent follows

a strictly increasing and strictly concave curve (in terms of the net return rate) that

gradually reduces the share of the gains of trade, if positive, that befalls the agent.

Indeed, this share shrinks towards zero as the capital gains tend to plus infinity. In

particular, optimal contracts are not linear, and neither concave nor convex; they

pay nothing to the agent for all net return rates below a critical value, and they

provide positive pay above that critical rate, pay that is a strictly increasing and

concave function of the net return rate. When the agent’s participation constraint

is slack, the parameter  equals the agent’s unit cost of information, , multiplied

by  (1− ), the odds for investment (before information has been acquired). In

particular, when investment is just as likely as non-investment, then  is the agent’s

unit information cost, .

These general qualitative features of net-transfer functions  of the form (15)

are illustrated in Figure 1, drawn for  = 1,  = 005,  = 005 and  = 015. As

expected, the graph of the net-transfer function  intersects the -axis precisely where

 =  +  . For net return rates above this value, a bonus is given, and below this

net return rate, penalties are are imposed. The dashed straight lines in the diagram

provide upper and lower bounds on the transfer  (). For  ≤  , the upper bound

is  = −  (the left-most upward-sloping dashed straight line, for  ≤ ), and the

lower bound is  =  −  −  (the right-most parallel dashed straight line). For

    + , the upper bound is zero (horizontal dashed line), and the lower bound

is the same as for  ≤  . For  ≥ +  , the upper bound is (the former lower bound)

 =  −  −  (the right-most upward-sloping dashed straight line) and the lower

bound is (the former upper bound) zero.
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Figure 1: The net-transfer function .

The above general qualitative observations about solutions  to (29) amounts to

saying that the random pay,  = {0 0 +  ()} to the agent, when the agent invests,
is a security with the properties that 0 ≤  ()  , and such that, whenever

the agent’s pay is positive, both the agent’s pay, 0 +  (), and the residual that

befalls the principal,  =  − 0 −  (), is increasing in . Moreover, since

this security, when taking positive values, is strictly concave in the net return rate,

the principal’s residual is strictly convex in the net return rate. In other words, the

higher the capital gain from investment, the smaller is the agent’s share. It follows

that standard profit-share or stock-share contracts are suboptimal whenever there are

more than two potential outcomes. The reason is that they are (piece-wise) linear

and hence either pay too little at low return rates or too much at high return rates,

see Section 5.

We note, however, that the lower the agent’s unit information cost   0, the closer

is the optimal contract to another type of piece-wise linear contracts, namely those

that pay nothing if the agent invests in bad states of nature, a linearly increasing pay

in intermediate states of nature, and a fixed pay in all good states of nature. In the

limit as → 0, it is as if the agent can costlessly and without error observes the true

state of nature. Under an optimal contract, such an agent almost surely earns his

salary, 0, because he almost never invests in states  where   0, and he almost

always invests when   0. The principal, knowing this, has no reason to pay him

"more than a penny" above his "salary" 0 in those states  where the principal wants

him to invest (that is, when   0). The optimal contract for the principal, in the

limit case when the agent’s unit information cost tends to zero, has 0 = ̄. In this

limit case, the agent is indifferent between accepting and rejecting the contract, and
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the optimal contract is continuous and piecewise linear, and it induces him to invest

if and only if the net return rate is positive. Formally, the limit contract (as → 0)

is12

 =

⎧⎨⎩ 0   −̄
̄+  −̄ ≤  ≤ 0
̄   0

∀ ∈ Ω (16)

Going back to the main case studied here, an agent with an arbitrary (and fixed)

unit information cost   0, we finally note that the payment vector  is not in general

proportional to , the size of the investment. This may be surprising since the agent

is risk neutral. However, the agent’s information costs are non-linear, and it is easily

verified from the proof of Proposition 2 that if the agent’s participation constraint is

slack, then each positive payment  increases with  at a decreasing rate:




=
³
1 +






´−1
· 

4. A class of test projects

Having so far allowed for projects  with arbitrary finite support, we now apply the

model to a class of projects with three potential outcomes, in order to shed light on

the nature of optimal contracts and their dependence on the riskiness of projects.

Three is the smallest number of outcomes that allows distinction between linear and

non-linear contracts.

We consider a class of projects with mean-preserving spreads, allowing for a high

but rare net return rate. More precisely, the three net return rates are

1 = −1, 2 =
1

2
and 3 =

1

2
+
1

4
 (17)

for 0    12, with prior probabilities 1 = 12, 2 = 12− , and 3 = . Hence,

with probability one half all money is lost, with probability 12− the net return rate
is 50%, and with probability  it is 12+(4)

−1
. These projects all have zero expected

net return rate; E [] = 0.13 They are mean-preserving spreads of the actuarially

fair double-or-nothing project in which there is equal probability of loosing all money

( = −1) or having it doubled ( = 1). That project is obtained when  = 12. As

 decreases from 1/2 towards zero, the return rate 3 tends to plus infinity. Hence,

12The case of costless information,  = 0, is not allowed for in our model. In that case, it is

easily verified that there are infinitely many optimal contracts, one of which is the mentioned limit

contract when → 0.
13The variance of  is decreasing in ;   () = 78 + 1(16) ≈ 088 + 006−1.
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for very small 3 =   0, state of nature 3 is a "black swan"–an extreme and very

unlikely event.14

We have used numerical simulation methods to find optimal contracts for the

following five projects in this family:

TABLE 1: The five projects, all with E [] = 0.

1 2 3 1 2 = 12−  3 =   ()

Project 1 −1 12 1 12 0 12 1

Project 2 −1 12 32 12 14 14 1125

Project 3 −1 12 4 12 37 114 ≈ 0071 1750

Project 4 −1 12 12 12 1123 146 ≈ 0022 3750

Project 5 −1 12 30 12 2959 1118 ≈ 0009 8250

Numerically found optimal contracts with  = 1, for a risk neutral agent with

 = 005 and reservation utility ̄ = 01 (and thus reservation wage ̄ = 01), are

reported in the next table, with parameter estimates  and  for the formula in (15).

We also report the expected profit to the principal, expected utility to the agent,

and expected mutual-entropy reduction. (See Section 8 for optimal contracts for

risk-averse agents.)

TABLE 2: Optimal contracts for a risk neutral agent.

project 0 1 2 3 Π 

1 01101 0 − 02396 02493 01446

2 01071 0 01898 02645 02552 01380

3 01032 0 01891 03209 02646 01275

4 01018 0 01889 03768 02699 01217

5 01015 0 01890 04268 02721 01197

  entropy red.

