No. 252, 1989

OPTIMAL PRICING IN THE TELECOMMUNICATIONS MARKET

by
Harald Lang and Stefan Lundgren

Paper prepared for IUI's 50th Anniversary Symposium, November 15-17, 1989.

Optimal Pricing in the Telecommunications Market

 by Harald Lang and Stefan Lundgren
Summary

The paper addresses the question whether current tariffs for telecommunications services at the Swedish telecommunications company, Televerket (TVT), are optimal as second-best "Ramsey" prices. Focusing on two tariffs for telecommunications services - those on subscription and calling time - the paper estimates whether there is room for an increase of consumers' surplus with current net revenue for TVT unchanged. To this end, a micro model is constructed in which consumers differ as to "taste" for using a telephone and as to income. In order to make or receive calls, the consumer has to buy a subscription. The utility maximising consumer chooses if to subscribe or not and, if subscribing, how much to call. The resulting individual demands are aggregated over a density of taste and income. This simple model gives the following two relations between elasticities, where S is the number of subscriptions, X the number of callingminutes, p_{S} and p_{x} the corresponding prices:

$$
\begin{aligned}
& \frac{\epsilon \mathrm{X}}{\epsilon \mathrm{p}_{S}}=2 \frac{\epsilon \mathrm{~S}}{\epsilon p_{S}} \frac{\mathrm{x}_{\mathrm{m}}}{\mathrm{x}} \\
& \frac{\epsilon \mathrm{~S}}{\epsilon p_{x}}=\frac{\epsilon \mathrm{S}}{\epsilon \mathrm{p}_{\mathrm{S}}} \frac{\mathrm{p}_{\mathrm{x}} \mathrm{x}_{\mathrm{m}}}{\mathrm{p}_{\mathrm{S}}}
\end{aligned}
$$

Here x is the average calling time for all subscribers, x_{m} is a weighed average of calling time over marginal subscribers. These formulas give us the cross-elasticities $\epsilon \mathrm{X} / \epsilon \mathrm{p}_{\mathrm{S}}$ and $\epsilon \mathrm{S} / \epsilon \mathrm{p}_{\mathrm{x}}$ once the own-price elasticity $\epsilon S / \epsilon p_{S}$ and the levels of x and x_{m} are known. The value of $\epsilon S / \epsilon p_{S}$ is taken from the literature; the value of x from a data set that has been collected jointly by IUI and TVT: about 5000 subscribers' calling times has been measured for three (non-adjacent) weeks.

This data set has also been used to estimate the own-price elasticity $\epsilon x / \epsilon p_{x}$ when the number of subscribers is held fixed. The demand $\mathrm{x}\left(\mathrm{p}_{\mathrm{x}}\right)$ is assumed be exponential, i.e., $\epsilon \mathrm{x} / \epsilon \mathrm{p}_{\mathrm{x}}$ is proportional to p_{x}. The tariff for calling time is differentiated in two dimensions: as to distance zone and as to point in time of the week (day-night, holiday-weekday). Demand is assumed to show substitution effects across points in time, but not across different distance zones. This makes it possible to estimate $\epsilon \mathrm{x} / \epsilon \mathrm{p}_{\mathrm{x}}$ (and in principle also the cross
elasticity across points in time, although these are not accurate). The result is that $\epsilon x / \epsilon p_{x}=0.012 \cdot p_{x}$, where p is öre/minute. However, total demand X is also influenced via S so, from the micro model, (we assume that $x=x_{m}$) the total effect is

$$
\frac{\epsilon \mathrm{X}}{\epsilon \mathrm{p}_{\mathrm{x}}}=\frac{\epsilon \mathrm{x}}{\epsilon \mathrm{p}_{\mathrm{x}}}+2 \frac{\epsilon \mathrm{~S}}{\epsilon \mathrm{p}_{\mathrm{S}}} \frac{\mathrm{xp}}{\mathrm{p}_{\mathrm{x}}}
$$

The consumers' surplus is affected also via external effects: the network externalities of subscriptions. We argue that the value for other consumers of a subscription at the margin is equal to p_{S}.

