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Abstract

We demonstrate how suppliers can take strategic speculative positions

in derivatives markets to soften competition in the spot market. In our

game, suppliers �rst choose a portfolio of call options and then compete

with supply functions. In equilibrium �rms sell forward contracts and buy

call options to commit to downward sloping supply functions. Although

this strategy is risky, it reduces the elasticity of the residual demand of

competitors, who increase their mark-ups in response. We show that this

type of strategic speculation increases the level and volatility of commodity

prices and decreases welfare.
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1 Introduction

The trade in commodity derivatives is widespread and trading volumes often sur-
pass that of the underlying commodities.1 Ideally derivatives markets improve
market e�ciency as they allow �rms to manage risk and facilitate price discovery
by aggregating information across market participants.2 We show that derivatives
trade increases spot market volatility and harms competition, when dominant
producers trade futures and options contracts.

By trading �nancial derivatives, strategic producers a�ect their own and their
competitors' strategies, and therefore market competitiveness. We show that each
producer uses derivatives to commit to a downward sloping supply function, i.e.
to produce more when prices are low and less when they are high. As illustrated
in Figure 1 this commitment makes the residual demand curve for each of its
competitors steeper (less price-sensitive) and induces them to increase mark-ups
and reduce total output. In the aggregate, �rms commit to a downward sloping
supply function, which increases the volatility of the spot price as even a small
demand shock will cause large price �uctuations.

Without derivative trade, producers would o�er upward-sloping supply func-
tions in equilibrium.3 However, producers can in�uence the slope of their sup-
ply function by cleverly using derivatives as commitment devices. It is well-
established, that selling a commodity with forward contracts changes a strategic
producer's incentives; it becomes more interested in output and less in mark-ups
in the spot market.4 The reason is that an increase in the spot price would also
increase its contracted liability. Thus in order to commit to a downward slop-
ing supply function, a �rm would want to sell (or hedge) a large fraction of its
output with contracts when the spot price is low, which commits the �rm to a
high output, and to sell (or hedge) a small fraction with contracts when the spot
price is high, which commits the �rm to a low output. More generally one can
say that a producer wants to sell a portfolio, for which the liability's sensitivity
to the spot price is positive (the delta is positive), but decreasing (the gamma is
negative). When the spot price is low the producer would like to produce a lot, as
a reduction of the production level increases the price, which drastically increases
its contracted liability. On the other hand, the producer has less output when

1Commodity derivatives markets have seen a 60-fold increase in the value of trade between
1998 and 2008. In 2008 the outstanding value of commodity derivatives equaled $13 trillion.
This is twice the worldwide output of commodities, and about 21% of world GDP.

2The e�ect of derivatives trade is a point of debate in the �nance literature. Some au-
thors claim that it reduces the variance and level of spot prices and improves price information
(Turnovsky, 1983; Cox , 1976; Korniotis, 2009), while other claim the opposite (Hart and Kreps,
1986; Stein, 1987; Figlewski, 1981).

3See Klemperer and Meyer (1989). Vives (2011) shows that there can be exceptions if pro-
duction costs are private information. Producers might then hold back supply at high prices in
order to avoid a winner's curse, and this may result in downward sloping supply functions.

4The strategic e�ect of forward contracts has been shown empirically by Wolak (2000) and
Bushnell et al. (2008) and derived theoretically by Allaz and Vila (1993), von der Fehr and
Harbord (1992), Newbery (1998) and Green (1999). de Frutos and Fabra (2012) show that there
are sometimes exceptions from this rule in markets where o�ers are required to be stepped.
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Figure 1: The residual demand function and the production level of a �rm's com-
petitor, if the �rm bids (A) an upward sloping or (B) a downward sloping supply
function.

the spot price is high, as a reduction of the production level then increases its
liability to a lower extent. A producer can achieve a portfolio with this property
by trading option contracts.

A call option hedges the buyer against high spot prices; essentially it gives
him the right to procure one unit of the good from the seller at a predetermined
price, the option's strike price. The contract is only exercised when the spot
price is above the strike price. By selling a carefully designed portfolio of call-
option contracts a producer can fully hedge its risk, that is, ensure that changes
in operational pro�t are perfectly o�set by changes in the liability of its contracting
portfolio. The advantage of selling a portfolio of call options is that in contrast
to a forward contract, which only hedge price risk, they can also be used to hedge
volume risk (Bessembinder and Lemon, 2002; Willems and Morbee, 2010). But we
show that a producer instead has incentives to commit to a supply function with
a negative slope by selling a forward contract and by buying a portfolio of call
options with a range of strike prices.5 The forward contract is a promise for future
delivery, which creates a liability for the producer. As the spot price increases, the
producer will also exercise an increasing amount of call options, and thus partially
o�set its forward position. So the producer will successively reduce its hedged
output (net-sales with contracts) or equivalently the sensitivity of its liability, as
the spot price increases. This is a risky strategy, but it will increase the �rm's
expected pro�t.

Until recently a handful of electricity producers in the Nordic countries reg-

5It follows from the put-call parity that this can also be achieved with a portfolio of forward
contracts and put options.

3



ularly made o�ers that were (partly) downward sloping.6 Market observers have
attributed those irregular bids to the option contracts of those producers, but it
has been a puzzle why producers took those risky contract position in the �rst
place. In this paper we identify a mechanism that could explain this. Perhaps
producers use contracts to commit to a downward sloping supply in order to soften
competition? Related results are found in an empirical study of the German elec-
tricity market by Willems et al. (2009). They �nd no evidence of producers
selling call option contracts or equivalent contracts to hedge their output.7 This
is in line with our results as we predict that �rms have no incentive to sell call
option contracts, but to buy them instead.

In their seminal paper, Allaz and Vila (1993) analyze a strategic contracting
game, where risk-neutral �rms �rst sell forward contracts and then compete on
quantities in a spot market with certain demand. However, this setting is too
restrictive to capture producers' incentives to commit to downward sloping supply
functions. A concern is therefore that Allaz and Vila's work has lead to the overly
optimistic view that allowing for contracting will automatically improve market
competitiveness. Thus we generalize Allaz and Vila's two-stage game by allowing
for price contingent contracts and price contingent supply o�ers. In the �rst stage,
oligopoly producers choose a portfolio of call option contracts with a range of strike
prices. In the second stage, they compete with supply functions in a spot market
with uncertain demand as in Klemperer and Meyer (1989) and Green and Newbery
(1992). Like us, Chao and Wilson (2005) consider the in�uence of option contracts
on supply function competition, but contracting is exogenous in their model.

In contrast to Allaz and Vila (1993) total surplus decreases when the �nancial
market is introduced in our model. This anti-competitive e�ect is partly mitigated
when demand uncertainty increases. With more demand uncertainty/variation it
is optimal for �rms to o�er supply functions that have a less negative slope, as this
allows them to bene�t more from both high and low demand realizations. Thus to
avoid the anti-competitive e�ect of speculation, this suggests that option contracts
should not be traded near delivery because �rms then have a good estimate of
demand. Alternatively, the same option contract or supply function should be
valid for several delivery periods in order to increase the range of demand levels
that contracts needs to cover.

The results of our paper have some parallels in the literature on delegation
games. The main di�erences between our paper and the delegation literature is
that we use �nancial contracts instead of delegation as the commitment device,

6Downward sloping supply bids were allowed in the Nordic power exchange (Nord Pool) until
it introduced a new clearing algorithm on October 10, 2007 that could no longer handle them.
Total supply of a �rm consists of its supply in the power exchange plus its supply delivered
directly to consumers with bilateral contracts. So if bilaterally contracted supply is su�ciently
downward sloping, total supply could still be downward sloping, even if the power exchange itself
does not allow for downward sloping supply bids.

7Willems et al. (2009) compare two contracting scenarios for the German electricity market:
one with standard forward contracts and another with load following contracts. The latter
corresponds to �rms selling forward contracts and several call option contracts such that the
same fraction of output is hedged for each price level in the spot market. They �nd that the
�rst scenario �ts the data best.
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and that we allow �rms to commit to supply functions with any slope. Singh and
Vives (1984) and Cheng (1985) analyze a game where the owner of each �rm �rst
decides the slope of its supply. The slope is either horizontal (Bertrand) or vertical
(Cournot). The implementation of this decision is delegated to the �rm's manager,
who sets either the �rm's price or its output depending on the owner's choice. In
equilibrium, each �rm commits to play Cournot when demand is certain. As in
our model, this makes the residual demand function of competitors less elastic, it
softens competition and leads to higher mark-ups. Reisinger and Ressner (2009)
show that if demand is su�ciently uncertain, �rms commit to play Bertrand. Thus
as in our model, uncertainty makes the market more competitive.

The structure of the paper is as follows. Section 2 summarizes the previous
literature. The model of strategic option contracting is introduced in Section 3
and its main properties are derived in Section 4. Section 5 presents closed-form
results when demand is linear and demand shocks are Pareto distributed of the
second-order. Section 6 concludes.