− − 04019

00511 01494 03719

00468 01542 03291

00453 01545 03106

00441 01586 03052

We note that the salary (0) varies only slightly across the projects. While the

remuneration (2) after investment in the state with the intermediate net return

rate (2 = 12) is virtually the same in Projects 2-5, the remuneration (3) after

investment in the most favorable state of nature increases with its net return rate

(3).
15

14However, unlike "true" black swans, the principal and agent are here aware of the possibility of

a black swan.
15The prior probability distribution  varies across the five projects, and so does the size of the

third outcome. Therefore, the invariance result in Proposition 2 in Caplin, Dean and Leahy (2019),

for variations in a decision-maker’s prior (only), does not apply directly. However, there may be

some connection with that result, a topic for future research.
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The actuarially fair double-or-nothing Project 1 is a priori symmetric. Neverthe-

less, the risk-neutral agent is rewarded asymmetrically; he is paid 0 − 1 ≈ 01101
for not investing in the bad state of nature, and 3− 0 ≈ 01295 for investing in the
good state. He is thus paid less for making the right decision in one state than in the

other, although the two states are a priori equally likely. This illustrates the tension

between (a) incentivizing the agent to acquire information, and (b) incentivizing the

agent to make the right decision once his information has been obtained. Taken in

isolation and without regard to the limited-liability constraint, the second motive re-

quires full alignment with the principal’s interest at that stage, that is, equal rewards

to the agent for "doing the right thing" in both states of nature.16 The reason why

the agent is paid less for doing the right thing in the bad state of nature (0 − 1)

is that the limited-liability constraint forces any raise of that pay to occur by way of

raising 0, which, however, simultaneously reduces the reward (3−0) for making the
right thing in the good state of nature. In order to incentivize the agent to acquire

information, the principal needs to reward the agent sufficiently to make informa-

tion acquisition worth-while, and also reward for taking the right action. However,

the limited liability constraint induces an asymmetry in the contract costs for the

principal.

We also note that the principal’s expected profit and the agent’s expected utility

vary across projects, with the profit increasing and utility decreasing as the highest

return rate increases and its likelihood decreases, see Figures 2 and 3 below, drawn

for a large variety of projects in this class.

Figure 2: The principal’s expected profit.

16Indeed, in the absence of information costs and decision costs for the agent, it would be sufficient

to pay the agent "one penny" for making the right decision in each state of nature. This would fully

align the agent’s incentives with the interest of the principal.



DELEGATION OF INVESTMENT DECISIONS, 18

Figure 3: The agent’s achieved utility under optimal contracts for different projects.

Our numerical simulations also show that the agent makes less effort to acquire

information the smaller  is; the reduction that he achieves in the entropy of his

endogenous uncertainty falls from approximately 0405 to approximately 0305 as we

move from Project 1 to Project 5. Hence, for this class of projects, a mean-preserving

spread that gradually permits a more valuable but rarer black swan it is optimal for

the principal to somewhat weaken the agent’s incentive to acquire information about

the state of nature the more valuable and rarer the black swan is. An intuitive

explanation for this result is that the principal wants the agent to invest in states 2

and 3, and not in state 1. The prior probability for the latter state is, by construction,

the same as the prior probability for the event that the state is either 2 or 3, in all

projects in the present family. Conditional upon the state being either 2 or 3, a

project’s expectation is independent of : E [ |  ≥ 0] = 1. It appears that, as 
decreases and the net return 3 in state 3 accordingly increases, the principal finds it

optimal to have the agent reduce uncertainty less.

The table also shows that the agent’s expected utility is above his participation

constraint, ̄ = 010. It is in the principal’s self-interest to pay the agent more. The

reason is that the principal wishes to incentivize the agent to acquire information,

and for this there needs to be a penalty for investing in the bad state, which, in turn,

requires that the salary is not too low. As was argued above, the agent’s incentives,

once he has accepted a contract, depends entirely on the transfers  (bonuses and

penalties) after investment, and not at all on the salary. However, the limited-liability

constraint puts an upper bound on penalties, the strongest feasible penalty being to

withhold the whole salary. Hence, it may be in the interest of the principal to offer

a high salary.

See Figure 4 below for an illustration of the optimal contract for Projects 3,

where the dashed straight line is the pay after non-investment, 0, and the solid

curve is the pay after investment,  = max {0 0 +  ()}, where  is the optimal
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transfer function in Proposition 2.17 We note that bonuses (penalties) are given for

investments with net return rates above (below) +  ≈ 0201, and that the agent is
paid nothing if investing when the net return rate is below approximately 0057.

-2 -1 1 2 3 4

0.1

0.2

0.3

x

y

Figure 4: The optimal contract for Project 3, for a risk-neutral agent with  = 005

and ̄ = 01

Numerical estimates of the parameters  and  in Proposition 1, for each of the

five projects, yield -values falling (approximately) from 0051 to 0044 as  falls from

1/4 to 1/118, and  -values approximately rising from 0150 to 0159. Hence, these

parameters are quite stable across the different projects, with approximate values

 ≈ 005 and  ≈ 0155 (and thus with graphs close to that in Figure 4).18
The agent’s optimally chosen uncertainty reduction, about the state of nature,

rises somewhat, from approximately 040 to about 030. Hence, the rarer the black

swan, the less effort does the agent make. However, being aware of the possibility of

a black swan, the principal’s contract changes according to its nature. Had the true

project been project 5, say, and had the principal been unaware of its black swan,

then she would have proposed the optimal contract for project 1, with its higher

salary and slightly higher bonus for investment in the intermediate state 2.

We finally note that, when expressed as a share of the investment’s net return, the

agent receives much less from the best outcome than from the intermediate outcome:

The pay share 22 is approximately 38% for all projects in the table, while the pay

share 33 falls from about 24% to about 1.4% in Project 5. Hence, the optimal

contracts are quite non-linear. Indeed, they are strongly regressive. As a consequence,

17While there are only three possible net return rates, the optimal transfer function  is defined

for all net return rates  ∈ R.
18Since the agent’s investment probability  is approxmimately one half, we are not surprised to

find that  is close to  = 005.



DELEGATION OF INVESTMENT DECISIONS, 20

contracts based on stock shares or options, being (piecewise) linear, are suboptimal.

Their disadvantage for the principal is that they pay the agent unnecessarily much

for catching the black swan. While roughly 40% of the net return from investment

goes to the agent in the intermediate outcome, only about 1.5% of a "black swan’s"

net return are paid to the agent. This makes a huge difference when compared with

conventional stock- or option contracts.19

The next table shows how the optimal contract, expected profit and utility, depend

on the agent’s unit information cost, , for Project 3.

TABLE 3: Optimal contracts for agents with different information costs.

 0 2 3 Π 

001 00386 00764 00982 04259 00523

005 01032 01891 03209 02646 01275

010 00415 0 05167 01665 00577

015 00487 0 06503 01361 00674

025 00570 0 08065 00916 00764

050 00564 0 08073 00303 00674

Not surprisingly, the principal’s profit is falling as the agent’s information cost

rises. (The agent’s participation constraint is assumed to be slack.) Less evident

is the dependency of the agent’s expected utility upon his information cost. From

first principles (Berge’s maximum theorem) we know that the principal’s expected

profit under optimal contracting, Π, is continuous with respect to the agent’s unit

cost of information, . However, the optimal contract need not be continuous with

respect to variations in the agent’s unit information cost, . Indeed, as the latter

crosses over the value 01, the contracts change drastically. For agents with higher

costs, the principal pays nothing to the agent if he invests in the intermediate state

of nature. Instead, the principal’s optimal contract rewards the agent significantly

more when he invests in the best state of nature (more the worse the agent is). Such

discontinuity may cause the agent’s expected utility  , when acting optimally under

a contract that is optimal for the principal, to be discontinuous with respect to the

agent’s unit cost. And this seems indeed to be the case.