Equipped with these numbers, we calculate the optimal marginal price adjustment that keep TVT's net revenue constant. The result suggests that price on subscription and very long distance calls are too high, whereas price on local calls is too low. The results are presented in appendix C.

APPENDIX A:

The Model of Demand

A consumer has the utility $u(x, y ; \theta, S)$, where x is his consumption of telephone call time, y consumption of other goods, θ is a "taste" parameter and S is the total number of subscribers. $x=\left\{x_{j i}(t)\right\}$, where $\mathrm{x}_{\mathrm{ji}}(\mathrm{t})$ is a phone call in distance zone j , at time period i of duration t. With $p_{y} \equiv$ price on good $y, p_{s} \equiv$ price on subscription, I \equiv income and $p_{j i}(t)$ the telephone call tariff, the consumer chooses to subscribe iff $u^{s} \geq u^{n}$, where

$$
\begin{gathered}
u^{s}\left(p, p_{S}, \theta, I, S\right) \equiv \max _{x, y} u(x, y ; \theta, S) \text { s.t. } \sum_{i, j}^{\sum_{j}} \int_{0}^{\infty} p_{j i}(t) x(t) d t+p_{y} y+p_{S}=I \\
u^{n}(\theta, I, S) \equiv \max _{y} u(0, y ; \theta, S) \text { s.t. } p_{y} y=I
\end{gathered}
$$

We define $v \equiv u^{s}-u^{n}$ which is assumed be increasing in θ. This means that the consumer subscribes iff $\theta \geq \theta_{0}(I)$ where $\theta_{0}(I)$ defined by

$$
\begin{equation*}
\mathrm{v}\left(\mathrm{p}, \mathrm{p}_{\mathrm{S}}, \theta_{0}, \mathrm{I}, \mathrm{~S}\right)=0 \tag{1}
\end{equation*}
$$

From now on we simplify notation so $\mathrm{x} \equiv$ demand for telephone call time, and $p_{x}=$ price on calling time. A fuller account of the model is given in the Swedish version (the rationale for the more complicated version is that tariffs are not proportional).

The consumers are supposed to be distributed in θ and I according to the density function $g(\theta, \mathrm{I})$. Hence aggregated demand for calling time is

$$
\mathrm{X}=\int_{0}^{\infty} \int_{\theta_{0}(\mathrm{I})}^{\infty} x(\theta, \mathrm{I}) \mathrm{g}(\theta, \mathrm{I}) \mathrm{d} \theta \mathrm{dI}
$$

and the total number of subscribers is

$$
\begin{equation*}
\mathrm{S}=\int_{0}^{\infty} \int_{\theta_{\mathrm{o}}(\mathrm{I})}^{\infty} \mathrm{g}(\theta, \mathrm{I}) \mathrm{d} \theta \mathrm{dI} \tag{2}
\end{equation*}
$$

It is important to note that S enters the utility function. In fact, we show in the fuller Swedish version that under the assumption that subscriptions are neither substitutes nor complements for each other, the derivative (CS= consumer's surplus) $\partial \mathrm{CS} / \partial \mathrm{S}=\mathrm{p}_{\mathrm{S}}$.

As an example, let us derive the second elasticity formula given in the Summary. The full derivations of all formulas are given in the Swedish version.

Differentiating (2) w.r.t. p_{S} gives

$$
{\frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{S}}}}=-\int_{0}^{\infty} \mathrm{g}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \frac{\partial \theta_{0}}{\partial \mathrm{p}_{\mathrm{S}}} \mathrm{dI}
$$

and from (1)

$$
\frac{\partial \theta_{0}}{\partial p_{S}}=-\frac{\mathrm{v}_{\mathrm{p}_{\mathrm{S}}}{ }^{+\mathrm{v}_{\mathrm{S}}} \frac{\partial \mathrm{~S}}{\partial \mathrm{p}_{\mathrm{S}}}}{\mathrm{v}_{\theta}}
$$

hence

$$
\frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{S}}}=\int_{0}^{\infty} \mathrm{g}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \frac{\mathrm{v}_{\mathrm{p}_{\mathrm{S}}} \mathrm{v}_{\mathrm{S}} \frac{\partial \mathrm{~S}}{\partial \mathrm{p}_{\mathrm{S}}}}{\mathrm{v}_{\theta}} \mathrm{dI}
$$