2 Literature review

Most oligopoly models with strategic commitments can be analyzed in the frame-
work developed by Fudenberg and Tirole (1984) and Bulow et al. (1985). A �rm
maximizes its pro�t by committing to a strategy that softens the response of its
competitors. Firms commit to aggressive spot market bidding (high output or
low mark-up) if it results in a soft response from competitors (low output or high
mark-up), which is, by de�nition, the case when strategies are substitutes. On the
other hand, �rms commit to peaceable (soft) spot market bidding if this results
in a soft response from competitors.

The seminal paper on strategic forward contracting by Allaz and Vila (1993)
is an example of a game with strategic substitutes. They analyze a two-stage
game with a homogeneous good. In the �rst stage producers sell contracts to
non-strategic consumers or �nancial traders. The contracts are disclosed, so they
are observable.8 In the second stage producers compete in a Cournot market.
The set-up introduces a prisoners' dilemma for producers: Each producer will
sell forward contracts to commit to a large output. This gives it a Stackelberg
�rst-mover advantage, which would reduce competitors' output, if they would not
have sold any forward contracts themselves. However, in equilibrium all �rms
sell forward contracts, spot market competition becomes tougher, and producers
end up worse o�. Thus endogenous contracting is pro-competitive and welfare

8Contracting is strategic when �rms are risk-averse or when contract positions are observable
(Hughes and Kao, 1997). Financial trading is anonymous in most markets, and a �rm's contract
positions are normally not revealed to competitors. Still competitors can get a rough estimate
of the �rm's forward position by analyzing the turnover in the forward market and the forward
price (Ferreira, 2006). Ferreira's theoretical argument is also relevant in practice. Van Eijkel and
Moraga-González's (2010) �nd that �rms in the Dutch gas market are able to infer competitors'
contract positions and that contracts are used for strategic rather than hedging reasons. Finally,
it can be noted that vertical integration with a retailer that is selling the good at a �xed retail
price is equivalent to observable contracting.
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increasing when �rms compete on quantities.9 Brandts et al. (2008) con�rm this
result in economic experiments.

However, introducing a forward market worsens competition when strategies
are complements, i.e. when an aggressive commitment results in an aggressive spot
market response from competitors. Mahenc and Salanié (2004) analyze a market
with di�erentiated goods and price competition, and show that a commitment
to low mark-ups, due to forward sales, is met with a tough response, that is
competitors also lower their mark-ups. To avoid the tough response, �rms buy in
the forward market (negative contracting) in order to soften competition in the
spot market. This increases mark-ups in the spot-market. Thus, forward trading
reduces social welfare when strategies are complements.

In a more generalized form of spot market competition, producers compete with
supply functions under demand uncertainty, as in the supply function equilibrium
(SFE) model (Klemperer and Meyer, 1989). The setting of the SFE model is obvi-
ously well-suited for markets where producers sell their output in a uniform-price
auction, as in wholesale electricity markets (Green and Newbery, 1992; Holmberg
and Newbery, 2010). This has also been empirically veri�ed.10 Although most
markets are not explicitly cleared by uniform-price auctions, Klemperer and Meyer
(1989) argue that �rms typically face a uniform market price and they need prede-
termined decision rules for its lower-level managers on how to deal with changing
market conditions. Thus �rms implicitly commit to supply functions also in the
general case. Indeed, Vives (2011) notes that competition in supply functions has
been used to model bidding for government procurement contracts, management
consulting, airline pricing reservation systems, and provides a reduced form in
strategic agency and trade policy models.

Bertrand and Cournot competition can be seen as two extreme forms of supply
function competition. Thus, it is not surprising that the competitive e�ects of
strategic forward contracting are ambiguous in supply function markets. Newbery
(1998) considers cases where the demand uncertainty is bounded, so that the
market has multiple equilibria. He shows that contracting depends on how �rms
coordinate their strategies in the spot market. Newbery (1998) also analyzes
the relation between contracts and entry,11 while we and the other papers in
this review focus on the short-run e�ects of contracting. Green (1999) shows
that forward contracting does not in�uence competition in markets with linear
marginal costs and linear demand if producers coordinate on linear supply function
equilibria. Holmberg (2011) considers a su�ciently wide support of the demand

9Allaz and Vila (1993) also show that the perfectly competitive outcome is a subgame perfect
Nash equilibrium if contracting is repeated an in�nite number of rounds. However, Ferreira
(2003) proves that this outcome is not renegotiation-proof, while the monopolistic outcome is.

10Hortacsu and Puller, (2008), Sioshansi and Oren, (2007) and Wolak (2003) verify that large
producers in the electricity market roughly bid as predicted by the SFE model.

11Newbery (1998) shows that producers sells contracts to keep output high and spot prices
low to deter entry. Murphy and Smeers (2010) show that the impact of forward contracts on
competition is ambiguous once investment decisions are endogenized. In Argenton and Willems
(2010) �rms sell standard forward contracts to exclude potentially more e�cient entrants, and
Petropoulos et al. (2010) show that �nancial contracts might lead to preemptive overinvestments
by incumbent �rms.
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shock distribution, so that the spot market has a unique equilibrium. He shows
that contracting strategies are weakly pro-competitive when marginal costs are
constant. Herrera-Dappe (2008) calculates asymmetric contracting equilibria and
in his setting forward trading will decrease welfare.12

In our setting �rms trade option contracts, so the contracted quantity is con-
tingent on the spot price. This is the main di�erence in our study compared
to the above mentioned studies. Similarly, Willems (2005) generalizes Allaz and
Vila's (1993) result by considering �rms that sell a bundle of call option contracts,
but Willems keeps the Cournot setting in the spot market. As in Allaz and Vila
(1993) a �rm can commit to be tough by selling more contracts. However strate-
gies are stronger strategic substitutes if �nancial option contracts are used. By
being tough a �rm lowers the spot price, which reduces the number of option con-
tracts that are exercised by competitors.13 This softens the competitors' actions
more than with forward contracts. Thus the incentive to sell contracts increases,
and the equilibrium becomes more competitive. Selling physical call options has
an additional e�ect; a �rm can commit to a positively sloped supply function,
even if it is restricted to playing Cournot in the spot market. As this makes the
competitors' residual demand more elastic, it toughens their response. Actions
become weaker strategic substitutes or even complements. Hence, �rms will com-
mit less or nothing at all. Therefore a Cournot market becomes less competitive
with physical options compared to �nancial options if producers are restricted to
selling call option contracts. In our model physical and �nancial option contracts
are equivalent, as both contracts a�ect the slopes of the o�er functions in the
second stage. We also show that �rms prefer their contracted quantity to decrease
with respect to the spot price, so that the slope of competitors' residual demand
becomes less elastic. Thus, unlike Willems (2005) �rms buy call option contracts
in our model.

3 Model

We model producers' contracting and supply strategies as a two-stage game. In
the �rst stage, N risk-neutral producers commit by strategically choosing a port-
folio of call option contracts with a spectrum of strike prices. Firms' contracting
decisions are made simultaneously. Similar to Allaz and Vila (1993), Newbery
(1998), Green (1999) etc., producers disclose their contracting decisions. Risk-
neutral, non-strategic counterparties (e.g. consumers or investment banks) with
rational expectations ensure that each option price corresponds to the expected
value of the contract. This rules out any arbitrage opportunities in the market. In

12Anderson and Xu (2005; 2006), Anderson and Hu (2012), Aromi (2007), Chao and Wilson
(2005) and Niu et al. (2005) have also analyzed how exogenously given forward or option con-
tracts in�uence supply function competition. But they do not analyze to what extent contracting
is strategically driven.

13A similar pro-competitive mechanism occurs when each �rm o�ers its forward contracts
with a supply function in the contract market (Green, 1999; Holmberg, 2011). Then a �rm has
incentives to sell forward contracts in order to reduce the forward price and competitors' forward
sales.
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the second stage, �rms compete in the spot market. It is a uniform-price auction
in which sellers simultaneously submit supply functions. After these o�ers have
been submitted, an additive demand shock is realized. The distribution of the
shock is common knowledge.

A �nancial call option gives the buyer the right to receive the di�erence between
the spot market price and a predetermined strike price r.14 The contract is exer-
cised when the spot price is above the strike price. In stage 1, �rm i ∈ {1, 2, ..., N}
decides how many option contracts to sell at each strike price. We assume that
0 and p are the lowest and highest realized prices in the market, respectively.
The contracting decision is represented by the right-continuous distribution func-
tion Xi (r) : [0, p] → R, the amount of option contracts sold with a strike price
equal to or below r. A forward contract corresponds to a call option with strike
price zero, as it is always exercised. Thus Xi(0) is the amount of sold forward
contracts. Firm i can decide to go short (Xi(r) > 0) or long (Xi(r) < 0). We
let X(r) =

∑N
i=1Xi(r) represent the contracting decision of the industry and

X−i (r) = X (r)−Xi(r) those of �rm i's competitors.
Let σ (r) be the price of an option with strike price r in the contracting market.