See the two diagrams below, showing numerically how the principal’s expected

profit (at optimum) declines continuously with the agent’s unit information cost,

while the agent’s expected utility (when acting optimally under an optimal contract)

has two local maxima, and an possible discontinuity at  ≈ 0969 (see Appendix for
19Numerical simulations of even more extreme projects in the same class result in similar optimal

contracts. For example, if 3 ≈ 25000 and  ≈ 000001, then 0 ≈ 01017, 2 ≈ 01896, 3 ≈ 08506,
Π∗ ≈ 02741, and ∗ ≈ 01181. Hence, 33 ≈ 34 · 10−5, a remarkably low share.



DELEGATION OF INVESTMENT DECISIONS, 21

details).

Figure 5: The principal’s optimal profit as a function of the agent’s unit information

cost.

Figure 6: The agent’s expected utility as a function of his unit information cost.

Such a continuity may be due to the lack of quasi-concavity of the principal’s

expected profit with respect to the contract. It may well be that there are two local

maxima of this function. For low unit costs (those below 0.1), the local maximum

has 2 positive and sizeable; it is worthwhile for the principal to reward very able

agents (those with low information costs) also for investing in the intermediate state

of nature. It is as if that will not distract their attention from the possibility of the

very good state of nature. The other locally optimal contract has 2 = 0 and results

in lower expected profit to the principal for relatively unable agents, those with high

unit costs of information. At around  = 0969, the two local maxima take the same
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value, and for higher unit information costs, it is the local optimum with 2 = 0 that

becomes the global maximizer for the principal. But such a discontinuous jump from

one type of contract to another hits the agent discontinuously.20

5. Profit-share and stock-based contracts

We here compare the optimal contracts in Proposition 2 with contracts much used

in practice and discussed in the literature (see, e.g. Swedroe, 2014). To this end,

we here calculate the principal’s profit when restricting herself to either profit-share

contracts or to stock-based contracts (still under the limited-liability constraint). We

also briefly comment on options-based contracts.

5.1. Profit-share contracts. With  representing the gross profit from invest-

ing in state of nature  ∈ Ω, by a profit-share contract we mean a contract  ∈ R+1
+

of the form

 = max {0 1 + 1} for  = 0 1 

where 1 ≥ 0 is a fixed wage and 1 ∈ (0 1) the fixed profit share given to the agent.21
We here set 0 = 0; this is the net return rate after non-investment. In other words,

the pay to the agent is 1 after non-investment, it is zero after investment in states

 ∈ Ω with 1 ≤ −1. After investment in all other states of nature the pay to
the agent is 1 + 1.

Choosing 1 and 1 optimally (among all profit-sharing contracts) for each of

Projects 1-5, for a risk-neutral agent with reservation utility ̄ = 01, results in

contracts, expected profits and utilities shown in Table 4 below. We see that the

profit share is between 10 and 13 percents in all projects (varying non-monotonically

with the riskiness of the project).

TABLE 4: Optimal profit-share contracts.

project 1 1 Π 

1 01293 01101 02493 01446

2 01159 01022 02530 01324

3 01002 00841 02466 01109

4 01186 00847 02398 01202

5 01232 00849 02381 01227

entropy red.

04019

03451

02219

02064

02032

20Think of the two bumps on the back of a camel, where one is higher than the other, depending

on the slope of the ground on which the camel stands. A rider who wants to sit on the highest bump

will move from one bump to the other. This results in a continuous altitude effect for the rider, but

quite a change in burden for the camel.
21We thus here model the agent’s pay as a share of the principal’s gross profit. The net profit to

the principal after investment in state  is ( − ) , and after non-investment it is −0.
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When comparing with Table 2, we see that, except for Project 1, the principal’s

expected profits are reduced when restricted to profit-share contracts. The reason

why Project 1 is special is that it has only two outcomes with positive probability,

and is thus insensitive to the linearity constraint inherent in profit-share contracts.

The difference in expected profits is particularly stark for the most risky Project 5,

for which the principal’s profit loss from using profit-share contracts is about 125%.

The reason is that under profit-sharing the agent is paid far too much for "catching

the black swan". Despite this big prize, the agent makes less work efforts, and obtains

less information under profit-share contracts, in all of Projects 2-5, as can be seen by

comparing the entropy reductions in Tables 2 and 4.

5.2. Stock-based contracts. Having investigated profit-share contracts, we next

consider stock-based contracts. Taking the stock value after investment in state of

nature  to be  = max {0 (1 + ) }, and after non-investment to be 0 = , a

stock-based contract is a contract  ∈ R+1
+ of the form

 = 2 + 2 for  = 0 1 

where 2 ≥ 0 is a fixed wage and 2 ∈ (0 1) the stock share given to the agent.22
In other words, under a stock-based contract, the pay to the agent is 0 = 2 + 2

after non-investment, it is  = 2 after investment that results in a loss exceeding

the money invested (that is,   −1, if such outcomes exist). After investment in
all other states of nature the pay to the agent is  = 2+ 2 (1 + ) = 0+ 2.

Choosing 2 and 2 optimally (among all stock-based contracts) for each of

Projects 1-5, for the same agent as in Tables 2 and 4, results in contracts, expected

profits and utilities as shown in Table 5 below.

TABLE 5: Optimal stock-based contracts.

project 2 2 Π 

1 01171 0 02469 01456

2 01070 0 02516 01330

3 00830 0 02449 01027

4 00906 0 02291 01145

5 01012 0 02234 01292

entropy red.

03960

03421

02007

01598

01696

We note that in optimal stock-based contracts, the agent receives no salary, but

is given between 9% and 12% of the stock value. The principal’s expected profits are

uniformly lower under these contract than under profit-share contracts, which in turn

yield uniformly lower profits that the globally optimal contracts in Proposition 2.

22Like in the case of profit-based contracts, we here neglect the potential effect of the pay to the

agent on the stock value. In addition, we disregard potential equilibrium effects on stock values

when hiring agents.
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Remark 1. Some’s managers are offered a fixed salary and the option to buy stocks

at a future time but at today’s price. In order to briefly consider such contracts

within the present model, let 0 denote the stock value at the time when the contract

is signed, and  the future stock value in state of nature . A (call) option-based

contract can then be written as a payment vector  ∈ R+1
+ with

 = 3 + 3 ·max {0  − 0} for  = 0 1 

where 3 ≥ 0 is a fixed wage and 3 ∈ (0 1) is the stock-share that the contract
offers the option to buy. Since call options only have an upside value, ex post, these

contracts are clearly suboptimal, since under such a contract it is a dominant strategy

for the agent to invest blindly.23

6. Bargaining

The analysis above concerns situations in which the principal makes a take-it-or-

leave-it contract proposal to the agent, well aware of both parties’ outside option.

For the agent, the expected utility of his outside option is ̄. For the principal it

could be to make the investment decision herself, abstain from investing, or to (try

to) hire another agent. We here consider the case when the principal’s outside option

has value zero. For the sake of brevity, we here focus on the case of a risk-neutral

agent.

