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Abstract

Horizontal shifts in bid curves observed in wholesale electricity markets are consistent with
Cournot competition. Quantity competition reduces the informational requirements asso-
ciated with evaluating market performance because the price-cost margins of all producers
then depend on the same inverse residual demand curve instead of one for each firm. We
apply the model to the day-ahead market of the Nordic power exchange, Nord Pool, for
the years 2011-13. We reject the null hypothesis of perfect competition in all specifications.
Results suggest that the average price-cost margin across the sample period was around four

percent.
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1 Introduction

The performance of electricity markets has been a major topic among market monitors and in
empirical industrial organization since restructuring of electricity markets began in the 1990s.
One reason is the high degree of ownership concentration of generation capacity, which together
with a highly price inelastic demand, creates opportunities for exploiting market power. Another
reason is the rich set of available data that have made it possible to estimate less parameterized
models than what is usually possible in other markets, where researchers often have relied on

the conjectural variations approach developed by Bresnahan (1982) and Lau (1982).

The most notable feature of restructured electricity markets is that wholesale markets typically
are organized as Walrasian auctions: Producers, retailers and large industrial consumers submit
price-dependent offers or bids to a centralized clearing house, such as a power exchange, that
aggregates these offers and bids to obtain market-clearing prices and quantities. On the basis of
these bids, supply and demand curves can be separately derived rather than estimated by means
of simultaneous equation methods. It is even possible to calculate a residual demand curve
facing each individual firm. The price sensitivity of the residual demand curve measures the

firm’s ability to influence the wholesale price, i.e. the individual firm-level market power.

The practical applicability of the above approach is limited by the fact that power exchanges
often do not give external parties access to bid data at the firm level. Our theoretical contribution
in Section 2 is to show that the data requirements are substantially reduced if firms with market
power bid their quantities inelastically into the wholesale market at a low price. Under such
Cournot competition, firms’ market power depends on the properties of the aggregate inverse
residual demand curve instead of individual demand curves. This curve can be computed on
the basis of aggregate bid data that more often are publicly available. In our theoretical model,
exogenous shifts in demand affect the total Cournot output via two additively separable channels.
The first is the direct effect of a price change, which is positive when marginal costs are increasing.
The second effect only occurs under imperfect competition and works through a change in the
slope of the inverse residual demand curve. These theoretical results can form the basis of

empirical analysis of wholesale electricity markets characterized by Cournot competition.

We demonstrate in Section 3 the usefulness of the approach by an examination of data from the
Nordic power exchange, Nord Pool, during 2011-13. This company operates the most important
platform for trading wholesale electricity in the Nordic market, the day-ahead market Elspot.
Our first observation is that the majority of within-week supply bid variation on Elspot stems
from horizontal shifts in the supply curve, consistent with large firms competing in quantities.
We then use an instrumental variables approach to regress Cournot output on price and a variable
that appropriately measures firms’ incentive to exercise market power. This variable, the "semi-
elasticity" of residual demand, is constructed by multiplying the slope of the aggregate inverse
residual demand curve by the Cournot supply net-of-forward market obligations. In particular,

we find that the semi-elasticity has a statistically and economically significant negative effect



on Cournot output in all specifications. This relationship is consistent with firms exercising
market power by withholding production from the market, but it is inconsistent with perfect
competition. Hence, we reject the hypothesis that Elspot was perfectly competitive during our
sample period. Based upon the coefficient estimates, we compute an average implied price-
cost margin (Lerner index) of four percent across the sample period. This margin is robust to
assumptions about the curvature of the marginal cost functions, as well as assumptions about
firms’ hedging positions. When we sequentially remove outliers in the semi-elasticity variable,
the average markup increases to at most 16 percent. Alternative function form assumptions on

the instruments reduce the average price-cost margin down to a minimum of one percent.

The methodology does not require the total demand curve to rotate, unlike in the Bresnahan-
Lau framework. Identification of imperfect competition in our context instead relies on the
non-linearity of the supply function of the competitive fringe. We believe our approach could
be fruitfully applied also to other wholesale electricity markets where aggregate bid data are
available. Examples include Austria, France, Germany, and Switzerland. These countries are
all part of the European Power Exchange, FPEX. Visual inspection of bid data from Germany
suggests that horizontal supply shifts are important sources of supply variation also here, as
depicted in Figure B1. Consistent with this observation, Willems et al. (2009) find a Cournot
model to explain short term price variations in the German market just as well as a more complex
supply function equilibrium model. It also appears that this bidding behavior is not restricted
to the European markets. An example of horizontal supply shifts in the US Midwest market is
depicted in Figure B2 adapted from Mercadal (2016). We round off the paper by some concluding

remarks in Section 4.

Related literature Our paper is among the first to take advantage of novel bid data that have
become available in recent years, to assess market performance in the Nordic electricity market.
Nord Pool now releases data that enables us to reconstruct aggregate supply and demand bids
on the Elspot market. Lundin (2016) uses shifts in the aggregate supply curve to estimate
strategic aspects of maintenance scheduling among Swedish nuclear power plants. Tangeras and
Mauritzen (2018) exploit differences between the day-ahead and intra-day markets to analyze
market power. That method relies explicitly on the inter-temporality of hydro power markets and
does not permit computation of implied price-cost margins. Earlier studies, such as Bask et al.
(2011), typically are applications of the Bresnahan-Lau model. Damsgaard (2007) and Kauppi
and Liski (2008) are exceptions. They build simulation models to account for hydro production.
More recently, Fogelberg and Lazarczyk (2019) analyze market power by means of announced

production failures. These papers find evidence of market power to varying degree.

Bidding data at the firm level are available in some countries. Wolak (2003), for California, and
McRae and Wolak (2014), for New Zealand, demonstrate that firms submit higher-priced bids
when residual demand is less price elastic. Well-known studies of the British market are Green
and Newbery (1992), Wolfram (1999), Wolak and Patrick (2001) and Sweeting (2007), all of whom



find evidence of market power. Fabra and Toro (2005) find indications of periods with collusion
and price wars in the Spanish market. Ito and Reguant (2016) show that large firms exert market

power by shifting output between the Iberian day-ahead and intra-day markets.

2 Theoretical analysis

The wholesale market The demand D(p, o) for electricity is a weakly decreasing function of
the wholesale price p of electricity and a strictly increasing function of the demand parameter
0. We treat in this section o as a scalar, but it is relevant to think of it as a vector containing
temperature, seasonal variation, and so forth. A subset K = {1,...,k} of the n > k generation
owners have market power. Each firm ¢ € K bids its production g; inelastically into the wholesale
market at a positive and weakly increasing marginal production cost MC*(g;). In our empirical
analysis, a substantial amount of the production capacity is hydro power. Management’s decision
problem in a hydro power plant is how much of the water reservoir to release through the
turbines today and how much to save for the future. The production cost consists mainly of this
opportunity cost, the water value. If firm ¢’s production comes from hydro power on the margin,
then MC?(g;) measures the water value of i’s marginal hydro plant. All remaining firms i ¢ K act
as a competitive fringe, bidding in the residual production ¢, at positive and strictly increasing
marginal production cost MC"(q,), where the index r characterizes residual production. The

demand function and all marginal cost functions are twice continuously differentiable.