Producer i's revenue from selling call options in the contracting market is given
by: 15

V i =

ˆ p

0

σ (r) · dXi (r) .

All call options that are in the money, i.e. the spot price is above the strike
price, will be exercised. Thus for a given spot price p, the total value Vi(p) of �rm
i's sold contracts is given by: 16

Vi(p) =

ˆ p

0

(P (ε)− r) dXi (r) =

ˆ p

0

Xi(r)dr.

Note that the sensitivity of this contract payment with respect to the spot price
(the delta of the sold portfolio) is exactly equal to Xi(p)

dVi(p)

dp
= Xi(p). (1)

For a given spot price p and output q, �rm i's pro�t from trading in the
contract and the spot markets is equal to the revenue from sold contracts V i

and spot market sales p q, minus the cost of exercised contracts Vi(p) and the
production cost Ci(q). (See Figure 2)

πi(p, q) = V i + pq − Vi(p)− Ci(q). (2)

14It can be shown that our results are identical under physical contracts. A physical call
option commits the writer/seller to deliver the good at the strike price r. The buyer exercises
the contract for spot prices above r. The total output of a producer is given by the sum of its
sales with bilateral physical contracts and its accepted sales in the spot market exchange.

15We use the Lebesgue-Stieltjes integral, which is standard in probability theory, to integrate
over the contract positions.

16Note that P (ε)− r is continuous in r. The second equality follows from the integration by
parts formula for the Lebesgue-Stieltjes integral, where one of the factors is continuous at each
point (Hewitt and Stromberg, 1965).
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Figure 2: Pro�t of �rm i as a function of p and q.

Similar to Green and Newbery (1992), and Klemperer and Meyer (1989) we assume
that the cost function Ci(q) is common knowledge, increasing, convex and twice
di�erentiable.

Each producer's supply decision in stage 2, the spot market, is represented
by a right-continuous supply function denoted by Qi(p). We assume that Qi(p)
and Xi(p) are twice di�erentiable on (0, p) and continuous at p. We let Q (p) =∑N

i=1Qi(p) be the total output of the industry and Q−i (p) = Q (p) − Qi(p) that
of �rm i's competitors.

As in Klemperer and Meyer (1989), demand D(p, ε) is realized after o�ers to
the spot market have been submitted. The demand function is twice di�erentiable
with respect to the spot price p and is subject to an exogenous additive shock, ε.
Hence,

D(p, ε) = D(p) + ε. (3)

The demand function is concave (D′′ (p) ≤ 0), downward sloping (D′ (0) < 0) and
satis�es D (0) = 0. We de�ne Di(p) := D(p) − Q−i(p) as the residual demand of
�rm i when the demand shock is zero, ε = 0. When �rms make their contracting
decisions in the �rst stage, the shock density and its probability distribution are
given by f(ε) and F (ε), respectively. The shock density has support on [0, ε] and
on this interval f(ε) is di�erentiable and positive, f(ε) > 0. The variance of the
demand shock is bounded.

For any given demand shock, ε, the spot price is implicitly de�ned by the
market clearing condition: aggregate supply should be equal to total demand.
The price function P (ε) maps the demand shock ε, to the market equilibrium
price p.

P (ε) : ε 7→ p : Q (p) = D(p) + ε.

9



To guarantee existence of an equilibrium price, we assume as in Klemperer and
Meyer (1989) and Vives (2011) that all agents' pro�ts will be zero if the market
does not clear.

Thus �rm i's expected pro�t from trading in the contract and the spot markets
is:

Πi =
´
πi (P (ε) , Qi (P (ε))) dF (ε) . (4)

As in Allaz and Vila (1993) risk-neutral, price-taking consumers or investment
banks trade in the contract market and ensure that the following non-arbitrage
condition is satis�ed for each strike price r.

∀r : σ (r) = Eε [max (P (ε)− r, 0)] . (5)

Hence, the value of the call option is equal to the expected second stage payment
from the contract.

4 Analysis

We solve the game by means of backward induction. The properties of Nash
equilibria in the second stage spot market are analyzed in Section 4.1. In Section
4.2, we rely on non-arbitrage conditions to derive the expected pro�t in stage
1 given the contracting position of �rms. Our equilibrium concept and solution
method for the two stage game is discussed in detail in Section 4.3, before we
derive conditions for optimal contracting in Section 4.4.

4.1 The spot market

In the second stage of the game, each �rm i observes its competitors' portfolio
of option contracts and then chooses its supply function Qi(p) to maximize the
�rm's expected pro�t given the competitors' spot market bids Q−i(p). Our �rst
proposition generalizes the �rst-order condition in Klemperer and Meyer (1989),
so that it applies to a producer holding a portfolio with a range of option contracts:

Proposition 1 (FOC Spot Market) The necessary �rst-order conditions (FOC)
for a Nash equilibrium in the spot market are given by the following system of or-
dinary di�erential equations:

∀i, ∀p ∈ (0, p) : Qi(p)−Xi(p)− [p− C ′i (Qi(p))]
[
Q′−i (p)−D′ (p)

]
= 0. (6)

Proof. Firm i chooses its bid function Qi(p) to maximize its expected pro�t.
Substituting the market clearing condition

Qi(P (ε)) = Di(P (ε)) + ε

in �rm i's objective function (4) we obtain

Πi =

ˆ
πi(P (ε), Di(P (ε)) + ε) dF (ε).

10



The �rst order condition can be found by pointwise di�erentiation of the integrand
with respect to p = P (ε). Using expression (2) for �rm i's pro�t, we derive the
marginal e�ect of a price increase for a given demand shock ε.

dπi(p,Di(p) + ε))

dp
= Di(p) + ε−Xi(p) + (p− C ′i(Di(p) + ε))D′i(p) (7)

= Qi(p)−Xi(p) + (p− C ′i(Qi(p)))D
′
i(p)

A price increase gives a higher spot market revenue for existing quantities, Qi(p),
but it increases the payment �rm i needs to make for its contracted obligation,
V ′i (p) = Xi(p). Moreover, a price increase will reduce sales volumes, which reduces
pro�ts by p|D′i(p)|, but the lower volume will also lead to production cost savings
equal to C ′i(Di(p))|D′i(p)|. The generalized Klemperer and Meyer equations (6)
follow from equating this expression to zero (dπi

dp
= 0) and observing that D′i(p) =

D′ (p)−Q′−i (p).
The following proposition speci�es a su�cient condition for the solution of the

system of �rst order conditions (FOC) to be a Nash equilibrium.

Proposition 2 (NE Spot Market) 17 A tuple Q̌ =
{
Q̌i(p)

}N
i=1

which satis�es
the �rst order conditions of the second stage game, i.e. the generalized Klemperer
and Meyer equations (6) constitutes a Nash equilibrium (NE) in the second-stage
if:

1. The slope of total supply is larger than the slope of the demand function
Q̌′(p) > D′ (p) on the price interval (0, p). This ensures that clearing prices
are unique.

2. Each �rm i faces a downward sloping residual demand function or has suf-
�ciently �at marginal cost functions. That is Ď′i(p)C

′′
i (q) ≤ 1 ∀q ≥ 0 and

∀p ∈ (0, p), where Ďi(p) = D (p)− Q̌−i(p).

Proof. Consider an arbitrary �rm i. It takes contract positions {Xi (p)}Ni=1 as
given and assumes that its competitors bid Q̌−i(p) as supply. Thus �rm i is facing
the residual demand Ďi(p) + ε. We prove that bidding Q̌i(p) is pro�t maximizing
for �rm i.

When demand shock ε∗ occurs, the market price is p∗ if �rm i makes the o�er
Q̌i(p

∗), i.e. Q̌i(p
∗) = Ďi (p

∗)+ε. We will prove that �rm i's pro�t reaches a global
maximum at p∗ along its residual demand Ďi(p) + ε∗ for every shock outcome ε∗.
That is, producing Q̌i(p

∗) is ex-post optimal for �rm i.
With the o�er Q̌i(p), the �rst-order condition in (6) is satis�ed for every price.

Subtracting it from (7) yields:

dπi(p,Ďi(p)+ε∗)
dp

=
[
Ďi (p) + ε∗ − Q̌i(p)

]
− Ďi (p)

[
C ′i(Ďi (p) + ε∗)− C ′i(Q̌i(p))

]
.