Imagine that the two parties bargain over the terms of the contract (that is, the

payment vector , or, equivalently over the salary, bonuses and penalties). Let  ⊂ R2
be the set of feasible utility-profit pairs, that is, pairs ( () Π ()) associated with

any contract  that meets the limited-liability condition  ≥ 0. The Nash bargaining
solution would be the contract that solves the following maximization program:

max
≥0

[ ()− ̄]
 · [Π ()]1− (18)

where  ∈ [0 1] is the agent’s bargaining power and 1−  the principal’s bargaining

power. Here ̄ is the agent’s reservation utility, and the principal’s reservation profit is

set at zero. Giving the principal the right to make a take-it-or-leave-it offer amounts

to giving the agent no bargaining power,  = 0. The situation is illustrated in the

diagram below, drawn for Project 3 in the preceding section, for a risk-neutral agent

with  = 005 and ̄ = 010.

23In the terminology used in Section 2, these contracts makes his investment climate "sweet".
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Figure 7: The Nash bargaining solution.

The cluster of (blue) points (obtained by numerical simulation) represent the

Pareto frontier of the feasible set , and the family of hyperbolae constitute a contour

map for the Nash product when both parties have equal bargaining power ( = 05).

The Nash bargaining solution is then the tangency point, indicated with a dotted

horizontal and vertical line. That point is approximately Π̂(05)) ≈ 01690 and ̂ (05) ≈
02891, to be compared with the outcome when the principal has all the bargaining

power, Π∗ ≈ 02646 and ∗ ≈ 01275. The latter pair, obtained in Section 3.1, here
corresponds to the top of the Pareto frontier in the diagram. Not surprisingly, the

principal’s expected profit is lower when the agent has bargaining power.

It is also interesting to compare the negotiated contract, when  = 05 with

that when the principal has all bargaining power. From Section 3.1 we know that

in the latter case the contract is approximately ∗ = (01032 0 01891 03209).

By contrast, under equal bargaining power, the equilibrium contract is (05) =

(02143 0 04134 05410), that is, roughly doubled salary, more than double the pay

after investment in the intermediate state of nature, and less than double the pay

after investment in the best state of nature. In terms of bonus rates, defined as

 = ( − 0) 0, we have, expressed as percentages 
∗
2 ≈ 83%, ∗3 ≈ 211%, and


(05)
2 ≈ 93% and 

(05)
3 ≈ 152%.
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In the above calculations, we have here fixed the agent’s reservation utility (at

̄ = 010). However, this utility is arguably higher the more competition there is for

talented agents. The effect of increased competition for agents with a given level of

talent, here unit information cost , may enter the bargaining through two channels;

it may increase the agent’s bargaining power  and it may also increase his reservation

utility. Analysis of the effects on the bargaining outcome is readily obtained from

(18). All contracts on the Pareto frontier has maximal punishment after investment

in state 1 (1 = 0).

TABLE 6: Contracts for Project 3 as Nash bargaining solutions.

 0 2 3 Π 

0 01032 01891 03209 02646 01275

025 01621 03104 04352 02306 02126

050 02143 04134 05410 01690 02891

075 02729 05259 06600 00887 03746

1 03351 06412 07985 0 04648

We note that the more bargaining power the agent has, the higher is his salary

and are his bonuses. The two parties always agree that the penalty for investing in

the bad state should be maximal, even when the agent has all the bargaining power.

In that extreme case, the principal’s participation constraint, to earn a nonnegative

profit, is binding, and so the agent has a self-interest in efficiency.

It is remarkable that if the agent has a lot of bargaining power, say  = 075,

then his contract contains a high salary, 02729 (to be compared with the size of

the investment,  = 1), and he is paid above the net return if he invests in the

intermediate state of nature; he receives 2 = 06412 while the net return rate is

2 = 05. We saw in Section 3, that such lavish bonuses are never paid (in the class

of projects we study) when the principal has all the bargaining power; for Project 3,

that we here analyze, we see that 2 ≈ 01891 when  = 0. The present model can

thus, in principle, be used to infer from contracts whether or not the agent has had

significant bargaining power.

7. Risk-averse agent

We here briefly study the case of a risk averse agent. The analytically most elegant

case in the present model is logarithmic utility of income. Indeed, this also has some

empirical support, and was suggested already by Daniel Bernoulli in 1738. In this

case, when the agent’s utility is logarithmic, we require all payments to the agent to

be strictly positive.
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It follows from Lemma 1 that investment conditions under a contract   0 are

normal for an agent with logarithmic utility if and only if

1

E [ −1]
 

1
0  E

£
 1

¤
 (19)

Under normal investment conditions for the agent, the probability that he will

invest, ∗, is the unique solution in (0 1) to the equationX
∈Ω

(0)
1



1−  + (0)
1


= 1 (20)

This equation shows how the conditional investment probabilities, given the true

state of nature  ∈ Ω, are tilted in favor of those where the agent’s pay is above his

salary, and tilted away from those with pay below his salary. Indeed, all investment

probabilities are functions of the vector of payment ratios,  = 0. Write  for the

vector (1  ). Thus, while for a risk-neutral agent only the payment differences,

the net transfers  =  − 0, matter for his information acquisition and investment

decision, here only the payment ratios matter.

Under any contract   0 that provides normal investment conditions for the

agent, the agent’s expected utility is

 () =
X
∈Ω


∗1

1− ∗ + ∗1

ln  −  ·
Ã
 (∗)−

X
∈Ω

 (
∗
)

!
+ ln 0

and the principal’s expected profit is

Π () =
X
∈Ω


∗1

1− ∗ + ∗1

( − 0) − (1− ∗) 0

We see that, given all payment ratios (which uniquely determine the agent’s ex

ante investment probability ∗), the agent’s expected utility is (logarithmically) in-
creasing in his salary, 0, while the principal’s expected profit is (linearly) strictly

decreasing in the same salary. Hence, for any given reservation utility ̄ ∈ R that
the agent may have, the optimal contract for the principal can be obtained by (a)

first finding an optimal payment-ratio vector , for any fixed and given salary 0  0,

and (b) then adjusting this salary, without changing the payment ratios, so that the

agent’s participation constraint is met with equality. The second step, (b) amounts

to setting the salary, for any given vector  and reservation utility ̄, such that

0 = exp

"
̄ −

X
∈Ω


∗1

1− ∗ + ∗1

ln  +  ·
Ã
 (∗)−

X
∈Ω

 (
∗
)

!#
(21)
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Applied to the class of projects with mean-preserving spreads in Section 3.2, and

with an agent with the same unit information cost ( = 005) and reservation wage

(̄ = 01) as there, we now have ̄ = ln 01. The simulation results are given in Table

7 below (c.f. the optimal contracts for a risk-neutral agent given in Table 2). Perhaps

surprisingly, we note that the principal obtains higher profits than when meeting the

risk-neutral agent. Under the optimal contract for a risk averse agent, it is sufficient

to pay a somewhat lower salary than to the risk neutral agent, and also the payments

to the risk averse agent after profitable investments are lower. The risk averse agent

values zero pay at utility minus infinity. Under the optimal contract, the agent is

given a low but positive pay after investment in the bad state of nature. This pay is

only a small fraction of his salary. Evidently the threat of this low pay incentivizes

the agent to become well-informed, which is seen in the last column in the table,

showing significantly larger entropy reduction than for the risk neutral agent.