The market-clearing condition

P =MC"(D(P,o) - Q)

returns the inverse residual demand p = P(Q, o) facing the k£ Cournot producers, as a function
of the total Cournot quantity QQ = Zf q; and the demand parameter o. The inverse residual
demand curve is strictly decreasing in Cournot output (subscripts on functional operators denote

partial derivatives throughout):

—MCy(D(P(Q,0),0) — Q)
1= MCG(D(P(Q,0),0) = Q)Dy(P(Q, 0),0)

Po(Q,0) = < 0. (1)

Firm optimization Firm ¢ € K enters the production stage with sunk contractual obligations
for f; MWh electricity. This is a composite contract containing forwards and futures of different
maturities, bilateral contracts with large industrial customers and direct deliveries to households
through vertical integration with electricity retailers, all indexed against the electricity wholesale

price p. Let g; be the sunk price of this composite contract.

Cournot producer ¢ € K maximizes

q; ) q+Q—;
aiP(q§+Q7;,0)q§—/ MC*(z)dz + ai(gi — P(q; + Q—i,0)) fi + (1 _Oéi)/ P(Z,0)dZ
0 0



over g, > 0 taking the production Q_; = Zﬁéi g; of all other Cournot firms j € K as given.
The parameter «; € [0, 1] represents a trade-off between profit and efficiency in producer i’s
objective function. The firm is a pure profit maximizer if o; = 1, whereas it behaves closely
to that of a central planner if «; is close to zero. The organization parameter «; could vary
across firms, for instance depending on whether producers are privately owned or (partially)

state-owned companies. Such ownership constellations are common in electricity markets.

Equilibrium The k first-order conditions
P(Q,0) — MC(gi) = aulgs — £)| P(Q, )| Vi € K (2)

characterize the equilibrium quantities (qi, ..., gi, ..., qx) of the firms with market power, where
the output ¢;(o, f, ) of each firm ¢ € K depends on the demand parameter o, the portfo-
lio f = (f1,..., fi, -, fx) of contractual commitments and the organization parameters o =

(Q1y ey Qi eeey Q).

Equation (2) offers three explanations why a firm with market power would behave competitively.
The first is the intensity of competition. A firm will have a small price-cost margin if the price
is unresponsive to marginal changes in output, i.e. |Pg| is close to zero. The second reason is
forward contracting and/or vertical integration. A firm has little to gain from increasing the
price above the competitive level if it has already sold most of its output up front, i.e. |g; — fi
is small. The third explanation has to do with organization design. A firm will exercise little

market power if it is set up to take consumer surplus into account, i.e. a4 is small.!

The intensity of competition in (2) is defined in terms of the absolute value |Pg| of the slope of
the aggregate residual inverse demand curve, unlike in other strategic settings where the residual
demand curves at the individual level influence the equilibrium markups. This feature allows

us derive a general result concerning aggregate Cournot output (the proof is in Appendix A):

Proposition 1. The effect of a marginal increase in demand o on the total production Q of the

k firms with market power equals
Qs = HP, + H\Py, (3)
i Cournot equilibrium, where

Zk oi(gi—fi)
=1 MC&—O@PQ

Ao, f, o) = (4)

Ek 1
i=1 MCi—a;Pg

!The firm-specific organization parameter a; and net contract position ¢; — f; are sometimes observable, one
can control for them, or they can be estimated. Empirical results reported by McRae and Wolak (2014) can
be interpreted in terms of estimates of «; for the largest firms in the New Zealand wholesale electricity market.
Researchers very seldom have access to such exceptional data and therefore must rely on aggregate measures for
estimating market performance, for instance those we explore in this paper.



measures market conduct, and

Zk’ 1
i=1 MCéfaiPQ

H(U7f7a) = 1 Zk PQ-‘rOéi(Qi_fi)PQQ
~ 22—l MCi-aily

1s strictly positive if the equilibrium is stable.

Proposition 1 shows that a marginal increase in demand has two additively separable effects on
total Cournot output. A direct price effect makes it more profitable to increase output. This is
the first marginal effect in (3). But the change in demand affects also the slope of the inverse
demand curve facing firms with market power. Any change in demand that renders the price
of electricity more sensitive to changes in Cournot output (Pg, < 0) causes firms that exercise
seller power to withhold more output from the market. This is the second marginal effect in
(3). The marginal slope effect Py, is more important if the incentive to exercise market power
measured by the conduct variable A, is positive and large. Instead, the slope effect vanishes

completely under perfect competition, i.e. when A = 0.

Proposition 1 demonstrates that demand shifters ¢ can be used as instruments to measure
market power. In particular, the proposition demonstrates the value of using slope data Fg in
addition to price data p and quantity data @ to assess market conduct. To see this, let o(&)
be a scalar-valued function of Y different demand shocks & = (&1, ...,&y). By this formulation,
price and quantity data alone generally are insufficient to identify market power (Lau, 1982).
It is impossible to identify market power also on the basis of additional slope data if Pg, = 0
because then all variation in Cournot output resulting from variation in demand is independent
of market conduct A. But slope effects can be non-zero even if demand shocks are scalar valued.

Differentiating Py (Q, o) characterized in (1) with respect to o yields:

MC(;Q s DPU T
PQU ?é 0 W + MCqup # Di[l — MCqu}
q g

An often-applied and realistic assumption in the analysis of wholesale electricity markets is that
total demand is exogenous and completely price inelastic for all prices p below a bid-cap p. The
parameter o then measures total demand, D(p, o) = o. All variation in total demand here occurs
as horizontal shifts in the inverse demand curve. In particular, there is no exogenous variation
that causes total demand to rotate around the price: D, =1 and Dys = Dy, = 0. Yet Pg, # 0
if the supply of the fringe is non-linear, M'Cy, # 0. The latter property is empirically verified in
our sample data. In this example, the elasticity of residual supply provides the slope variation

required to identify market power in our model.

Proposition 1 holds generally under Cournot competition. It does not rely on symmetry, nor
does it require any functional form assumptions on total demand D(p, o), on the marginal cost
MCi(g;) of firms with market power or on the supply MC"(g,) of the competitive fringe. Es-

timating market conduct on the basis of @), p and Pgy nevertheless poses problems because A is



Figure 1: Cournot competition with a competitive fringe
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a function of two variables, demand o and forward contracts f, at least one of which fluctuates
over time. To get around this empirical problem, we add more structure to the theory model.
Assume that marginal production costs are linear, MC%(¢q;) = 7; + cq; for all i € K, and that
all firms with market power have the same organization parameter «; = « for all i € K. In this

special case, the conduct variable (4) simplifies to
e!
A= —(Q—F
Q- F),

where F' = Zle fi is the total contract position of all firms with market power. Substitute the
linear marginal cost function into the first-order condition (2), rewrite and sum up over all k
firms to get

Q=-23" w5 EpyiQ-p) ()
This equation establishes the total Cournot quantity ) as a linearly separable function of the
equilibrium price p and the semi-elasticity |Pg|(Q — F), which represents the theoretical founda-
tion for the structural equation (7). This equilibrium relationship and estimated coefficients may
change with other specifications of the marginal cost functions. We perform robustness checks

in Section 3 below.

Implications of Cournot competition Figure 1 is a graphical representation of quantity
competition in a wholesale electricity market. Assume that firms supply Q1 MWh electricity to
the wholesale market at price zero when total demand is equal to D;. The competitive fringe
supplies additional electricity at marginal cost up to the point at which the market clears at price
p1. An increase in demand from D; to Do increases Cournot supply from @1 to Q2 upon which
the fringe covers excess demand at the market-clearing price po. Cournot competition with a
competitive fringe causes the supply function to shift horizontally with changes in the demand

for wholesale electricity.