We define

$$
\mathrm{H}=\int_{0}^{\infty} \mathrm{g}\left(\theta_{\mathrm{o}}(\mathrm{I}), \mathrm{I}\right) \frac{\mathrm{v}_{\mathrm{S}}}{\mathrm{v}_{\theta}} \mathrm{dI}
$$

and get

$$
\begin{equation*}
(1-\mathrm{H}) \frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{S}}}=\int_{0}^{\infty} \mathrm{g}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \frac{\mathrm{v}_{\mathrm{p}_{\mathrm{S}}}}{\mathrm{v}_{\theta}} \mathrm{dI} \tag{3}
\end{equation*}
$$

We also define $h(I)$ by

$$
\begin{equation*}
\mathrm{h}(\mathrm{I})=\frac{\mathrm{g}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \mathrm{v}_{\mathrm{p}_{\mathrm{S}}}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) / \mathrm{v}_{\theta}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right)}{(1-\mathrm{H}) \frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{S}}}} \tag{4}
\end{equation*}
$$

which is thus a density function: it integrates to 1 and is positive since both numerator and denominator are negative.

The following formula is derived in the same way as (3):

$$
\begin{equation*}
(1-\mathrm{H}) \frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{x}}}=\int_{0}^{\infty} \mathrm{g}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \frac{\mathrm{v}_{\mathrm{p}_{\mathrm{x}}}}{\mathrm{v}_{\theta}} \mathrm{dI} \tag{5}
\end{equation*}
$$

By Roy's identity,

$$
\begin{gathered}
\mathrm{v}_{\mathrm{p}_{\mathrm{x}}}=-\mathrm{u}_{\mathrm{I}}^{\mathrm{s}} \mathrm{x}, \quad \mathrm{v}_{\mathrm{p}_{\mathrm{S}}}=-\mathrm{u}_{\mathrm{I}}^{\mathrm{S}} \quad, \text { i.e. } \\
\mathrm{v}_{\mathrm{p}_{\mathrm{x}}}=\mathrm{v}_{\mathrm{p}_{\mathrm{S}}} \mathrm{x}
\end{gathered}
$$

Inserting this into (5), we get, using (4),

$$
\begin{align*}
(1-\mathrm{H}) \frac{\partial \mathrm{S}}{\partial p_{x}} & =\int_{0}^{\infty} g\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \frac{\mathrm{v}_{\mathrm{s}}{ }_{\mathrm{v}}^{\mathrm{v}}}{} \mathrm{dI} \\
& =(1-\mathrm{H}) \frac{\partial \mathrm{S}}{\partial \mathrm{p}_{\mathrm{S}}} \int_{0}^{\infty} \mathrm{h}(\mathrm{I}) x\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \mathrm{dI} \tag{6}
\end{align*}
$$

Here the last integral is a weighed average of marginal consumers' demand for calling time. We introduce the notation

$$
\mathrm{x}_{\mathrm{m}} \equiv \int_{0}^{\infty} \mathrm{h}(\mathrm{I}) \mathrm{x}\left(\theta_{0}(\mathrm{I}), \mathrm{I}\right) \mathrm{dI}
$$

and by (3) and (6) we get

$$
\frac{\partial S}{\partial p_{x}}=\frac{\partial S}{\partial p_{S}} x_{m} \text { i.e., } \frac{\epsilon S}{\epsilon p_{x}}=\frac{\epsilon S}{\epsilon p_{S}} \frac{p x_{m}}{p_{S}}
$$

APPENDIX B:
 Demand Elasticity of Telephone Call Time

The model

It is often observed that the demand elasticity for calling time is increasing in price. Partly leaning against this, we assume that the elasticity E is proportional to price $p: E=\theta$. This corresponds to the demand function $x_{d, t}=A \cdot e^{-\theta p}$, where $x_{d, t}$ is expected demand at time t for calling time for distance zone d type calls under, say, one hour. The constant A is assumed to vary with point in time, t , with d and with other prices. A subscriber who contemplates to make a zone d call must decide at which time to make the call, and he is then assumed to take prices for type d calls at various times into account, but not explicitly the distance zone d. This leads to a specification $A=f(d) h(t, q)$ where q is the vector of prices for type d calls at time periods other than t.

