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Abstract

We analyze how market design influences the bidding behavior in multi-
unit procurement auctions where suppliers have uncertain costs and are un-
certain about the availability of production units, as in wholesale electricity
markets. We find that the competitiveness of market outcomes improves
with increased market transparency. We identify circumstances where the
auctioneer prefers uniform to discriminatory pricing, and vice versa. We
also identify circumstances where it should be market effi ciency enhancing
to restrict the number of steps in the bid-schedules.
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1 Introduction

We analyze multi-unit auctions where producers submit offers before demand, pro-
duction capacities and production costs are fully known. Our model accounts for
asymmetric information in suppliers’production costs and considers unexpected
outages and intermittent output, such as those from renewable energy sources.
Our analysis is, for example, of relevance for European wholesale electricity mar-
kets, where the European Commission has introduced regulations that increase
the market transparency, so that uncertainties and information asymmetries are
reduced. According to EU No. 543/2013, the hourly production in every single
plant should be published. EU No. 1227/2011 (REMIT) mandates all electricity
market participants to disclose insider information, such as scheduled availability
of plants. We are interested in how such regulations and the auction format in-
fluence the competitiveness of the resulting market outcomes when suppliers face
various uncertainties about their competitor’s costs and their own output. Our
results are also applicable to multi-unit auctions that, for example, trade securities
and emission permits.
In electricity markets, marginal cost can be estimated from public engineering

data on plant characteristics and input fuel price indexes. Still, a generation
unit owner has private information about the actual price paid for its input fuel
and how the plant is maintained and operated, which creates cost uncertainty
about a firm’s competitors. We believe that the cost uncertainty and information
asymmetry is greatest in hydro-dominated markets. The opportunity cost of using
water stored in the reservoir behind a specific generation unit is typically estimated
by solving a stochastic dynamic program based on estimates of the probability
distribution of future water inflows and future offer prices of thermal generation
units, which can leave significant scope for differences across market participants
in their estimates of the generation unit-specific opportunity cost of water. This
uncertainty is exacerbated by political risks such as the possibility of regulatory
intervention and each producers’subjective beliefs about the probability of these
events occurring during the planning period. The influence of these political risks
on cost uncertainty are likely to be greatest during extreme system conditions
when water is scarce and the probability of regulatory intervention is high.
We consider a multi-unit auction with two capacity-constrained producers fac-

ing an uncertain demand, where offers from both suppliers must be accepted in
high demand states. These accepted offers are either paid a uniform or a dis-
criminatory price. In the uniform-price procurement auctions, all accepted offers
are paid the clearing price, which is set by the highest accepted offer price. In
a discriminatory auction, all accepted offers are paid their own offer price. The
uncertain demand is realized after offers have been submitted. Similar to von der
Fehr and Harbord (1993), each firm offers its entire production capacity at one
unit price in a one shot game. We generalize von der Fehr and Harbord (1993) by
introducing uncertain interdependent costs. Analogous to Milgrom and Weber’s
(1982) auction for single objects, each firm makes its own estimate of production
costs based on private imperfect information that it receives, and then makes an
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offer.1 As is customary in game theory, we refer to this private information as a
private signal. Similar to Milgrom and Weber (1982), we solve for a Bayesian NE
and consider signals that are drawn from a bivariate distribution that is known to
the suppliers.
There are no welfare losses in our setting, because demand is inelastic, each

producer has constant marginal costs and offers its whole capacity at one price.
Moreover, producers are symmetric ex-ante and offer prices are increasing with
respect to a each supplier’s cost signal. Thus our analysis focuses on bidding
behaviour and how the auction design and information structure influence the
payoff of the auctioneer.
As in von der Fehr and Harbord’s (1993) study of the uniform-price auction, our

results depend on whether producers are pivotal or not. A producer is pivotal if its
competitors do not have enough production capacity to meet the realized demand.
Producers are never pivotal in single object auctions with at least two participants,
while the number of pivotal producers in wholesale electricity markets depends on
the season and the time-of-day (Genc and Reynolds, 2011), but also on market
shocks. Pivotal status indicators as measures of the ability to exercise unilateral
market power have been evaluated by Bushnell et. al. (1999) and Twomey et
al. (2005) and have been applied by the Federal Energy Regulator Commission
(FERC) in its surveillance of electricity markets in U.S. Such binary indicators
are supported by von der Fehr and Harbord’s (1993) pure-strategy NE in uniform-
price auctions, where the market price is either at the marginal cost of highest
cost accepted supplier or the reservation price, depending on whether producers
are pivotal or non-pivotal with certainty. Our equilibrium is more subtle, the
pivotal status is typically uncertain before offers are submitted and the expected
market price increases when producers are expected to be pivotal with a larger
margin.
Most wholesale electricity markets use uniform pricing. One exception is the

real time market in Britain, which uses discriminatory pricing.2 We show that
equilibrium offers in a discriminatory auction are determined by the expected
sales of the highest and lowest bidder, respectively. In our setting, the variance in
these sales after offers have been submitted —due to demand shocks, outages and
intermittent renewable production —will not influence the bidding behaviour of
producers in the discriminatory auction. Bidding in the uniform-price auction is
also insensitive to this variance in sales, as long as these shocks are not suffi ciently
large to occasionally change the pivotal status of at least one producer. Even if
the possibility of large shocks would influence bidding behaviour in uniform-price
auctions, it is still the case that the probability that producers are pivotal does
not influence payoffs for given expected sales and independent signals.
We show that uniform and discriminatory pricing are equivalent when signals

are independent. An auctioneer tends to favour discriminatory pricing when sig-

1Milgrom and Weber (1982) analyse a single-object sales auction, so in their setting each
agent estimates the value of the good that the auctioneer is selling.

2In addition, some special auctions in the electricity market, such as counter-trading in the
balancing market and/or the procurement of power reserves, sometimes use discriminatory pric-
ing (Holmberg and Lazarzcyk, 2015; Anderson et al., 2013).
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nals become more correlated at higher values. The opposite is true when signals
are less correlated at higher values. Advantages and disadvantages with uniform
pricing tend to be amplified if producers are pivotal with a higher probability. We
also argue that bidding formats that, as in practice, restrict the number of steps in
a producer’s supply schedule reduce the mark-ups of offer prices over marginal cost
in uniform-price auctions and makes the uniform-price auction more attractive to
consumers relative to the discriminatory auction, especially when producers have
common uncertainties in their costs.
Independent of the auction format, we find that mark-ups decrease if producers’

signals are more positively correlated, i.e. when they receive similar information
before offers are submitted. This is related to Vives (2011) who finds that mark-
ups decrease when producers receive less noisy cost information before competing
in a uniform-price auction. It is also known from previous work that disclosure
of information before bids are submitted improves competition in single object
auctions (Milgrom and Weber, 1982). Taken together, these results suggest that
publicly available information of relevance for production costs —such as weather
conditions, fuel prices, prices of emission permits —is likely to improve the com-
petitiveness of market outcomes. It is also easier for a producer to estimate the
marginal cost of its competitors if the market operator discloses detailed historical
bid data and/or detailed production data. Thus, our results support the argument
that the transparency increasing measures of the European Commission should im-
prove the performance of European electricity markets. In addition, information
provision about outcomes from financial markets just ahead of the operation of re-
lated physical markets should lower the market uncertainty. Therefore, trading of
long-term contracts which help producers predict future electricity prices, should
lower this uncertainty and reduce the extent of informational asymmetries among
suppliers about the opportunity cost of water.
Extending this logic further, our results suggest that regulatory risks are partic-

ularly harmful for competition in hydro-dominated wholesale electricity markets,
especially when water is scarce, because of the potential informational asymmetries
about the likelihood of regulatory interventions. Thus, we recommend clearly de-
fined contingency plans for intervention by the regulator in case of extreme system
conditions. This could potentially mitigate the extraordinarily high-priced periods
that typically accompany low-water conditions in hydro-dominated markets such
as California, Colombia, and New Zealand.
Because increased transparency lowers the payoff of producers in our model,

we would not expect producers to agree to voluntarily disclose production cost-
relevant information. This has similarities to Gal-Or (1986) who shows that pro-
ducers that play a Bertrand equilibrium would try to conceal their costs from each
other.
According to our results, increased transparency would only be helpful up to

a point, because there is a lower bound on equilibrium mark-ups when producers
are pivotal. Another caveat is that we only consider a single shot game. As argued
by von der Fehr (2013), there is a risk that increased transparency in European
electricity markets can facilitate tacit collusion in a repeated game.
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Our study focuses on procurement auctions, but the results are analogous for
multi-unit sales auctions. Purchase constraints in sales auctions correspond to pro-
duction capacities in our setting.3 As an example, U.S. treasury auctions have the
35% rule, which prevents a single bidder from buying more than 35% of the securi-
ties sold. Spectrum auctions by the Federal Communications Commission (FCC)
have similar rules. California has purchase limits in its auction of Greenhouse Gas
emission allowances. Purchase constraints are used to avoid the outcome where
a single bidder purchases the vast majority of the good sold. On the other hand,
such constraints increase the probability that a bidder will be pivotal and/or make
bidders pivotal with a larger margin. The latter would make bidding less com-
petitive and purchase prices would go down. The supply of treasury bills, which
corresponds to the auctioneer’s demand in our model, is typically uncertain when
bids are submitted due to an uncertain amount of non-competitive bids (Wang
and Zender, 2002) or because the auctioneer wants to wait for the latest market
news before finally announcing its supply of treasury bills.
Most treasury auctions around the world use discriminatory pricing (Bartolini

and Cottarelli, 1997). An important exception is the U.S. Treasury, which switched
from the discriminatory format to the uniform-price format during the 1990s.
Based on our results, we believe that a bidding format that restricts the number
of steps in the bid-schedules would increase auction sales revenues to the U.S.
Treasury. Given that bidders’marginal valuation of securities should be fairly
constant, such bid constraints should improve competition without introducing
any significant welfare losses. Our results also show that it is beneficial for auc-
tioneers of securities to disclose market relevant information before the auction
starts.
The remainder of the paper is organized as follows. Section 2 compares our

paper with the previous literature. Section 3 formally introduces our model, which
is analysed for auctions with discriminatory and uniform-pricing in Section 4. The
paper is concluded in Section 5. All proofs are in the Appendix.

2 Comparison with related studies

In our setting and in Fabra et al. (2006), uniform and discriminatory pricing are
equivalent when firms are non-pivotal with certainty. Independent of the auction
format, the payoff is then zero for the producer with the highest offer price and
the other producer is paid its own offer price. This corresponds to the first-price
single-object auction, which is studied by Milgrom and Weber (1982). Our main
methodological contribution is that we generalize their model to the pivotal case,
where competitors of each producer do not have enough total production capacity
to meet all of the demand. Our model also generalizes Parisio and Bosco (2003),
which is restricted to producers with independent private costs in uniform-price
auctions.