TABLE 7: Optimal contracts for logarithmically risk-averse agent with reservation

utility ̄ = ln (01).

Project 0 1 2 3 Π entropy red.

1 00869 00386 − 01233 03944 06894

2 00873 00410 01202 01254 03945 06886

3 00878 00130 01205 01313 03946 06873

4 00880 00425 01211 01373 03947 06872

5 00881 00141 01212 01439 03947 06870

We conjectured before that perhaps optimal contracts for risk-averse agents are

less regressive than those for risk-neutral agents. We now have the numbers. Like

in the case of a risk-neutral agent, the pay share 22 to a risk averse agent is also

approximately constant across all projects. However, the level, approximately 024,

is lower. The pay share 33 for the risk-averse agent falls from about 012 to about

00047. Hence, again quite a regressive contract, so our conjecture did not hold up;

also optimal contracts for risk averse agents are highly regressive.

To elicit the robustness of these observations we briefly consider agents with

CRRA Bernoulli functions,  () = (1− − 1)  (1− ), for various coefficients of

relative risk-aversion , and all with the same reservation wage as in Section 3, and

hence ̄ =  (01). See table below, with results for Project 3, where  = 0 is the case

of a risk-neutral agent, and  = 1 is the case of a logarithmically risk-averse agent.24

24As is well-known, the CRRA formula gives logarithmic utility in the limit as → 1. For  = 0,

we obtain  () =  − 1 and hence ̄ =  (0) = 01 − 1 = −09, for comparison with the results in
Section 3.
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TABLE 8: Optimal contracts for Project 3 for CRRA agents.

 0 1 2 3 Π

0 01032 0 01891 03209 02646

025 00695 0 01655 02315 03580

050 00722 0 01537 01897 03828

075 00816 00071 01336 01526 03901

1 00878 00130 01205 01313 03946

The earlier observations for the logarithmic case appear robust. We note, however,

that the pay after non-investment, 0, is non-monotonic with respect to the coefficient

of relative risk-aversion, and that not so risk-averse agents ( ≤ 05) are paid nothing
if investing in the worst state of nature. The more risk-averse the agent, the lower

is the bonus for the best outcome, thus deviating even further from linear contacts.

Hence, the very high bonuses we some’s see in practice cannot be explained within

this model by allusion to agents’ risk aversion (the need for very high pay for success,

to compensate for the agent’s declining marginal utility of income).

Remark 2. In realistic settings, the pay from the contract is only part of the agent’s

life-’ income. Hence, if the agent is risk-averse and there is a well-functioning credit

market, presumably the agent can smooth his consumption over ’. Effectively, this will

amount to rendering the agent less risk-averse. This topic, although of great practical

importance, will not be addressed here. For an analysis of dynamic contracting with

risk-averse agents, see e.g. Bergemann and Pavan (2015).

8. Contracts with a firing clause

We have, so far, allowed contracts to pay less after poor investments than after

non-investment. However, real-life contracts for CEOs typically do not include such

pecuniary penalties. Instead, they often allow the principal to fire the CEO with

short notice. The threat of being fired may enhance the agent’s incentive on the job,

since, arguably, an agent who has been fired in general will face worse future career

prospects than an agent who voluntarily leaves his or her position for another job.

In other words, being fired may be a penalty for the agent. In practice, however,

the agent is given a severance payment, or "golden parachute" when fired. We here

sketch a modified version of the above model in which the principal cannot pay the

agent less than the non-investment pay (the "salary").

Consider, thus, an (risk neutral or risk averse) agent for whom being fired is

equivalent to a utility loss of ∆. This utility loss is larger the more patient the

agent is and the larger is the reputational damage of being fired, for his future career

prospects. For brevity we call ∆ the agent’s firing cost. The difference from the
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above sketched career concerns is two-fold: first, firing is usually more visible than

the realized returns from investment. Second, firing is an active decision by the

principal.

We proceed by replacing the contracts  ∈ R+1
+ studied so far by contracts

without penalties but instead with a firing clause that takes the following form: (i)

the agent is fired if he has invested and the realized net return rate is below a pre-

specified threshold  ∈ R, and (ii) he is given a pre-specified severance payment  ≥ 0
if fired. Hence, a feasible contract is now a triplet h  i, under which the agent
is paid 0 ≥ 0 if not investing,  ≥ 0 if investing in a state  with  ≥ , and

he is fired and paid severance  ≥ 0 if investing in a state  with   . If the

agent, in addition, has career concerns of the type mentioned above, then his utility

after non-investment is  (0) + 0, it is  () +  after investment in a state  with

 ≥ , and it is  () +  −∆ after investment in a state  with   .

We briefly analyze this setting under the simplifying assumptions (a) that the

agent’s career is not influenced by the realized returns from investment apart from

the possibility of being fired (that is,  = 0), and (b) that there is no cost for the

principal of firing the agent, and hence no commitment issue if and when firing is

called for according to the contract.

Suppose, first, that the agent is risk neutral. The analysis then follows the same

lines as in Section 3, mutatis mutandis. The equivalent of (4) writes as before, but

with  =  ≥ 0 if    and  ≥ 0 if  ≥ , and the same is true for the agent’s

expected utility. We illustrate the nature of optimal contracts with a firing clause

by comparing them with the purely financial contracts for the class of projects in

Section 4. In particular, we investigate if and when the principal can do better by

offering a contract under which penalties are replaced by firing. We first consider a

risk-neutral agent with unit information cost  = 005 and reservation utility ̄ = 01,

just as in Table 2. The only difference is that now ∆ = 02.25 It is then optimal for

the principal to fire the agent if and only if the agent invests in state of nature 1.

The next table presents the optimal contracts for all five projects in Section 4.

TABLE 9: Optimal contracts with a firing clause, for a risk neutral agent with

reservation utility ̄ = 01.

project 0  2 3 Π

1 00160 0 − 02522 03560

2 00192 0 02122 02855 03569

3 00247 0 02250 03532 03580

4 00284 0 02314 04191 03585

5 00298 0 02342 04663 03588

25If one views ∆ as the present value of a reduction by one half of the future reservation wage, paid

perpetually, with per project-period discount factor  = 45, then ∆ = (01− 005)  ·(1− ) = 02.
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The optimal contracts contain a positive, but low,salary, provides larger bonuses

after investments with positive returns than in the absence of the firing clause, and

result in higher expected profits to the principal. The expected utility to the agent is

lower than in contracts without a firing clause. The agent being risk-neutral, we are

not surprised to find that the agent receives no severance payment after being fired.

We next briefly study optimal contracts with a firing clause for a risk-averse agent,

the same as in Section 7, with logarithmic utility from income and reservation utility

̄ = ln (01). We focus on Project 3, and vary the the firing cost for the agent.26

TABLE 10: Optimal contracts for a logarithmically risk-averse agent with different

firing costs.

∆ 0  2 3 Π

0 00876 00165 01206 01305 03946

07 00878 00369 01206 01311 −”−
14 00878 00784 01207 01309 −”−
21 00878 01589 01206 01313 −”−
28 00877 03232 01208 01315 −”−
35 00877 06128 01207 01311 −”−

We see that optimal contracts do contain sizeable severance payments after firing,

"golden parachutes". While these payments increase monotonically with the agent’s

firing cost, the other parts of the contract are remarkably constant, as is the principal’s

expected profit. It thus seems that it is enough for the principal needs to mitigate

the agent’s loss of future income in case he makes a bad investment and is fired.