Typically, wholesale electricity market designs allow market participants to submit price-dependent
bids. Cournot competition is only a special case of more general bidding strategies. The seminal
contribution by Klemperer and Meyer (1989) shows that all supply-function equilibria are located
between the Cournot and Bertrand (pure price competition) outcomes. It would be in firms’ joint
best-interest if everybody placed price-inelastic bids, as this would reduce the price-elasticity of
all firms’ residual demand curves and drive up the price. If there is little demand uncertainty at
the bidding stage, then it is a unilaterally profit maximizing strategy to submit price inelastic
bids, which then is a sustainable equilibrium. Figure 1 provides additional information why firms
would prefer Cournot competition. Here, the price is always set by the marginal cost of the most
expensive unit that produces in equilibrium. Measuring market performance by a comparison of
the equilibrium price with the marginal cost of the marginally accepted unit would lead to the
conclusion that the market was perfectly competitive. Withholding infra-marginal units thus is
a way to mask market power. Finally, technical constraints, such as ramping costs, may create
additional incentives to submit low bids to ensure that the unit (for instance nuclear power) is

accepted during all hours covered in the trading period.

Strategic behavior other than Cournot competition is also consistent with horizontal shifts in
the supply curve. Hortagsu and Puller (2008) consider supply schedules that are additively
separable in prices and forward commitments, S*(p, f;) = B'(p) + n°(f;) for all i € K. Short-
term variations in forward contract commitments then induce horizontal shifts in the equilibrium
supply functions. However, and as Hortagsu and Puller (2008) recognize, such supply functions
need not be consistent with profit-maximizing behavior of individual firms. Moreover, we argue
in Section 3.1 that short-term variations in forward commitments are unlikely to be the source of
the observed variation in our sample data. It is possible that firms with market power supply both
price independent (Cournot) and price dependent bids in a way that is consistent with Figure 1.
We consider this possibility in Appendix A, where we assume that firms supply ¢;+¥ M R"(G; —q;)
MWh electricity to the wholesale market, where ¢§; is firm 4’s total production. The resulting
equilibrium condition is essentially the same as in equation (2). In particular, the incentive
to exercise market power depends on the aggregate slope |Pg|. Hence, Proposition 1 can be
extended also to strategies that encompass price-dependent bids. From the results in Klemperer
and Meyer (1989), it follows that Cournot bidding is the least competitive equilibrium consistent
with unilateral profit maximization. From that perspective, price-cost margins estimated under
the assumption of Cournot competition should be interpreted as upper bounds to the markups

in the wholesale market.

3 Empirical analysis: The Nordic wholesale electricity market

Institutional background The national electricity markets in the Nordic countries were re-
structured one after the other during the 1990s and integrated to create a common wholesale

electricity market for Denmark, Finland, Norway and Sweden. This Nordic market was later ex-



panded to include Estonia, Latvia, and Lithuania. Full market coupling with continental Europe

was recently implemented.

The main trading platform for physical energy is the day-ahead market, FElspot, operated by
the Nordic power exchange, Nord Pool. Elspot trades more than 80 percent of all electricity
produced in the region, and is the market we analyze in this paper. It works as follows. Every
day at noon, market participants submit bids to Nord Pool for each of the 24 hours of the
following day. Each participant can submit hourly bids consisting of at most 62 quantity/price
pairs up to a bid cap.? Nord Pool connects all quantity/price pairs by linear interpolation to
create hourly system supply and demand curves. The intersection of these curves is the aggregate
market-clearing price, the so-called system price.> The system price is calculated by setting all
transmission capacity within and between Denmark, Finland, Norway and Sweden to infinity.
Trade flows between the Nordic region and Germany/the Baltic countries are counted either as
price inelastic supply (imports), or as price inelastic demand (exports). Net exports account for
6 percent of the total cleared volume. In the empirical analysis, we use the system price as the

price variable.

The equilibrium price that market participants meet equals the system price if there are no
network constraints in the system. But if the transmission capacities reported by the system
operators are insufficient to handle the trade flows necessary to clear the market at the system
price, then Nord Pool is obliged to recompute the market. Elspot can then be partitioned into as
much as 15 different price areas with local market clearing, the geographical borders of which are
illustrated in Figure B3. The clearing procedure applied by Nord Pool implies that the slope of
the residual demand function facing any given firm is always well defined for every hour, unlike
in many other electricity markets. The price area configuration itself may change over time. For
instance, Sweden went from being one single price area, to having the four price areas depicted
in Figure B3, in November 2011. The system price is the reference price for the main financial
products. Thus, if a producer has sold a futures contract for 1 MWh at a price of 10 EUR
and the day-ahead price is realized at 9 EUR/MWh, the producer receives a payment of 1 EUR
from the buyer of the contract. Vertical integration has a similar effect, although retail contracts
are physical instead of financial. Primarily, the firms’ hedged power consists of futures traded
on the Nasdaq Commodities trading platform and retailing obligations to deliver power to end

consumers at predetermined prices.*

2The bid cap was 2000 EUR/MWh in our sample, but increased to 3000 EUR/MWh in 2015. Historically,
prices have never risen to the level of the bid cap.

3Participants also have the possibility to submit block bids in addition to the above regular bids. A block
bid differs from a regular bid in two respects. First, it is tied across two or more consecutive hours. Second, a
block-bid is either accepted or rejected in full. Nord Pool applies an iterative algorithm to find a combination of
block bids that maximizes total market surplus. The volume of accepted block bids enters as one single inelastic
bid in the computation of the hourly market clearing system price. On average, 5 and 1 percent respectively of
the accepted sell- and buy volumes in our sample data are block bids.

4See Wolak (2007) for an empirical examination of the competitive effects of forward contracting in the Aus-
tralian electricity market, and Bushnell et al. (2008) for the competitive effects of vertical integration in three
electricity markets in the U.S.



Table 1: Production mix in the Nordic market

Production type Percentage of production
Hydro 49
Thermal (non-nuclear) 19
Nuclear 27
Wind 5

Note: Market shares by energy source for the Nordic
market during 2011-13.  Source: Nordreg (2011,
2013a,b).

Table 2: Market shares of the largest firms

Firm Percentage of production
Vattenfall 19
Statkraft 14
Fortum 12
E.ON 7

Note: Market shares of total Nordic pro-
duction for the largest firms 2011-13.
Source: Nordreg (2011, 2013a,b).

The production mix for the whole market is depicted in Table 1. The two major energy sources are
hydro power (49 percent) located in Norway and Sweden and nuclear power (27 percent) located
in Finland and Sweden. The market is fairly concentrated, with market shares displaying little
annual variation during the sample period. The firm with the largest share of total production
is the Swedish state-owned firm Vattenfall (19 percent), followed by the Norwegian state-owned
Statkraft (14 percent). The third largest producer is Fortum (12 percent), which has the Finnish
state as the majority owner, followed by the German private energy firm E.ON (7 percent).

Data System supply and demand curves, net exports, volumes of accepted block bids, and
demand forecasts have all been downloaded from the Nord Pool FTP-server.® Based upon this
bid data we can exactly reproduce the final step of Nord Pool’s clearing algorithm and replicate
all hourly system prices in our sample. Figure 2 depicts an example of a pair of supply and
demand curves. The hourly system supply and demand curves contain around 600 quantity/price
pairs each. The demand curve is highly inelastic, except at low prices. The supply elasticity
varies more. Nuclear and hydro power provide base load production, and are usually supplied at
low prices. As demand increases, more thermal production is dispatched and the supply curve
becomes steeper. As a result, the supply elasticity is generally lower in peak (08:00-20:00) than
off-peak hours. The average price during peak hours is 30 percent higher than the average price
during off-peak hours, which is comparable to the price difference in the winter compared to the

sumimer.