3To some extent, bidders’financial constraints would also correspond to production capacities.
Financial constraints of bidders partly explain the bidding behaviour in security auctions (Che
and Gale, 1998).
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Divisible-good auctions often have restrictions on how many offer prices each
producer can submit or, equivalently, how many steps a producer is allowed to
have in its supply function. In practice, a producer is normally allowed to choose
a supply-schedule with more than the one offer price that is considered here, in
von der Fehr and Harbord (1993) and Fabra et al. (2006). Such bid constraints
do normally not influence equilibrium bids for producers with constant marginal
costs in discriminatory auctions, each such producer often finds it optimal to offer
its whole production capacity at one price anyway (Genc, 2009; Anderson et al.,
2013; Ausubel et al., 2014). For such cases and if there are no restrictions in the
bidding format, Ausubel et al. (2014) show that auctioneers would often prefer
discriminatory to uniform pricing.4

Restrictions on the number of offer prices per supplier typically have more im-
pact on the equilibrium outcome in uniform-price auctions. In our study, where
each producer offers its entire production capacity at one price, it does not matter
how sensitive a producer’s cost is to the competitor’s signal. Results are the same
irrespective of whether costs are private, common or anything in between those
two extremes. This is very different in Vives (2011). The reason is that produc-
ers in his setting choose linear supply functions and can therefore condition their
output on every price. To a larger extent than in our model, his bidding format
therefore allows producers to indirectly condition their output on the competitor’s
information. If costs are common or positively interdependent, a producer there-
fore has an incentive to reduce output when the price is unexpectedly high (when
the competitor has received a high cost signal) and increase the output when the
price is unexpectedly low (when the competitor has received a low cost signal).
This will make supply functions steeper or even downward sloping, which will sig-
nificantly harm competition. If costs have a common uncertainty, then mark-ups
in a uniform-price auction can be as high as for the monopoly case (Vives, 2011).
To summarize Vives (2011), he shows that more information (i.e. less noisy

signals) before a uniform-price auction starts improves competition, but mark-ups
increase if a producer learns information, or rather conditions its supply on the
competitor’s information, during the auction. To avoid this latter anti-competitive
effect, it should be optimal to restrict the bid format to give producers less freedom
to condition their output on the price and competitors’signals. Most wholesale
electricity markets and other multi-units auctions already have such constraints.
In case, marginal costs are constant, we conjecture that it is optimal to only allow
one offer-price per bidder, as in our study.
In empirical studies of auctions, Armantier and Sbaï (2006;2009) and Hortaçsu

and McAdams (2010) find that the treasury would prefer uniform pricing in France
and Turkey, respectively, while Kang and Puller (2008) find that discriminatory
pricing would be best for the treasury in South Korea. According to our discussion
above, the ranking of auction formats could depend on details in the bidding

4The theoretical studies by Holmberg (2009) and Hästö and Holmberg (2006) find that an auc-
tioneer would prefer discriminatory pricing if constraints in the bidding format are neglected and
costs are common knowledge. Pycia and Woodward (2015) show that pay-as-bid and uniform-
price auctions are revenue equivalent if costs are common knowledge and the auctioneer chooses
both the reservation price and its supply of goods optimally.
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format. Wolak (2007) and Kastl (2012) have developed structural econometric
models that account for constraints in the bidding format, which could be useful
in future assessment of the empirical rankings of auction formats.
As for example illustrated by Wilson (1979), Klemperer and Meyer (1989),

Green and Newbery (1992) and Ausubel et al. (2014), there can be multiple NE
in divisible-good auctions when some accepted offers are never price-setting. This
is not an issue in our discriminatory auction or in our general model of the uniform-
price auction where each producer’s pivotal status is uncertain. However, in the
special case where producers are pivotal with certainty in a uniform-price auction
there is, in addition to the symmetric Bayesian equilibrium that we calculate,
also an asymmetric high-price equilibrium (von der Fehr and Harbord, 1993).
This equilibrium is very unattractive for consumers, because the highest offer,
which sets the clearing price, is at the offer cap or reservation price. Thus for
circumstances when the high-price equilibrium exists and is selected by producers,
then the uniform-price auction is worse than the discriminatory auction for an
auctioneer (Fabra et al., 2006).
In order to facilitate comparisons with previous studies, we derive results for

the limit where the cost uncertainty decreases until the costs are almost surely
common knowledge. In this limit, our model of the discriminatory auction corre-
sponds to the classical Bertrand game. We get the competitive outcome with zero
mark-ups for this limit when non-pivotal producers have weakly affi liated signals5,
both for uniform and discriminatory pricing. This result agrees with the compet-
itive outcomes for non-pivotal producers in von der Fehr and Harbord (1993) and
in Fabra et al. (2006). If signals are independent and producers pivotal, it fol-
lows from Harsanyi’s (1973) purification theorem that in the limit when costs are
almost surely common knowledge, our Bayesian Nash equilibria for uniform-price
and discriminatory auctions correspond to the mixed-strategy NE analysed by
Anderson et al. (2013), Anwar (2006), Fabra et al. (2006), Genc (2009), Son et
al. (2004) and von der Fehr and Harbord (1993).6 Analogous mixed strategy NE
also occur in the Bertrand-Edgeworth game (Edgeworth, 1925; Allen and Hellwig,
1986; Beckmann, 1967; Levitan and Shubik, 1972; Maskin, 1986; Vives, 1986;
Deneckere and Kovenock, 1996; Osborne and Pitchik, 1986).

3 Model

There are two risk-neutral producers in the market. Each producer i ∈ {1, 2}
receives a private signal si with imperfect cost information. The joint probability
density χ (si, sj) is continuously differentiable and symmetric, so that χ (si, sj) ≡

5Affi liated signals are positively correlated signals, such that if the signal of one player in-
creases, then it increases the probability that the competitor has a high signal relative to the
probability that the competitor has a low signal.

6Blázquez de Paz (2014) generalizes these mixed-strategy NE to consider transmission con-
straints.
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χ (sj, si). Moreover, χ (si, sj) > 0 for (si, sj) ∈ (s, s)× (s, s).7 We say that signals
are weakly affi liated when8

χ (u, v′)

χ (u, v)
≤ χ (u′, v′)

χ (u′, v)
, (1)

where v′ ≥ v and u′ ≥ u. Thus, if the signal of one player increases, then it
(weakly) increases the probability that its competitor has a high signal relative to
the probability that its competitor has a low signal. It can be shown that signals
are weakly affi liated if and only if lnχ (u, v) is supermodular (Krishna, 2010). We
say that signals are weakly unaffi liated when the opposite is true, i.e.

χ (u, v′)

χ (u, v)
≥ χ (u′, v′)

χ (u′, v)
, (2)

where v′ ≥ v and u′ ≥ u. Note that independent signals are both weakly affi liated
and weakly unaffi liated. We let

F (si) =

∫ si

−∞

∫ ∞
−∞

χ (u, v) dvdu

denote the marginal distribution, i.e. the unconditional probability that supplier
i receives a signal below si. Moreover,

f (si) = F ′ (si) .

As in von der Fehr and Harbord (1993), we consider the case when each firm’s
marginal cost is constant up to its production capacity constraint q̃i.9 But in
our setting, marginal costs and possibly also q̃i are uncertain when offers are
submitted. The production capacities of the two producers could be correlated,
but they are symmetric information and we assume that they are independent of
production costs and signals. In Europe, this assumption could be justified by the
fact that any insider information on production capacities have to be disclosed to
the market according to EU No. 1227/2011 (REMIT). Capacities are symmetric
ex-ante, so that E [q̃i] = E [q̃j]. Realized production capacities are assumed to be
observed by the auctioneer when the market is cleared.10

We refer to ci (si, sj) as the marginal cost of producer i, but actually costs are
not necessarily deterministic for given si and sj. More generally, ci (si, sj) is the
expected marginal cost conditional on all information available among producers in
the market. We use the convention that a firm’s own signal is placed first in its list

7We do not require χ (si, sj) > 0 at the boundary, but χ1(u,s)
χ(u,s) =

χ2(s,u)
χ(s,u) is assumed to be

bounded for u ∈ [s, s].
8Milgrom and Weber (1982) call such signals affi liated. We write weakly affi liated to stress

that the condition is also satisfied for independent signals.
9This corresponds to flat demand in the sales auction of Ausubel et al. (2014).
10Alternatively, similar to the market design of the Australian wholesale market, producers

could first choose bid prices and later adjust production capacities at those prices just before
the market is cleared. Anyway, we assume that the reported production capacities are publicly
verifiable, so that bidders cannot choose them strategically.
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of signals. Firms’marginal costs are symmetric ex-ante, i.e. ci (si, sj) = cj (si, sj).
But costs and information about costs are normally asymmetric ex-post, after
private signals have been observed. We assume that

∂ci (si, sj)

∂si
> 0, (3)

so that a firm’s marginal cost increases with respect to its own signal. A firm has
more information on its own cost than about the competitor’s cost, so that

∂ci (si, sj)

∂si
≥ ∂cj (sj, si)

∂si
.

This also means that the firm with the highest cost receives the highest signal. A
firm’s marginal cost is allowed to decrease somewhat with respect to the competi-
tor’s signal, but we require that:

dci (s, s)

ds
≥ 0. (4)

Thus, if both producers would by (coincidence) receive the same signal s, then
a producer’s marginal cost is increasing with respect to that same signal. The
special case with independent signals and ∂ci(si,sj)

∂sj
= 0 corresponds to the private

independent cost assumption, which for example is used in the analysis by Parisio
and Bosco (2003). The common cost/value assumption that is often used in the
auction literature corresponds to that ci (si, sj) ≡ cj (sj, si).
We frequently refer to the limit where production costs are almost surely com-

mon knowledge. Formally, we define:

Definition 1 Production costs are almost surely common knowledge when dci(s,s)
ds

=
0 for s ∈ [s, s).

Thus, a producer could, in principle, still have private information about its
marginal cost off the diagonal of its cost function, but we show that such infor-
mation will not influence the bidding behaviour.
As in von der Fehr and Harbord (1993), demand can be uncertain D ∈

[
D,D

]
.

It could be correlated with the production capacities, but demand is assumed to
be independent of the production costs and signals. In addition, it is assumed
that all outcomes are such that 0 ≤ D ≤ q̃i + q̃j, so that there is always enough
production capacity to meet the realized demand. As in von der Fehr and Harbord
(1993), demand is inelastic up to a reservation price p. Analogous to Milgrom and
Weber (1982), we assume that the reservation price is set at the highest relevant
marginal cost realization, i.e. p = ci (s, s) for i ∈ {1, 2}. This assumption can
be motivated by the fact that an auctioneer would lower its procurement cost by
lowering the reservation price whenever p > ci (s, s).
After firms have received their private signals, each firm submits an offer with

one unit price for its whole capacity in a one-shot game. We let pi (si) be the chosen
offer price of firm i ∈ {1, 2} when it observes the signal si. The auctioneer accepts
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offers in order to minimize its procurement cost. In a uniform-price auction, the
highest accepted offer price sets the uniform market price for all accepted offers.
In a discriminatory auction, each accepted offer is paid its individual offer price.
Similar to classical auction theory, we solve for symmetric Bayesian Nash equi-

libria with the following properties: (i) the chosen offer price of firm i ∈ {1, 2}
is a twice differentiable function of its signal si and (ii) the chosen offer price is
strictly monotonic in the firm’s signal, i.e. p′i (si) > 0 for si ∈ (s, s). Thus, the
inverse p−1

i (p) always exists in equilibrium. Strict monotonicity also implies that
ties occur with measure zero. Hence, the rationing rule will not influence the
expected profit of producers in the equilibria for which we solve.
Ex-post, we denote the winning producer, which has a low offer price and

gets a high output, by subscript H. The losing producer, which has a high offer
price and gets a low output, is denoted by the subscript L. Winning and losing
producers have the following expected outputs:

qH = E [min (q̃H , D)] (5)

and
qL = E [max (0, D − q̃H)] . (6)

The payoff of each producer is given by its revenue minus its realized production
cost.

4 Analysis

We first analyse discriminatory pricing, where the offer price of a producer sets
its own transaction price. Uniform-pricing is more complicated to analyse as it
depends on producers’pivotal status whether the lowest or highest offer price sets
the clearing price.

4.1 Discriminatory pricing

Each firm is paid as bid under discriminatory pricing. The demand uncertainty
and production capacity uncertainties are independent of the cost uncertainties.
Thus, the expected profit of firm i when receiving signal si is:

πi (si) = (pi (si)− E [ci (si, sj)| pj ≥ pi]) Pr (pj ≥ pi| si) qH
+ (pi (si)− E [ci (si, sj)| pj ≤ pi]) (1− Pr (pj ≥ pi| si)) qL.

