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LOSS OF STABILITY AND EMERGENCE OF CHAOS
IN DYNAMICAL SYSTEMS*

RUSSELL A. JOHNSONt

I. Introduction. The purpose of these notes is to give a brief overview of some of the
basic ideas involved in studying the breakdown of stability in finite-dimensional dynamical
systems. We will at the end arrive at one frontier of modern research: the problem
of determining how "chaotic" invariant sets can come into existence in such dynamical
systems.

Let us first recal1 that a dynamical system consists of a set C'phase space") X, an
abelian group (T, +), and a mapping r : X X T ~ X which satisfies the follo-wing properties:

(i) r(x,O) = x for all x E X; (ii) rt o ra = rt+a for all i,s E T, where rt(x) de! rex, The
second property is called the group property . If X and T are topologicaI spaces, then r is
required to be continuous in both variables. In this case, i ~ rt defines a one parameter
group of homeomorphisms of X.

We will only consider d;ynamical systems in which X is a subset of Rk and T is either
the real line R on the integers Z (with addition as the group operation). If T = 1., we
call the dynamical system diserete. Observe that, if T = 1, and if j : X ~ X is defined
by f(x) = rex, 1), then fn(x) = <p(x, n) for all n E 1.,x EX. Thus a discrete dynamical
system is completely determined by a single homeomorphism f of X. \Ve can will
express a discrete dynaITIjcal system in terms of a difference equation:

( -00 < n < 00) ,

where X n = jn(xo) =r(xo,n).

If T = R, we cal1 the dynamical system continuous. A large dass of contmuous
dynamica1 systems is obtained by solving differential equations of the form

(l)
X' = f(x)

x(O) = Xo

X E Rk

Let r(xo, t) denote the solution of (1) with initial condition xo. Assuming that solutions
of (l) eA-ist for all time -00 < t < 00 and are unique for all initial conditions Xo E RA-, it
is easily seen that (xo, t) ~ r(xo, t) defines a dynamical system with pha...--e space fll and
group R.

*This work was completed and typed while the author was visiting the Institute for Mathematic5 and
its Applications at the University of Minnesota.
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Having defined what we mean by a dynamical system, we next consider the concept of
stability. ConsideI' a one parameter family of differential resp. difference equations

(2)

X' = fp.(x)

X E Rk
, P E R .

Let Y = Yp. be a family of compact invariant sets (invariance means that, if Xo E Yp, then
so is Tp(XO, t) for all t E R resp. for all t E Z). Suppose that the Yp. are a.'5ymptotically
stable for p < O. This means that, for each p < O, there is an open set V = Vp :::> Yp.
such that, if Xo E V and if in -4 00 is a sequence for which Tp(XO' in) converges, then
lim TI1 (Xo, tn) E Yw Suppose on the other hand that Y IL is not asymptotically stable for

n-exJ
p > O. In this situation we say that stability is lost (at p = O). We pose the basic question:
is there an asymptotically stable invariant set for p > 07 If so, what are its properties?

Bifurcation theory addresses this general question. As we will see, if each Yp corre
sponds to a fixed point or a periodic solution of the differential resp. difference equation,
then our question can be answered in a satisfactory way. For more general invariant sets
Yp, however, much less information is available. It does appear that hyperbolic invariant
sets appear quite frequently when a general family of invariant sets Yp loses stability.

We can now explain the plan of these notes. First, we describe some basic elements of
the theory of bifureation, in particular fixed-point bifurcation and Hopf bifurcation. Sec
ond, we discuss hyperbolic invariant sets and their properties; they exhibit highly chaotic
behavior. Finally, we indicate how loss of stability can lead to the occurrence of hyperbolic
invariant sets.

II. Bifurcation Theory. We return to the equations (2), and once again let YIl be a
family of compact invariant sets. It is natural to begin with the simplest imaginable case,
namely each Yp is a single point. Without loss of generality we can assume that YIL = {O},
the origin in Rk • Thus fp.(O) = O.

We first consider continuous dynamical systems. It is convenient to consider two
(closely related) examples.

Example 1. x' = fp(x) = _x3 + px (p E R, x E R).

This is a one-dimensional example: k = 1. We have fIL(O) = O. There is a principle of
linearized stability which says that the stability of x = Ois determined by the sign of f;(O).
In fact, since f;(O) < O if p < O and f;(O) > O if p > O, we can conclude that x = O is
asymptotically stable for p < Oand unstable for p > O.