(8)

17This proposition generalizes a result by Holmberg et al. (2008) for spot markets without
contracting.
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According to the mean value theorem there must exist ξ ∈ [Ďi (p)+ε∗, Q̌i(p)] such
that C ′i(Ďi (p) + ε∗)−C ′i(Q̌i(p)) = C ′′i (ξ)

[
Ďi (p) + ε∗ − Q̌i(p)

]
. So Equation 8 can

be rewritten as:

dπi
(
p, Ďi (p) + ε∗

)
dp

=
[
Ďi (p) + ε∗ − Q̌i(p)

] (
1− Ďi (p)C

′′
i (ξ)

)
The second condition implies that Ďi(p) · C ′′i (ξ) ≤ 1. So the second factor of the
expression is always positive. The market clears at price p∗ when �rm i o�ers
Q̌i(p), so the �rst factor is zero when p = p∗. The �rst condition implies that
Q̌′i(p) > Ď′i (p), so the �rst factor is negative when prices p are above p∗ and
positive for prices below p∗. Hence we have shown that:

dπi
(
p, Ďi (p) + ε∗

)
dp


≤ 0 if p > p∗

= 0 if p = p∗

≥ 0 if p < p∗

which is su�cient for a global pro�t maximum at p∗. We can use the same ar-
gument for all shocks ε and all �rms i and we can conclude that the tuple Q̌ ={
Q̌i(p)

}N
i=1

constitutes a Nash equilibrium.

Proposition 3 If �rm i sold call options that trace its marginal cost, (that is
p = C ′i(Xi(p)) ∀p ∈ (0, p)), then it bids competitively in the spot market and
has constant pro�ts, provided it has strictly increasing marginal costs and faces a
downward sloping residual demand function or has su�ciently �at marginal cost
functions. That is D′i (p)C

′′
i (q) < 1 ∀q ≥ 0 and ∀p ∈ (0, p).

Proof. It is obvious that bidding Qi (p) = Xi (p) satis�es the necessary �rst
order conditions in Proposition 1. It is also a global optimum for �rm i, if the two
conditions in Proposition 2 are satis�ed. By assumption we have p = C ′i(Xi(p))
and D′i (p)C

′′
i (q) < 1 ∀p ∈ (0, p), so it follows that Q′i(p) = X ′i(p) = 1

C′′i (Xi(p))
≥

D′i (p). Hence the �rst condition is satis�ed. The second condition is satis�ed by
assumption. Given this bidding strategy, �rm i's pro�t is constant:

πi(p,Q(p)) = V i + pQi(p)− Vi(p)− Ci(Qi(p)) = V i.

This can shown by partial integration or by studying Figure 2.
Thus a �rm can sell a portfolio that hedges its pro�t perfectly, but as a result,

it will end up selling at marginal cost. If a �rm would like to use its market power,
it should not hedge all of its capacity.

4.2 First Period Pro�t function under perfect arbitrage

The no-arbitrage condition (5) is valid for any contracting choice of the producers.
By using the arbitrage condition and reversing the order of integration, we can
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rewrite the contracting revenue of �rm i:

V i =

ˆ p

0

σ (r) · dXi (r) =

ˆ p

0

Eε [max (P (ε)− r, 0)] · dXi (r) (9)

= Eε

[ˆ P (ε)

0

(P (ε)− r) · dXi (r)

]
= Eε [Vi(P (ε))] .

Thus due to perfect arbitrage, the contracting revenue is equal to the expected
realized value of the portfolio. Substituting the expected contract revenue (9) into
the pay-o� (4) and simplifying we obtain:

Πi = Eε [πi (ε)] = Eε [P (ε) ·Qi(P (ε))− Ci(Qi(P (ε)))] . (10)

Thus similar to Allaz and Vila (1993) and Newbery (1998) etc., �rm i's pay-o�
does not depend on the contract position directly, but by selling contracts (Xi),
it can strategically change the price in the spot market P (ε).

4.3 Equilibrium concept and solution method

Klemperer and Meyer (1989) show that multiple Nash Equilibria (NE) may exist
in supply function games such as the one played in the second stage of our model.
This complicates the equilibrium analysis of our game. Before proceeding we
therefore discuss how we re�ne the Sub-game Perfect Nash Equilibrium (SPNE)
concept, and which solution method we will follow to �nd such an equilibrium.

4.3.1 Equilibrium concept

We start with some de�nitions. Each tuple of contracting actions X= {Xi (p)}Ni=1

de�nes a di�erent subgame in the second stage spot market, which we denote as
subgame X. The set of subgames will be denoted Ξ. Firm i's strategy {Xi (p) , Qi(p,X)}
speci�es its action in the �rst stage (the contract market) and in each second stage
subgame (the spot market). The strategy pro�le, the set of all �rms' strategies,
is given by {X,Q(X)}, where Q(X) = {Qi(p,X)}Ni=1 speci�es a tuple of supply
functions for each subgame X. We let SFE(X) be the set of Supply Function
Equilibria in subgame X. To rule out non-credible threats in the subgames, we
solve for a Subgame Perfect Nash Equilibrium in the two-stage game.

De�nition 1 (SPNE) A strategy pro�le {X∗,Q∗(X)} constitutes a Subgame Per-
fect Nash Equilibrium (SPNE) i�:

(i) ∀i, ∀Xi Πi(Q
∗(X∗),X∗) ≥ Πi(Q

∗({Xi,X
∗
−i}), {Xi,X

∗
−i})

(ii) ∀X ∈ Ξ Q∗(X) ∈ SFE(X).

The �rst equation speci�es that �rms do not have an incentive to change their
contracting decisions in the �rst stage, given competitors' contracting strategies
X∗−i and the equilibria which will be played in the second stage, as described
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by Q∗(X). The second equation states that the function Q∗(X) has to be an
equilibrium in each subgame.

There can be multiple SPNE when subgames do not have unique equilibria. In
this case, we would like to use Pareto dominance to re�ne the set of Nash equilibria
in subgames with multiple Nash Equilibria. A problem with this re�nement is that
it can only be applied to games where Pareto Optimal NE exists in every subgame.
Although the set SFE(X) is typically non-empty, it might not be closed, so a
Pareto optimal SFE might not exist in some subgames X.

De�nition 2 (ε-Pareto Optimality) A Supply Function Equilibrium Q∗ ∈ SFE(X)
in subgame X is ε−Pareto optimal if no alternative equilibrium Q ∈ SFE(X) ex-
ists which is weakly preferred by all �rms Πi(Q,X) − Πi(Q

∗,X) ≥ 0, and where
one �rm j would gain at least ε, πj(Q,X) − πj(Q∗,X) > ε. The supply function
equilibrium is Pareto optimal if it holds for ε = 0.

For a given ε > 0, we de�ne SFEε−PO(X) andSFEPO(X) as the set of ε-Pareto
Optimal SFE and Pareto Optimal SFE in subgame X. Note that SFEPO(X) ⊆
SFEε−PO(X) ⊆ SFE(X).

De�nition 3 [ε-PO-SPNE] For a given ε ≥ 0, a subgame perfect Nash Equilib-
rium (SPNE) {X∗,Q∗(X)} is an ε−Pareto Optimal subgame perfect Nash Equi-
librium (ε-PO-SPNE) if:

∀X ∈ Ξ Q∗(X) ∈ SFEε−PO(X)
Q∗(X∗) ∈ SFEPO(X∗)

If those expressions hold for ε = 0, the SPNE is a Pareto Optimal subgame perfect
Nash Equilibrium (PO-SPNE).

This de�nition requires that �rms play a Pareto Optimal Nash equilibrium
along the equilibrium path, while o� the equilibrium path, they are allowed to
play any Nash equilibrium which is not ε- dominated by other Nash equilibria in
the subgame. So by coordinating on another Nash equilibrium in a subgame o�
the equilibrium path, no �rm can gain more than ε without making some other
�rm worse o�.18 Note that if each subgame has a unique Nash equilibrium, then
any SPNE is also a PO-SPNE and an ε-PO-SPNE.

4.3.2 Solution method

In order to �nd subgame perfect Nash equilibria, the set of supply function equi-
libria in each sub-game needs to be determined. However, the necessary �rst order
and su�cient second order conditions in Propositions 1 and 2 do not describe all
equilibria. In our paper we therefore �rst solve an Equilibrium Program with

18The Pareto Perfect Equilibrium (PPE) (Bernheim et al., 1987) is related with the PO-SPNE
concept, but is a stricter re�nement as it imposes that only those PO-SPNE are played which
are Pareto Optimal in the �rst stage. Hence, the set of PPE is a subset of the set of PO-SPNE.
In case a PO-SPNE is unique, then it is also a Pareto Perfect Equilibrium (PPE).
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Equilibrium Constraints (EPEC). This solution method is often used to compute
equilibria of dynamic games, including games with strategic contracting.19 It is
assumed that each �rm maximizes its pro�t subject to the First Order Conditions
(the �Equilibrium Constraints�). In the next step we then verify that the solutions
of the equilibrium program are SPNE. In particular we will show that an EPEC
solution has similar properties as an ε-PO-SPNE, which we de�ned in Section
4.3.1.