(7)

In the Appendix, we show that:

Lemma 1 In markets with discriminatory pricing:

∂πi(si)
∂pi

= Pr (pj ≥ pi| si) qH + (1− Pr (pj ≥ pi| si)) qL
+
(
pi − ci

(
si, p

−1
j (pi)

)) ∂ Pr(pj≥pi|si)
∂pi

(qH − qL) .
(8)
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The first two terms on the right-hand side of (8) correspond to the price effect.
This is what the producer would gain in expectation from increasing its offer price
by one unit if the acceptance probabilities were to remain unchanged. However,
on the margin, a higher offer price lowers the probability of being the winning
bidder by ∂ Pr(pj≥pi|si)

∂pi
. Switching from being the winning to the losing bidder

reduces the accepted quantity by qH − qL. We refer to
∂ Pr(pj≥pi|si)

∂pi
(qH − qL) as

the quantity effect, the quantity that is lost on the margin from a marginal price
increase. The mark-up for lost sales, pi− ci

(
si, p

−1
j (pi)

)
, times the quantity effect

gives the lost value of the quantity effect. This is the last term on the right-hand
side of (8). The quantity effect and its associated loss is determined by cases where
the competitor, producer j, is bidding really close to pi, which corresponds to the
competitor receiving the signal p−1

j (pi). This explains why ci
(
si, p

−1
j (pi)

)
is the

relevant cost in the mark-up for lost sales.
We solve for a symmetric Bayesian NE and henceforth, we often drop firm-

specific subscripts when discussing this equilibrium. Producers may receive differ-
ent signals but, in equilibrium, they react in the same way to a private signal s as
implied by the function p (s). In the symmetric equilibrium, the price effect, i.e.
Pr (pj ≥ p| s) qH + (1− Pr (pj ≥ p| s)) qL, is given by:∫ s

s
χ (s, sj) dsjqH +

∫ s
s
χ (s, sj) dsjqL,∫ s

s
χ (s, sj) dsj

(9)

where χ (s, s) is the joint probability density for signals. As shown in the Appen-
dix, the quantity effect, i.e. ∂ Pr(pj≥p|s)

∂p
(qH − qL), is given by

− (qH − qL)
χ (s, s)

p′ (s)
∫ s
s
χ (s, sj) dsj

, (10)

where χ(s,s)

p′(s)
∫ s
s χ(s,sj)dsj

represents the probability density in terms of offer prices.

Hence, the lost value due to the quantity effect, i.e. (p− c (s, s))
∂ Pr(pj≥p|s)

∂p
(qH − qL),

is equal to:

(p− c (s, s)) (qH − qL)
χ (s, s)

p′ (s)
∫ s
s
χ (s, sj) dsj

. (11)

We find it useful to introduce the following exogenous function, which is pro-
portional to the quantity effect and inversely proportional to the price effect for a
given p (s).

Definition 2

H∗ (s) :=
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqH +

∫ s
s
χ (s, sj) dsjqL

. (12)

As will be shown below, the function H∗ (s) captures the essential aspects
of the information structure and auction format and the essential properties of
demand and the production capacities.
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Equilibrium offers are chosen optimally for each signal. The implication is that
the price effect equals the lost value of the quantity effect for each signal. Thus,
it follows from (9), (11) and (12) that equilibrium offers can be determined from
the following ordinary differential equation (ODE):

p′ (s)− (p− c (s, s))H∗ (s) = 0. (13)

The solution to this ODE is presented in the following proposition, which also
establishes when the solution is an equilibrium.

Proposition 1 The symmetric Bayesian Nash equilibrium offer in a discrimina-
tory auction is given by:

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv
e−

∫ v
s H

∗(u)dudv (14)

if

d

ds

(∫ s
x
χ (s, sj) dsjqH + qL

∫ x
s
χ (s, sj) dsj

χ (s, x)

)
≥ 0, (15)

for all s, x ∈ (s, s). The equilibrium exists for more general probability distributions
when dc(v,v)

dv
> 0. In the limit when costs are almost surely common knowledge, the

symmetric Bayesian Nash equilibrium can be simplified to:

p (s) = c (s, s) + e−
∫ s
s H

∗(u)du (p− c (s, s)) , (16)

for s ∈ [s, s).

The term
∫ s
s
dc(v,v)
dv

e−
∫ v
s H

∗(u)dudv in (14) corresponds to a mark-up. It follows
from (13) that the mark-up is proportional to how sensitive the competitor’s offer
price is to its signal, i.e. p′ (s). Thus, it is understandable that the mark-up
increases when the competitor’s cost is more sensitive to its signal, i.e. dc(s,s)

ds

is large. Given that H∗ (s) is proportional to the quantity effect and inversely
proportional to the price effect, it also makes sense that a high H∗ (s) results in
more competitive offers with lower mark-ups. We also note from Definition 2 that
H∗ (s) and p (s) are determined by the expected sales of the high price bidder
and the low price bidder, but H∗ (s) and p (s) are independent of the variances of
those sales. This would be different if signals were not independent of production
capacities and demand. In the limit when firms’marginal costs are almost surely
common knowledge, as in (16), the signals only serve the purpose of coordinating
producers’actions as in a correlated equilibrium (Osborne and Rubinstein, 1994).
Another conclusion that we can draw from Proposition 1 is that bidding behav-

iour is only influenced by properties of ci (si, sj) at points where si = sj. Thus, for
a given diagonal of the cost function, it does not matter for our analysis whether
the costs are private, so that ∂ci(si,sj)

∂sj
= 0, or common, so that ∂ci(si,sj)

∂sj
=

∂ci(si,sj)

∂si
.

As noted above, the reason is that when solving for the locally optimal offer price,
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a producer is only interested in cases where the competitor is bidding really close
to pi. In a symmetric equilibrium, this occurs when the competitor receives a
similar signal. The properties of c (·) for signals where si 6= sj could influence the
expected production cost of a firm, but not its bidding behaviour. This would be
different if each producer submitted an offer with multiple offer prices or even a
continuous supply function as in Vives (2011), so that a producer could indirectly
condition its output on the competitor’s information.
Before drawing further conclusions from Proposition 1, we introduce the fol-

lowing definition:

Definition 3 We say that two pairs of probability density functions and marginal
cost functions

{
χA (si, sj) , c

A (si, sj)
}
and

{
χB (si, sj) , c

B (si, sj)
}
are equivalent

in expectation if:
(i) the pairs have the same expected marginal cost conditional on a producer’s
private signal s

E
[
cA (s, sj)

∣∣ s] = E
[
cB (s, sj)

∣∣ s] ,
(ii) the same marginal cost for common signals s

cA (s, s) = cB (s, s) ,

(iii) and the same marginal density∫ s̄

s

χA (s, sj) dsj =

∫ s̄

s

χB (s, sj) dsj.

It can be shown fromDefinition 2, (5) and (6) thatH∗ (u) increases with respect
to the production capacity q̃. The reason is that the quantity effect increases
when the difference between producers’expected outputs, qH−qL, increases. Thus
higher production capacities, and less restrictive purchase constraints in analogous
sales auctions, will make bidding more competitive. It also follows from Definition
2 that H∗ (u) increases when the density at χ (s, s) increases relative to both∫ s
s
χ (s, sj) dsj and

∫ s
s
χ (s, sj) dsj. The reason is simply that the quantity effect

from increasing one’s offer price increases if, conditional on the reception of a
signal s, it becomes more likely that the competitor receives a similar signal s and
chooses a similar offer price. Thus, we can conclude from Proposition 1 that

Corollary 1 Mark-ups in the discriminatory auction are lower when q̃ increases
and are lower for the pair

{
χA (si, sj) , c

A (si, sj)
}
in comparison to the pair{

χB (si, sj) , c
B (si, sj)

}
, if the two pairs are equivalent in expectation and if signals

in χA (si, sj) are more positively correlated signals in the sense that

χA (s, s)∫ s
s
χA (s, sj) dsj

>
χB (s, s)∫ s

s
χB (s, sj) dsj

and
χA (s, s)∫ s

s
χA (s, sj) dsj

>
χB (s, s)∫ s

s
χB (s, sj) dsj

.

In particular, if increased transparency makes signals more positively correlated
without changing any cost realisation, then this will lower mark-ups.
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This result implies that in hydro-dominated markets, mark-ups would also
decrease for increased political and regulatory transparency that make signals
more positively correlated without changing realisations of the opportunity cost.
Proposition 1 can be simplified in the special case when signals are independent.

Proposition 2 If signals are independent, the symmetric Bayesian Nash equilib-
rium offer in a discriminatory auction is given by:

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv

(
(1− F (v)) qH + F (v) qL
(1− F (s)) qH + F (s) qL

)
dv. (17)

If costs are almost surely common knowledge, then (17) can be simplified to:

p (s) = c (s, s) +

(
qL

((1− F (s)) qH + F (s) qL)

)
(p− c (s, s)) for s ∈ [s, s) , (18)

where F (s) is a firm’s (marginal) probability distribution for receiving the signal
s.

In the limit when costs are almost surely independent of the signals, the in-
dependent signals effectively become randomization devices, which the producers
use to randomize their offers. In this case, the functional form of the probability
density for signals is of no importance, because a producer will decide its offer
price based on the probability that the competitor received a lower signal, F (s).
Thus, bidding behaviour would not change if the probability distribution were
transformed by the monotonic function p (s) into a new signal P = p (s), i.e. a
signal that directly gives the price that a firm should choose. The price signal has
the probability distribution G (P ) = F (p−1 (P )). If we rewrite (18), we get that

G (P ) =
qH

qH − qL
− p− c
P − c

qL
qH − qL

. (19)

This probability distribution of offer prices corresponds to the mixed-strategy NE
that is calculated for discriminatory auctions by Fabra et al. (2006). This confirms
Harsanyi’s (1973) purification theorem that a mixed-strategy NE is equivalent to
a pure-strategy Bayesian NE, where costs are almost surely common knowledge
and signals are independent.
Finally, we note that divisible-good models of discriminatory auctions, where

each producer chooses a single offer price, are identical to the Bertrand model.
Thus, the results in this section are also relevant for the Bertrand-Edgeworth
game.

4.1.1 Non-pivotal case

Only the lowest offer price is accepted when q̃i > D for all i ∈ {1, 2} and all
outcomes, so that producers are non-pivotal with certainty, i.e. qL = 0 and
qH = E [D]. This simplifies the expressions to the below result, which corresponds
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to Milgrom and Weber’s (1982) result for first-price indivisible-good auctions. If
producers are non-pivotal with certainty, then the winning offer sets its own price
also in the uniform-price auction. Thus, there is no difference between a discrim-
inatory and a uniform-price auction in this special case.

Proposition 3 The symmetric Bayesian Nash equilibrium of producers that are
non-pivotal with certainty in auctions with uniform or discriminatory pricing is
given by:

p(s) = c (s, s) +

∫ s

s

dc (v, v)

dv
e−

∫ v
s H(u)dudv, (20)

where

H (s) :=
χ (s, s)∫ s

s
χ (s, sj) dsj

. (21)

This is an equilibrium if the signals are weakly affi liated. The equilibrium exists
for more general distributions when dc(v,v)

dv
> 0. In the limit when costs are almost

surely common knowledge, the equilibrium offer in (20) is perfectly competitive,
i.e. p(s) = c (s, s) for s ∈ [s, s).

Private information gives an informational rent, so if costs are asymmetric
information, then also non-pivotal bidders have a positive mark-up. But mark-
ups are zero in the limit when costs are almost surely common knowledge. This
concurs with von der Fehr and Harbord (1993) and Fabra et al. (2006), where
mark-ups are zero in auctions with both uniform and discriminatory pricing, if
producers are non-pivotal with certainty and marginal costs are constant and
common knowledge. Thus, we generalize their result for non-pivotal producers to
weakly affi liated signals. The same generalization applies to the Bertrand game.

4.2 Uniform-pricing

As mentioned earlier, Proposition 3 also applies to non-pivotal producers in a
uniform-price auction. Below we consider producers that are pivotal with cer-
tainty. Later, we will consider the general case where the pivotal status of pro-
ducers is uncertain.

Definition 4 Producers are pivotal with certainty if it is always the case that q̃H <
D ≤ q̃H + q̃L.

The highest offer sets the market price in a uniform-price auction when produc-
ers are pivotal with certainty. The demand and production capacity uncertainties
are independent of the signals and cost uncertainties. Thus, when producers are
pivotal with certainty, the expected profit of firm i when receiving signal si is:

πi (si) = E [pj − ci (si, sj)| pj ≥ pi] Pr (pj ≥ pi| si) qH
+ (pi (si)− E [ci (si, sj)| pj ≤ pi]) (1− Pr (pj ≥ pi| si)) qL.