\Ve ask: is there a stable invariant set if p > O? It is natural to look for stable fixed
points. Set 0= _x3 +px = x( _x 2 +p). The solutions are x = Oand X = ±.Jji, the latter
being real exactly when p > O. By the principle of linearized stability, x = ±.Jjiare stable
for p > O. Thus we see that, at p = O, x = O "bifurcates" to not one, but two stable fixed
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points. Stability is "transferred" from x = O to the fixed points x = ±v'Ji. One calls the
bifurcation supercritical and illustrates it with the diagram in Figure l. This diagram is

called a pitchfork for obvious reasons.

x

(j.

s

FIGURE l

Example 2. x' = x 3 + flX (x, fl E R).

The only difference between examples 1 and 2 is the sign before x 3
• Once again x = O is

stable for fl < O and unstable for fl > O. However, this time it is easily seen (by direct
integration of the differential equation) that, for fl > O, every non-zero solution exists only
on a finite time intervall Thus there are no invariant sets at all (other than x = O). hence
there is no stable stable invariant set if fl > O.

:x

FIGURE 2

Nate that 0= x 3 + flX has the non-trivial solutions x = ±v=ii if fl < O. By the principle
of linearized stability, these solutions are unstable. One calls this a subcritica1 bifurcation
and illustrates it with the diagram of Figure 2.
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Examples 1 and 2 may seem rather special, but in fact the diagrams of Figures 1
and 2 occur quite frequently in applied problems. Indeed, there is a large dass of one
dimensional vector fields for which the "generic" bifurcation pattern of a one-parameter
family is refiected by these diagrams. This class is that of smooth vector fields f : R -+ R
which are antisymmetrie with respect to x = O: thus f( -x) = - f(x). On speaks of "Z2
symmetry" in this case. We refer to the excellent book of Golubitsky and Schaefel' [4J for
a detailed discussion, and content ourselves with the fol1owing motivational arguments.

Suppose that fll(x) = PIl(x) where each PIl(x) is a real polynomial of degree > 3 such
that PIl(-X) = -PIl(x). Suppose furtheI' that, if fl < O, then PIl(x) has exactly one real
root, which we take to be x = O. If PIL(x ) has more than one real root for fl > O, then it
will have (generically) exaetly three real roots for fl > O, since new roots arise from the
coalescence of complex conjugate roots at fl = O. Now, suppose x = Ois stable for fl < O
but unstable for fl > O. Then a simple argument using the principle of linearized stahility
shows that generically, a supercritical pitchfork bifurcation will occur at fl = O. (Write
PIl(x) = xQIl(x) where QIl(X) is an even polynomial, and investigate dPIl/dx.)

Suppose on the other hand that PIL (x) = O for all fl, that x = O is the only real root
for fl > O, and that x = O is stable for fl < O. Then, generical1y, one finds a subcritical
pitehfork bifurcation at fl = O.

'Ve finish our discussion of fixed-point bifurcation for continuous systems by noting
thai a large number of higher-dimensional problems can be reduced to a one-dimensional
problem. Briefiy, let fIL : Rk -+ Rk be a one-parameter family of veetor fields \'\rith fp,(O) =
O,and let All = D fll(O) where D stands for the usual Frechet derivative. Suppose that

eigenvalues of All have negative real parts if fl < O (this guarantees that x = O
isasymptotical1y stable if fl < O). Suppose furtheI' that exactly one eigenvalue )..(fl)

(necessarily real) passes through ).. = Oat fl = O. Then the Lyapunov-Sc}tmidt procedure [8J
permits one to reduce the k-dimensional bifurcation problem to one dimension, essentially
by projecting onto the one-dimensional eigenspace E C Rk of Ao which corresponds to
),,(0) = O.

Next we tum our attention to fixed-point bifurcation for a one-parameter family of
maps fp. : R -+ R. Once again there is a principle of linearized stability: if g : R -+ R is
smooth, and if g(xo) = xo, then Xo is as:rmptotically stable if 19'(xo)l < 1 and is unstable
if Ig'(xo)l > 1.