5 Access to the Nord Pool FTP-server is subject to a subscription fee. But most of data are also available free-
of-charge for manual downloads at the Nord Pool downloads center (www.nordpoolspot.com/download-center/).
Bid data at individual firm or area levels are currently (September 2019) not publicly available.
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Figure 2: System supply and demand
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Note: System supply and demand functions on Elspot hour 14:00-15:00, January 19, 2013.

Table 3: Summary statistics

Mean Sd Min Max
Cournot quantity 21.6 2.9 13.6 31.7
Equilibrium quantity 35.9 7.3 19.9 58.2
Price (p) 38.8 14.3 1.4 225.0
Semi-elasticity (|Po|(@ — F)) 21.5 1047 0.0 22043
Demand forecast (o1) 43.8 8.9 25.8 69.0
Wind output (o2) 2.3 1.5 0.0 8.6
Temperature 8.9 7.4 -15.4 30.2

Note: Quantities are expressed in GWh, price in EUR/MWh, and
temperature in degrees Celsius. N = 26304.
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Table 3 reports summary statistics for the sample. We define the Cournot quantity as the
system supply function quantity at 5 EUR/MWh that is not accounted for as imports. Such
bids will in practice always be accepted because the daily system price exceeded 5 EUR/MWh
in 99.6 percent of all hours in the sample. We only want to include strategic Cournot bids, and
therefore subtract bids that are likely to come from wind power. Since the marginal cost of
wind power is zero or even negative (because of the production subsidies), we assume that wind
power is supplied inelastically. When regressing the Cournot quantity (prior to netting out wind
power) on the wind power variable, the estimated coefficient is 0.99 and precisely measured (the
standard error is 0.016), consistent with this assumption. The mean Cournot quantity is 21.6
GWh, accounting for 60 percent of the mean cleared equilibrium quantity. Figure B4 depicts
the Cournot quantity and the cleared volume as a function of time, demonstrating that the two

variables follow each other closely, with a correlation of 0.62.

To compute the slope of the residual demand function facing the Cournot players, we take a
quantity window of 0.5 GWh on each side of the market clearing point and interpolate prices
at these points, to obtain two quantity /price pairs (Q1,p1) and (Q2,p2). As described above,
this interpolation procedure is identical to the clearing algorithm used by the auctioneer (given
the volume of accepted blockbids and net exports). The (absolute) slope is then computed as

|Pg| = | 51:752 . We also computed the slope by instead using windows of 0.25 and 1 GWh

respectively. The correlations between all slope measures are above 0.9, confirming that the size
of the window is not crucial. The mean slope is 2.59, meaning that a one GWh contraction of the
Cournot quantity will result in a 2.59 EUR/MWh increase in the equilibrium price. The mean
of the corresponding elasticity, \PQ]% (where @ is the Cournot quantity and P is the equilibrium
price), is 1.5. The mean of the corresponding semi-elasticity, i.e. |Pg|(Q — F'), is 21.5. Since
this variable is highly skewed with a few exceptionally large outliers, we also conduct sensitivity

analysis by gradually removing all observations above the 96" — 99" percentile.

The mean of the demand forecast is 43.8 GWh, around 20 percent above the Elspot equilib-
rium quantity. This difference occurs because some of the electricity consumed is traded outside
of the day-ahead market. The demand forecast is published by the national transmission sys-
tem operators (TSOs) at 11:00 the day before delivery, whereas bids can be submitted until

noon.

Wind output has been downloaded from the Swedish and Danish TSOs, Finnish Energy (an
umbrella organization for Finnish energy producers), and Statistics Norway. Statistics Norway
only publishes wind output on a monthly basis. In the baseline analysis, we assume that the
within-month variation in Norwegian wind output is directly proportional to the wind output in
the rest of the Nordic region. We also perform a robustness test where we instead keep Norwegian
wind production constant during each month. Since Norwegian wind production accounts for
less than 8 percent of total wind output, the choice of method should only have a trivial impact
on the results. The Danish TSO also submits day-ahead wind power forecasts, which perhaps

is more appropriate in our context since bidding is done the day before delivery. Therefore we
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also conduct sensitivity analysis by replacing (Danish) observed wind power by its corresponding

day-ahead forecast.

Temperature data were provided by the Swedish Meteorological and Hydrological Institute. In
contrast to regions with milder climate, air conditioning is not used in the Nordic region, so the
relationship between temperature and demand is always negative. The hourly realized tempera-
ture is measured in Stockholm, which is the largest metropolitan area in the region and located

approximately at the centroid of the Nord Pool market.

We do not have any direct information about firms’ forward obligations at each point in time.
Instead, we base our estimate on the yearly hedging ratios reported by several of the large firms in
their annual reports (Vattenfall, 2013; Fortum, 2013; E.ON, 2014). The hedging ratio is hedged
energy measured as a share of the expected physical output for the upcoming year. Hedging
ratios differ only slightly across firms and years. To compute the relevant estimated volumes
of forward obligations, we sum the observed Cournot quantities each year and multiply by the
mean reported hedging ratio (which is 70 percent). Using this figure, we allocate contracts
within each year. The most liquid product traded on the Nasdaq platform is yearly futures,
where the seller commits to delivering 1 MW electricity each hour of the year. In the main
specification we assume that Cournot firms have signed enough of these contracts so that their
net position is non-negative for the hour with the lowest Cournot bid in the sample (which is 13.6
GWh). This means that 90 percent of all forward obligations are covered by yearly contracts.
We assume that the remaining ten percent are load-following retail contracts. This figure may
appear comparatively low, but retail prices are unregulated in the Nordic region and are often
set as a markup over the mean day-ahead price for a certain period. Hence, any price increase in
the spot market is passed on directly to consumers. We also perform robustness tests by varying

both the hedging ratio and the share covered by load-following retail obligations.5

3.1 Inelastic bids are the main source of supply variation on Elspot

Bidding on Elspot features precisely those horizontal supply shifts in Figure 1 that are associated
with Cournot competition. Figure 3 displays a sample of hourly bid curves of a representative
week on Elspot that illustrate this behavior. Cournot bids account for the majority of accepted
bids and also represent the main source of supply wariation on Elspot. In fact, the clearing
prices within any given week can be accurately replicated using static representations of the
elastic portion of the supply functions, so that the only variation comes from Cournot bids
(including wind power). We construct these approximations by first fitting the supply functions
in increments of 0.1 EUR/MWh. After netting out the Cournot quantity associated with each
bid, the mean weekly bid quantity is computed for each price level. In the last step, we fit

5A hedging ratio of 70 percent could be an upper bound to forward commitments as firms have an incentive
to overstate their positions. Willems et al. (2009) estimate 50 percent hedging in an analysis of the German
wholesale electricity market. The symmetric duopoly model by Allaz and Vila (1993) generates 50 percent
hedging in equilibrium.
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Figure 3: Horizontal supply shifts on Nord Pool Elspot
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Note: Aggregate supply bids on Elspot for a sample of hours March 1 — 7, 2013.

the supply functions using a lowess smoothing filter. We interpret this supply function as an
approximation of the marginal cost curve of the competitive fringe for that week. Figure 4
depicts an example of such a supply function, together with the data points used to construct
it. We then add the Cournot bids and wind power output to each weekly supply function and
re-clear the market. The predicted prices are very close to the observed prices, with a median
within-week correlation of 0.96. Figure 5 displays the observed versus predicted prices for one
sample week. Hence, even though we use the observed hourly elastic supply functions of the
competitive fringe to compute the residual demand functions facing the Cournot producers, this
exercise demonstrates that the essential within-week supply bid variation comes from inelastic
bids.