(22)
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Lemma 2 In a uniform-price auction with producers that are pivotal with cer-
tainty, we have:

∂πi(si)
∂pi

= (1− Pr (pj ≥ pi| si)) qL
+
∂ Pr(pj≥pi|si)

∂pi

(
pi − ci

(
si, p

−1
j (pi)

))
(qH − qL) .

(23)

The first-order condition for the uniform-price auction is similar to the first-
order condition of the discriminatory auction in Lemma 1, but there is one dif-
ference. In contrast to the discriminatory auction, the lowest bidder does not
gain anything from increasing its offer price in a uniform-price auction when pro-
ducers are pivotal with certainty. Thus, the price effect has one term less in the
uniform-price auction, which reduces the price effect. There is a corresponding
change in the H function which is proportional to the quantity effect and inversely
proportional to the price effect.

Definition 5
Ĥ (s) =

(qH − qL)χ (s, s)

qL
∫ s
s
χ (s, sj) dsj

.

Proposition 4 The symmetric Bayesian Nash equilibrium offer in a uniform-
price auction where producers are pivotal with certainty is given by

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv
e−

∫ v
s Ĥ(u)dudv (24)

if signals are weakly unaffi liated. The equilibrium exists for more general prob-
ability distributions when dc(v,v)

dv
> 0. In the limit when costs are almost surely

common knowledge, the symmetric Bayesian Nash equilibrium offer simplifies to:

p (s) = c (s, s) + e−
∫ s
s Ĥ(u)du (p− c (s, s)) , (25)

for s ∈ [s, s).

Equation (24) has properties similar to the corresponding expressions for the
discriminatory auction in Proposition 1. But the ratio of the quantity and price
effects differs. It follows from Definitions 2 and 5 that Ĥ (s) > H∗ (s) or, equiv-
alently, that the price effect is relatively smaller in the uniform price auction as
compared to a discriminatory auction. Thus, producers make offers with lower
mark-ups in uniform-price auctions. On the other hand, in a uniform-price auc-
tion, the losing offer with the highest offer price sets the transaction price for both
accepted offers, so in the end it is not self-evident that a uniform-price auction
would lower the procurement cost of an auctioneer. We will analyse this further
in Section 4.3.
Analogous to the discriminatory case, it can be shown from Definition 5, (5)

and (6) that Ĥ (u) increases with respect to the production capacity q̃. It also
follows from Definition 5 that Ĥ (u) increases when the density at χ (s, s) in-
creases relative to

∫ s
s
χ (s, sj) dsj. Thus, we can conclude from Proposition 4 and

Definition 3 that
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Corollary 2 Mark-ups in a uniform-price auction where producers are pivotal
with certainty are lower when q̃ increases and are lower for the pair{
χA (si, sj) , c

A (si, sj)
}
in comparison to the pair

{
χB (si, sj) , c

B (si, sj)
}
, if the

two pairs are equivalent in expectation and if the signals in χA (si, sj) are more
positively correlated in the sense that

χA (s, s)∫ s
s
χA (s, sj) dsj

>
χB (s, s)∫ s

s
χB (s, sj) dsj

.

In particular, if increased transparency makes signals more positively correlated
without changing any cost realisation, then this will lower mark-ups.

It follows from Definition 5, (5), (6) and Proposition 4 that

Corollary 3 In a uniform-price auction with certain demand and production ca-
pacities, it is optimal for firm i to choose its offer price as follows:
i) pi (s) = ci (si, si) in the limit where q̃ ↗ D, so that qL ↘ 0, i.e. when firms are
just pivotal.
ii) pi (s) = p in the limit where 2q̃ ↘ D, i.e. when both firms always produce at
full capacity., so that qL = qH .

The first property corresponds to Milgrom and Weber’s (1982) results for
second-price sales auctions, because the lowest bidder gets to produce (almost)
the whole demand while the highest bidder sets the uniform market price. By
comparing Proposition 3 and Corollary 3, we note that the comparative statics
analysis of our symmetric equilibrium has a discontinuity at the critical point
where producers’capacities switch from being nonpivotal with certainty to being
pivotal with certainty. Somewhat counter-intuitively, offer prices decrease at this
critical point, even if demand increases. The reason for this is that the offer that
sets the market price also switches at this point, which drastically changes the
bidding behaviour. Non-pivotal firms set their own price and use similar bidding
strategies as in a first-price procurement auction, i.e. firms’mark-ups are strictly
positive for uncertain costs. On the other hand, as implied by the first property of
Corollary 3, producers make offers without mark-ups when firms are just pivotal.
The following proves that the auctioneer’s revenues may also shift downwards in
a comparative statics analysis at the critical point where producers’ capacities
switch from being nonpivotal with certainty to being pivotal with certainty.

Proposition 5 If producers’signals are weakly affi liated, then the expected payoff
of the auctioneer is weakly larger for just pivotal producers than for producers that
are just non-pivotal with certainty in markets with uniform pricing. The expected
revenues are the same for the two cases when the signals are independent.

Proposition 4 can be simplified in the special case when the signals are inde-
pendent.
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Proposition 6 The symmetric Bayesian Nash equilibrium offer in a uniform-
price auction where producers are pivotal with certainty is given by:

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv

(
F (s)

F (v)

) (qH−qL)
qL

dv (26)

if signals are independent. If, in addition, costs are almost surely common knowl-
edge, then (26) can be simplified to

p (s) = c (s, s) + (F (s))
(qH−qL)

qL (p− c (s, s)) for s ∈ [s, s) , (27)

where F (s) is a firm’s marginal distribution for receiving the signal s.

We can use an argument similar to the one that we used for the discriminatory
auction to show that the limit result in (27) corresponds to the mixed-strategy NE
that is derived for uniform-price auctions by von der Fehr and Harbord (1993).
(27) can also be used to calculate the expected uniform clearing price.

Proposition 7 If the signals are independent, the costs are almost surely common
knowledge and producers are pivotal with certainty, then the expected market price
in the uniform-price auction is given by:

p− (p− c) (qH − qL)

qH + qL
,

where c = c (s, s) .

In the special case with certain demand and certain production capacities that
are pivotal, we have qH = q̃ and qL = D − q̃ > 0, so that the expected market
price is given by

p− (p− c) (2q̃ −D)

D
. (28)

Figure 1 plots the relation in (28), which gives a comparative statics analysis
of the expected transaction price with respect to the (expected) demand level.
As shown by Proposition 10 in the next section, the expected transaction price
is the same for discriminatory pricing when signals are independent. In Figure 1,
we also plot the high-price equilibrium in von der Fehr and Harbord (1993). In
this equilibrium, the market price jumps directly from the competitive price with
zero mark-ups up to the reservation price when demand increases at the critical
point where producers switch from being non-pivotal to being pivotal with cer-
tainty in a uniform-price auction. This contrasts with our equilibrium, where the
expected market price increases continuously as demand increases. The expected
market price does not reach the reservation price until demand equals the total
production capacity in the market. With more firms in the market, the expected
price in our model would stay near the marginal cost until demand is near the
total production capacity in the market, where the expected price will take off
towards the reservation price. This would be reminiscent of what is often called
”hockey-stick pricing”that is typical for wholesale electricity markets (Hurlbut et
al., 2004; Holmberg and Newbery, 2010).
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Figure 1: Comparative statics analysis for our symmetric equilibrium and von
der Fehr and Harbord’s (1993) high-price equilibrium in a uniform-price auction,
when costs are almost surely common knowledge and signals are indepedent.

4.2.1 Uncertain pivotal status

In the general case, the pivotal status of producers is uncertain when offers are
submitted. Unlike the discriminatory auction, this additional uncertainty makes
the uniform-price auction more complicated to analyse. The problem is that the
lowest bidder, which has the highest output, would set its own transaction price, as
in a discriminatory auction, for outcomes when the highest bidder is non-pivotal,
while the highest bidder would set the transaction price of the lowest bidder when
the highest bidder is pivotal. Thus, unlike the discriminatory auction, the payoff
of the winning producer depends on the probability that the highest bidder is
non-pivotal. We denote this probability by ΠNP . In our setting, the pivotal status
of producers is independent of signals.

Lemma 3 In a uniform-price auction, where the pivotal status of producers is
uncertain, we have:

∂πi(si)
∂pi

= Pr (pj ≥ pi| si) qNPH ΠNP + (1− Pr (pj ≥ pi| si)) qL
+
∂ Pr(pj≥pi|si)

∂pi

(
pi − ci

(
si, p

−1
j (pi)

))
(qH − qL) ,

(29)

where
qNPH = E [ q̃H | q̃H ≥ D] .

Thus, the quantity effect is similar as when producers are pivotal with certainty.
But the price effect depends on the probability that the highest bidder is non-
pivotal. Increasing an offer price contributes to the price effect when a producer’s
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offer is price-setting, i.e. when the producer is pivotal and has the highest offer
price or when the producer has the lowest offer price and the highest bidder is
non-pivotal. There is a corresponding change in the H function.

Definition 6

H̃ (s) =
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqNPH ΠNP +

∫ s
s
χ (s, sj) dsjqL

.

Proposition 8 The symmetric Bayesian Nash equilibrium offer in a uniform-
price auction where producers’pivotal status is uncertain is given by

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv
e−

∫ v
s H̃(u)dudv (30)

if

d

ds

(∫ s
x
χ (s, sj) dsjq

NP
H ΠNP + qL

∫ x
s
χ (s, sj) dsj

χ (s, x)

)
≥ 0. (31)

The equilibrium exists for more general probability distributions when dc(v,v)
dv

>
0. In the limit when costs are almost surely common knowledge, the symmetric
Bayesian Nash equilibrium offer simplifies to:

p (s) = c (s, s) + e−
∫ s
s H̃(u)du (p− c (s, s)) , (32)

for s ∈ [s, s).

We note that asΠNP increases towards 1, the bidding behaviour in the uniform-
price auction gets closer to offers in the discriminatory auction, which concurs with
our discussion in Section 4.1.1. In the other extreme, when ΠNP decreases towards
0, bidding gets closer to the uniform-price auction with producers that are pivotal
with certainty. For a given qNPH , producers will increase their offer prices when
ΠNP increases. This may seem counterintuitive, but this is to compensate for the
fact that there is a higher risk that the market price is set by the lowest offer price
rather than the highest offer price. We can draw the following conclusion from
Proposition 8 and Definition 6.

Corollary 4 Mark-ups in an auction with uniform-pricing are lower when q̃ in-
creases and are lower for the pair

{
χA (si, sj) , c

A (si, sj)
}
in comparison to the

pair
{
χB (si, sj) , c

B (si, sj)
}
, if the two pairs are equivalent in expectation and if

the signals in χA (si, sj) are more positively correlated signals in the sense that

χA (s, s)∫ s
s
χA (s, sj) dsj

>
χB (s, s)∫ s

s
χB (s, sj) dsj

and
χA (s, s)∫ s

s
χA (s, sj) dsj

>
χB (s, s)∫ s

s
χB (s, sj) dsj

.

In particular, if increased transparency makes signals more positively correlated
without changing any cost realisation, then this will lower mark-ups.
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Proposition 8 can be simplified in the special case when signals are independent.

Proposition 9 The symmetric Bayesian Nash equilibrium offer in a uniform-
price auction where the pivotal status of producers is uncertain is given by:

p (s) = c (s, s) +

∫ s

s

dc (v, v)

dv

(
(1− F (v)) qNPH ΠNP + F (v) qL
(1− F (s)) qNPH ΠNP + F (s) qL

) (qH−qL)
qNP
H

ΠNP−qL
dv

(33)
if the signals are independent. If, in addition, costs are almost surely common
knowledge, then (26) can be simplified to

p (s) = c (s, s) +

(
qL

((1− F (s)) qNPH ΠNP + F (s) qL)

) (qH−qL)
qNP
H

ΠNP−qL
(p− c (s, s)) ,

(34)
where F (s) is a firm’s marginal distribution for receiving the signal s.