We assume that the income effect is negligible, and this causes a (Slutsky) symmetry restriction on demand. The simplest demand function we can figure out consistent with the above restrictions is

$$
x_{d, t}=f(d) e^{-\theta p}\left(g(t)-c \cdot e^{-\theta p^{\prime}}\right)
$$

where p^{\prime} is the sum of all prices for type d calls at time periods different from t. Actually, c could depend on d, but we restrict c to be a constant to avoid an over-parameterisation problem.

The Data

The data set consists of information on total calling time divided into 24 categories for about 4000 individuals during 3 weeks: one week in March 1988, one in June and one in September. The 24 categories are defined by 4 periods of time during the week, and 6 distance zones. The time periods are weekdays $8-12,12-18,18-22$, and other time; the distance zones are national trunk calls $<45 \mathrm{~km}$, long distance calls $<45 \mathrm{~km}, 45-90 \mathrm{~km}, 90-180 \mathrm{~km}, 180-270 \mathrm{~km}$ and $>270 \mathrm{~km}$. In each of these 24 categories, the price on calling time is constant during each measured week, but there is a substantial price change between the first measuring period and the second. The equation has been estimated separately for the three weeks. It would seem natural to exploit the price shift between the measuring weeks, but we haven't done that for the reasons that there is a lot of seasonal variation of demand and also a strong time trend. In order to correct for these
(as well other exogenous shifts), we need a much longer time series than we have access to.

Estimation

Since $\mathrm{x}_{\mathrm{d}, \mathrm{t}}$ is expected demand, the regression equation is

$$
x_{d, t}=f(d) e^{-\theta p}\left(g(t)-c \cdot e^{-\theta p^{\prime}}\right)+\epsilon_{d, t}
$$

where $E\left[\epsilon_{d, t}\right]=0$ and $E\left[\epsilon_{d, t}^{2}\right]=\sigma_{d, t}^{2}$, and $E\left[\epsilon_{d, t} \epsilon_{\delta, \tau}\right]=0$ if $d \neq \delta$ or $t \neq \tau$. The estimation technique is non-linear least squares, with the standard errors computed according to the formula referenced in White [1980] but adjusted for degrees of freedom. The results are presented in table 1. As we can see, the March equation suffers from multicolinearity; the lower fit compared to the June equation explains about 80% higher standard deviations, but most of the actual ones are well over 500% larger. However, the June and September equations yield very similar results, and θ is reasonably well defined in these equations. We have no good explanation to offer why the March equation performs so badly. If the results for θ are weighed together to minimise the variance, we get (p is in öre/min)

$$
\quad \mathrm{SD}=0.00316
$$

In principle it is also possible to compute the cross elasticities for calls between different time periods. However, we refrain from doing this for two reasons. First, these cross effects are rather crudely specified (the parameter c is not allowed to vary with d, for instance); secondly, the estimates of the coefficients determining them are not accurate enough to merit much interest in the result. Thus, we confine the analysis to the own-price elasticity θ p.