We de�ne an outcome as a set of actions that �rms take along one particular
path in the game. Hence we present an outcome as {X0,Q0}; the contract curves
X0 = {Xi (p)}Ni=1 and supply functions Q0 = {Qi(p)}Ni=1that �rms o�er in the
�rst and second stage, respectively. Let FOC (X) be the set of tuples Q(X) in
subgame X that satisfy the necessary �rst order conditions of an SFE as speci�ed
in Proposition 1. Thus SFE(X) ⊆ FOC (X).

A Mathematical Program with Equilibrium Constraints (MPEC, Luo et al.,
1996) is an optimization program where a �rm maximizes its pro�t, subject to a
set of �rst order conditions (the equilibrium constraints).

De�nition 4 (MPEC Outcome) An outcome {X∗,Q∗} is an MPEC outcome
for �rm i i� it is a solution of �rm i's Mathematical Program with Equilibrium
constraints (MPEC)

MPEC(i) ∀Xi,∀Q ∈ FOC({Xi,X
∗
−i}) Πi(Q

∗,X∗) ≥ Πi(Q, {Xi,X
∗
−i}).

An Equilibrium Program with Equilibrium Constraints (EPEC) is the system
of MPECs, one for each �rm i.

De�nition 5 (EPEC Equilibrium) An outcome {X∗,Q∗} is an EPEC out-
come i� ∀i, {X∗,Q∗} is an MPEC outcome for �rm i. We say that {X∗,Q∗}
is an EPEC equilibrium if in addition Q∗ ∈ SFE(X∗).

It can be shown that the EPEC equilibrium is closely related to the concept
of an ε-PO-SPNE of a dynamic game:

Proposition 4 If there exists an SFE in every sub game, i.e. ∀X : SFE(X) 6= ∅,
and the monopoly pro�t is bounded in every subgame, then an EPEC equilibrium
{X∗,Q∗} is on the equilibrium path of an ε-PO-SPNE for any ε > 0.

Proof. Step 1: We �rst prove that the EPEC equilibrium implies that a
Pareto Optimal SFE is played along the equilibrium path, i.e. Q∗(X∗) ∈SFEPO(X∗).
We will use a proof by contradiction. Suppose that there is a Nash equilibrium
Q̃ ∈ SFE(X∗) such that

∀i, Πi(Q̃,X
∗) ≥ Πi(Q

∗,X∗)

19Su (2007) and Zhang et al. (2010) use an EPEC to calculate strategic forward contracting
in oligopoly markets.
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where the inequality is strict for one of the �rms. Without loss of generality
assume that for �rm 1: Π1(Q̃,X∗) > Π1(Q∗,X∗). The de�nition of the EPEC
outcome requires that:

Π1(Q∗,X∗) ≥ Π1(Q,X∗) ∀Q ∈ FOC(X∗}.

As the �rst order conditions are necessary conditions for an equilibrium, we must
have that Q̃ ∈ FOC(X∗). Hence,

Π1(Q∗,X∗) ≥ Π1(Q̃,X∗),

which is a contradiction.
Step 2: We will now prove that in every subgame X, and for each ε > 0

there exists an ε−PO-SFE, i.e. ∀X,∀ε > 0, SFEε−PO(X) 6= ∅. De�ne total
industry pro�t as ΠI(Q,X) ≡

∑
i Πi(Q,X). Total industry pro�t ΠI(Q,X) is

bounded above by the monopoly pro�t ΠM , so that ΠI(Q,X) ≤ ΠM . It follows
from Dedekind completeness that every non-empty set of real numbers having an
upper bound must also have a least upper bound. Thus we let Πsup(X) denote
the least-upper bound (or supremum) of equilibrium industry pro�ts in subgame
X. Hence, ΠI(Q,X) ≤ Πsup(X). By assumption there exists one equilibrium in
every subgame. For any ε > 0 one can always �nd one Qε ∈ SFE(X), such that
ΠI(Qε,X) ≥ Πsup(X)− ε, otherwise Πsup(X) would not be the least-upper bound
of equilibrium industry pro�ts in subgame X. We now prove by contradiction
that the SFE Qε is ε-Pareto Optimal. Suppose it were not, then there exist an
alternative SFE Q̃ ∈ SFE(X) such that some �rm i improves its pro�t by at
least ε, Πi(Q̃,X)−Πi(Qε,X) > ε while other �rms j 6= i receive at least as much
as before Πj(Q̃,X) − Πj(Qε,X) ≥ 0. This implies however that ΠI(Q̃,X) >
ΠI(Qε,X) + ε ≥ Πsup(X), which is impossible given the de�nition of Πsup(X).

Step 3: It follows from step 2 that we can always �nd an ε-Pareto optimal
supply function equilibrium Qε(X) ∈ SFEε−PO(X) in each subgame, while the
equilibrium Q∗ is played along the equilibrium path X∗, i.e. Qε(X

∗) = Q∗,
according to step 1. In order to prove that {X∗,Qε(X)} is an ε-PO-SPNE, it
remains to show that deviations from X∗ in the �rst stage are not pro�table. As
the �rst order conditions are necessary conditions for an equilibrium, we must
have that Qε(X) ∈ FOC(X). De�nition 5 implies that �rm i has no pro�table
deviation Xi (p) 6= X∗i (p), such that Πi(Q

∗,X∗) < Πi(Qε({Xi,X
∗
−i}), {Xi,X

∗
−i}).

Thus we can conclude from De�nitions 1 and 3 that {X∗,Qε(X)} is an ε-PO-
SPNE.

4.4 Strategic contracting

In this subsection we solve for equilibrium contracts. In order to simplify our
notation we let

H(x) := N(N − 1)
1− F (x)

f(x)
(11)

be the inverse hazard rate of the probability distribution of the demand shock
multiplied by N(N − 1), which is a measure of the interaction e�ect between
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�rms. For simplicity we set cost equal to zero in the remainder of the paper. We
also make a weak assumption on H(x).20

Assumption 1 1. Production costs are zero, i.e. Ci(Qi) ≡ 0, ∀i

2. The inverse hazard rate is decreasing or mildly increasing, H ′(ε) < 1 ∀ε ∈
(0, ε), i.e. the hazard rate is increasing or mildly decreasing.

Firm k maximizes pro�t by trading derivatives in stage 1, taking into account
that the spot market outcome should satisfy the generalized Klemperer and Meyer
FOC conditions (6), and that clearing of the spot market requires that spot de-
mand must equal spot supply. Under Assumption 1 �rm k's expected pro�t in
the �rst stage in (10) can be simpli�ed to Eε [P (ε)Qk(P (ε))]. Hence, �rm k's
optimal contracting level is determined by the following MPEC problem.

MPEC(k): max

ˆ p

0

p ·Qk(p) · f (ε (p)) · u(p) dp︸ ︷︷ ︸
dε

. (12)

s.t.

 ∀i : Q′−i(p) = D′(p) + Qi(p)−Xi(p)
p

ε′(p) = u(p)
D (p) + ε(p) = Q (p)

In order to calculate the contracting levels in equilibrium, we solve for an
EPEC outcome, i.e. an outcome which satis�es each �rm's MPEC problem as
de�ned in (12). The next Proposition provides necessary �rst order conditions
and a su�cient condition for a symmetric solution to be an EPEC outcome.

Proposition 5 (EPEC outcome) Under Assumption 1 any symmetric solution
of the EPEC de�ned as the set of MPEC(k) problems k = 1...N in Equation (12)
has to satisfy the following �rst order conditions:

H(ε (p)) = (pD (p))′ + ε (p) + (N − 1)2pε′ (p) (13)

Q(p) = D (p) + ε (p) (14)

X(p) = (pD (p))′ + ε (p)− (N − 1)pε′ (p) (15)

for ε (p) ∈ [ε, ε]. Solutions to these equations are EPEC outcomes. That is, for
each �rm i, playing Xi globally solves its MPEC(i) problem.