As shown by von der Fehr and Harbord (1993), the alternative equilibrium
(the high-price equilibrium), where the highest offer price is at the reservation
price, does not exist when the pivotal status of producers is uncertain. The reason
is that the lowest bidder would find it optimal to choose an offer just below the
reservation price, if its offer price will set the transaction price with a positive
probability. But this means that the high-price bidder, in its turn, would find it
optimal to deviate and slightly undercut the low-price bidder.

4.3 Ranking of auction formats

We already know from Section 4.1.1 that the two auction formats are equivalent
in the non-pivotal case. Below we show that there are cases where the two auction
formats are equivalent also when producers are pivotal with a positive probability,
so that qL > 0.

Lemma 4 If signals are independent and costs are almost surely common knowl-
edge, then the expected profit for a producer is given by

π (s) = qL (p− c (s, s)) , (35)

for both the uniform-price and the discriminatory auction and irrespective of the
probability that the highest bidder is pivotal.

There is a simple intuition for this equivalence result. If signals are independent
and costs are almost surely common knowledge, then our Bayesian NE corresponds
to a mixed-strategy NE. In a mixed-strategy NE a producer gets the same expected
payoff irrespective of the chosen offer price, as long as the price is chosen with a
positive probability in equilibrium. Thus irrespective of the auction format, the
expected payoff can be calculated from the case when a producer chooses the
reservation price and is almost surely undercut by the competitor, which gives the
payoff in (35). The proposition below generalizes this to uncertain costs.
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Proposition 10 If signals are independent then the expected profit for a producer
is the same for the uniform-price and the discriminatory auction and independent
of the probability that the highest bidder is pivotal.

In comparison to independent signals, it follows from Corollaries 1 and 4 that
more positively correlated signals will reduce mark-ups in both auctions for a given
marginal distribution F (s). If correlation of signals depends on the magnitude of
the signals, then there are cases where prices increase in one auction and decrease
in the other, in comparison to the case with independent signals. In such cases,
it is straightforward to rank the auction formats. We can for example deduce the
following from Definition 2, Proposition 1, Definition 6 and Proposition 8.

Corollary 5 Assume that the cost uncertainty is suffi ciently large so that an equi-
librium exists in both auctions. After observing a signal s, a producer will in ex-
pectation receive a higher payoff in a discriminatory auction in comparison to a
uniform-price auction, if the correlation of the two signals decrease with respect
to s at a suffi cient rate, such that i) the expected prices are higher in the discrim-
inatory auction than for independent signals with the same marginal distribution
F (s), i.e.:

H∗ (s) =
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqH +

∫ s
s
χ (s, sj) dsjqL

≤ f (s) (qH − qL)

(1− F (s)) qH + F (s) qL
,

and ii) the expected prices are lower in the uniform-price auction than for inde-
pendent signals, i.e.:

H̃ (s) =
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqNPH ΠNP +

∫ s
s
χ (s, sj) dsjqL

≥ f (s) (qH − qL)

(1− F (s)) qNPH ΠNP + F (s) qL
.

Thus an auctioneer tends to prefer uniform-pricing when the correlation of the
two signals decrease with respect to s. Under these circumstances advantages with
uniform-pricing tends to increase if producers are pivotal with a higher probability,
i.e. ΠNP decreases, for fixed qL and qH . On the other hand, we can also show
that:

Corollary 6 Assume that the cost uncertainty is suffi ciently large so that an equi-
librium exists in both auctions. After observing a signal s, a producer will in ex-
pectation receive a lower payoff in a discriminatory auction in comparison to a
uniform-price auction, if the correlation of the two signals increase with respect to
s at a suffi cient rate, such that i) the expected prices are lower in the discrimina-
tory auction than for independent signals, i.e.:

H∗ (s) =
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqH +

∫ s
s
χ (s, sj) dsjqL

≥ f (s) (qH − qL)

(1− F (s)) qH + F (s) qL
,

and ii) the expected prices are higher in the uniform-price auction than for inde-
pendent signals, i.e.:

H̃ (s) =
χ (s, s) (qH − qL)∫ s

s
χ (s, sj) dsjqNPH ΠNP +

∫ s
s
χ (s, sj) dsjqL

≤ f (s) (qH − qL)

(1− F (s)) qNPH ΠNP + F (s) qL
.
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5 Concluding discussion

We consider a duopoly model of a divisible-good procurement auction with pro-
duction uncertainty, such as a wholesale electricity market. Each producer receives
a private signal with imperfect cost information from a bivariate probability dis-
tribution (known to each producer) and then chooses one offer price for its whole
production capacity. Demand and production capacities could also be uncertain.
We solve for a symmetric Bayesian NE. We show that in expectation uniform

and discriminatory pricing are equivalent when signals are independent. Con-
sumers tend to favour discriminatory pricing when cost signals are more correlated
for higher values of the signals. The opposite is true when signals are less corre-
lated for higher values of the signals. Advantages and disadvantages with uniform
pricing tend to be amplified if producers are pivotal with a higher probability.
Markups tend to fall for both auction formats if producers receive less noisy

cost information. The latter concurs with a similar result in Vives (2011), who
studies another bidding format, and with Milgrom and Weber’s (1982) result for
single object auctions. Taken together, these results support the measures taken
by the European Commission to increase transparency in European wholesale
electricity markets. On the other hand, in a repeated game, there is a risk that
increased transparency will facilitate tacit collusion as argued by von der Fehr
(2013).
We are concerned that cost uncertainty and asymmetric information could

result in significant mark-ups in hydro dominated electricity markets with scarce
water. This could help explain the extraordinarily high price-periods that typically
accompany scarcity of water in such markets. One measure that could mitigate
this is to clearly define contingency plans for intervention by the market operator
and the regulator under extreme system conditions. In hydro-dominated markets,
improved political transparency has similar pro-competitive effects as improved
market transparency.
If producers are pivotal, then disclosure of information is only beneficial up to

a point. A pivotal producer can deviate to the reservation price, which ensures it a
minimum profit. Thus, there is a lower bound on how small equilibrium mark-ups
can become.
We show that equilibrium offers in a discriminatory auction are determined by

the expected sales of the producer with the highest and lowest offer price, respec-
tively. The variance of these sales —due to demand shocks, production outages
and volatile renewable production —will not influence the bidding behavior of pro-
ducers. Bidding in the uniform-price auction is also insensitive to this variance,
as long as it is not suffi ciently large to occasionally change the pivotal status of
at least one producer. Moreover, for given expected sales and independent sig-
nals, the probability that a producer is pivotal in a uniform-price auction does not
influence expected payoffs.
Unlike Vives (2011), our results do not depend on the extent to which the cost

uncertainty is private, interdependent or common. In his setting, producers choose
linear supply functions and can therefore condition their output on every price. To
a larger extent than in our model, his bidding format allows producers to condition
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their output on the competitor’s information. This leads to equilibria that are very
unfavourable for the auctioneer when costs have common uncertainties. Thus, our
results and the results in Vives (2011) indicate that when the cost uncertainty is
common or strongly interdependent, which should often be the case in wholesale
electricity markets, then it should be optimal to limit the number of allowed
steps in producers’ supply functions in order to give producers less freedom to
condition their output on competitors’signals. More information (i.e. less noisy
signals) before a uniform-price auction starts improves competition, but mark-
ups increase if a producer learns information, or rather conditions its supply on
the competitor’s information, during the auction. This also suggests that bidding
formats, for which producers must choose piece-wise linear supply functions, as in
the Nordic countries (Nord Pool) and France (Power Next), can be harmful for
market competitiveness.
Results are analogous for multi-unit sales auctions, such as security auctions.

In particular, given that bidders’marginal valuation of financial instruments should
be fairly constant, we believe that it would be beneficial for an auctioneer of se-
curities or emission permits to use a uniform-price auction with a bidding format
that significantly restricts the number of steps in the bid-schedules. Purchase
constraints in sales auctions make bidding less competitive, at least in a one shot
game.

6 References

Allen, B. and Hellwig, M. (1986), ‘Price-setting firms and the oligopolistic foun-
dations of perfect competition’, The American Economic Review 76, pp. 387-392.
Anderson, E., P. Holmberg and A. Philpott (2013), ‘Mixed Strategies in Dis-

criminatory Divisible-good Auctions’, Rand Journal of Economics 44 (1), pp. 1—
32.
Anwar, A. (2006). Single or Multiple Pricing in Electricity Pools?, Working

Paper, Department of Economics, Edinburgh University.
Armantier, O., and Sbaï, E. (2006). ‘Estimation and comparison of treasury

auction formats when bidders are asymmetric’, Journal of Applied Econometrics
21(6), pp. 745-779.
Armantier, O., and Sbaï, E. (2009). ‘Comparison of alternative payment mech-

anisms for French Treasury auctions’, Annals of Economics and Statistics/Annales
d’Économie et de Statistique 93/94, pp. 135-160.
Ausubel, L.M., P. Cramton, M. Pycia, M. Rostek, and M. Weretka (2014).

‘Demand Reduction and Ineffi ciency in Multi-Unit Auctions’, Review of Economic
Studies 81 (4), pp. 1366-1400.
Back, K. and Zender, J. (1993), ‘Auctions of divisible goods: on the rationale

for the treasury experiment’, Review of Financial Studies 6, pp. 733-764.
Bartolini, L. and Cottarelli, C. (1997), ‘Treasury bill auctions: issues and uses’.

In M. I. Blejer and T. Ter-Minassian, eds., Macroeconomic Dimensions of Public
Finance: Essays in Honour of Vito Tanzi. London: Routledge.

24



Beckmann, M. (1967), ‘Edgeworth-Bertrand duopoly revisited’ In R. Henn,
ed., Methods of Operations Research III, Meisenheim: Verlag Anton Hain.
Blázquez de Paz, M. (2014), ‘Designing Electricity Auctions in the Presence of

Transmission Constraints’. Ph.D. thesis, Department of Economics, University of
Bologna.
Bushnell, J., Knittel, C. R, and Wolak, F. (1999), ‘Estimating the Opportuni-

ties for Market Power in a Deregulated Wisconsin Electricity Market’, The Journal
of Industrial Economics 47.
Che, Y-K. and Gale, I. (1998), ‘Standard Auctions with Financially Con-

strained Bidders’, Review of Economic Studies 65, pp. 1-21.
Deneckere, R. and D. Kovenock (1996), ‘Bertrand-Edgeworth duopoly with

unit cost asymmetry’, Economic Theory 8(1), pp. 1-25.
Edgeworth, F. (1925). Papers Relating to Political Economy. London: Macmil-

lan.
Fabra, N., N-H. M. von der Fehr and D. Harbord (2006). ‘Designing Electricity

Auctions’, RAND Journal of Economics 37 (1), pp. 23-46.
von der Fehr, N-H. M. and D. Harbord (1993). ‘Spot Market Competition in

the UK Electricity Industry’, Economic Journal 103 (418), pp. 531-46.
von der Fehr, N. H. M. (2013). ‘Transparency in electricity markets’, Eco-

nomics of Energy & Environmental Policy 2(2), pp. 87-105.
Gal-Or, E. (1986). Information transmission—Cournot and Bertrand equilibria.