Table 1
The estimated equation is $s=e^{\Sigma \alpha_{i} D_{i}}\left(e^{\Sigma \beta_{j}} \mathrm{~T}_{j}-\delta e^{\theta p^{\prime}}\right) \mathrm{e}^{\theta p}$ where D_{i} are dummies for the distance categories, T_{j} dummies for the time periods ($\beta_{1}=1$) ; s is total calling time in seconds per subscriber during one full week; p and p^{\prime} are in öre/min.

coefficient	March	June	September
α_{1}	1.39	2.31	2.63
	(2.76)	(0.646)	(0.957)
α_{2}	3.37	4.24	4.37
	(2.75)	(0.405)	(0.670)
α_{3}	3.89	4.60	4.80
	(2.75)	(0.375)	(0.657)
α_{4}	3.89	4.84	5.22
	(2.79)	(0.451)	(0.838)
α_{5}	3.57	4.34	4.93
	(2.86)	(0.467)	(0.846)
α_{6}	4.22	5.04	3.83
	(2.81)	(0.443)	(0.817)
β_{2}	0.475	0.107	0.170
β_{3}	(1.07)	(0.120)	(0.208)
	0.780	0.385	0.405
β_{4}	(1.47)	(0.179)	(0.303)
	0.774	0.220	0.126
δ	(1.61)	(0.192)	(0.305)
	-0.689	0.657	0.527
θ	(4.63)	(0.730)	(1.14)
	-0.00597	-0.0127	-0.0129
$-\ldots-\ldots-0^{2}$	(0.0114)	$(0.003712$	(0.00713)
$\tilde{\mathrm{R}}^{2}$	0.950	0.985	0.973

Note: asymptotic standard deviations in parenthesis.

Reference

White, H. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. " Econometrica 48:721-746

APPENDIX C:

Simulation Results

EA is the marginal external utility of a subscription. We can show that (under reasonable assumptions) this is (close to) Pa, the price on subscription. However, we also use $\mathrm{EA}=\mathrm{Pa} / 2$ in the simulations.
η is a parameter in the aggregate demand for calling time. If $\bar{x}=$ average calls made by a subscriber, then $\mathrm{Q} \cdot \overline{\mathrm{x}}$ new calls are generated by a marginal subscriber. One can argue that $\mathbb{Q}=2$ (the new subscriber makes \bar{x} calls and receives \bar{x} calls), but we also use $\mathbf{Q}=1$ and $\mathbf{Q}=2$ in the simulations.
"Lambda" is a Lagrange multiplier. If dr is a marginal change in revenues for TVT due to price changes, then the resulting loss of consumers' surplus is Lambda•dr.

The marginal price adjustments are in percentage points and normalised so that their squared sum equals 100 .

Q $=2, \mathrm{EA}=\mathrm{Pa}$		
local calls weekd		
subscription	-8.526	
local calls other time	1.743	
class 103 weekd 08-12	2.016	
class 103 weekd 12-18	0.006	
class 103 weekd 18-22	0.007	
class 103 other time	0.007	
class 104 weekd 08-12	-0.042	
class 104 weekd 12-18	-0.005	
class 104 weekd 18-22	0.008	
class 104 other time	0.031	
class 105 weekd 08-12	-0.438	
class 105 weekd 12-18	-0.316	
class 105 weekd 18-22	-0.324	
class 105 other time	-0.176	
class 106-108 weekd 08-12	-2.460	
class 106-108 weekd 12-18	-2.320	
class 106-108 weekd 18-22	-2.477	
class 106-108 other time	-1.484	
	lambda $=$	2.115

$\underline{Q}=1, \mathrm{EA}=\mathrm{Pa}$	
ion	-3.522
local calls weekd 08-18	4.601
local calls other time	4.317
class 103 weekd 08-12	0.026
class 103 weekd 12-18	0.036
class 103 weekd 18-22	0.035
class 103 other time	0.029
class 104 weekd 08-12	0.091
class 104 weekd 12-18	0.193
class 104 weekd 18-22	0.239
class 104 other time	0.209
class 105 weekd 08-12	-0.587
class 105 weekd 12-18	-0.273
class 105 weekd 18-22	-0.181
class 105 other time	0.008
class 106-108 weekd 08-12	-4.266
class 106-108 weekd 12-18	-3.622
class 106-108 weekd 18-22	-3.528
class 106-108 other time	-1.852
lambda	1.830
Q $=0, \mathrm{Ea}=\mathrm{Pa}$	
subscription	-0.514
local calls weekd 08-18	3.204
local calls other time	2.673
class 103 weekd 08-12	0.026
class 103 weekd 12-18	0.034
class 103 weekd 18-22	0.034
class 103 other time	0.029
class 104 weekd 08-12	0.042
class 104 weekd 12-18	0.154
class 104 weekd 18-22	0.200
class 104 other time	0.194
class 105 weekd 08-12	-0.816
class 105 weekd 12-18	0.466
class 105 weekd 18-22	-0.397
class 105 other time	-0.130
class 106-108 weekd 08-12	-5.369
class 106-108 weekd 12-18	-4.737
class 106-108 weekd 18-22	-4.781
class 106-108 other time	-2.652
lambda	1.169