Assume now that fll(x p) = xp, for fl E R, and that lf'(xp)! < 1 for fl < O and
1!'(xll)1 > 1 for p. > O. At P = O one must have f~(xo) = ±1. It can be shown that,
if fMxo) = +1, then there is a theory of bifurcation analogous to that already discussed
for continuous systems. In particular, there is a certain ubiquity in the appearance of
supercritical and subcritical bifurcation diagrams.

If fMxo) = -1, however, there anses a new phenomenon, that of period doubling.

Indeed, since fp(x) = f~(xp,)(x - x p) + ... , and since f~(xll) :::: -1 for Ipl small, we see
that the orbit {f;Cx)} will jump from one side to the other of Xp if x is near xp.- Moreover,
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if appropriate conditions are placed on the non-linear tenns in fp(x), one can ensure that
{f;(x)} cannot move too far from x p, if x - x p is small. This indicates a supercritical
bifurcation to a stable periodie orbit of period 2.

Rather than pursuing further these general considerations, let us review a well-known
special case when supercritical period doubling occurs. Namely consider the one-parameter

family of interval maps

fp: [-1,1] -t [-1,1] : fp(x) = 1- px2 (O ~ P <2).

For each p E [0,3/4], fp has a fixed point x p E [-1,1] which is easily seen to be stable.
Write Po = 3/4; one can see that x po = 2/3 and f~o(xpo) = -1, If~(xll)1 > 1 for p > flo·
Jt be can shown that, for small p - po > O, there is a stable period point of period 2 for
fp.. (We probably should remark at this point that the fil are not homeomorphisms of [-1,
1], but so what?)

It is well-known what happens when p increases from po = 3/4: there is a sequence
flo < fll < ... < Pn < ... of parameter values at wruch a periodic point of period 211 loses
stability and a periodic point of period 2n+1 gains stability. That is, there is an infinite
sequence of period doublings. It is known that fln -t Poc ~ 1.40155. In fact, one has the
following table which we copy from the excellent book of Collet-Edanan [2]:

n Pn Pn - fln-l
pn - pn-l

pn+l - pn

O .75
1 1.25 .5 4.23373
2 1.36807 .11809 4.55150
3 1.39404 .02594 4.64581
4 1.39963 .00558 4.66393
5 1.40082 .00119 4.66810
6 1.40108 .00025 4.66896

-t P= ~ 1.40155 -t Ö = 4.66920

The number Ö is called Feigenbaum 's constant. Reinterpreting the convergence of the
ratios (Pn - Pn-d/(Pn+l - Pn) one has:

Ifln - Poc l "-' const ·ö-n
.

Thus Pn converges to p= at an exponential rate determined by Ö.

Now, it is a remarkable fact that exactly this same number Ö occurs in man~' other
one-parameter families of maps {fp.} of the interval, in exaetly the .same mIe: lPn - Pool "-'
const ·ö-n • What is the explanation of this phenomenon?
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Following Feigenbaum [3] as discussed by Collet-Eckmann [2], we introduce the space
P of symmetric unimodal functions f : [-l, 1] ~ [-1, l]. This means that f is symmetric
(Le., f( -x) = f( x)) and satisfies the following conditions: (i) f is a 0 3 function; (ii)
f(O) = l; (iii) f is increasing on [-1,0) and decreasing on (0,1]; (iv) f'(X) i= Oif x i= O.

Consider the subspace V of P which consists of funetions f such that, if a = - f(l)
and b = f(a), then O < a < b < l and f(b) = f(J(a)) < a. The content of these rather
unusual-Iooking conditions is the following: (v) f o f = P maps [-a,a} into itse1f; (vi)
x ~ (-1/a)J o f (ax) is unimodal and symmetric. One may experiment. with the function
f (x) = l - 1.2x2 , which satisfies the stated conditions.

By (v) and (vi), it makes sense to define the renormalization transformation

5': V ~ P: (5'f)(x) = (-l/a)fof(ax).

The renormalization transformation is of use in studying maps f E V which are superstable,

i.e. for which x = O is a periodie point. (Since 1'(0) = O, x = O is necessarilya stable
periodic point if it is periodic.) In fact, one can show that, if f E V, then f is superstable
of minimal period p if and only if 5'f is superstable of minimal period p/2.