The Review of Economic Studies LIII, pp. 85-92.
Genc, T. (2009). ‘Discriminatory versus uniform-price electricity auctions with

supply function equilibrium’, Journal of Optimization Theory and Applications
140, pp. 9-31.
Genc, T. S., and Reynolds, S. S. (2011). ‘Supply function equilibria with

capacity constraints and pivotal suppliers’, International Journal of Industrial
Organization 29(4), pp. 432-442.
Green, R. J., D. M. Newbery (1992), ‘Competition in the British electricity

spot market’, Journal of Political Economy 100, pp. 929—953.
Harsanyi, J.C. (1973). ‘Games with randomly disturbed payoffs: a new ratio-

nale for mixed-strategy equilibrium points’, Int. J. Game Theory 2, pp. 1—23.
Hästö, P., and Holmberg, P. (2006). ‘Some inequalities related to the analysis

of electricity auctions’, Applied Mathematics Letters 19(8), pp. 814-819.
Holmberg, P. (2008). ‘Unique supply function equilibrium with capacity con-

straints’, Energy Economics 30, pp. 148—172.
Holmberg, P. (2009). ‘Supply function equilibria of pay-as-bid auctions’, Jour-

nal of Regulatory Economics 36, pp. 154-177.
Holmberg, P. and E. Lazarczyk (2015). ‘Comparison of congestion manage-

ment techniques: Nodal, zonal and discriminatory pricing’, Energy Journal 36,
pp. 145-166.
Holmberg, P. and Newbery, D.M. (2010). The supply function equilibrium and

its policy implications for wholesale electricity auctions. Utilities Policy 18(4), pp.
209—226.
Hortaçsu, A., and McAdams, D. (2010). ‘Mechanism choice and strategic

25



bidding in divisible good auctions: An empirical analysis of the Turkish treasury
auction market’, Journal of Political Economy 118(5), pp. 833-865.
Hurlbut, D., K. Rogas, and S. Oren (2004), ‘Hockey Stick Pricing: How the

Public Utility Commission of Texas is Dealing with Potential Price Gouging’, The
Electricity Journal 17(3), pp. 26-33.
Kang, B. S., and Puller, S. L. (2008). ‘The effect of auction format on effi ciency

and revenue in divisible good auctions: A test using Korean treasury auctions’,The
Journal of Industrial Economics 56(2), pp. 290-332.
Kastl, J. (2012). ‘On the properties of equilibria in private value divisible good

auctions with constrained bidding’, Journal of Mathematical Economics 48(6), pp.
339-352.
Klemperer, P. D., M. A. Meyer. (1989). ‘Supply function equilibria in oligopoly

under uncertainty’, Econometrica 57, pp. 1243—1277.
Krishna, V. (2010). Auction theory, Academic Press: London.
Levitan, R. and Shubik, M. (1972), ‘Price duopoly and capacity constraints’,

International Economic Review 13, pp. 111-122.
Maskin, E. (1986), ‘The existence of equilibrium with price-setting firms’, The

American Economic Review 76, pp. 382-386.
Milgrom, P.R. and R.J. Weber (1982). ‘A theory of auctions and competitive

bidding’, Econometrica 50 (5), pp. 1089-1122.
Newbery, D. (1998), ‘Competition, Contracts, and Entry in the Electricity

Spot Market’, The RAND Journal of Economics 29 (4), pp. 726-749.
Osborne, M., Pitchik, C. (1986). ‘Price competition in a capacity-constrained

duopoly’, Journal of Economic Theory 38, pp. 238—260.
Osborne, M. and A. Rubinstein (1994). A course in game theory, MIT Press:Cambridge,

MA.
Parisio, L. and B. Bosco (2003). ‘Market Power and the Power Market: Multi-

Unit Bidding and (In)Effi ciency in Electricity Auctions’, International Tax and
Public Finance 10(4), pp. 377-401.
Pycia, M., and Woodward, K. (2015). "Pay-As-Bid: Selling Divisible Goods

to Uninformed Bidders.", Working Paper, University of California, Los Angeles.
Twomey, P., Green, R., Neuhoff, K. and Newbery, D. (2005). ‘A Review of the

Monitoring of Market Power: The Possible Roles of Transmission System Opera-
tors in Monitoring for Market Power Issues in Congested Transmission Systems’,
Journal of Energy Literature 11(2), pp. 3-54.
Vives, X. (1986), ‘Rationing rules and Bertrand-Edgeworth equilibria in large

markets’, Economics Letters 21, pp. 113-116.
Vives, X. (2011), ‘Strategic supply function competition with private informa-

tion’, Econometrica 79(6), pp. 1919—1966.
Wang, J. J. D., J.F. Zender (2002). ‘Auctioning divisible goods’, Economic

Theory 19, pp. 673—705.
Wilson, R. (1979), ‘Auctions of shares’, Quarterly Journal of Economics 93,

pp. 675—689.
Wolak, F.A. (2007), ‘Quantifying the Supply-Side Benefits from Forward Con-

tracting in Wholesale Electricity Markets’, Journal of Applied Econometrics 22,

26



pp. 1179-1209.

Appendix

Before proving the lemmas and propositions that have been presented in the main
text, we will derive some results that will be used throughout these proofs. By
assumption, pj (sj) is monotonic and invertible. Thus, we get

Pr (pj ≥ pi| si) =

∫ s
p−1
j (pi)

χ(si,sj)dsj∫ s
s χ(si,sj)dsj

∂ Pr(pj≥pi|si)
∂pi

=
−p−1′

j (pi)χ(si,p−1
j (pi))∫ s

s χ(si,sj)dsj
,

(36)

where the last result follows from Leibniz’rule. The results above and Leibniz’
rule are used in the following derivations.

E [ci (si, sj)| pj ≥ pi] =

∫ s
p−1
j (pi)

ci(si,sj)χ(si,sj)dsj∫ s
p−1
j (pi)

χ(si,sj)dsj
=

∫ s
p−1
j (pi)

ci(si,sj)χ(si,sj)dsj

Pr(pj≥pi|si)
∫ s
s χ(si,sj)dsj

∂E[ ci(si,sj)|pj≥pi]
∂pi

=
p−1′
j (pi)χ(si,p−1

j (pi))
∫ s
p−1
j (pi)

(ci(si,sj)−ci(si,p−1
j (pi)))χ(si,sj)dsj(∫ s

p−1
j (pi)

χ(si,sj)dsj

)2

=
−
∂ Pr( pj≥pi|si)

∂pi

∫ s
p−1
j (pi)

(ci(si,sj)−ci(si,p−1
j (pi)))χ(si,sj)dsj

(Pr(pj≥pi|si))2 ∫ s
s χ(si,sj)dsj

.

(37)

From (36) and (37), we have that:

−∂E[ ci(si,sj)|pj≥pi]
∂pi

Pr (pj ≥ pi| si)− E [ci (si, sj)| pj ≥ pi]
∂ Pr(pj≥pi|si)

∂pi

=

(∫ s
p−1
j (pi)

(ci(si,sj)−ci(si,p−1
j (pi)))χ(si,sj)dsj∫ s

p−1
j (pi)

χ(si,sj)dsj
−
∫ s
p−1
j (pi)

ci(si,sj)χ(si,sj)dsj∫ s
p−1
j (pi)

χ(si,sj)dsj

)
∂ Pr(pj≥pi|si)

∂pi

= −
∫ s
p−1
j (pi)

ci(si,p−1
j (pi))χ(si,sj)dsj∫ s

p−1
j (pi)

χ(si,sj)dsj

∂ Pr(pj≥pi|si)
∂pi

= −ci
(
si, p

−1
j (pi)

) ∂ Pr(pj≥pi|si)
∂pi

.

(38)
Using the above equation, we can derive the following result:(

1− ∂E[ ci(si,sj)|pj≥pi]
∂pi

)
Pr (pj ≥ pi| si) + (pi − E [ci (si, sj)| pj ≥ pi])

∂ Pr(pj≥pi|si)
∂pi

= Pr (pj ≥ pi| si) +
(
pi − ci

(
si, p

−1
j (pi)

)) ∂ Pr(pj≥pi|si)
∂pi

.

(39)
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Similarly, from (36), we have that

1− Pr (pj ≥ pi| si) =
∫ p−1

j (pi)
s χ(si,sj)dsj∫ s

s χ(si,sj)dsj

E [ci (si, sj)| pj ≤ pi] =
∫ p−1

j (pi)
s ci(si,sj)χ(si,sj)dsj∫ p−1

j (pi)
s χ(si,sj)dsj

=
∫ p−1

j (pi)
s ci(si,sj)χ(si,sj)dsj

(1−Pr(pj≥pi|si))
∫ s
s χ(si,sj)dsj

∂E[ ci(si,sj)|pj≤pi]
∂pi

=
p−1′
j (pi)χ(si,p−1

j (pi))
∫ p−1

j (pi)
s (ci(si,p−1

j (pi))−ci(si,sj))χ(si,sj)dsj(∫ p−1
j (pi)

s χ(si,sj)dsj

)2

=
−
∂ Pr( pj≥pi|si)

∂pi

∫ p−1
j (pi)

s (ci(si,p−1
j (pi))−ci(si,sj))χ(si,sj)dsj

(1−Pr(pj≥pi|si))2 ∫ s
s χ(si,sj)dsj

.

(40)

It now follows from (40) that:

−∂E[ ci(si,sj)|pj≤pi]
∂pi

(1− Pr (pj ≥ pi| si)) + E [ci (si, sj)| pj ≤ pi]
∂ Pr(pj≥pi|si)

∂pi

=
∂ Pr(pj≥pi|si)

∂pi
ci
(
si, p

−1
j (pi)

)
.

(41)

Discriminatory auction

Proof. (Lemma 1) It follows from (7) that

∂πi(si)
∂pi

=
(

1− ∂E[ ci(si,sj)|pj≥pi]
∂pi

)
Pr (pj ≥ pi| si) qH

+ (pi − E [ci (si, sj)| pj ≥ pi])
∂ Pr(pj≥pi|si)

∂pi
qH

+
(

1− ∂E[ ci(si,sj)|pj≤pi]
∂pi

)
(1− Pr (pj ≥ pi| si)) qL

− (pi − E [ci (si, sj)| pj ≤ pi])
∂ Pr(pj≥pi|si)

∂pi
qL.

(42)

Using (39) and the relation in (41) yields:

∂πi(si)
∂pi

= Pr (pj ≥ pi| si) qH +
(
pi − ci

(
si, p

−1
j (pi)

)) ∂ Pr(pj≥pi|si)
∂pi

qH

+ci
(
si, p

−1
j (pi)

) ∂ Pr(pj≥pi|si)
∂pi

qL

+ (1− Pr (pj ≥ pi| si)) qL − pi ∂ Pr(pj≥pi|si)
∂pi

qL,

which gives (8).
Proof. (Proposition 1) We solve for symmetric strategies, so that pi (s) =

pj (s) = p (s) and p−1
j (pi) = s. Hence, we get the following first-order condition

from (8).
∂πi(si)
∂pi

= Pr (pj ≥ p| s) qH + (1− Pr (p ≥ p| s)) qL
+ (p− ci (s, s)) ∂ Pr(pj≥p|s)

∂p
(qH − qL) = 0.

Using (36) and that p−1′
j (pi) = 1

p′(s) , the condition can be written as follows:∫ s

s

χ (s, sj) dsjqH +

∫ s

s

χ (s, sj) dsjqL −
(p− c (s, s))

p′ (s)
χ (s, s) (qH − qL) = 0.
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We can use the definition in (12) to write the first-order condition on the following
form:

p′ (s)− (p− c (s, s))H∗ (s) = 0. (43)

Multiplication by the integrating factor e
∫ s
s H

∗(u)du yields:

p′ (s) e
∫ s
s H

∗(u)du − pH∗ (s) e
∫ s
s H

∗(u)du

= −c (s, s)H∗ (s) e
∫ s
s H

∗(u)du ,

so that
d

ds

(
p (s) e

∫ s
s H

∗(u)du
)

= −c (s, s)H∗ (s) e
∫ s
s H

∗(u)du .

Next we integrate both sides from s to s.

p− p (s) e
∫ s
s H

∗(u)du = −
∫ s

s

c (v, v)H∗ (v) e
∫ s
v H

∗(u)du dv

p (s) = pe−
∫ s
s H

∗(u)du +

∫ s

s

c (v, v)H∗ (v) e−
∫ v
s H

∗(u)dudv.

We use integration by parts to rewrite the above expression as follows:

p (s) = pe−
∫ s
s H

∗(u)du +
[
−c (v, v) e−

∫ v
s H

∗(u)du
]s
s

+

∫ s

s

dc (v, v)

dv
e−

∫ v
s H

∗(u)dudv,

which gives (14), because c (s, s) = p. It is clear from (14) that p > c (s, s) for
s ∈ [s, s̄). Hence, it follows from (43) that p′ (s) > 0 for s ∈ [s, s̄).
It remains to show that p (s) is an equilibrium. It follows from (8) and (36)

that

∂πi (s)

∂p
=

∫ s
p−1
j (p)

χ (s, sj) dsj∫ s
s
χ (s, sj) dsj

qH +

∫ p−1
j (p)

s
χ (s, sj) dsj∫ s

s
χ (s, sj) dsj

qL

−
p−1′
j (p)χ

(
s, p−1

j (p)
)∫ s

s
χ (s, sj) dsj

(
p− ci

(
s, p−1

j (p)
))

(qH − qL) .