Under these contracts, the probability that the agent will invest in the bad state of

nature is extremely low (far below 10−6) so variations in the severance payment 
has a very small effect on the principal’s expected profit and the agent’s expected

utility (while keeping the agent’s utility at his participation constraint). One and the

same contract, for example 0 = 0877,  = 005, 2 = 0121 and 3 = 0131, will

work just as well, from a practical viewpoint, as the optimally fine-tuned contracts,

independently of the size of the agent’s utility loss ∆ from being fired. We also see

that the principal’s expected profit is the same as when the contract does not contain

any firing clause at all (see Table 7, and compare also with the case ∆ = 0 in Table

10). We finally note that the principal makes a slightly higher expected profit when

hiring the risk-averse agent than when hiring the risk-neutral agent; approximately

39.5% versus 35.8%.

26Again viewing ∆ as the present value of a reduction by one half of the future reservation wage,

paid perpetually, one obtains for  = 45: ∆ = (ln 01− ln 005)  (1− ) ≈ 277.
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9. Related literature

The papers in the literature that, to the best of our knowledge, are closest to ours

are, in chronological order: Lambert (1986), Lewis and Sappington (1997), Levitt

and Snyder (1997), Aghion and Tirole (1997), Crémer, Khalil and Rochet (1998),

Malcomson (2009), Zermeño (2011, 2012), Terovitis (2018), Yang and Zeng (2019),

and Carroll (2019).

The approach in Lambert (1986) differs from ours in that the agent’s information

acquisition decision and return distribution are binary. Conclusions about contract

forms for more general situations are not possible to obtain. By contrast, in our model

the agent faces a continuum of information-acquisition choices, and the asset return

distribution has arbitrary finite support, which permits us to identify functional forms

for contracts. Lewis and Sappington (1997) also analyze situations in which the agent

has a discrete choice; at a given cost, he can choose to be perfectly informed about

the state of nature. This is also true of Crémer, Khalil and Rochet (1998).

In the framework of Aghion and Tirole (1997), our model concerns the case of

what they call A-formal authority ("agent-formal" authority). However, the setting

differs from theirs in a few dimensions. First, while they consider a finite number

of ex ante identical project, we here only consider one project.27 Second, they only

consider projects with binary outcome distributions, while we here allow for projects

with an arbitrary finite number of outcomes. Third, in their model, the agent is

either completely uninformed or completely informed about the true return rates of

projects, while our agent is either completely uniformed or arbitrarily but boundedly

well-informed on a continuum scale. The latter feature allows us to obtain functional

forms for optimal contracts, whereby the dependence of bonuses on realized returns

becomes transparent.

Levitt and Snyder (1997) analyze the optimal design of incentive schemes when

the agent not only has private information about his own work effort, but also has a

private signal (of given precision) about the state of nature. In that model, the agent

chooses his effort level, which can be either high or low, and this in turn determines the

success probability of the project at hand. The agent then receives a private signal,

of given precision, about the state of nature, and makes an announcement about the

received signal to the principal, who makes the investment decision.28 By contrast,

in our model the agent’s effort, which is not binary but a continuous variable, does

not affect the success probability of the project at hand. Moreover, in our model it

is the agent who makes the investment decision on behalf of the principal.

Malcomson (2009) considers a principal-agent model in which the agent has to take

27The present approach easily generalizes to a finite number of project. However, this comes at a

relatively high price in terms of notation and algebra without, we feel, adding much insight.
28See also Friebel and Raith (2004).
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an action, such as information acquisition, and make a decision, such as investment

in a risky asset. The sequencing is as in our model: the principal first makes a

take-it-or-leave it contract offer, the agent accepts or rejects this offer, and, in the

case of acceptance, takes his action, receives a signal that provides information about

the return distributions to the possible decisions, and then makes his decision, after

which the return to the decision materializes and payments are made. The principal

is risk neutral and the agent risk averse. Like in our model, the agent’s action and

signal are unobservable to the principal, and the materialized returns to the agent’s

action are verifiable. However, unlike in our model, the agent’s decision is taken to

be non-contractible, and there no limited-liability constraint on contracts. While the

first difference is not essential, the second is. Indeed, much of our analysis turns

around the limited-liability constraint. Despite this difference, we note that also in

Malcomson’s model is it usually optimal for the principal to not fully align the agent’s

incentives, at the moment of decision-making, with those of the principal (had she

then had access to the agent’s private information).

The two papers Zermeño (2011, 2012) provide a general methodology for analysis

of principal-agent models in which the agent’s task is to acquire information, just

as in our model. In Zermeño (2011), the agent-cum-expert is risk neutral and there

are only two states of nature. In Zermeño (2012) there is an arbitrary finite set of

potential outcomes, and the agent can affect the realization probabilities. This second

paper analyzes delegation and authority along the lines of Aghion and Tirole (1997).

Terovitis (2018) analyzes a risk neutral principal who delegates to a risk neutral

agent the task of choosing between two actions. There are only two states of nature,

and the payoff structure for the principal is symmetric with respect to taking the

right or wrong action in each state. The agent may at a cost obtain a noisy signal, of

fixed precision, before taking his action. Thus, the agent faces a binary information

choice. By contrast, in our model his information choice set constitutes a continuum

and we allow for an arbitrary number of states of nature. Another difference between

the two models is that Terovitis (2018) assumes that the state of nature is always

verifiable ex post, while we assume that only the returns to realized investments are

verifiable.

A recent paper that is methodologically similar to ours is Yang and Zeng (2019).

In their model, an entrepreneur with a production idea, but without money, proposes

a security to an investor (say, a venture capitalist). Upon receiving this offer, the

latter may acquire information about the entrepreneur’s project. This information

acquisition is modelled by way of a rational-inattention approach like ours. However,

the underlying economic situation, and its payoff structure, is quite different from

ours. For while our investor, like their entrepreneur, has only exogenous prior infor-

mation, our investor has to risk the money, while in their model it is the other party,

the venture capitalist, who both acquires information and risks the money. Moreover,
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in Yang’s and Zeng’s model, both parties are risk neutral, while our agent may be

risk averse, and, moreover, we use our model to discuss other issues than they do

(their focus is on debt versus equity).

To the best of our knowledge, the closest model to ours is that of Carroll (2019),

who builds upon Zermeño (2011, 2012). However, there are several important differ-

ences: (1) Carroll does not use the rational-inattention approach to model informa-

tion acquisition, (2) instead of a binary investment decision, Carroll allows for any

non-empty compact set of alternative investment decisions, (3) the principal does

not know the agent’s set of information-acquisition technologies, (4) the agent is

risk-neutral, (5) the agent can send a report with decision-relevant information to

the principal, (6) the principal makes the investment decision, (7) the remunerations

specified in the contract may be conditioned not only on the decision made and the

realized return, but also on the report sent by the agent and on the full state of

nature (in particular also on what the return would have been from investments not

made), and (8), the principal chooses contract according to a maxmin ("worst case")

criterion.29 Also the results in the two papers differ. For while Carroll shows that a

class of affine contracts are optimal in his model, optimal contracts in our model are

non-linear. The different assumptions made in Carroll’s and our model fit more or

less well in different applications, and thus shed complementary light on delegation

of information acquisition in connection with decision-making, a topic arguably of

relevance for many real-life situations.