Proof. Step 1: Without loss of generality we solve for the optimal contract
of �rm k = 1. In the optimal control problem, X1(p) only appears in the �rst
constraint for i = 1. This implies that this constraint is never going to be binding,
as �rm 1 can freely choose X1(p) to satisfy this equation without in�uencing other

20Most standard probability distributions, such as the normal and uniform distributions, have
increasing hazard rates. According to Bulow and Klemperer (2002) it is therefore a weak as-
sumption to only consider probability distributions with increasing hazard rates, i.e. decreasing
inverse hazard rates, H ′(ε) ≤ 0. Note that our assumption is even weaker, as we allow for
H ′(ε) < 1.
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constraints or the objective function. In the objective function and in the second
and third constraints, competitors' total output matters, but not how it is divided
between these �rms. We can therefore sum up the remaining (N − 1) equations
(for cases i 6= 1) of the �rst constraint into one single constraint. Using that
F (ε (p)) = 1 and integration by parts we can now rewrite the dynamic optimization
problem as follows:

max

ˆ p

0

(pQ1)′ [1− F (ε)] dp. (16)

s.t. (N − 1)pQ′1 + (N − 2)pQ′−1 = (N − 1)pD′ +Q−1 −X−1 (17)

Q−1 +Q1 = D + ε, (18)

where, as before, the subscript −i refers to the sum of a variable over all �rms,
excluding �rm i. Thus �rm 1's expected pro�t is given by the integral of its
marginal pro�t ∂

∂p
(pQ1(p)) at price p, weighted by 1 − F (ε(p)), the probability

that the realized price is larger than p, and this also makes sense intuitively.
Step 2: We simplify the dynamic optimization problem by rewriting the con-

straints and then substituting them into the objective function. By adding the
constraint (17) and N − 1 times constraint (18) we get:

(N − 1)(pQ1)′ = (N − 1) (pD)′ −X−1 + (N − 1)ε− (N − 2)(pQ−1)′. (19)

We use the identity in (18) to write (pQ−1)′ as a function of (pQ1)′.

(pQ−1)′ = (pD)′ + (pε)′ − (pQ1)′,

which we can substitute into (19), to give an expression for the marginal pro�t
(pQ1)′

(pQ1)′ = (pD)′ −X−1 + ε− (N − 2) · p · ε′.

Substituting this marginal pro�t into the objective function in (16) gives the fol-
lowing optimization problem:

max

ˆ p

0

{(pD)′ −X−1︸ ︷︷ ︸
h1(p)

+ ε− (N − 2) · p · ε′} [1− F (ε)] dp. (20)

Step 3: We now derive the �rst order conditions of the optimization program
(20). First we write it as the sum of two integrals:

max

ˆ p

0

{h1(p) + ε} [1− F (ε)] dp − (N − 2)

ˆ p

0

p · (G(ε)−G (ε))′dp,

where G(ε) =
´ ε

0
(1− F (t))dt. Note that (G (ε))′ is zero and that ε (p) = ε. Thus

the second term can be rewritten using integration by parts:

max

ˆ p

0

{[h1(p) + ε] [1− F (ε)] + (N − 2) (G(ε)−G (ε))}︸ ︷︷ ︸
θ(p,ε)

dp.
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The integrand only depends on ε (p) and p, so we can maximize the integral by
maximizing θ (p, ε) for each p. Thus for every p we want to �nd the ε (p) that
maximizes θ (p, ε).

∂θ (p, ε)

∂ε
= (N − 1) (1− F (ε (p)))− (h1(p) + ε (p)) f (ε (p)) (21)

Setting ∂θ(p,ε)
∂ε

= 0 and multiplying the equation with N
f(ε(p))

, the �rst order condi-
tion of this optimization problem can be written as:

H(ε)−Nh1(p)−Nε = 0. (22)

Step 4: We want to know under what circumstances solutions to this condition
globally maximize pro�ts. Let ε̃ (p) be a solution to this equation for a given

contracting choice of the competitors, X−1 (p). We see from (21) that ∂θ(p,ε)
∂ε

has
the same sign as H(ε(p))−Nh1 (p) +Nε (p). It follows from Assumption 1.2 that
H ′ (ε) < 1. Thus we realize that for all price levels p:

H(ε)−Nh1 (p)−Nε
≤ 0 if ε > ε̃ (p)
= 0 if ε = ε̃ (p)
≥ 0 if ε < ε̃ (p) .

Accordingly, ε̃ (p) globally maximizes θ at each price. We can repeat the argument
for any �rm and thus solutions to (22) are EPEC outcomes according to De�nition
5.

Step 5: We now solve for symmetric equilibria. Multiplying equation (19)
with N , and assuming symmetry we �nd

X = N(pD)′ +Nε− (N − 1)(pQ)′

Substituting the market clearing identity Q(p) = D(p) + ε for Q, we obtain equa-
tion (15). Reinserting the de�nition of h1(p) in (20) into the �rst order condition
(22) and assuming symmetry (NX−i = (N − 1)X) we �nd

H(ε) = N(pD)′ +Nε− (N − 1)X

Substituting X with equation (15) gives the di�erential equation in (13). Equation
(14) describes the market clearing condition.

The two following propositions prove that the EPEC outcome in Proposition
5 is an EPEC equilibrium that is on the equilibrium path of an ε-PO SPNE.

Proposition 6 The EPEC outcome in Proposition 5 is an EPEC equilibrium.

Proof. It follows from De�nition 5 that the EPEC outcome is an EPEC
equilibrium if the two conditions in Proposition 2 are satis�ed. Marginal costs are
zero according to Assumption 1.1 so the second condition is satis�ed. It remains
to show that the �rst condition Q′ > D′ or equivalently ε′(p) > 0 is satis�ed.
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First we want to verify that ε′(0) > 0. We rewrite the �rst order condition
(13) and evaluate it at p = 0:

(N − 1)2ε′(0) = lim
p→0

H(ε(p))− ε(p)−D(p)

p
−D′(0)

We use l'Hopital's rule and collect the terms with ε′(0) to �nd

ε′(0)
(
(N − 1)2 + 1−H ′

)
= −2D′(0).

The second factor on the left hand side is positive given Assumption 1.2. It follows
from the assumed properties of the demand function in Section 3 that the right
hand side is also positive, as D′(0) < 0. Thus we must have that ε′(0) > 0.

In the next step we show that whenever ε′(p) = 0 for a given strictly positive
price p > 0, it must be that ε′′(p) > 0. Di�erentiating the �rst order condition
(13) with respect to p, we �nd

H ′(ε)ε′ = (N − 1)2(ε′ + pε′′) + ε′ + (pD)′′

For price levels where ε′ = 0, this expression simpli�es to:

(N − 1)2pε′′ = −(pD)′′

It follows from the assumed properties of the demand function in Section 3 that
(pD)′′ ≤ 0. Thus the right hand side is positive. We consider strictly positive
prices, so it must be that ε′′(p) > 0 when ε′ = 0.

In the last step we show that ε′(p) > 0 for all prices. Our proof is by contra-
diction. Assume that the inequality ε′(p) > 0 is violated for some p > 0. Let p0

be the lowest price above 0 where ε′(p) = 0. Thus our assumptions would imply
that ε′ (p) > 0 for p ∈ [0, p0) and that ε′ (p0) = 0, which requires that ε′′ (p0) ≤ 0.
However, this is impossible as we have just shown that whenever ε′(p0) = 0 it
must be that ε′′(p0) > 0. Hence, ε′ (p) > 0 for p ∈ [0, p].

Proposition 7 The EPEC outcome in Proposition 5 is on the equilibrium path
of an ε-PO SPNE for any ε > 0.

Proof. It follows from Proposition 6 that the EPEC outcome in Proposition 5
is an EPEC equilibrium. We know from Proposition 4 that the EPEC equilibrium
is on the equilibrium path of an ε-PO SPNE if (1) the monopoly payo� is bounded
and (2) there exist an SFE in every subgame. We prove that both conditions hold.

Let γ = −D′ (0) > 0. Thus it follows from the assumed properties of the
demand function in Section 3 that

D (p) ≤ −γp.

We realize that the monopoly pro�t for demand D (p) is bounded by the monopoly
pro�t for demand −γp. In the latter case, the monopolist would set a monopoly
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price P (ε) = ε
2γ

and receive a monopoly pro�t πM(ε) = ε2

4γ
. In expectation this

monopoly pro�t is:

ΠM =
´ ε

0
πM(ε)f(ε)dε = 1

4γ

´ ε
0
ε2f(ε)dε.

In Section 3 we make the assumption that ε has a bounded variance, so the
expected monopoly pro�t must also be bounded.

Finally we note that Bertrand o�ers at p = 0 constitute a Nash equilibrium
in every subgame irrespective of contracting. If competitors' total o�ers meet
maximum demand at p = 0, then the pro�t of a �rm is always zero irrespective
of its o�er, and it might as well choose its supply o�er such that its total output
meets maximum demand at p = 0. Thus the Bertrand outcome is always an
equilibrium.

For a better understanding of the strategic interactions in our game, we take
a brief look at �rm 1's residual demand function. It is equal to total demand
(term I) minus output of competitors, which is the production that they sell in
the contract market (Term II) and in the spot market (Term III).

