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STEPWISE PARAMETER ESTIMATlON OF A MICRO
SIMULATION MODEL

Gunnar Eliasson, IUI, and Gösta Olavi, IBM Sweden

An intuitive stepwise calibration method has
been used so far on the Swedish Micro-Macro
Model. This paper codifies this procedure
describedltn the paper on the model already
presented at this conference as a first step
towards a more systematic, computer based
estimation procedure.

Being recursively specified through-out, the
model cannot be solved as simultaneous equations,
but is forwarded in time via a simulation schemeo
Since a complete set of real micro data has not
yet been made ready, we apply fully dynamic
simulations and calibrate all blocks simultaneously.
It has not yet been possible to fit endogenausly
s imulated micro data to i-ts "co·rrect" values, or
to do the same thing partially block by block
keeping all other blocks exogenous each time.
Exogenization of blocks and partial block by
block calibration in fact contradict the
essential idea of the whole model. There is so
much linkage across blocks, especially in the
micro based market processes that exogenization
of most blocks involves redesigning the model.
Hence exogenization itself should be expected
to affect macro behaviour in a not negligible
way. Consequently it will not be very helpful
in a calibration context

Once we get a complete set of micro firm data
we will also lise simulated cross sectional
patterns over time to calibrate the model
further 2 ). We want to emphasize, however, that

l) G Eliasson: A Micro Simulation model of a National
Economy: The case of Sweden, pp 3ff.

2) Same such work can be said to have been done
aiready. For instance, we know roughly the rate
at which the correlation between past and
current rates of return of individual firms
decreases with time. We have checked that model
simulations do not contradict this evidence. It
should be noted here that there is no randomizing
device in the model that sees to it that such
results are obtained. In this context the model
is deterministic.
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the most important empirical test of the model
has to do with getting the micro assumptions
numerically right. (Cf the discussion on
pp. 32-51.) Here we are concerned with "estimating"
a very limited number of parameters indirectly
where access to direct rnicro observation has not
been possib1e. This estimatian a1so serves as a
cornplementary check at the macro level that
this "other" numerical information, that has
gone inta the model, is consistent with reality.

It will be obvious from what follows, that this
paper is concerned with one side of the
estimation procedure only, namely with the
practical problem of how to obtain the "best
fit" within reasonab1e computer resource limits.
We do not discuss here the important problem
of the stochastical properties of the estimates
we eventua11y reach.

The general idea is to first calibrate the model
to produce trends for critica1 endogenous macro
variables over the simulation period that are
consistent with Swedish post-war development,
and then to ca1ibrate the year-to-year historical
development. The approach in each of these two
phases is to move a selected subset of model
parameters within a predetermined range, to get
successively better values of an objective
function, measuring the closeness of fit. This
two-step scheme is made possib1e by the fact,
noted from initial experimentation with the
model, that most model parameters can be
c1assified into one of two groups; one large1y
operating on model trends and the other mostly
on short term cyclical behavior.

For each of the two steps, the objective function
has been chosen so as to

a) economize on computer time

b) a110w the inc1usion of as much a priori
knowledge as possible

c) lead to an improved numerical specifi
cation from the chosen starting point.

The philosophy behind this two-step method is
that the complexity of micro simulation models
of the Swedish kind

(l) allows for a multitude of solutions
that satisfy the goodness of fit
criterion if scanning is unrestricted
but



Goal variables = GTR.
1
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(2) that a priori considerations (knowledge)
allow us to limit the number of choices
considerably. We also believe

(3) that our own intuitive capabilities are
superior to mechanical, unlimited scanning
when it comes to avoiding non-global optima,
but that the rnechanical approach is superior
when we reach the stage of fine tuning with
little risk of going in the wrong direction.

First we define a set of goal variables G.
and find out by way of sensitivity analysIs
which parameters work on G mostly in the long
run (Trend = GTRi) and on short run cyclical
variations (= GeL.).

. 1

Then we define a goodness of fit criterion.

To make the presentation more concrete we
introduce the chosen set of goal variables
directly from the model version described in
Eliasson-Heirnan-Olavi (1976)1). There is no
practical way whatsoever to perform this
estimation on all macro variables and the
variables thus have had to be chosen so as
to minimize the risk that other variables
stray off in undesired directions. We do no~,

however, explain this choice here.

Step one: TRENDS

Trends for the following
macro entities:
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industrial production
total employment
wage costs in industry
wholesale price index
consurner price index
househo1d saving

Trend criterion

(A) Minimize MAXlGTR.mode1 - GTR.actua1
.11
1

subject to:

(Al) M, RU, SUM E{1ow, high} through simulation

1) See Technical specifications of the Swedish
micro-macro model version 96 at the end of this
conference volume.
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(A2) by varying

KSI
NITER
IOTA
ALFABW
BETABW
DMTEC
MARKET
ITER
MAXDP
GAMMA
THETA

E{O.l, 1.0}
E{5, IS} (integer)
E{O.S, l}
~ O
~ O
~ 0.1

~ l (integer)
~ O
~ O
E{O.l}

KSI

NITER

rOTA

Nate that we consider correct evolution
of firms' profit margins (M), rate of
unemployment (RU), and industrial
capacity utilization (SUM) to be so
important for calibrating the model,
that we have chosen to enter them as
restrictions rather than to include them
in the objective function.

is a parameter that tells to
what extent a firm, having
performed an unsuccessful raid
for new labour on another firm,
closes the observed wage
difference by increasing f'ts
own wage level [5.4.1.8]1 .
Also see p.44 in this conference
volumeo

gives the number of interactions
(searches) a firm is allowed
in the labour market each
period (quarter) [S. 4.10 2] .

is the fraction of the expected
wage increase that a firm
ehooses to offer directly
when entering the labour market
in search for people [5.401.0J.