Now we indicate the strategy outlined by Feigenbaum and carried out by Collet
Eckermann, arrived at explaining the universality of b. The first step is to show that
5' admits a fixed point </> E V. The second is to show that the fixed point is hyperbolic:
in fact, the derivative Dq,5' has one simple eigenvalue which is greater than one (and this
eigenvalue is exactly b), while the rest of the speetrum of Dq,5'lies strictly inside the unit
disc. This implies that there is a one-dimensional unstable manifold TrVn passing through

and a codimension l stable manifold W a passing through </> (Fig. 3). The third step is
to consider the submanifold ~1 = {f E Vlf(l) = O}, i.e. the set of f E V which are su
perstable of period 2. The inverse images ~j = 5'-(j-l)~l consist offunetions f which are
superstable of period 2j . One can show that ~1 intersects lVt.! transversally, as indicated
in Fig. 3. Since ~j = 5'-(j-l)~l' the manifolds ~j must tend to the stable manifold ",,"a

as J ~ 00.
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FIGURE 3

Fina1ly, consider a curve J-t ~ fp. in P which intersects W 8 transversally. Let /lco be
the .value at which fp.oo E Ws, and let J-t; be the value at which fp.j E Ej. If j is large,
then IJ-t; - Jlcol"'" const .ö- j

.

To formulate this picture precisely and prove that it is correct is is a non-trivial matter
and the third chapter of [2] is devoted to the project. Nevertheless the sketch we have
given should give an idea of the origin of what at first seems so mysterious: the universaIity
of ö.

Unti! now we have considered one-dimensionaI bifurcation problems, or (remembering
our remark about the Liapounov-Schmidt procedure) problems in which "stability is lost
in one direction". We now tum to problems in which stability is lost in two directions. In
this situation, a frequently-encountered phenomenon is the so-ca1led Hopf bifurcation.

We begin once more 'with an example. Let

~, ( y ) ~
x = ( 2) =fp.(x).J-t-X y-x

Note that fp. fixes the origin for all J-t : fp.( O) = O. The stability of the origin is determined
by the eigenvalues of the derivative:

Df (O) = (O 1)
p. -1 p
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The eigenvalues are .\ = 1/2(J-L ± viJ-L2 - 4), so Re.\(JL) = J-L/2. Thus i = O is stable if
J-L < Oand unstable if J-L > O. Once again we pose the question: is there a stable invariant

set for J-L > O?

FIGURE 4

The answer is yes; in fact there is a stable invariant curve, diffeomorphic to a circ1e,
with radius r = ,il ~ Vii. One can see this by a slightly nontrivial analysis (which we
omit) of the radial equation

\Ve have here an example of a supercritical Hopj bijurcation (Fig. 4). The invariant curve
is defined by a periodie solution.

It is also easy to construct examples exhibiting a subcritica1 Hopf bifurcation; thus the
invariant curve exists for JL < O and is unstable.

Consider now a general one-parameter family of differential equations

(x E Rk
, J-L E R) .

Suppose that I p (O) = Ofor all JL, and that the real parts of the eigenvalues of DI p (;) are
all negative for J-L < O. Thus the origin is asymptotically stable for JL < O. Suppose further
that two complex conjugate eigenvalues .\(J-L), .\(JL) cross the imaginary axis ",;'th nOll-zero
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speed at fl = O, while all the other eigenvalues are bounded away from the imaginary axis.
Precisely, suppose that

ReA(O) = O, ImA(O) f:. O, d/dflRe>'(fl) > O ,

while Re5.(O) < Ofor all other eigenvalues 5.(fl).

The theorem of Hopf-Andronov states that, if the above conditions are satisfieci, and
if the origin is a "weak attractor" at fl = O, then a supercritical Hopf bifurca.tion occurs:
for small fl > O there is a stable in-vanant curve for x' = fp. (x ) (which is in {act aperiodie
solution). Similarly, if the origin is a "weak repeller" , then there is a subcritical Hopf
bifurca.tion. We refer to the book of Marsden-McCracken [8J for details.

\Ve now eonsider the somewhat more detailed theory of Hopf bifurca.tion for maps, due
to R. Sacker [IlJ. We follow the treatment in the book of G. Iooss [5J. For convenience we
eonsider only planar maps: k = 2.

Consider then a one-parameter family of mappings

(fl E R).

Onee again write x = (;) for the position vector. Assume that fp.( O) = O" for all fl.

Suppose now that {fp.} satisfies the following h)'})otheses.