Horizontal shifts have previously been found to be an important source of supply variation also
in other wholesale electricity markets, for instance the Midwest market (Mercadal, 2016). Figure
B2 depicts a set of supply functions in that market for one firm, that appear to be parallel shifts.
Hortagsu and Puller (2008) argue that variation in short-term forward contract obligations can
explain such horizontal supply shifts. The financial products most common in the Nordic market
are standardized forward contracts that clear against the monthly, quarterly, or yearly system
price. Due to negligible liquidity (Nordreg, 2016), there is not enough variation in shorter-term
forward contracts in the Nordic region to explain the large variation in supply shifts within

months.

Although consistent with Cournot competition, horizontal supply shifts are not direct evidence of
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Figure 4: Constructing a representative supply function for one week
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Note: A representative supply function on Elspot for one week, including the raw data consisting of each bid
during that same week (excluding Cournot bids).

firms with market power bidding in Cournot fashion on Elspot. But regardless of the underlying
strategic interaction, the key to estimating market performance on Nord Pool lies in understand-
ing the variation in the supply of inelastic bids, because the observed variation in elastic bids
is close to negligible. Given the additional data requirements necessary for uncovering the finer
details of strategic interaction in the Nordic electricity market, we maintain that the theoretical

analysis in Section 2 provides a useful foundation for an empirical analysis of inelastic bidding
on Nord Pool.

3.2 Estimation

In light of equation (6) following Proposition 1, we want to estimate

Qi = Bo+ Bipi + B2l Pol(Qr — Fi) + Bs X[ + vy + &, (7)

where index t refers to the sample hour. The (7 estimate measures the effect of an increase in
the wholesale price p. The 5 estimate measures the market power effect on Cournot output
working through the semi-elasticity of the net-of-forward market obligations inverse demand
curve. In the below specifications, we simply refer to |Pg|(Q — F') as the "semi-elasticity". The
vector X} controls for exogenous supply shocks, and vy is a vector of time fixed effects. &; is the

econometric error term, capturing both optimization errors and unobserved supply shocks, such
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Figure 5: Observed versus predicted prices using representative weekly supply functions
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Note: Observed versus predicted prices on Elspot for one week. When determining the predicted prices, within-
week variation in the supply bids comes from inelastic Cournot bids (including wind power) only.
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as plant failures. Estimated standard errors are robust and clustered by week-of-sample.

Fixed effects As electricity consumption is cyclical, we acknowledge that each observation t
belongs to a certain hour of the day h, day d, and sample week w. In the main specification
we therefore add fixed effects for each hour-of-the-day, day-of-the-week, and week-of-sample. We
also estimate the model by substituting the week-of-sample fixed effects by a set of day-of-sample
fixed effects.

Controls As a supply control we add temperature, since it may have an effect on the failure

frequency of certain power plants.

Instruments Due to reverse causality, the model cannot be estimated using OLS. Contracting
Cournot output will always have a positive effect on the price regardless of the shape of the
residual demand function. When the residual demand function is convex, there is also a positive
effect on the (absolute) slope, while the opposite is true when the residual demand function is
concave. Proposition 1 shows that the marginal effect of an increase in the demand shifter o
is additively separable in price and slope, so it is convenient to use demand shifters as instru-
ments. Since we have two endogenous variables, we need two instruments that are not perfectly

correlated, o1 and g2. We use forecasted demand and wind power output.

Forecasted demand has previously been used as an instrument for price by e.g. Kim and Knittel
(2006). The demand forecast does not take price into account. Otherwise, the exclusion re-
striction would be violated since the demand forecast would suffer from reverse causality (since
variations in the Cournot quantity affect the price and thereby also demand). Instead, it is de-
termined by indicators of weather and economic activity. The demand forecast is a very strong
determinant of the actual quantity cleared in the spot market with a within-year correlation
of above 0.95, confirming that the short run price elasticity of demand is very low. Another
presumption is that the Cournot quantity responds to the demand forecast only through its
effect on the price and the slope. That is, firms’ mapping of how variations in demand affects
equilibrium outcomes has to be accurate and cannot not follow some simplified rule of thumb.
Since the rules of the day-ahead auction have not changed notably since the turn of the century,
this means that there have been more than 100 000 similar auctions prior to the ones analyzed
in the present study. Hence, participants’ should have close to perfect knowledge of how demand

affects equilibrium outcomes.

Wind power is essentially negative demand, as discussed in the data section above. It is impor-
tant that all bids coming from wind power are netted out when computing the Cournot quantity.
Otherwise, the effect of wind output on the Cournot quantity could be due to a positive corre-

lation between the observed and unobserved wind output.

Marginal cost functions In the main specification, we assume that firms with market power
have linear marginal cost functions, but also provide sensitivity analysis with regard to the

curvature of these marginal cost functions.
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Table 4: Results from the main specification

v OLS
(1) (2) (3) (4) (5) (6)
Price (p) 0.84% %% 0.84% % 0.97*%x  —0.011xx  —0.01T*xx —0.011xxx
(0.0968) (0.0979) (0.127) (0.00488)  (0.00467)  (0.00334)
Semi-elasticity (|Pg|(@ — F)) —0.066%xx  —0.066%xx —0.073%xx  0.0027**x  0.0028*kx  0.0022sk%x%
(0.0109) (0.0109) (0.0114) (0.000296) (0.000289) (0.000188)
Temperature —0.014 0.038 —0.079xxx —0.0033
(0.0317) (0.0309) (0.00881)  (0.00778)
Lerner index 3.74 3.77 3.63
Fixed effects Week Week Day Week Week Day
Cragg-Donald F-stat 136.9 137.6 63.2
N 26304 26304 26304 26304 26304 26304

*p < .10, ¥ p < 0.05, *** p < 0.01

Note: Results from the baseline specifications. Columns (1)-(3) depict the IV-estimates and columns (4)-(6)
depict the corresponding OLS estimates. Hour-of-the-day and day-of-the-week fixed effects are included in all
specifications. The price and the semi-elasticity are instrumented using (the square of) forecasted demand
and (the square of) wind output. Standard errors are robust and clustered by week-of-sample.

3.3 Results

The results from our main specifications are in Table 4. Since the relationship between the
instruments and the price is non-linear, we square the instruments before estimating the first
stage regression. The Cragg-Donald F-statistics are consistently very high throughout all spec-
ifications, confirming that instruments are strong.” In specification (1), we estimate the model
without controlling for temperature. Both variables are measured precisely and have the ex-
pected signs. A higher price is associated with an expansion of Cournot output, consistent with
increasing demand. A larger semi-elasticity | Pg|(Q —F') leads to a contraction of Cournot output,
consistent with the exercise of market power. We add the temperature variable in specification
(2).% In column (3), we include day-of-sample fixed effects. The magnitudes of the effects are

only trivially affected by these modifications.

We reject the null hypothesis of perfect competition because the estimated [y coefficient is
negative and statistically significant in each specification (1)-(3). These negative estimates are
consistent with firms exercising market power by withholding more production from the day-

ahead market when day-ahead prices are more sensitive to reductions in output. Under perfect

"First-stage results are depicted in Table B1 in Appendix B. There, the demand forecast has a positive and
statistically significant effect on both the price and the semi-elasticity in all specifications. The opposite is true
for wind output.