10. Conclusion

We have developed a model of delegation of investment decisions, where the agent’s

information acquisition is endogenous and modelled within the rational-inattention

framework. The model is highly operational and can be used in applications and

empirical work. We here use it to shed light on a number of issues surrounding lavish

bonus schemes to managers in large corporations.

Assuming limited liability, we find that optimal contracts require a balance be-

tween the pay when not investing, and bonuses and penalties when investing. Optimal

contracts are non-linear, and reward very profitable investments less than proportion-

ally. Thus, the very high bonuses one some’s sees in practice do not seem to have

29The author remarks (op. cit. p. 384) that the second main point of the paper is methodological,

to "... show how using a maxmin objectie leads to a tidy and tractable model. By contrast,

a traditional Bayesian approach, where the principal knows the expert’s information acquisition

technology (or has a probabilistic belief about it), is unlikely to be tractable without much more

specific functional form assumptions, e.g. binary state and one-dimensional effort choice by the

expert." Our model does not presume binary states or one-dimensional effort, and yet does, arguably,

obtain a "tidy and tractable model". The reason is our modelling of information acquisition in terms

of entropy reduction, admittedly an important functional-form assumption.
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support in our model. However, we find that the expected utility for the agent may

well exceed his reservation utility. The reason is limited liability; in order to make

the agent avoid investing in bad states of nature it may be necessary to pay him well

if not investing. Hence, it may be in the principal’s interest to offer apparently lavish

contracts.

Our analysis builds upon many heroic simplifications. A relevant extension would

be to go deeper than here into cases of incomplete information about the agent’s type,

that is, his unit information cost, risk attitude, and/or outside option. When can a

principal in such situations let the agent self-select from a menu of contracts? What

if some agents are overconfident in the sense of underestimating their unit costs of

information acquisition? It would also be interesting to extend the model to allow

for agents with more complex motivation, such as loyalty towards their principal,

morality etc. Another interesting extension would be to consider competition among

principals for agents. We hope that the present model and analysis can serve as a

first step in such and other extensions.
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11. Appendix

11.1. The Lambert W function. The Lambert W multi-function (or corre-

spondence), is implicitly defined by  = W () if and only if  = , where  is

any complex number, see Corless et al. (1996). For real numbers , this defines

a correspondence W from the interval [−1+∞) to R, a correspondence that is
singleton-valued for all  ≥ 0. See diagram.

-0.5 0.5 1.0 1.5 2.0 2.5 3.0
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1

z

W(z)

Figure A1: The Lambert W correspondence.

The upper branch of this correspondence is called its principal branch, and we

denote it : (−1+∞)→ R+. This function is differentiable and satisfies (0) =

0,  () = 1,  0 (0) = 1 and  0  0.

11.2. Proof of Lemma 1. Write  () for the left-hand side of (4). This defines

 : [0 1]→ R as a twice differentiable function with

 0 () = −
X
∈Ω


()

¡
() − (0)

¢
[() + (1− ) (0)]

2
(22)

and

 00 () = 2
X
∈Ω


()

¡
() − (0)

¢2
[() + (1− ) (0)]

3
≥ 0 (23)

for all  ∈ [0 1]. Hence,  is strictly convex. Since  (1) = 1, we have that  ()  1
for all  ∈ (0 1) if  (0)  1, and  ()  1 for all  ∈ (0 1) if  (0)  1 and  0 (1) ≤ 0,
where

 (0) = E
£
[( )−(0)]

¤
= −(0)E

£
( )

¤
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and

 0 (1) = −
X
∈Ω


() − (0)

()
= (0)E

£
−( )

¤− 1
which establishes all claims.

11.3. Proof of Proposition 1. Let  ∈ R+1
+ be a contract that solves pro-

gram (12) when the agent’s participation constraint is slack. Consider the associated

constrained optimization program,

max


"
X
=1


() ( −  + 0)

() + (1− ) (0)
− 0

#
(24)

subject to the inequality constraints

0 ≤ 0   and 0    1 (25)

and the equality constraint

X
=1


()

() + (1− ) (0)
= 1 (26)

Writing  for the Lagrangian associated with the latter, we obtain the following

necessary first-order conditions for all   0 with   0:





∙
 ( −  + 0) + 

 + (1− ) [(0)−()]

¸
= 0

or, equivalently,

[ ( −  + 0) + ] (1− )
0 ()


[(0)−()] = 

£
 + (1− ) [(0)−()]

¤
or

 ( −  + 0) +  =


(1− ) 0 ()

£
[()−(0)] + 1− 

¤
or

 −  + 0 =


(1− ) 0 ()

£
[()−(0)] + 1− 

¤− 



or

 =  + 0 +



− 

0 ()

µ


1− 
[()−(0)] + 1

¶
 (27)
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For any given value of  ∈ (0 1), the right-hand side is continuous and decreasing in
, from the value

 + 0 +



− 

0 (0)

µ


1− 
[(0)−(0)] + 1

¶
when  = 0. Hence, for all   , where

 =

∙


0 (0)

µ


1− 
[(0)−(0)] + 1

¶
− 0 − 



¸
1



  0 is uniquely determined by (27), while for all  ∈ Ω with  ≤ 0,  = 0.

Moreover, when positive,  is continuous and strictly increasing in . Finally, we

note that if 1  0 then (4) has no solution in (0 1). Likewise if   0. The

equations in the proposition are obtained for  = 0 + .

11.4. Proof of Proposition 2. We here assume that  () ≡ .

Part I. Suppose first that the agent’s participation constraint is slack. From the

proof of Proposition 1, the necessary first-order condition for  to be optimal is

 − 0 =  +



− 

1− 
(−0) −  ∀ ∈ Ω with   0 (28)

Moreover, for a risk-neutral agent (and for a given project , investment  and unit

information cost ),  and  are functions of the transfer vector  = (1  ) (with

 =  − 0 ∀ ∈ Ω), irrespective of the value of 0. Hence, we may write this

equation in the form

 =  −  −   (29)

where  =  (1− ) is positive and  =  − , and both are independent of 0
and . Hence, if  is optimal and the agent’s participation constraint is slack, then

 = max {0  ()}, where  : R → R is uniquely defined for all  ∈ R by the

functional equation

 () = − () −   (30)

We have obtained, for each  ∈ R, a fixed-point equation in  () ∈ R that (for
given   0,   0 and  ∈ R) uniquely determines  () ∈ R. We also note that
this equation defines  : R→ R as a twice differentiable function with the following
properties:

(i)  () = 0 iff  = ( + ) 

(ii) lim→−∞  () = −∞ and lim→+∞  () = +∞
(iii)  ()  −  for all  ∈ R, with lim→−∞ (−  ()) = 

(iv) 0 ∈ (0 ) and 00  0, with lim→−∞ 0 () =  and lim→+∞ 0 () =
0
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While (i)-(iii) follow immediately from (30), property (iv) follows from (ii) and

differentiation of both sides of (30), which gives

0 () =


+ ()
∀ ∈ R

This establishes the claims made concerning the function  when the agent’s partic-

ipation constraint is not binding.