(Hl) Dfo(O) has eomplex conjugate eigenvalues >"0,10 \\rith 1>'01 = l and >'0 f:. ±L

(H2) d/dflIA(fl)1 > Oat fl = O.

In particular x = O is stable for fl < O and unstable for fl > O.

Let us identify the complex plane C with R2 via z = x + iy +---+' (;). We have

fp.(z) = >'(fl)Z + R(z,Z,fl)

where R(z,Z,fl) consists of terms of order ~ 2 in z,z. The following lemm.a is proved
in [5J.

LEMMA. Suppose that : (i) fp. is six times continuously differentiable in all variables;
(ii) (Hl) and (H2) are satisfied; (iii) >'ö f:. l for n = 1,2,3,4,5. Then we can lind a new
z-coordinate in which fp. has the form

where Rs contains only terms of order ~ 5 in z and z.

Armed with this lemma" we look for an imanant eurve for f w \Ve try a cirde as a
first approximation:
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Let >..(p) = >"0(1 + pA1 + ... ) where we assume for simplicity that Al > O. If >"0 f:. l for
l :s; n :s; 5, then by the lemma

so consider
(l + p)..dr + a(0)r3 = r ===} r 2 = -PA1/a(0) .

If a(O) < Oone expects (and gets) a supercritical Hopf bifureation: there is a closed curve,
diffeormorphic to a circle, with radius the order of ..;ii, which is invanant under fp for
small p > O. Of course this closed curve is not aperiodic orbit. Note that, if 0'(0) < O,
then the origin is an attractor when p = O, though the rate of attraction is not exponential.
For this reason one speaks of a "weak attractor".

On the other hand, if a(O) > O, then one expects (and gets) a subcritical Hopf bifur
eation. This completes our brief review of the theory of Hopf bifurcation of maps.

We finish our discussion of bifurcation theory by considering a situation which, at first
glance, looks more complicated than those considered above. Namely, suppose we have a
one-parameter family of differential equations

(x E Rk, P E H).

Suppose that {xp(t)} is a family of periodie solutions: thus xp(t + T) = xp(t) where the
(minimal) period T may depend on p. Suppose that xp(t) is asymptotically stable for
p < Obut not for p > O. Is there a new stable invariant set for p > 07

FIGURE 5

10



We can reduce this problem to a bifurcation problem of mappings by the following
device. Consider a family D~ of small transversal sections to the periodie orbits x~(t)

(Fig. 5). Let x~ be the (unique) point of intersection of D~ with x~(t). H one solves
x' = l~(x) with initial condition in D~, and if D~ is small enougl1, then the solution must
return to D~. Moreover, x~ is mapped into itself under this "first return map", or Poincare
map. One considers the family {glL} of Poincare maps: since 91L(X IL ) = XIL , and since xlL
is a stable fixed point of g~ exactly when xlL(t) is a stable periodic solution of x' = f~(x),

we have in fact reduced the original problem to a bifurcation problem of mappings.

It is interesting to note that, if the family {gIL} of Poincare maps satisfies the conditions
for a supercritical Hopf bifureation, then for Jl > O there is a family of invariant stable
2-iori for the differential equations x' = 11L(x). (Recall that a 2-torus is the topological
product of two circles.)

Now, clearly we can continue to pose our basie question when a family ofinvariant 2-tori
loses stability. Indeed: is there a new stable invariant set? if so what are its properties?

Here there is no general theory available to answer the question. One tbing that can
happen is the appearance of hyperbolic invariant sets, with associated chaotic dynamics.

In the rest of this report, we discuss some aspects of the theory of hyperbolic mvariant
sets, then explain why they playaroie in bifurcation problems.

III. Hyperbolic Systems. We begin the discussion by considering a special dynam
ical system, the 2-shift. This exhibits well-defined chaotic properties, and moreover is
fx;equently found embedded in other dynamical systems..

Let "E be the set of bi-infinite sequences of zeroes and ones. That is, ~ = {(sd~_ooISi E

{O, I} for each i, -00 < i < oo}. Define the (leftJ-shijt T: ~ -i- ~ as follows:

Thus T "picks up" the sequence and moves it one place to the left.

Now, the map T is random in a quite elementary sense. Namely, suppose we know the
digits of a sequence (Si)~_oo for, say, Iii :::; io. Suppose we apply T to the sequence j
times where j > io. Then we have no knowledge of, say, (Tis)i=O; that is, of the Of1 digit
of the j-times translated sequence Tis. Thus, if we think of So as an initial "state"', and
of application of T as corresponding to one unit of "time", then we see that after j units
of time all knowledge of the initial state is lost.