8We would have liked to control also for hydro inflow because we expect a higher availability of the water
resource to affect output. Moreover, such data are exogenous because they depend on precipitation and snow
melting. Unfortunately, inflow data are published only on a weekly basis in the Nordic market, and would therefore
be picked up by the week-of-sample fixed effects in Table 4. We did estimate a model with inflow as an explanatory
variable and with month-of-sample fixed effects. The coefficient on the inflow variable was economically and
statistically significant, but the coefficients on the price and the semi-elasticity were only trivially different from
the estimated coefficients when we did not control for inflow. This result leads us to believe that the estimated
coefficients in Table 4 would be robust to the inclusion of detailed hydro inflow data.
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competition B2 would be insignificantly different from zero. Our model delivers in the parametric
case a structural estimate of market performance instead of being a purely diagnostic test of
whether the market is competitive, because we can use the functional form assumptions to
quantify the implied price-cost margins. Sum up the first-order condition (2) across all k firms
with market power to get

P L MC'(a:) _ a|Pol(Q—F)

b= : o &)

under the assumption that «; = « for all ¢ € K. The left-hand side of this equation is the Lerner
index, which is a standard measure of market performance. We calculate it here as the difference
between the price and the & Cournot firms’ average marginal cost, measured as a percentage of

the price. We have the equilibrium price p and the semi-elasticity |Pg|(Q — F') for every sample

hour. The additional information we need to be able to compute L is 7. If we have estimated
the coefficients in (7) correctly, then 51 = % and (8o = —%%; see equation (6). Substituting these
coefficients into (8) produces
B |Pal(@~F)
B p

We report the sample mean of the Lerner index for each of the IV specifications in Table 4. The

mean Lerner index is consistently measured around four percent.

Columns (4)-(6) of Table 4 depict the corresponding OLS estimates of the three first specifica-
tions. The price and semi-elasticity coefficients both change signs in all specifications, presum-
ably because of reverse causality as discussed above. Consequently, the OLS results do not allow

economically meaningful interpretation of the implied Lerner indexes.

An average Lerner index of four percent suggests that the costs to consumers of market power
and the associated efficiency losses are quite small in the Nordic market. However, the average
markup does not convey the full picture. In a market with price inelastic total demand, the
inefficiency of market power arises from the replacement of relatively cheap infra-marginal out-
put by expensive marginal production. By the convexity of the marginal cost curve of fringe
suppliers, the inefficiency is larger if firms vary more in the extent to which they exercise market
power. Conversely, markets operate more efficiently if price-cost margins are more stable, all else
equal. Price-cost margins in wholesale electricity markets typically display a substantial degree
of variability. Figure 6 illustrates this point by displaying, for baseline specification (2) of Table
4, the weekly moving average of the Lerner index across the sample period. It indicates that
firms exercised market power to a limited extent for prolonged periods of time, interrupted by
bursts of market power when price-cost margins rose dramatically. During one week in 2012, the
Lerner index was nearly 50 percent. Such peaks typically occur in situations when the demand
for electricity is very high so that the wholesale price is very sensitive to changes in output, |Pg|
is large, and firms’ forward market coverage is small, |@ — F| is large. The three highest peaks
in Figure 6 happened during three of the four weeks with the lowest temperatures in the sample.

These results suggest that the efficiency costs of market power in the Nordic market can be large
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Figure 6: Implied Lerner index over time
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Note: This figure depicts the Lerner index over time under baseline specification (2) in Table 4. Values have been
smoothed using a weekly moving average filter.

even if price-cost margins on average seem modest.

3.4 Sensitivity analysis

We perform sensitivity analysis in a number of dimensions. The associated figures and tables

are all in Appendix B.

Marginal cost functions Consider more general marginal cost functions than the linear spec-
ification. Assume that marginal cost functions are symmetric and of the form MC(¢;) = ’y—i—cqf,
where 6 € [1,2]. The main specification assumes §# = 1. By way of the equilibrium relation-
ship , , ,
Q= —%7 + ]%p - %%IPQ!(Q - F),

we re-estimate the structural equation (7) in baseline specification (2) from Table 4 with Q as
dependent variable. Results are depicted in Figure B5 for different values of #. As seen in the
figure, both the price and semi-elasticity coefficients are sensitive to the assumed curvature of
the marginal cost function. But the estimated markups are robust because they are calculated
on the basis of the ratio —% of the estimated coefficients. The markups remain fairly stable at

around 4 percent for all values of 6.
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Wind power definition We estimate our baseline specifications (2)-(3) from Table 4 using
alternative definitions of the wind power variable. Results are depicted in columns (1)-(4) in
Table B2. First, we estimate the model using monthly Norwegian wind output directly instead
of redistributing output within each month. Second, we replace Danish wind output by the
corresponding day-ahead forecast at the time of bidding, to reflect that bidders do not have
perfect information about day-ahead wind conditions. The corresponding data for Sweden,
Finland and Norway are not available, but Denmark accounts for the largest share of wind
power in the Nordic region. In both cases, we compute the Cournot quantity by withdrawing
the corresponding wind power variable. In all specifications, the implied Lerner indexes are only
marginally different from the corresponding figures from the baseline specifications. First-stage
results are displayed in columns (1)-(4) and (7)-(10) in Table B3. Also here, coefficients are only

trivially different from the corresponding baseline figures.

Transformation of instruments We also estimate our baseline specifications by letting in-
struments enter both linearly and as quadratic transformations. Results are depicted in columns
(5)-(6) in Table B2. The (absolute) magnitude of both the price and the semi-elasticity coeffi-
cients are now smaller compared to the baseline estimates. The corresponding Lerner indexes
are also smaller, at between one and two percent instead of four. First-stage results are depicted
in columns (5)-(6) and (11)-(12) in Table B3.

Sensitivity to outliers Figure B6 maps the predicted semi-elasticities (triangles) from the
first-stage regression on the vertical axis against the Cournot outputs on the horizontal axis.
The distribution of semi-elasticities is highly skewed with a few large outliers for large Cournot
quantities. To gauge their effect on the estimated coefficients in Table 4, we also estimate the
model without outliers. The circles in Figure B6 are the predicted semi-elasticities from a first-
stage regression based on the sub-sample of semi-elasticity observations below the 98" percentile.
There is a positive unconditional correlation between the two variables both in the full sample
(the dashed regression line) and the limited sample (the solid regression line), although the
regression line is flatter in the limited sample. The positive relationship is expected given that
semi-elasticities are higher when demand is higher because of the convexity of the inverse residual
demand curve. However, conditional on the price and the other control variables, correlations
are negative for both samples: Figure B7 reports the re-estimated coefficients in specification
(2) of Table 4 when removing observations above the 96" to the 99" percentile of the semi-
elasticity variable. As additional outliers are removed, the estimated spot price coefficient Sy
becomes more positive and the estimated semi-elasticity coefficient B2 becomes more negative.
Hence, the output of firms with market power responds more positively to price changes and
more negatively to changes in the semi-elasticity when market circumstances are less extreme.
The second effect is larger in magnitude, so the average Lerner index increases when more and
more outliers are removed. For instance, the mean Lerner index is estimated at around 9 percent

when all observations above the 98" percentile are removed, but increases to 16 percent for the
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96" percentile sub-sample. This is four times larger than in the full sample specification.

Theory predicts firms to exercise a lot of market power when the semi-elasticities are extremely
high by withdrawing large quantities from the market relative to the competitive solution. The
empirical results in Figure B7 suggest that firms do not exploit market power to its full extent
in such circumstances. We see two main reasons why firms with market power would not fully
respond to extreme incentives. First, by the rarity of these events firms may not always be
able to identify beforehand when the events will occur and therefore cannot optimally exploit
them in the spot market. Second, firms would draw the attention of competition authorities
and other market monitors by taking full advantage of market power also in extreme events. If
firms behave in the above manner, they exercise more market power in normal situations and
less market power in extreme situations. The variability in the Lerner index plotted in Figure 6
then is smaller than predicted by the baseline model. Compared to the baseline estimations in
Table 4, consumers would probably be worse off by an increase in the average price-cost margin
whereas the inefficiency of market power would be smaller by a reduced variability in price-cost

margins.