We proceed to show that this function  can be expressed in terms of the Lambert

W function. First, rewrite (29) as




· () +  ()


=

− 



The the equation can be written in the form

 () + ln () = ln



+

− 


 (31)

where

 () =



()

Noting that the Lambert-W function satisfies ()+ln () = ln , we obtain that

 () =
³

(−)

´
∀ ∈ R

satisfies (31) for ∀ ∈ R. Hence,

() =




³

(−)

´
∀ ∈ R

or

 () =  ·
h
ln

³

(−)

´
− ln 



i
∀ ∈ R

as claimed.

Part II. Now we allow for the possibility that the agent’s participation constraint

may be binding. The agent’s expected utility under any contract  ≥ 0 can be written
in the form

 () =
X
∈Ω



∙


 + (1− ) −
+ 

µ


 + (1− ) −

¶¸
+ 0 −  () 
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Let  ≥ 0 be the Lagrangian associated with the agent’s participation constraint.

Consider any state of the world  ∈ Ω with   0. The associated Karush-Kuhn-

Tucker condition, with  denoting the Lagrangian associated with the equation for

, is




µ
 −  (1− )  − 

 + (1− ) −
+ 

∙


 + (1− ) −

¸¶
= 0 (32)

The derivative of the entropy function, , is 0 () = ln (1− )−ln  for all  ∈ (0 1),
so





∙


µ


 + (1− ) −

¶¸
=

∙
ln

µ
1− 



¶
− 



¸
· 



∙


 + (1− ) −

¸
Therefore, (32) can be written as





∙
 −  (1− )  − 

 + (1− ) −

¸
+ 

∙
 ln

µ
1− 



¶
− 

¸
· 



∙


 + (1− ) −

¸
= 0

or

0 =
(1− ) [ −  (1− )  − ] −

 [ + (1− ) −]2
−  (1− )

 + (1− ) −
+

+

∙
 ln

µ
1− 



¶
− 

¸
·  (1− ) −

 [ + (1− ) −]2

or

0 =  −  − 


−  (1− )



1− 
 +  (1− ) +  · ln

µ
1− 



¶


Equivalently:

∗ =  −  −  ∗ (33)

for

∗ = (1− )


1− 
and  ∗ = (1− ) − 


+  · ln

µ
1− 



¶
We note that ∗  0 if   1, while otherwise ∗ ≤ 0. We recall that the Lambert W
function’s domain is (−1+∞). Applied to (33), this requires

(1− )


1− 
(−)  −1



or

  1 +
1− 


−(−+)

Hence, the right-hand side is an upper bound on the Lagrangian  for the Lambert-W

representation to be valid.30

30We conjecture, but have not been able to prove, that  ≤ 1 always holds.
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11.5. Additional results.

Discontinuity of the agent’s expected utility. The next diagrams show how

the principal’s expected profit and the agent’s expected utility change as the agent’s

unit information cost, , varies between 009 and 010. The diagrams suggests that

the expected profit is indeed continuous (which theoretically follows from Berge’s

maximum theorem), and that the agent’s expected utility has a discontinuity near

 = 096875.
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Career concerns. We here consider the effect of the agent’s career concerns on

optimal contracts in terms of Projects 3 in Section 4. Suppose that investment in the

best state of nature enhances the agent’s career prospects and that investment in the

worst state of nature diminishes the agent’s career prospects, while investment in the

intermediate state, like non-investment, has no career effect. Let  be the reduction

of the present value of the agent’s future earnings when investing in the bad state

of nature, and let 3, for   0, be the increase of the present value of the agent’s

future earnings when investing in the best state. Hence, in the notation of Section

2.2, 1 = −, 0 = 2 = 0 and 3 = 3. The tables below show the effects of

these parameters on optimal contracts for the same risk-neutral agent as in Table

2. The first table in obtained without regard to the agent’s participation constraint,

the second table with due regard to it. We note that, not surprisingly, the principal’s

expected profit is higher when the agent is partly motivated by career concerns, and

that the bonuses to the agent for investment in the best state of nature are lower.

TABLE A1: Optimal contracts for Project 3 when the agent has career concerns

but no participation constraint.

  0 1 2 3 Π 

0 0 01032 0 01891 03209 02646 01275

001 001 00937 0 01797 02721 02769 01181

003 003 00746 0 01604 01746 03015 00989

003 005 00555 0 01420 01552 03205 00800

005 003 00747 0 01606 00953 03072 00991

005 005 00555 0 01418 00759 03261 00800

01 01 00113 0 00984 0 03794 00478

TABLE A2: Optimal contracts for Project 3 when the agent has career concerns

and a participation constraint.

  0 1 2 3 Π 

0 0 01032 0 01891 03209 02646 01275

001 001 00937 0 01797 02721 02769 01181

003 003 00752 0 01624 01749 03015 01

003 005 00697 0 01713 01812 03182 01

005 003 00751 0 01622 00964 03072 01

005 005 00696 0 01714 01019 03238 01

01 01 00514 0 01811 0 03638 01
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11.6. Application to empirical return distributions. Proposition 2 enables

operational application of the present model to arbitrary asset distributions with

finite support when the agent is risk neutral. This is because every optimal contract

belongs to a parametric family with only three parameters (0,  and ), irrespective

of the number of potential outcomes and their values. To illustrate this, we applied

the model to a stylized quasi-empirical return rate distribution, see histogram in the

diagram below. This diagram is based on the return rates for the S&P 500 companies,

as registered over the last 52 weeks, approximately July 1, 2018 until June 30, 2019.

The horizontal axis is the return rate on individual stocks, while the vertical axis is

the number of companies.

Annual return rates for S&P 500 companies, July 2018 - June 2019.

Transforming this to a probability distribution, we obtain a prior probability dis-

tribution  for a fictitious random variable , a representative S&P 500 company

(with no claims that this is empirically valid). The expected value of this random

variable is E [] ≈ 00659, that is, an average annal return of about 6.6%. The

variance is 00567. The probability for a positive net return rate, Pr [  0] is ap-

proximately 06190, and the conditionally expected net return rate, given that it is

positive, E [ |   0] is about 02122. Hence, an upper bound for the expected

profit for the principal (should he invest  = 1 and delegate the investment decision

to an agent with zero information costs and zero reservation utility), is approximately

02122 · 06190 = 013154.
Consider a risk-neutral agent with unit information cost  = 001 and zero reser-

vation utility. Setting  = 0, the optimal contract is then of the form (15), for
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0 ≈ 001995,  ≈ 001533, and  ≈ 002636, and it results in expected profit 00839
to the principal and expected utility 00269 to the agent. It follows from Proposition

2 that the agent is paid a bonus (malus) if investing in states of nature with net

return rate  above (below) +  ≈ 0042. In particular, no bonuses for ex post bad
investments. For agents with higher unit information cost, the expected profit to the

principal is even lower. Hence, the gains from trade are very small. For  & 00174
it is optimal for the principal to instead invest single-handedly and blindly (thereby

obtaining an expected profit of 00659). This suggests that index funds may be better

than reliance on less than excellent investment advisors.
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