A quite large class of discrete dynamical systems contain 2-shifts. For example, any
system with a transversal homoc1inic point contains a 2-shift.

'Ve explain what a transversal homoc1inic point is, and how shifts arise in their pres
ence. The ideas and construetions are mainly due to Poincare, Birkhoff, and Smale.
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Al

D(o,o)! ~ °
and the eigenva1ues Al, A2 satisfy °< IA21 < 1 and IA11 > 1. It is knmv'"TI that there
exist stable and unstable manifoIds W 8,WU passing through (O, O) (Fig. 6). Here RiS =

{qlfn(q) -+ (0,0) as n -+ +oo} and W U = {qlfn(q) -+ (0,0) as n -+ oo}. A transversal
homoc1inic point p is a point of transversal interSl:etion of W8 and WU.

Let f : R2 -+ R2 be a difi'eomorphism with f(O, O) = (O, O). Suppose that (O, O) is
a hyperbolic fixed point. That is, the matrix of first derivatives D(o,o)! is similar to a

diagonal matrix:

FIGURE 6

Tt is a fact, proved by Smale, that there is a (curvilinear) rectangle R near p and a
positive integer j such that fil R is a horseshoe map. To explain this concept, cOIl..';,ider
a mapping g of the plane to itself which stretches and bends a rectangle R as in Fig. 7.
Define Ho U Hl' to be f(R) n R, and let Vo = f- 1(Ho), Vi = f-l(Hd. The HiS resp. l~s

are called horizontal resp. vertical strips.

We will not explain in all detail how an invariant shift for f is constructed, but we
indicate the argument. Consider

~ = {x E Rlfi(x) E Ho UH1 for all i,-oo < i < oo}.
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FIGURE 7

Then E is a compaet invariant subset of R. It tums out that, if one considers positive
iterates i, then one obtains that

00

n{xlfi(x) E Ho UHd
i=O

is a "Cantor set of vertical lines" obtained by throv,,;ng out vertical regions in a manner
analogous to the way one eliminates middle thirds in the standard Cantor construction.
Similarly

n{xlfi(x) E Ho UHd
i<O

is a "Cantor set of horizontallines" .

Now, Ii is by definition the set of all points of intersection of horizontal and ..ertical
lines. The map f restricted to E can be shown to be (isomorphic to) the standard 2-shift
(L, T), as folIows. Define

a: E-+ Ii: a(x) = (Si)~_cx: where fi(x) E Hs; .

One can check that aU(x» = T(a(x» for all x E E. One can also show that a is bijective,
and is in fact a homeomorphism with respect to a natural metric structure on Ii. Thus a

does indeed define an isomorphism between gir; and (Ii, T).
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FIGURE 8

One can show that, if p is a transversal homoclinie point, and if R is a small rectangle
as indicated in Fig. 8, then for large enough j, the map g = fi IR is a horseshoe map.

Let us consider a very simple example where transversal homoclinic points ahound.
Let T 2 = R2 /Z2 be the 2-torus, and define

Since the determinant of the matrix (~ ~) equals one, this formula does indeed define a

mapping of the torus to itself which is a diffeomorphism. Note that the origin Xl = O. X2 = O

is a fixed point for f. It is a hyperbolic point, because the eigenvalues of (~ ~) are

Al = 1/2(3 + ~), A2 = 1/2(3 - V5). The stable resp. unstable manifolds are

W 8 = {(-2t,(V5 + l)t)lt E R} C T 2
,

W U = {(2t, (J5 - l)t)lt E R} C T 2
•

These manifolds (curves) wind densely on the torus; moreover they intersect trans.ersely
in infinitely many points which form a dense subset of the torus. There is an in...-ariant
shift in every neighborhood of each such transversal homoclinic point.
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The example we have discussed is the standard Anosov diffeomorphism.

Let us now define and briefiy discuss the theory of (uniformly) hyperbolic im-ariant
sets. These are quite weil understood, occur fairly often, and have a strudure which most
anyone would describe as chaotic.