$\mathrm{Q}=2, \quad \mathrm{Ea}=\mathrm{Pa} / 2$	
on	-8.526
local calls weekd 08-18	1.743
local calls other time	2.016
class 103 weekd 08-12	0.006
class 103 weekd 12-18	0.007
class 103 weekd 18-22	0.007
class 103 other time	0.007
class 104 weekd 08-12	-0.042
class 104 weekd 12-18	-0.005
class 104 weekd 18-22	0.008
class 104 other time	0.031
class 105 weekd 08-12	-0.438
class 105 weekd 12-18	-0.316
class 105 weekd 18-22	-0.324
class 105 other time	-0.176
class 106-108 weekd 08-12	-2.460
class 106-108 weekd 12-18	-2.320
class 106-108 weekd 18-22	-2.477
class 106-108 other time	-1.484
$1 \mathrm{mmbda}=$	1.812
$\mathrm{Q}=1, \mathrm{Ea}=\mathrm{Pa} / 2$	
sub	-3.522
local calls weekd 08-18	4.601
local calls other time	4.317
class 103 weekd 08-12	0.026
class 103 weekd 12-18	0.036
class 103 weekd 18-22	0.035
class 103 other time	0.029
class 104 weekd 08-12	0.091
class 104 weekd 12-18	0.193
class 104 weekd 18-22	0.239
class 104 other time	0.209
class 105 weekd 08-12	-0.587
class 105 weekd 12-18	-0.273
class 105 weekd 18-22	-0.181
class 105 other time	0.008
class 106-108 weekd 08-12	-4.266
class 106-108 weekd 12-18	-3.622
class 106-108 weekd 18-22	-3.528
class 106-108 other time	-1.852
lambda $=$	1.56

$\mathrm{Q}=0, \quad \mathrm{Ea}=\mathrm{Pa} / 2$
subscription -0.514
local calls weekd 08-18 3.204
local calls other time 2.673
class 103 weekd 08-12 0.026class 103 weekd 12-18 0.034class 103 weekd 18-220.034
class 103 other time 0.029
class 104 weekd 08-12 0.042
class 104 weekd 12-18

$$
0.154
$$

$$
\text { class } 104 \text { weekd 18-22 } \quad 0.200
$$class 104 other timeclass 105 weekd $08-12$class 105 weekd 12-18class 105 weekd 18-22class 106-108 weekd 08-12class 106-108 weekd 12-18class 106-108 weekd 18-22class 106-108 other time0.194

-0.816-0.466

$$
-0.397
$$class 105 other time

$$
-0.130
$$

$$
-5.369
$$

$$
-4.737
$$

$$
-4.781
$$

$$
-2.652
$$

$$
\text { lambda }=1.002
$$

APPENDIX D:

Computer program

```
    1 dim a(18), b(18), c(36), d(18,36), pi(18), p(18), dLp(18)
    dim klass$(18)
    3 klass$(0)=" abonnemang"
    4 klass$(1)=" lokalsamtal vard 08-18"
    5 klass$(2)=" lokalsamtal övrig tid"
    6 klass$(3)=" klass 103 vard 08-12"
    7 klass$(4)=" klass 103 vard 12-18"
    8 klass$(5)=" klass 103 vard 18-22"
    9 klass$(6)=" klass 103 övrig tid"
10 klass$(7)=" klass 104 vard 08-12"
11 klass$(8)=" klass 104 vard 12-18"
12 klass$(9)=" klass 104 vard 18-22"
13 klass$(10)="" klass 104 övrig tid"
14 klass$(11)=" klass 105 vard 08-12"
15 klass$(12)=" klass 105 vard 12-18"
16 klass$(13)="' klass 105 vard 18-22"
17 klass$(14)=" klass 105 övrig tid"
18 klass$ (15)="klass 106-108 vard 08-12"
19 klass$(16)="klass 106-108 vard 12-18"
20 klass$(17)="klass 106-108 vard 18-22"
21 klass$(18)="' klass 106-108 övrig tid"
22 ' '
23 'INITIERING AV MATRISERNA a, b, c, d'
24 dim Tr(18),Nr(18), xderT(3), xderN(3)
25
26 'priser september 1988'
27
28 PA=171.*4/52*100
c0=3
c1=6
p(1)=7.67
p(2)=3.83
p(3)=22
p(4)=15
p(5)=13
p(6)=12
p(7)=45
p(8)=31
p(9)=26
p (10)=23
p(11)=81
p(12)=58
p(13)=49
p(14)=43
p(15)=125
p(16)=92
p(17)=77 'öre/min klass 106-108 vard 18-22'
p(18)=66 'öre/min klass 106-108 vard 22-08,
    'lör, sön'
50 'nivåer i september 1988'
51 '--------------------------
52 T10=1466965./60/1000 'antal lok.samtalsmin, samtal >1 mark
53
5 4 ~ T l 1 = 1 5 2 8 5 4 1 . / 6 0 / 1 0 0 0 ~ ' d : 0 ~ o ̈ v r i g ~ t i d ' '
55 Tr(1)=1927735./60/1000 'antal lokalsamtalsmin vard 08-18'
```

```
    \(56 \operatorname{Tr}(2)=2292367 . / 60 / 1000\)
    \(57 \operatorname{Tr}(3)=1121 . * 5 / 60 / 1000\)
    \(58 \operatorname{Tr}(4)=2480 . * 5 / 60 / 1000\)
    \(59 \operatorname{Tr}(5)=2650 . * 5 / 60 / 1000\)
    \(60 \operatorname{Tr}(6)=10511 . / 60 / 1000\)
    \(61 \operatorname{Tr}(7)=7124 . * 5 / 60 / 1000\)
    \(62 \operatorname{Tr}(8)=11627 \cdot * 5 / 60 / 1000\)
    \(63 \operatorname{Tr}(9)=15192 . * 5 / 60 / 1000\)
    \(64 \operatorname{Tr}(10)=54905 . / 60 / 1000\)
    \(65 \operatorname{Tr}(11)=7661 . * 5 / 60 / 1000\)
    \(66 \operatorname{Tr}(12)=12317 . * 5 / 60 / 1000\)
    \(67 \operatorname{Tr}(13)=18499 . * 5 / 60 / 1000\)
    \(68 \operatorname{Tr}(14)=79535 . / 60 / 1000\)
    \(69 \operatorname{Tr}(15)=70672 . / 60 / 1000\)
    \(70 \operatorname{Tr}(16)=129269 . / 60 / 1000\)
    \(71 \operatorname{Tr}(17)=203881 . / 60 / 1000\)
    \(72 \operatorname{Tr}(18)=177684 . / 60 / 1000\)
    73 '
    \(74 \mathrm{Nk} 0=5351 . / 1000\)
    \(75 \mathrm{Nk} 1=5827 . / 1000\)
    \(76 \operatorname{Nr}(1)=7310 . / 1000\)