∂πi (s)

∂p
=

χ
(
s, p−1

j (p)
)∫ s

s
χ (s, sj) dsj

∫ sp−1
j (p)

χ (s, sj) dsj

χ
(
s, p−1

j (p)
) qH +

∫ p−1
j (pi)

s
χ (s, sj) dsj

χ
(
s, p−1

j (p)
) qL

− p−1′
j (p)

(
p− ci

(
s, p−1

j (p)
))

(qH − qL)
)
.

We know that ∂πi(s)
∂p

= 0 for s = p−1
j (p). Thus whenever d

ds

(∫ s
x χ(s,sj)dsjqH+qL

∫ x
s χ(s,sj)dsj

χ(s,x)

)
≥

0, it follows from the above and (3) that ∂πi(s)
∂p

> 0 when s > p−1
j (p)⇐⇒ p < pj (s)

and that ∂πi(s)
∂p

< 0 when s < p−1
j (p) ⇐⇒ p > pj (s). Thus, p (s) globally maxi-

mizes the profit of firm i for any signal s when the inequality in (15) is satisfied.
In the special case when costs are almost surely common knowledge, we have

dc(v,v)
dv
↘ 0 for v < s, so it follows from (14) that

p (s)→ c (s, s) + e−
∫ s
s H

∗(u)du

∫ s

s

dc (v, v)

dv
dv,

29



which gives (16).
(Proposition 2) First we note that χ (s, sj) = f (s) f (sj) for independent

signals, so the inequality

d

ds

(∫ s
x
χ (s, sj) dsjqH + qL

∫ x
s
χ (s, sj) dsj

χ (s, x)

)

=
d

ds

(∫ s
x
f (s) f (sj) dsjqH + qL

∫ x
s
f (s) f (sj) dsj

f (s) f (x)

)
=

=
d

ds

(∫ s
x
f (sj) dsjqH + qL

∫ x
s
f (sj) dsj

f (x)

)
= 0 ≥ 0

is satisfied. Thus, the global second-order condition in (15) is satisfied. Moreover,
for independent signals, we have from Definition 2 that

H∗ (s) =
f (s) (qH − qL)∫ s

s
f (sj) dsjqH +

∫ s
s
f (sj) dsjqL

= − d

ds
ln

(∫ s

s

f (sj) dsjqH +

∫ s

s

f (sj) dsjqL

)
.

Thus, (14) can be written as in (17).
In case costs are almost surely common knowledge, so that dc(v,v)

dv
↘ 0 for

v < s, (17) can be simplified to (18) as follows:

p (s) = c (s, s) +

(
qL

((1− F (s)) qH + F (s) qL)

)∫ s

s

dc (v, v)

dv
dv

= c (s, s) +

(
qL

((1− F (s)) qH + F (s) qL)

)
(p− c (s, s)) .

Non-pivotal case

The following lemma is useful when deriving results for the non-pivotal case.

Lemma 5 e−
∫ v
s H(u)du > 0 for s ≤ s < v < s and e−

∫ s
s H(u)du = 0 for s ≤ s < s.

Proof. It follows from (21) that

H (u) =
χ (u, u)∫ s

u
χ (u, sj) dsj

= − d

du
ln

(∫ s

u

χ (u, sj) dsj

)
+

∫ s
u
χ1 (u, sj) dsj∫ s

u
χ (u, sj) dsj

. (44)
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The assumptions that we make for the joint probability density imply that
∫ s
u χ1(u,sj)dsj∫ s
u χ(u,sj)dsj

is bounded. Thus, e−
∫ v
s H(u)du is strictly positive, unless

e[ln(
∫ s
u χ(u,sj)dsj)]

v

s = eln(
∫ s
v χ(v,sj)dsj)−ln(

∫ s
s χ(s,sj)dsj)

=

∫ s
v
χ (v, sj) dsj∫ s

s
χ (s, sj) dsj

is equal to zero. This is the case if and only if
∫ s
v
χ (v, sj) dsj = 0. It follows from

the assumptions that we make on the joint probability distribution that this is the
case if and only if v = s.
Proof. (Proposition 3) We have qL = 0 in the non-pivotal case, so it

is evident that H∗ (s) simplifies to (21). For weakly affi liated signals, we have
d
ds

(
χ(s,sj)

χ(s,x)

)
≥ 0 if sj ≥ x, which ensures that the global second-order condition in

(15) is satisfied when qL = 0. The result now follows from Proposition 1.
By definition, we have that dc(v,v)

dv
= 0 for s < s when costs are almost surely

common knowledge, so it follows from (20) that

p (s) = c (s, s) + e−
∫ s
s H(u)du

∫ s

s

dc (v, v)

dv
dv

= c (s, s) + e−
∫ s
s H(u)du (p− c (s, s)) .

It now follows from Lemma 5 above that equilibrium offers are perfectly compet-
itive for s < s when costs are almost surely common knowledge.

Uniform-price auction

The following derivations will be useful when analysing uniform-price auctions. It
follows from (36) and Leibniz’rule that:

E [pj − ci (si, sj)| pj ≥ pi] =

∫ s
p−1
j (pi)

(pj(sj)−ci(si,sj))χ(si,sj)dsj∫ s
p−1
j (pi)

χ(si,sj)dsj

=

∫ s
p−1
j (pi)

(pj(sj)−ci(si,sj))χ(si,sj)dsj

Pr(pj≥pi|si)
∫ s
s χ(si,sj)dsj

∂E[pj−ci(si,sj)|pj≥pi]
∂pi

=
−
∂ Pr( pj≥pi|si)

∂pi

∫ s
p−1
j (pi)

(pj(si)−ci(si,sj)−(pi−ci(si,p−1
j (pi))))χ(si,sj)dsj

(Pr(pj≥pi|si))2 ∫ s
s χ(si,sj)dsj

.

(45)
Similar to (38), it can be shown that:

∂E[pj−ci(si,sj)|pj≥pi]
∂pi

Pr (pj ≥ pi| si) + E [pj − ci (si, sj)| pj ≥ pi]
∂ Pr(pj≥pi|si)

∂pi

=
∂ Pr(pj≥pi|si)

∂pi

(
pi − ci

(
si, p

−1
j (pi)

))
.

(46)
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Proof. (Lemma 2) We have from (22) that

∂πi(si)
∂pi

=
∂E[pj−ci(si,sj)|pj≥pi]

∂pi
Pr (pj ≥ pi| si) qH

+E [pj − ci (si, sj)| pj ≥ pi]
∂ Pr(pj≥pi|si)

∂pi
qH

+
(

1− ∂E[ ci(si,sj)|pj≤pi]
∂pi

)
(1− Pr (pj ≥ pi| si)) qL

− (pi − E [ci (si, sj)| pj ≤ pi])
∂ Pr(pj≥pi|si)

∂pi
qL.

(47)

Next we use (41) and (46) to simplify this expression to (23).

Proof. (Proposition 4) Note that (23) is very similar to (8) and the state-
ments can be proven in a very similar way to the proof of Proposition 1. In
particular, it can be shown that the first-order condition is given by:∫ s

s

χ (s, sj) dsjqL −
(p− c (s, s))

p′ (s)
χ (s, s) (qH − qL) = 0

p′ (s)− pĤ (s) = −c (s, s) Ĥ (s) .

The property of unaffi liated signals in (2) implies that d
ds

(∫ x
s χ(s,sj)dsj

χ(s,x)

)
≥ 0 for

x > sj, which is suffi cient to ensure global optimality.
Proof. (Proposition 5) In the non-pivotal case, the lowest offer price sets the

market price and the winning producer (with the lowest offer price) gets to produce
the entire demand, which corresponds to a first-price procurement auction. In the
just pivotal case, the highest offer price sets the market price and the winning
producer gets to produce the entire demand, which corresponds to a second-price
auction. Thus, the statement follows from Milgrom and Weber (1982).
Proof. (Proposition 6)
For independent signals we have χ (s, sj) = f (s) f (sj), so it follows from

Definition 5 that

Ĥ (u) =
(qH − qL) f (u)

qL
∫ u
s
f (sj) dsj

=
d

du

(qH − qL) ln
(∫ u

s
f (sj) dsj

)
qL

.

Thus (24) can be written as in (26). Independent signals are weakly affi liated.
This ensures that the suffi ciency condition in Proposition 4 is satisfied.
In the special case when costs are almost surely common knowledge, we have

by definition that dc(v,v)
dv

= 0 for s < s, so it follows from (26) that

p (s) = c (s, s) + (F (s))
(qH−qL)

qL

∫ s

s

dc (v, v)

dv
dv,

where F (s) is the marginal probability distribution. This gives (27), because by
assumption c (s, s) = p.
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Proof. (Proposition 7) We let G (P ) be the probability that a producer’s
offer price is below P . This is the same as the probability that s is below p−1 (P ).
Hence, it follows from (27) that

G (P ) =

(
P − c
p− c

) qL
qH−qL

.

From the theory of order statistics we know that

G2 (P ) =

(
P − c
p− c

) 2qL
qH−qL

is the probability distribution of the highest offer price, which sets the price.
Hence, the probability density of the market price is given by 2G (p)G′ (p). Thus,
the expected market price is given by:∫ p

c

2G (p)G′ (p) pdp =
[
G2 (p) p

]p
c
−
∫ p

c

G2 (p) dp

= p−

 (p− c)
2qL

qH−qL
+1(

2qL
qH−qL + 1

)
(p− c)

2qL
qH−qL


p

c

= p− (p− c) (qH − qL)

qH + qL
.

Proof. (Lemma 3) The demand and production capacity uncertainties are
independent of the signals and cost uncertainties. Thus, when producers are piv-
otal with certainty, the expected profit of firm i when receiving signal si is:

πi (si) = E [pj − ci (si, sj)| pj ≥ pi] Pr (pj ≥ pi| si) qPH
(
1− ΠNP

)
+E [pi (si)− ci (si, sj)| pj ≥ pi] Pr (pj ≥ pi| si) qNPH ΠNP

+ (pi (si)− E [ci (si, sj)| pj ≤ pi]) (1− Pr (pj ≥ pi| si)) qL,
(48)

where
qPH = E [ q̃H | q̃H < D] .

It follows from differentiation of (48) and the relations in (39), (41) and (46) that:

∂πi(si)
∂pi

=
∂ Pr(pj≥pi|si)

∂pi

(
pi − ci

(
si, p

−1
j (pi)

))
qPH
(
1− ΠNP

)
+
(

Pr (pj ≥ pi| si) +
(
pi − ci

(
si, p

−1
j (pi)

)) ∂ Pr(pj≥pi|si)
∂pi

)
qNPH ΠNP

+
∂ Pr(pj≥pi|si)

∂pi

(
ci
(
si, p

−1
j (pi)

)
− pi

)
qL

+ (1− Pr (pj ≥ pi| si)) qL,

(49)

so

∂πi(si)
∂pi

=
∂ Pr(pj≥pi|si)

∂pi

(
pi − ci

(
si, p

−1
j (pi)

)) (
qPH
(
1− ΠNP

)
+ qNPH ΠNP − qL

)
+ Pr (pj ≥ pi| si) qNPH ΠNP + (1− Pr (pj ≥ pi| si)) qL,

which can be simplified to (29), because qH = qPH
(
1− ΠNP

)
+ qNPH ΠNP .
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Proof. (Proposition 8) The proof is similar to the proof of Proposition 1.