Let f : Rk -t Rk be a diffeomorphism. Let A C Rk be a compad invariant set
which is invariant under f : f( A) = A. We say that A is hyperbolic if the tangent bund1e
T( A) = A x Rn admits asplitting

where: (i) Df(E8) = E8 , Df(EU) = EU (here Df denotes the derivative map of f); (ii)

IIDfn IE.1l ~ Kexp(-pn) and I/Df- n lEu l/ ::; Kexp(-pn) for all n ~ 1 where Ä,P are
positive constants.

The basic theorem which allows the detailed study of hyperbolic invariant sets is the

STABLE MANIFOLD THEOREM. Let A be hyperbolic and 1et x E A. There are smooth
manifoids W 8(x) resp. TVU(x) which are tangent at x to E8(X) resp. EU(x) with the
follow"ing properties. First, they are invariant: f(W8(X)) C W 8 (J(x)) and f(U"'U(x)) C
nn.t(f(x)). Second, HT8(x) consists exact1y of those points y E Rk such that IIf fl

(y)
ffl(x)1I -t O as n -t 00, while TVU(x) consists exact1y of those points y E Rk such that
lIfn(y)- fn(x))I-t O as n -t -00.

With the stable manifold theorem at hand, we can describe Iurther developments of the
theory. Suppose that A is hyperbolic, "indecomposable", and maximal with respect to this
latter property. See Guckenheimer and Holmes [5J for a discussion of indecomposability.

DEFINITION. A reetangle is a closed subset R of A such that, if x,y E R, then

W E
8 (x) n lVE

U (y) = {p} , a singleton, and moreover p E R.

Here the subscript € refers to local stable and unstable manifolds: yE ur:(x) if and only
if Y E T~T8(X) and IIfn (x) - fn(y)1/ ::; € for all n > 0, and analogausly for TVEU(x).
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FIGURE 9

We can construct rectangles as follows (Fig. 9). Let x E A. There exist f > 0.8 > O

such that, if R = {yl there exist w E W/ex), z E WCU(x) with {y} = nTfU(W) n lr:(z)} , then
R is a rectangle. Once again see Guckenheimer and Holmes [5J for a detailed disrussion.

We need still another basic definition.

DEFINITION. A Markov partition for A is a collection {R1, ... ,.Hm} of rect.angle:s such
that:

m

(i) A = U Ri ;
i=l

(ii) Int Rin Int Rj = <P if i f; j ;

(iii) f(WU(x,Ri»:) WU(J(x),Rj ) and f(WS(x, Ri» C WS(J(x),Rj) ifx E Int Rå and
f(x) E Int R j .

One now follows Bowen [1], who proved the basic result that a maximal indecomposable
hyperbolic invariant set admits a 1\farkov partition. (In the horseshoe example, a 1\farkov
partition for ~ is given by {Ho,Hd.)

If A has a Markov partition {Rl , ... ,Rm}, define an m X m-matrix A as folloW's:

Aij = O if Int Rj n f-l Int R} = 0
Aij = 1 if Int R j n f-l Int R j f; 0 .
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Kext define the subshijt of finite type :EA as follows. The space :EA is the set of sequences
(Si)~-oo such that Si E {1,2, ... ,m} for all i, and such that ASiSi+l = 1 for all i. Thus
the matrix A is used to pick out a subset of the full shift on m symbols (and not just on
2 symbols as considered earlier). Define T : :EA -. 'EA just as in the case of the 2-shift,

namely T«Si)~_oo)= (si+d~-oo'

Now, one defines a mapping 7r : :EA -. A as follows:

7r«Si)~_oo) = n j-I(Rs ,)'

i=-oo

It tums out that the interseetion on the right consists of exactly one point, so 7r is indeed
a well-defined mapping. Bowen proved that 7r is surjective, and moreover is injeetive when

restrieted to the inverse image

(The Baire category theorem shows that the set on the left is residual in :EA). Furthermore
'ii o T = j o 7r. Thus fiA reflects properties of the highly chaotic flow (:EA, T).

This completes our re,,-iew of the them-y of inv-anant sets with a uniform hyperbolic
structure. There is also a theory of invariant sets with a hyperbolic structure which is
not uniform but only "measurable". This theory is based upon fundamental results of
oseledec [9] and Pesin [10]. We will not discuss this tbeory here.