ALFABW and
BETABW

the rate of increase in firm
(net) borrowing is assurned to
depend linearly on the difference
between the nominal return to
total assets and the borrowing
rate. ALFABW is the intercept
and BETABW the coefficient [10.6].

l) Numbers refer to algorithms where this para
meter appears in the supplement Technical
Specifications. See previous footnote.
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is the (exogenous) rate of
increase in productivity of
new equipment invested [4.l.1J.

tells the number of producer
household price-volume iterations
in the product market [7.3.3].

maximum fraction by which one
year's price increases can differ
from expected values, as a
consequence of excess supply or
demand in the product market
[7.6.1].

the relative wage improvement
a worker demands to move to a
new j ob [ 5 . 4 . l . 8 ] .

maximum fraction of a firm's
labour force that can be lost
in one raid [5.4.1.9].

The optimum value of the objective function is
of course zero; that is, it should be feasible
to track the six trends exactly under the
restrictions indicated. However, limited
resources (time and money) for the calibration
will force us to terminate the iterative process
at same point which does not produce the optimum,
but a closeness of fit which we have prespecified
as satisfactory.

Step two: CYCLES

Use the same goal variables Gi as in step on~.

Let GCLii indicate the value of variable G. in
year j of the simulation. 1

The objective function to be minimized is now,
(with an appropriate set (w.) of weights):

1.

(B) L: w. ~ L: (GeL ..model _ GCL .. actual) 2
i 1. j 1.J 1.J

Restrictions are

(Bl) M, RU, SUM as in (Al)

(B2) Don't let achieved trends suffer more
than ± E cornpared with step l. Stipulate
for each GTR. that:

1.

I GTR. rnodel_ GTR .actual, ~ IGTR. rnodel_ GTR . actuallstep l+€
t 1. 1. step 2 . 1. 1 '
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In step 2, the following model parameters are
varied:

SMS
SMP
SMW
SMT
Fl
TMSTO
TMIMSTO
TMX
TMIMP
SKREPA

E{O,l}
E{O,l}
E{O,l}
E{O,l}
E{O,l}
~ O
~ O
~ O
S O
E{1,50}

SMS,SMP,SMW,SMT

Fl

TMSTO

TMIMSTO

TMX,TMIMP

SKREPA

smoothing parameters, used by
firms to make each yearls
trade-off between old and
current experiences when forming
expectations for sales, prices,
wages, and profit targets,
respectively [1.1.1, 1.2.1,
1.3.1 and 2.1].

a smoothing parameter, used by
firms to make 'quarter1y adjustments
of expectations [3.1.2].

a time reaction parameter, used
by firms as the time planned
for to adjust a deviation of
their finished-goods inventories
from their optimum level [4.2.2].

same as TMSTO, but app1ied to
input-goods inventories.

time reaction parameters,
contro11ing the rate of change
of export/import ratios as a
response to foreign-domestic
price differentials [6.1.1 and
7.3.1].

a parameter regulating the
probability that a recruiting
firm will turn to the pool of
unemployed (instead of trying
to raid other firms), and thus
affecting the time pattern of a
net increase in total employment.

To be able to calibrate a year-to-year fit, we
have been careful to ehoose, in this step, a
parameter set that mainly affects the time
response patterns of the model. Compare this with
the trend-calibrating step, where we seleeted
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parameters that have a relatively stronger impact
on the long-run profitability and growth develop
ment of simulated firms, and thus on the long
run behaviour of the entire model.

Further considerations

The above is a forrnalization of our ad-hoc
intuitive procedure for estimating critical
model parameters. We have also told why we prefer
a user-model interaction scheme in a first phase,
instead of applying an outright, automatic
optimization -procedure. In a later phase of the
project, when calibrations like this have
resulted in reasonable interval estimates of the
parameters and the risk of approaching a non-global
optimum is smaller, a computer-based algorithm should
be appropriate. With any such algorithm, our own
interactive scheme would be mechanized into
an iterative search process, evaluating for
each new step to be taken what changes in the
parameter set as we judge them, give the fastest
improvernent in the closeness-of-fit objective
function. However, ~nstead of directly cornputing
the derivatives by way of explicit formula, the
algorithrn will use trial model simulations at each
point, requiring a well-defined algorithrnjmodel
interface.

Note that with a cornputer-based optimization
algorithm, the problem formulations in the two
steps above might have to be modified to suit
the characteristics of the algorithm in question.
Integer-restrictions, like NITER and MARKETITER,
are awkward to all opimization schemes; and
MINMAX formulations often make optimizations
very time-consuming. The exact forrnulations will
have to be worked out in concordance with the
performance of the chosen algorithm.

Note also, that with the objective function and
the restrictions on the allowed parameter
combinations, as we have them, we cannot guarantee
the convexity of either. This might give rise to
problems of finding the correct (global) optimum.
Usually this problem is accornodated by running
several optimizations, seleeting different
starting points. That would probably be too
resource-consuming in practice in our case.
Instead we chose to base our confidence on having
found a good starting point for search - from
the beginning - namely the parameter set that
gave the best fit in the initial, intuitive
search procedure.