Hedging portfolios Figure B8 depicts results when we vary the assumed hedging ratio be-
tween 0 and 70 percent while keeping the share of load-following obligations constant at 10
percent. The estimated markups are decreasing in the hedging ratio. When setting the hedg-
ing ratio to zero, the estimated Lerner index is close to five percent, i.e. about 25 percent
higher than the baseline estimate, demonstrating the importance of taking forward positions
into account when estimating firm behavior. Figure B9 depicts results when varying the share
of yearly futures in the firms’ hedging portfolio between 50 and 90 percent (where 90 percent
is the baseline). Throughout this sensitivity analysis, the aggregate hedging ratio is fixed at 70
percent and all remaining contracts are load-following. From the figure, we see that the esti-
mated Lerner index is decreasing in the share of yearly futures, again varying between four and

five percent.

4 Conclusion

We analyze in a theoretical model wholesale electricity markets characterized by Cournot com-
petition and formulate an empirical test based on aggregate bid data to evaluate market perfor-
mance. Cournot competition is consistent with horizontal shifts in bid curves observed on the
day-ahead market, Elspot, of the Nordic wholesale electricity market. We apply the method to
Elspot for the sample period 2011-13 and reject the null hypothesis of perfect competition in
all specifications. Consistent with the exercise of market power, Cournot output is compara-
tively smaller when the wholesale price is more sensitive to changes in production. The baseline
specification, based on the full sample, estimates an average price-cost margin (Lerner index)

of four percent. This estimate is robust to assumptions about the curvature of the marginal
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cost functions and firms’ hedging positions. The average estimated price-cost margin increases
when we sequentially remove outliers with extremely high semi-elasticities of demand. For in-
stance, the mean Lerner index is estimated at around 9 percent when all outliers above the 98"
percentile are removed. Alternative functional form assumptions on the instruments, i.e. wind
power production and forecasted demand, reduce the average estimated price-cost margin down
to a minimum of one percent. The sensitivity of price-cost margins to modifications in certain
dimensions of the empirical specification implies that point estimates should be interpreted with
care. Under the assumption that firms engage in quantity competition, the baseline specification
produces a reasonable estimate of the average price-cost margin in the sense that it is not very

close either to the minimal or maximal estimates emerging from the sensitivity analysis.

The method outlined in this paper can be used to evaluate competition also in other wholesale
markets where only aggregate bid data are available, provided strategic interaction can appropri-
ately be described in terms of Cournot competition. An interesting candidate for such analysis

is the European Power Exchange FPEX.

Because of data limitations, we have only been able to test the model on aggregate (system level)
data for the Nordic market and under simplified assumptions about how firms bid their produc-
tion into the market. We expect local variation in supply conditions and market concentration
to yield local variation in market performance depending on the country and price area. The
intensity of competition will also depend on bidding strategies. In particular, markups are likely
to be smaller if firms do not engage in Cournot competition. Bid data at price area level would
be highly valuable in increasing the precision of empirical analyses of competition in the Nordic
market. Individual level bid data would render it possible to model in greater detail strategic
interaction among producers on Nord Pool. For these reasons, we strongly recommend Nord

Pool to release more granular bid and supply data.
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Appendix A: Proof of Proposition 1

A total differentiation of the k equilibrium conditions in (2) yields Adq = bdo, where A is a

k x k symmetric matrix with diagonal element i equal to

OéiPQ — MC;

l+a; =1+ ,
’ Po + ai(a; — fi)Poo

and all off-diagonal elements of A are equal to 1, dq = (dq1,- - ,dg;, - ,dqr)’, and bis a k x 1

vector with element i equal to

PO' + ai(Qi - fi)PQO'

b, = — .
Py + (g — fi)Pog

To evaluate the determinant |A|, subtract the last column in A from each of the other k£ — 1
columns, multiply the resulting matrix by (£&,---, %5 ... —# 1)’ and add all the first £ — 1
1 a; Ap—1

rows to row k to obtain a triangular matrix with diagonal element k equal to ax(1 + Z?Zl ai)
J

and all other diagonal elements equal to a;. We can then solve for
1T kol
Al=TTa0+ 3 )

To find the effect of do on dg;, we must find also the determinant |A;| of the matrix A; resulting
from substituting b for column ¢ in A. Subtract the last column in A; from each of the other

k — 1 columns, multiply the resulting matrix by (‘;—’;, T I aZfl ,1)" and add all k£ — 1 rows

except ¢ to the last row to get

G 0 =) 00 o
0 o0 ... b — 1 00 1
a:: (bp—1 — 1) oo 0 a aZil
ko bj—1 k
ak (D4 o ) - 0 0 a(l+ Zﬁéz%)
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Multiply this matrix by (1,--- 1, &L 1=bi .. Gkt 120 klfbi )’ and add row i to

Voap bip1—10 Voap b1 —1? ax (> ,;é.bj_l_
jF#1 a;
each of the last k — i rows to get the triangular matrix ’
ap 0 --- Z—’f(bl—l) - 0 0 Z—’;
0 0 b —1 0 0 1
1—b; 1-b;
0O 0 --- 0 R A e bk—l_llj_l
4+) 7
0 0 0 0 0 (1-1b) Z”f’“ﬂ +1
Zk bi—1
AT

We are now in the position to solve

by kb — b
Al ==+ 15195

a; Jj=1 a;a;

) dq; _ |Ai]
By Cramer’s rule, 5t = Al Hence,

0, = Zk Jg; _ Zk |A;] _ Zi:h;. +Zi:12j:1 aiaj] _ Zz‘:laﬁ
7T =190 i=1[A] 143k, L 1+, 4
J 1

Substituting the expressions for a; and b; into @, above produces (3)-(5).

A particular Cournot equilibrium is stable only if (Dixit, 1986):

. ko Py +ailgi — fi)Pog
—DME, [Py — MCI[1 — ) .
(=D)*ITi=i[0iPg il Zizl MCy — i P 170

By a;Pg < M C;, this condition is equivalent to the denominator of H defined in (5) being strictly

positive. The numerator of H is strictly positive. Hence, H > 0 in stable equilibrium.H

Price-dependent bids Proposition 1 is based on the assumption that firms with market power
bid all their production inelastically into the market. To check the robustness of the proposition
to this assumption, we now consider a more general model in which firms also submit price-
dependent bids in a way that is consistent with horizontal shifts of the equilibrium supply curve.
Assume that all firms i € K supply ¢; inelastically into the market, but also submit a bid-curve
YMC"(G; — qi), where 1 > 0. The baseline case is for 1) — oo. If the wholesale price equals p,
then quantity ¢; produced by firm i is given by ¢; = ¢; + (M C”’)_l(%). Assume for simplicity that
total demand is price-inelastic and given by o. If we now define D(p,0) = 0 — k(MCT)*l(%),
then the inverse demand curve for the Cournot quantity ¢ = Z?Zl q; is still given by P(Q,0).

The inverse demand slope becomes Pg = —ﬁM Cy-
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Firm ¢ maximizes

, 1 , ) ((Mr)’l(iP(fI#Q—i,U))-HID ;
0uP(d} + Qi) (M) (gl + Qi) ) - / MC(2)dz
(M) P(g+Q—1.0)+d)+Q—s
tailgi — P(d,+ Qs o)) fi + (1 — ) /0 P(Z,0)dZ

over its Cournot quantity ¢;. The k first-order conditions

Y+ k

P(Q,0) - MCZ(QAZ) = (G — fi)m‘PQ(Q,U)’ Vie K

are essentially the same as in equation (2). In particular, the incentive to exercise market power

depends on the aggregate slope |Pg| multiplied by a constant Jfgﬁl.
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Appendix B

Figure B1: Horizontal supply shifts in Germany
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Note: Aggregate supply bids in bidding area Germany of the day-ahead market EPEX during one day. Source:
EPEX.