IV. Hyperbolicity in Bifurcation Problems. Now we return to bifurcation theory,
indicate 'in a general way why hyperbolic behav'1or is to be expected in situations

where a 2-torus loses stability in a l-parameter family of differential equations, or an
imanant curve loses stability ina l-parameter fa:miliy of difference equations. 'Ve take
the c1assical (though perhaps not vogueish) approach of linearizing the non-linear system
around the invariant torns or curve, studying the linearized equations, then using linear
information together '\V-ith certain assumptions about the non-linearity to gain information
about the nature of stable solutions and transfer of stability. In what follows we discuss
differential equations, assuring the reader that completely analogous considerations are
valid for difference equations.

'Ve study a situation analogous to that occuring in the Hopf bifurcation. Consider
once again a one-parameter family of differential equations

\Ye may as weIl assume that k is "large" , i.e., at least 4. Suppose that there is a family
x = vp(t) of solutions such that Yp = cls{vp(t)!t E H} is homeomorphic to a 2-torus for
each JJ E R. We consider the linearized equations
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Assume that YIt is asymptotically stable for p < O but is unstable for p > O. Assume
further that "stability is lost in exactly two directions". Though the precise formu1ation
of this condition is not as transparent as it is in the case of the Hopf bifurcation, we take
it to mean that equation (2) can be transformed into the form

(x)' = (BIt(vlt(t)) O). (x)
z * Zp{vp(t»· z

where x E RZ , z E Rk-Z, and the z-directions are "unimportant" for the stability analysis.
In particu1ar the direetions tangent to YA are included in the z-variables.

We remark that Sell [12] has considered conditions on Yp which ensure that such a
reduction to triangular form can be made.

The above discussion can be summarized by saying that we assume that the stability
analysis can be reduced to the study of a two-dimensionallinear problem

To study this problem, let T p denote the How on Yp induced by the vector field j P" Thus
t ~ vp(t) defines one orbit of this How. We are going to assume (though the assumption
can be weakened considerably) that the How on Yp is quasi-periodic . This means, after a
continuous change of coordinates, the How 1"p has the follO\<ving form:

Here O S; "pI S; 271", O S; "pz S; 271" are 271"-periodic coordinates on the two-torus Yp , and
,(p) is a real number called a jrequency.

We need a definition: for fixed p, equation (3)p has an exponential dichotomy if there
is a quasi-periodic change of variables x = P(t)y (y E R2, P(t) a non-singular 2 x 2 matrix)
such that, in the y-coordinates, (3)p becomes

(4)

with constants a =/:: b. Let 8 be the polar angle in the x-plane. A moment 's thought shows
that, if (3)p has an exponential dichotomy, then there are exponentially attraeting and
repelling solutions 8+(t), 8_(t) of the differential equation for 8 defined by equation (3)p
(if (3)p already has the form (4), and if a> b, then 8+(t) =Oand 8_(t) == 71"/2.)

Now, consider a fixed reference 2-torus Y to which all the Yp are homeomorphic. Let
('l/JI, "pz) be angular coordinates on Y. The differential equations (3)p deflne a curve c in
the space A = R x ez, where R is the space of frequency vectors , and ez is the space
of 2 x 2 matrix-valued functions B defined on Y. (One can show that, for each p, the
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funetion Bil (vll(t)) defined along the orbit t ---. vll(t) actually extends to a continuous
funetion BIl(tPb tP2) defined on all of Y.) Thus c(p) = h(p), Bp (')) E A.

We can now state a key result [7]: for a "generic" curve c = c(p) in A, there is an open
and dense set E = {p} of parameter values fl for which equation (3)11 has an exponential
dichotomy. Thus a "generic" bifurcation problem (2)11 gives rise to linearized systems (3)p
which have exponential dichotomy for an open dense set of p.

The intuitive reason that this result has implications for bifurcation problems is the
exponential attraction resp. repulsion of B+(t) resp. B_(t). Because of this exponential
attraction/repulsion, one expeets that, near Yp , the angular evolution of solutions of the
non-linear equation (2)p will resemble the angular evolution of solutions of the linearized
equation (3)11' And indeed, examples due to Ying-Fei Yi show that this intuition coll('erning
the time evolution of B can be used to produce examples where, for an open dense set of
p > O, equation (2)11 has transversal homoc1inic orbits (with corresponding shifts) in each
neighborhood of Yw In general one can expect to find markedly hyperbolic behavior in
the vicinity of YI1 for p > O.
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