Q1 = D1 + ε = D + ε︸ ︷︷ ︸
I

−X−1︸︷︷︸
II

− (Q−1 −X−1)︸ ︷︷ ︸
III

It follows from the generalized Klemperer and Meyer conditions (6) that competi-
tors' net-sales in the spot market are proportional to the slope of their residual
demand function. Thus term III can be written as follows

Q−1 −X−1 =
∑
i 6=1

p · (Q′−i −D′)

=
∑
i 6=1

∑
j 6=i

Q′jp−
∑
i 6=1

D′p

= (N − 1)Q′1p+ (N − 2)Q′−1p− (N − 1)D′p.

which gives the following residual demand function for �rm i:

Q1 = D + ε︸ ︷︷ ︸
I

−X−1︸︷︷︸
II

− (N − 1) |D′| p︸ ︷︷ ︸
III.a

− (N − 1)Q′1 p︸ ︷︷ ︸
III.b

− (N − 2)Q′−1 p︸ ︷︷ ︸
III.c

(23)

If demand is more elastic (|D′| larger in term III.a) then the output of its N − 1
competitors will be larger, and the residual demand that �rm 1 faces decreases.
Similarly, if �rm 1's output is �atter (Q′1 is large in Term III.b), the output of
its competitors' increases, and its residual demand decreases. Term (III.c) is an
interaction e�ect between competitors of �rm 1. If one competitor sets a �atter
supply function, then the other (N−2) competitors will be more competitive, and
the residual demand that �rm 1 faces decreases.

In the Allaz and Vila (1993) model �rms' production does not depend on prices,
∀i, Q′i = 0, and �rm 1's residual demand function consist only of the terms I, II,
and III.a. Term III.a corresponds to the Stackelberg e�ect of �rm 1: By being
a �rst mover in stage 1, �rm 1 can a�ect its competitors production level in the
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second stage, as they will react to �rm 1's output level.21 Term II corresponds to
the �rst mover e�ect of �rm 1's competitors. As its competitors sell forward, �rm
1 faces a smaller residual demand function. The two additional terms III.b and
III.c in our model are a consequence of allowing output to depend on prices.

We can now obtain some intuition on the incentives of �rm 1 to make output
inelastic or even downward sloping. This can be seen most easily in a duopoly
setting (N = 2) in which case term (III.c) is zero. It follows from (23) that
it is 'costly', either in terms of a reduced quantity or a reduced price, to set a
positive slope Q′1 > 0, because it makes its competitor's residual demand curve
more elastic, which increases its output (term III.b becomes larger). Thus we
would expect that �rm 1 would �nd it optimal to keep this slope relatively small
or even negative. To achieve this and still sell a signi�cant amount, it will be
optimal to produce a relatively large quantity at p = 0 and then to keep output
fairly inelastic or even backward bending in the whole price range. This is the
result that we get in the next section.

5 Closed-form solutions

Relying on the propositions of section 4, this section derives closed-form solutions
of our model, and discusses the welfare e�ect of derivatives trading.

5.1 Market equilibrium

We make the following simplifying assumptions in order to explicitly solve for an
EPEC equilibrium that is on the equilibrium path of an ε-PO SPNE.

Assumption 2 Production costs are zero, the demand function D(p) = −γp is
linear with γ > 0 and demand shocks are Pareto distributed of the second-order,
so that f (ε) = β1/α (αε+ β)−1/α−1 for ε > 0, where β > 0 and α ∈ (−∞, 1

N(N−1)
).

The Pareto distribution of the second-order is a family of probability distribu-
tions with a wide range of properties (Johnson et al., 1994). For example, for α = 0
it gives the exponential distribution and for α = −1, the uniform distribution.

Proposition 8 (Closed-Form) Under Assumption 2 the unique symmetric EPEC

21This term can be understood better by looking at a standard Stackelberg game with one
leader and N − 1 followers. The leader sets output, taken into account the subsequent reaction
of its followers. Each follower sets its output such that its marginal revenue equals marginal
costs, which is zero in our model. Hence, for each follower j, Qj + pD′ = 0. The output of one
follower is Qj = |D′| p, and total output of all followers is given by (N − 1) |D′| p.
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equilibrium is given by:

ε(p) = ε0 +
2

1− α (N − 1)N + (N − 1)2
γp (24)

Q(p) = ε0 +
α (N − 1)N − (N − 2)N

1− α (N − 1)N + (N − 1)2
γp (25)

X(p) = ε0 +
2α (N − 1)N − 2N2 + 2N

1− α (N − 1)N + (N − 1)2
γp, (26)

where ε0 = βN(N−1)
1−α(N−1)N

. The equilibrium is on the equilibrium path of an ε-PO
SPNE for any ε > 0.

Proof. Lemma 1 shows that under Assumption 2 the unique solution of the set
of di�erential equations (13-15) is given by the linear equations (24-26). It follows
from Johnson et al. (1994) that the Pareto distribution of the second-order has a
�nite variance when α < 1

N(N−1)
. We also note that under Assumption 2 we have

H ′ (ε) = N (N − 1)α < 1. Thus it follows from Propositions 5-7 that the solution
is an EPEC equilibrium that is on the equilibrium path of an ε-PO SPNE for any
ε > 0.

Figure 3 illustrates the results of Proposition 8 for the special case where N = 2
and the demand shock is uniformly distributed.

We notice that with linear demand, the contracting and output functions are
linear for a Pareto distribution of the second order. The net-supply Q (p)−X (p)
is up-ward sloping, but the contracting function is downward sloping; producers
sell forward contracts and buy call options for strike prices above zero. The output
function is also backward bending for N > 2 or when α < 0. Hence �rms produce
less, although the demand shock increases. As a result prices increase steeply
as demand shocks increase. Even in the alternative case where total output is
forward bending (duopoly N = 2 and α ≥ 0), the total output curve is still very
steep. The slope of the total output as a function of price is less than |D′|, the
slope of monopoly output.

As demand shocks become more uncertain (α increases),22 the anti-competitive
consequences of contracts are mitigated: Q (0) increases and Q′ (p) becomes less
negative. However, even for the highest level of demand uncertainty that we con-
sider α = 1

(N−1)N
total supply remains backward bending for N > 2. In the limit

where demand is certain (α→ −∞), total supply will converge toQ (p)→ −|D′| p,
which is less than the monopoly output. Thus for su�ciently small α, social wel-
fare is lower than in a monopoly market without contracts.

It is also straightforward to verify that total forward sales, X (0), increases with
the number of �rms. This ensures that the market becomes more competitive for
low shock outcomes. However, the total output function will bend backwards
more, when the number of �rms increase;Q′ (p) decreases with more �rms in the

22For α ≤ 0, the demand shock range is
[
0, β|α|

]
, so a less negative α increases the range of

demand shocks. For α ≥ 0, a larger α increases the thickness of the tail of the demand density
(Holmberg, 2009).
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Figure 3: Total contracting and output for the SPNE described by Proposition 8
for a duopoly market with uniformly distributed demand.

market. Thus for α ≥ 0 (when the support of the shock density is in�nite) the
market will be less competitive for the highest shock outcomes if there are more
�rms in the market. Hence, our �nding that �rms have incentives to use option
contracts to commit to fairly inelastic or even a backward bending output, becomes
more apparent in markets with more �rms. We attribute this to the interaction
e�ect between competitors, term III.c in (23).

5.2 Welfare e�ects

Proposition 9 (Deadweight Loss) The expected deadweight loss Λ for the equi-
librium in Proposition 8 is:

Λ =
β2 (1− α (N − 1)N + (N − 1)2)

2

4γ (1− α) (1− 2α) (1− α (N − 1)N)2−1/α
. (27)

Proof. It follows from (24) that:

P (ε) =

{
A (ε− ε0) if ε > ε0

0 if ε ≤ ε0

with A = 1−α(N−1)N+(N−1)2

2γ
. As in Holmberg and Newbery (2010), the welfare loss

for a given demand shock ε is the deadweight-loss:

λ (ε) =
P 2 (ε) γ

2
=

{
A2 γ

2
(ε− ε0)2 if ε > ε0

0 otherwise

while the expected welfare loss is given by

Λ = Eε [λ (ε)] =

ˆ ε

ε0

λ (ε) f (ε) dε.
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De�ne T (x) as the third-order integral of f(x), so that T (x) = −β2

(α−1)(2α−1)
(αx+β

β
)2− 1

α

and T ′′′(x) = f(x). We can now evaluate the expected loss by twice integrating
by parts.

Λ = [λ(ε)T ′′(ε)]
ε
ε0
− [λ′(ε)T ′(ε)]

ε
ε0︸ ︷︷ ︸

=0

+ λ′′(ε) [T (ε)]εε0

= −A2γT (ε0) = A2γβ2 (1− αN(N − 1))1/α−2

(1− α)(1− 2α)
(28)

Note that the �rst two terms are zero as long as α < 1
2
, because ε = −β

α
if α < 0 and

ε = ∞ otherwise. Welfare losses are quadratic in ε, therefore Λ′′2γ is a constant.

We get (27) by substituting A = 1−α(N−1)N+(N−1)2

2γ
into (28).

We now discuss the e�ect of the number of �rms on the market's competitive-
ness.

Proposition 10 Under Assumption 2, the expected deadweight loss for the equi-
librium in Proposition 8 decreases with the number of symmetric �rms.