Figure B2: Horizontal supply shifts in MISO
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Note: Supply bids for one firm over one month in MISO. Source: Mercadal (2016).
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Figure B3: Nord Pool price areas after November 1, 2011
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Note: Geographical borders of the price areas in the Nordic region after November 1, 2011. Source: Nord Pool.

Figure B4: Cournot quantity and cleared volume
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Note: Cournot quantity and total cleared volume as a function of time.
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Figure B5: Marginal cost sensitivity
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Note: The top-left figure depicts estimated price coefficients under baseline specification (2) for different marginal
cost assumptions. Marginal cost is assumed to be of the form MC*(q;) = v + cq?, where 6§ € [1,2]. The
corresponding semi-elasticity coefficients are depicted in the top-right figure, and the corresponding Lerner indexes
are depicted in the bottom figure. Vertical lines are 95 percent confidence intervals.
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Figure B6: Predicted semi-elasticity and Cournot quantity
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Note: This figure depicts the predicted semi-elasticity from the first stage regression when including the full
sample (triangles), the corresponding Cournot quantity, and the corresponding regression line (dashed). Also
shown are the predicted values excluding all semi-elasticity observations above the 98" percentile (circles) and
the corresponding regression line (solid).
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Figure B7: Sensitivity to outliers
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Note: The top-left figure depicts estimated price coefficients under baseline specification (2) when removing all
observations above the 96" — 99" percentile of the semi-elasticity variable. The corresponding semi-elasticity
coefficients are depicted in the top-right figure, and the corresponding Lerner indexes are depicted in the bottom
figure. Vertical lines are 95 percent confidence intervals.
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Figure B8: Hedging ratio sensitivity

|

.9
1
-.02
1

85
1
-.04
1

Estimated spotprice coefficient
8
1
Estimated semi-elasticity coefficient

©
o. -
0 '
R
~ 3
T T T T T T T T v T T T T T T T T
Q N (19 %0 D‘Q (,_)0 Q)Q /\Q Q N (79 %0 D‘Q (,_)0 Q)Q /\Q
Hedging ratio (percent) Hedging ratio (percent)
@ |
<
59 4
s ¥
k=
s
c<
(7}
-
3N
= <
£
A
© |
[32)

T T
Q N Q/Q “oQ b9 (,_)0 Q.,Q /\Q
Hedging ratio (percent)

Note: Estimated coefficients and markups under different assumptions about the mean hedging ratio.
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Figure B9: Sensitivity to relative share of yearly versus load-following forward obligations
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Note: Estimated coefficients and markups under different portfolios of yearly vs. load-following forward obliga-
tions. The mean hedging ratio is 70 percent for all cases.
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Table B1: First-stage results from the baseline specifications

Price (p) Semi-elasticity (|Pg|(@ — F))
(1) (2) 3) (4) (5) (6)
Demand forecast® (1) 0.019%%x  0.020%k%  0.020%*x  0.22%k%  0.23%kx  0.25%%x%
(0.00152) (0.00157) (0.00180) (0.0309) (0.0318)  (0.0367)
Wind? (o2) —0.13xxx  —0.13xxx  —0.090%%*x —0.52%%% —0.56%*%x —0.20%
(0.00887) (0.00893) (0.0103) (0.113) (0.113) (0.107)
Temperature 0.059 0.15%%% 0.82 2.06%%%
(0.0373)  (0.0355) (0.629) (0.628)
Fixed effects Week Week Day Week Week Day
N 26304 26304 26304 26304 26304 26304

*p < .10, ** p < 0.05, *** p < 0.01

First-stage results from the baseline specifications in Table 4. Hour-of-the-day and day-of-the-
week fixed effects are included in all specifications. Standard errors are robust and clustered
by week-of-sample.

Table B2: Sensitivity to choice of instruments. Dependent variable: Cournot quantity

Norwegian monthly wind Danish predicted wind  Linear instruments

(1) (2) 3) (4) (5) (6)
Price (p) 0. 71k 0.83#xx 0.77+x% 0.7 7% 0.25ss%% 0.1k
(0.0833) (0.111) (0.0918) (0.0956) (0.0150)  (0.00940)
Semi-elasticity (|Pg|(Q — F)) —0.055%%%x  —0.063xxx  —0.061xxx —0.058%xx —0.0059%%%x—0.0045%%x
(0.00923) (0.00997) (0.0101) (0.00869)  (0.00134) (0.000803)
Temperature —0.014 0.037 —0.013 0.036 —0.017 0.015%
(0.0270) (0.0268) (0.0298) (0.0253) (0.0119)  (0.00862)
Lerner index 3.73 3.61 3.75 3.59 1.12 1.47
Fixed effects Week Day Week Day Week Day
Cragg-Donald F-stat 142.7 64.8 136.8 71.1 994.6 893.7
N 26304 26304 26304 26304 26304 26304

*p < .10, ¥ p < 0.05, *** p < 0.01

Note: Results from baseline specifications using alternative instruments. In columns (1)-(2), Norwegian wind
is kept constant during each month-of-sample. In columns (3)-(4), Danish wind output has been replaced by
its corresponding day-ahead forecast at the time of bidding. In both cases, Cournot bids are computed based
on each respective wind power definition. In columns (5)-(6) the wind power definition is the same as in the
baseline specifications, but instruments enter both linearly and as quadratic transformations. Standard errors
are clustered by week-of-sample.
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Table B3: First-stage results from the alternative instruments specifications

Price (p) Semi-elasticity (|Pg|(Q — F))
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Demand forecast? 0.020%#x  0.020%**  0.020%*x  0.020%**x  0.010 0.0082 0.23%%x% 0.25%%x% 0.23%%% 0.25%%x% 0.89s% 0.89sxx
(0.00157) (0.00180) (0.00157) (0.00180) (0.00623) (0.00681) (0.0315) (0.0364) (0.0318) (0.0367) (0.118) (0.131)
Wind? (Norwegian monthly) —0.15%%%  —0.100%% —0.60%xx —0.22x
(0.00981) (0.0114) (0.123) (0.118)
Wind? (Danish predicted) —0.14%%%  —0.10%%* —0.615%%  —0.23%x
(0.00917) (0.0107) (0.125) (0.110)
Wind? 0.067+xx  0.014 1.17x%x  0.95%x
(0.0273)  (0.0275) (0.371) (0.412)
Wind (level) —1.35%xx  —0.T4xxx —11.9%xx  —8.9Txxx
(0.194) (0.210) (2.733) (3.249)
Demand forecast (level) 0.74x 0.97xx —51.3xxx  —49.6x%%x
(0.375) (0.399) (6.935) (7.729)
I~
Temperature 0.060 0.15%x:% 0.058 0.15%x% 0.073= 0.12:%% 0.83 2.05%%x 0.82 2.06%x 1.04x% 3.79£%%
(0.0373)  (0.0355)  (0.0372)  (0.0354) (0.0374) (0.0445) (0.623) (0.621) (0.625) (0.626) (0.605) (0.813)
Fixed effects Week Day Week Day Week Day Week Day Week Day Week Day
N 26304 26304 26304 26304 26304 26304 26304 26304 26304 26304 26304 26304

*p < .10, ** p < 0.05, *** p < 0.01
First-stage results from the alternative instruments specifications in Table B2. Hour-of-the-day and day-of-the-week fixed effects are included in all specifications. Stan-

dard errors are robust and clustered by week-of-sample.