Proof. (Proposition 9) First we note that χ (s, sj) = f (s) f (sj) for inde-

pendent signals, so the inequality

d

ds

(∫ s
x
f (s) f (sj) dsjq

NP
H ΠNP + qL

∫ x
s
f (s) f (sj) dsj

f (s) f (x)

)

=
d

ds

(∫ s
x
f (sj) dsjq

NP
H ΠNP + qL

∫ x
s
f (sj) dsj

f (x)

)
= 0 ≥ 0

is satisfied. Thus, the global second-order condition in (31) is satisfied. Moreover,
for independent signals, we have from Definition 6 that

H̃ (s) =
f (s) (qH − qL)∫ s

s
f (sj) dsjqNPH ΠNP +

∫ s
s
f (sj) dsjqL

(50)

= − d

ds
ln
(
(1− F (s)) qNPH ΠNP + F (s) qL

) (qH − qL)

qNPH ΠNP − qL
.

Thus, (30) can be written as in (33).
In case costs are almost surely common knowledge, so that dc(v,v)

dv
↘ 0 for

v < s, (33) can be simplified to (34) as follows:

p (s) = c (s, s) +

(
qL

(1− F (s)) qNPH ΠNP + F (s) qL

) (qH−qL)
qNP
H

ΠNP−qL
∫ s

s

dc (v, v)

dv
dv

= c (s, s) +

(
qL

((1− F (s)) qNPH ΠNP + F (s) qL)

) (qH−qL)
qNP
H

ΠNP−qL
(p− c (s, s)) ,

where F (s) is the marginal probability distribution.

Ranking of auction formats

Proof. (Lemma 4)
For the discriminatory auction, it follows directly from (7) and (18) that

π (s) = (p (s)− c (s, s)) (1− F (s)) qH + (p (s)− c (s, s))F (s) qL

= qL (p− c (s, s)) ,

when costs are almost surely common knowledge and signals are independent. Go-
ing through the same calculation for the uniform-price auction is rather tedious,
because the winning producer is sometimes paid the offer price of the losing pro-
ducer, so the expected transaction price is less straightforward. Thus we use a
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different approach for the uniform-price auction. It follows from (49) that

∂πi
∂pi

=
∂ Pr(pj≥pi)

∂pi
(pi − ci (s, s)) qPH

(
1− ΠNP

)
+
(

Pr (pj ≥ pi) + (pi − ci (s, s)) ∂ Pr(pj≥pi)
∂pi

)
qNPH ΠNP

+
∂ Pr(pj≥pi)

∂pi
(ci (s, s)− pi) qL

+ (1− Pr (pj ≥ pi)) qL = 0

(51)

whenever signals are independent, si < s and costs are almost surely common
knowledge. Hence, in equilibrium the expected payoff of a producer will not
change if it changes the offer price in the range [c, p] for a given signal. This is ex-
pected as this special case corresponds to a mixed-strategy NE in accordance with
Harsanyi’s purification theorem. Thus to calculate the expected equilibrium pay-
off for producer i we can assume that it makes an offer at p. The competitor plays
the equilibrium strategy, so it will almost surely undercut p, i.e. Pr (pj ≥ pi) = 0.
The expected profit of producer i can now be calculated from (48):

πi (s) = (p− c (s, s)) qL.

Proof. (Proposition 10) It follows from (48) and (30) that the expected
revenue of a producer in a uniform price auction after observing the signal s is:

R (s) =
∫ s
s p(sj)χ(s,sj)dsjq

P
H(1−ΠNP )+

∫ s
s p(s)χ(s,sj)dsjq

NP
H ΠNP+

∫ s
s p(s)χ(s,sj)dsjqL∫ s

s χ(s,sj)dsj

=

∫ s
s

(
c(sj ,sj)+

∫ s
sj

dc(v,v)
dv

e
−
∫ v
sj

H̃(u)du
dv

)
χ(s,sj)dsjq

P
H(1−ΠNP )∫ s

s χ(s,sj)dsj

+

∫ s
s

(
c(s,s)+

∫ s
s
dc(v,v)
dv

e−
∫ v
s H̃(u)dudv

)
χ(s,sj)dsjq

NP
H ΠNP∫ s

s χ(s,sj)dsj

+

∫ s
s

(
c(s,s)+

∫ s
s
dc(v,v)
dv

e−
∫ v
s H̃(u)dudv

)
χ(s,sj)dsjqL∫ s

s χ(s,sj)dsj
.

(52)

We can also use the expression above to calculate the expected revenue in the
discriminatory auction by setting ΠNP = 1. R (s) can be rewritten as follows:

R (s) =

∫ s
s
c (s, s)χ (s, sj) dsjqH∫ s

s
χ (s, sj) dsj

+

∫ s
s
c (s, s)χ (s, sj) dsjqL∫ s

s
χ (s, sj) dsj

+
Θ (s)∫ s

s
χ (s, sj) dsj

. (53)

Θ (s) is defined below. It captures how differences in the auction format and the
probability that producers are pivotal influence the expected revenue.

Θ (s) =
∫ s
s

∫ s
sj

dc(v,v)
dv

e
−
∫ v
sj
H̃(u)du

dvχ (s, sj) dsjq
P
H

(
1− ΠNP

)
+
∫ s
s

∫ s
s
dc(v,v)
dv

e−
∫ v
s H̃(u)dudv χ (s, sj) dsjq

NP
H ΠNP

+
∫ s
s

∫ s
s
dc(v,v)
dv

e−
∫ v
s H̃(u)dudv χ (s, sj) dsjqL

+
∫ s
s

(c (sj, sj)− c (s, s)) χ (s, sj) dsjq
P
H

(
1− ΠNP

)
.

35



Next, we change the order of integration for the double integral and adjust limits,
so that the integrals describe the same domain of integration.

Θ (s) =

∫ s

s

dc (v, v)

dv

∫ v

s

e
−
∫ v
sj
H̃(u)du

χ (s, sj) dsjdvq
P
H

(
1− ΠNP

)
+

∫ s

s

dc (v, v)

dv
e−

∫ v
s H̃(u)du

∫ s

s

χ (s, sj) dsjdv q
NP
H ΠNP

+

∫ s

s

dc (v, v)

dv
e−

∫ v
s H̃(u)du

∫ s

s

χ (s, sj) dsjdvqL

+

∫ s

s

(c (sj, sj)− c (s, s)) χ (s, sj) dsjq
P
H

(
1− ΠNP

)
.

Assume now that dc(v,v)
dv

is zero for v below w ≥ s. In this case, we have:

Θ (s) =

∫ s

w

dc (v, v)

dv

∫ v

s

e
−
∫ v
sj
H̃(u)du

χ (s, sj) dsjdvq
P
H

(
1− ΠNP

)
+

∫ s

w

dc (v, v)

dv
e−

∫ v
s H̃(u)du

∫ s

s

χ (s, sj) dsjdv q
NP
H ΠNP

+

∫ s

w

dc (v, v)

dv
e−

∫ v
s H̃(u)du

∫ s

s

χ (s, sj) dsjdvqL

+

∫ s

w

(c (sj, sj)− c (w,w)) χ (s, sj) dsjq
P
H

(
1− ΠNP

)
,

if w ≥ s. We have dΘ(s)
dw

= 0 if w < s, otherwise

dΘ (s)

dw
= −dc (w,w)

dw

∫ w

s

e
−
∫ w
sj
H̃(u)du

χ (s, sj) dsjq
P
H

(
1− ΠNP

)
− dc (w,w)

dw
e−

∫ w
s H̃(u)du

(∫ s

s

χ (s, sj) dsjqL +

∫ s

s

χ (s, sj) dsjq
NP
H ΠNP

)
− dc (w,w)

dw

∫ s

w

χ (s, sj) dsjq
P
H

(
1− ΠNP

)
. (54)

Next, we use that signals are independent, so χ (s, sj) = f (s) f (sj) and it follows
from (50) that

H̃ (s) = − d

ds
ln
(
(1− F (s)) qNPH ΠNP + F (s) qL

) (qH − qL)

qNPH ΠNP − qL∫ w

s

H̃ (u) du =

[
(qH − qL) ln

(
(1− F (s)) qNPH ΠNP + F (s) qL

)
qL − qNPH ΠNP

]w
s

=
(qH − qL) ln

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

)
qL − qNPH ΠNP

e−
∫ w
s H̃(u)du =

(
(1− F (w)) qNPH ΠNP + F (w) qL
(1− F (s)) qNPH ΠNP + F (s) qL

) −(qH−qL)
qL−qNPH ΠNP

. (55)
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We substitute (55) and that χ (s, sj) = f (s) f (sj) into (54)

dΘ(s)
dw

= −dc(w,w)
dw

∫ w
s

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (sj))qNPH ΠNP+F (sj)qL

) −(qH−qL)
qL−qNPH ΠNP f (s) f (sj) dsjq

P
H

(
1− ΠNP

)
−dc(w,w)

dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP

∫ s
s
f (s) f (sj) dsjq

NP
H ΠNP

−dc(w,w)
dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP

∫ s
s
f (s) f (sj) dsjqL

−dc(w,w)
dw

f (s)
∫ s
w
f (sj) dsjq

P
H

(
1− ΠNP

)
(56)

Next we use the substitution F = F (sj), so that dF = f (sj) dsj.

dΘ(s)
dw

= −dc(w,w)
dw

∫ F (w)

F (s)

(
(1−F (w))qNPH ΠNP+F (w)qL

(1−F )qNPH ΠNP+FqL

) −(qH−qL)
qL−qNPH ΠNP f (s) dFqPH

(
1− ΠNP

)
−dc(w,w)

dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP f (s) (1− F (s)) qNPH ΠNP

−dc(w,w)
dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP f (s)F (s) qL

−dc(w,w)
dw

f (s) (1− F (w)) qPH
(
1− ΠNP

)
.

(57)
The first integral can be solved as follows:

∫ F (w)

F (s)

(
(1− F (w)) qNPH ΠNP + F (w) qL

(1− F ) qNPH ΠNP + FqL

) −(qH−qL)
qL−qNPH ΠNP

dF

=
(
(1− F (w)) qNPH ΠNP + F (w) qL

) −(qH−qL)
qL−qNPH ΠNP

∫ F (w)

F (s)

(
(1− F ) qNPH ΠNP + FqL

) (qH−qL)
qL−qNPH ΠNP dF

=
(
(1− F (w)) qNPH ΠNP + F (w) qL

) −(qH−qL)
qL−qNPH ΠNP

((1− F ) qNPH ΠNP + FqL
) (qH−qL)
qL−qNPH ΠNP

+1

(qH − qNPH ΠNP )


F (w)

F (s)

=
(
(1− F (w)) qNPH ΠNP + F (w) qL

) −(qH−qL)
qL−qNPH ΠNP

((1− F ) qNPH ΠNP + FqL
) (qH−qL)
qL−qNPH ΠNP

+1

qPH (1− ΠNP )


F (w)

F (s)

,

because qH = qNPH ΠNP + qPH
(
1− ΠNP

)
. Using this result, we can rewrite (57) as
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follows:

dΘ(s)
dw

= −dc(w,w)
dw

(
(1− F (w)) qNPH ΠNP + F (w) qL

) −(qH−qL)
qL−qNPH ΠNP f (s)[(

(1− F ) qNPH ΠNP + FqL
) (qH−qL)
qL−qNPH ΠNP

+1

]F (w)

F (s)

−dc(w,w)
dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP f (s) (1− F (s)) qNPH ΠNP

−dc(w,w)
dw

(
(1−F (w))qNPH ΠNP+F (w)qL
(1−F (s))qNPH ΠNP+F (s)qL

) −(qH−qL)
qL−qNPH ΠNP f (s)F (s) qL

= −dc(w,w)
dw

(
(1− F (w)) qNPH ΠNP + F (w) qL

)
f (s)

−dc(w,w)
dw

f (s) (1− F (w)) qPH
(
1− ΠNP

)
= −dc(w,w)

dw
((1− F (w)) qH + F (w) qL) f (s)

(58)

Hence, it follows that dΘ(s)
dw

is independent of ΠNP and thus also independent of
whether the auction has a uniform or discriminatory format. The same type of
independency applies to dR(s)

dw
. We have from Lemma 4 that the expected revenue

R (s) is the same independent of ΠNP and independent of the auction format, if
w ↗ s and signals are independent. From the reasoning above, it follows that the
result in Lemma 4 can be generalized to any w ∈ (s, s).
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