Proof. The expected welfare loss is given by (27). Lemma 2 in the Appendix

shows that 1−α(N−1)N+(N−1)2

(1−α(N−1)N)1−(1/2α) is decreasing with respect to N which proves the

result.
It follows from (27) that the market becomes perfectly competitive (no welfare

losses) if the number of �rms N goes to in�nity and α ≤ 0.23

Proposition 11 (Welfare Comparison) Expected welfare is lower for the equi-
librium in Proposition 8 than for a standard Cournot model without contracting
where demand shocks are realized before �rms choose production, provided that
N = 2 and Assumption 2 is satis�ed.

Proof. From the �rst-order condition of the Cournot market with certain
demand it follows that the total duopoly output is: Q = 2γp. The market clears
when Q = ε− γp, so

PCournot (ε) =
ε

3γ
.

As before the deadweight loss for a given ε is:

λCournot (ε) =
P 2
Cournot (ε) γ

2
=

ε2

18γ
.

We can calculate the expected welfare losses ΛCournot = Eε [λCournot (ε)] as in
Proposition 9 by twice integrating by parts:

ΛCournot = λ′′Cournot(ε) [T (ε)]ε0 = −T (0)

9γ
=

1

9γ

β2

(1− α) (1− 2α)
.

23Note that Assumption 2 does not allow for α > 0 when N →∞.
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Comparing the welfare losses in the Cournot game above and the welfare losses in
Proposition 9 for N = 2, we �nd that:

Λ

ΛCournot

= 9
(1− α)2

(1− 2α)2−1/α
,

which is larger than 1 according to Lemma 3 in the Appendix.
Prices for a symmetric SFE without contracts are below the Cournot schedule

(Klemperer and Meyer, 1989; Green and Newbery, 1992), i.e. prices in a Cournot
equilibrium where demand shocks are realized before �rms set production quantity.
Thus Proposition 11 has the following implication:

Corollary 1 The introduction of a derivatives market will lower welfare, provided
that N = 2, Assumption 2 is satis�ed, and �rms play the unique symmetric EPEC
equilibrium after the reform.

This result contrasts with Holmberg's (2011) two-stage model with forward
contracting and supply function competition, where the introduction of a forward
market weakly improved competition for cases when marginal costs are constant
up to a capacity constraint. Similarly, forward markets improved welfare in Allaz
and Vila's (1993).

6 Conclusion

Commodity derivatives such as forwards and call options are very useful hedging
instruments. However, in an oligopoly market they will also be used strategically.
In Allaz and Vila's (1993) seminal study strategic contracting is pro-competitive.
However, it is limited in that �rms cannot use contracts to commit to a downward
sloping supply. In our study, which has a less restrictive strategy space, strategic
contracting has anti-competitive consequences.

Solving for an equilibrium of a two-stage game with derivative trade followed
by spot market competition, we show that risk-neutral producers sell forward
contracts and buy call option contracts. This contracting strategy commits them
to a fairly inelastic or even downward sloping supply function in the spot market.
This is pro�table as it will give competitors incentives to increase their mark-
ups. The forward sales improve competition for low demand realizations, but
the option contracts reduce competition for high demand realizations. Hence
commodity derivatives are pro-competitive for low demand, but anti-competitive
during high demand. In a duopoly market, the second e�ect outweighs the �rst
and total surplus decreases when the �nancial market is introduced. Total forward
sales increase in a less concentrated market (more �rms), which improves the low
demand pro-competitive e�ect. In expectation having more �rms in the market
also reduces welfare losses, even if the anti-competitive e�ect at high demand
becomes more pronounced.

We show that the anti-competitive e�ects worsen when demand uncertainty
is smaller. When demand uncertainty becomes larger, it is optimal for �rms
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to o�er supply functions that have a less negative slope, as this allows them to
bene�t more from both high and low demand realizations. Thus to avoid the
anti-competitive e�ect of speculation, this suggests that option contracts should
not be traded near delivery because �rms then have a good estimate of demand.
Alternatively, the same option contract or supply function should be valid for
several delivery periods in order to increase demand variation.24 Moreover, market
monitors should carefully scrutinize incidents where producers use contracts in a
speculative manner.

In our model producers are risk neutral and arbitrage in the �nancial market
is perfect. Therefore, commitment by �nancial derivatives is costless. As this is
not the case in practice, our results should be seen as a limiting case. With risk
aversion, �rms are expected to reduce tail risk and to hold contracting portfolios
that are closer to their actual output, and therefore to o�er supply functions
that are more upward sloping. Thus contracting should be pro-competitive with
su�cient risk-aversion. Also transaction costs in the �nancial market are likely to
reduce the pro�tability of speculative positions. Considering such imperfections
in contracting is likely to reduce the anti-competitive e�ect for high demand and
the pro-competitive e�ect for low demand realizations.

In our study �rms use call options and forward contracts to commit to down-
ward sloping supply. Unlike spot markets with Cournot competition (Willems,
2005), our results should not depend on whether option contracts are �nancial
or physical. It follows from the call-put parity that �rm's could make the same
commitment by put options and forward contracts. In practice �rms could also
use commitment tactics other than �nancial contracts, for instance by delegating
decisions to managers, merging with downstream �rms, and making irreversible
investments. We believe that the main intuition of our paper, that �rms would like
to commit to downward sloping supply functions, remains valid in those settings.
In this sense our result has parallels in Zöttl (2010), who models the strategic
(irreversible) investments of �rms, where �rms compete on quantities in a spot
market with random demand. He shows that �rms will over-invest in technology
with low marginal costs (base-load), but choose total investment capacities that
are too low from a welfare viewpoint.
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Appendix

Lemma 1 Under assumption 2 the unique solution of the set of di�erential equa-
tions (13-15) is given by the linear equations (24-26).

Proof. Under Assumption 2 we have 1−F (ε)
f(ε)

= αε + β (Holmberg, 2009) and

D(p) = −γp, which simpli�es (13) to

N(N − 1)β + 2γp = (N − 1)2pε′ + ε [1−N(N − 1)α] .

This is a �rst order di�erential equation in the form:

aε+ pε′ = g(p) (29)

with

a =
1− α (N − 1)N

(N − 1)2
(30)

and

g(p) =
N

N − 1
β +

2

(N − 1)2
γp. (31)

Both sides of (29) can then be multiplied with the integrating factor pa−1 and
integrated. As long as a > 0 or equivalently α < 1

(N−1)N
, we have that paε (p) is

zero at p = 0, so

ε(p) = p−a
ˆ p

0

g(t)ta−1dt.

Substituting a and g(t) by their de�nitions in (30) and (31) and solving for this
integral gives us equation (24). The optimal supply and contracting functions in
(25) and (26) then follows from substituting (24) into (14) and (15), respectively.
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Lemma 2 Under Assumption 2, it must be that ξ(N,α) = 1−α(N−1)N+(N−1)2

(1−α(N−1)N)1−(1/2α) is

decreasing with respect to N .

Proof. The partial derivative of this expression with respect to N is

∂ξ(N,α)

∂N
= − $(N,α)

2 (1− α (N − 1)N)
4α−1
2α

with $(N,α) = (2N − 5N2 + 2N3 + 2) − α(N − 1)(2N2 − 3N + 2). As the

denominator is always positive for α ∈
(
−∞, 1

(N−1)N

)
, we need to show that $ is

positive as well. We have

∂$(N,α)

∂α
= −(N − 1)(2N2 − 3N + 2) ≤ 0

for N ≥ 2. According to Assumption 2 we have α < 1
N(N−1)

, so 1
2
is an upper

boundary for α and $(N,α) is bounded from below by $
(
N, 1

2

)
$(N,α) > $(N,

1

2
) =

1

2
(N − 2)(N + 1)(2N − 3) ≥ 0

for N ≥ 2, which establishes the result.

Lemma 3 For α ∈
(
−∞, 1

2

)
it must be that 9 (1−α)2

(1−2α)2−1/α > 1

Proof. The left hand side of the inequality can be written as 9 exp(z(α)) with

z (α) = [2 ln(1− α) + (
1

α
− 2) ln(1− 2α)].

We now prove that α = 0 is a minimum of the function z(α). By di�erentiation
of z with respect to α we obtain that:

α2(1− α)
dz

dα
= −2α− (1− α) ln(1− 2α)

Love (1980) shows that x
1+ 1

2
x
< ln(1 + x) if x > 0 and x

1+ 1
2
x
> ln(1 + x) if − 1 <

x < 0. From this it directly follows that dz
dα
> 0 if .5 > α > 0 and dz

dα
< 0 if α < 0.

The minimum of z is therefore achieved at α = 0. Using l'Hopitals' rule it can be
shown that z (0) = −2. Thus the minimum of 9ez(α) is 9e−2, which is larger than
1.
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