    \(77 \mathrm{Nr}(2)=7106 . / 1000\)
    \(78 \mathrm{Nr}(3)=3.17 * 5 / 1000\)
    \(79 \mathrm{Nr}(4)=6.33 * 5 / 1000\)
    \(80 \mathrm{Nr}(5)=4.86 * 5 / 1000\)
    \(81 \mathrm{Nr}(6)=20 . / 1000\)
    \(82 \operatorname{Nr}(7)=19.47 * 5 / 1000\)
    \(83 \mathrm{Nr}(8)=36.43 * 5 / 1000\)
    \(84 \mathrm{Nr}(9)=28.05 * 5 / 1000\)
    \(85 \mathrm{Nr}(10)=153 . / 1000\)
    \(86 \mathrm{Nr}(11)=26.99 * 5 / 1000\)
    \(87 \mathrm{Nr}(12)=40.90 * 5 / 1000\)
    \(88 \mathrm{Nr}(13)=29.33 * 5 / 1000\)
    \(89 \mathrm{Nr}(14)=227 . / 1000\)
    \(90 \mathrm{Nr}(15)=61.57 * 5 / 1000\)
    \(91 \mathrm{Nr}(16)=96 . * 5 / 1000\)
    \(92 \mathrm{Nr}(17)=79 . * 5 / 1000\)
    \(93 \mathrm{Nr}(18)=391 . / 1000\)
    94 '
    95 'elasticiteter och identiteter'
```



```
    97 Aelast=-0.4 'priselasticitet på abonnemang'
    \(98 \mathrm{~A}=1 \quad\) 'allt räknas per 1 abonnent'
    \(99 \mathrm{EA}=\mathrm{PA} \quad\) 'marg extern nytta av abonnemang=pris'
100 APA=A*Aelast/PA
101 Q=2 'nytt abb. genererar \(\mathbf{Q} *\) (genomsnittligt'
102 'antal ringda samtal) nya samtal'
103
104 def \(\mathrm{fnTelast}(\mathrm{k})=-0.013 * \mathrm{p}(\mathrm{k})\)
105 'priselast. på samtalstid som'
106 'funktion klass för fix abonnent'
107 def fnNelast \((k)=0\)
108 'pris/min-elast. på samtal som'
109 'funktion av klass för fix abonnent'
110 xderTlok=0 'xderivata tid inom lokalsamtal'
111 xderNlok=0 'xderivata antal inom lokalsamtal'
\(112 \operatorname{xderT}(0)=0.042 / 60 \quad\) 'xderivata tid inom klass 103'
\(113 \operatorname{xderN}(0)=0 \quad\) 'xderivata antal inom klass 103'
\(114 \operatorname{xderT}(1)=0.11 / 60 \quad\) 'xderivata tid inom klass 104'
```

```
\(115 \operatorname{xderN}(1)=0\)
\(116 \operatorname{xderT}(2)=0.042 / 60\)
\(117 \times \operatorname{derN}(2)=0\)
\(118 \operatorname{xderT}(3)=0.024 / 60\)
119 xderN \((3)=0\)
120
121 'marginalkostnader'
122 '--.-...-.-.........-'
\(123 \underset{i}{c}(0)=1000 \cdot / 52 * 100\)
124
\(125 c(1)=0\)
\(126 \mathrm{c}(3)=0\)
\(127 \mathrm{c}(5)=0\)
\(128 \mathrm{c}(7)=0\)
\(129 \mathrm{c}(9)=0\)
\(130 \mathrm{c}(11)=0\)
\(131 c(13)=0\)
\(132 \mathrm{c}(15)=0\)
\(133 \mathrm{c}(17)=0\)
\(134 \mathrm{c}(19)=0\)
\(135 \mathrm{c}(21)=0\)
\(136 \mathrm{c}(23)=0\)
\(137 \mathrm{c}(25)=0\)
\(138 \mathrm{c}(27)=0\)
\(139 \mathrm{c}(29)=0\)
\(140 \mathrm{c}(31)=0\)
\(141 \mathrm{c}(33)=0\)
\(142 \mathrm{c}(35)=0\)
143 ' '
\(144 \mathrm{c}(2)=0\)
145
\(146 \mathrm{c}(4)=0\)
\(147 c(6)=0\)
\(148 \mathrm{c}(8)=0\)
\(149 \mathrm{c}(10)=0\)
\(150 \mathrm{c}(12)=0\)
\(151 c(14)=0\)
\(152 \mathrm{c}(16)=0\)
\(153 \mathrm{c}(18)=0\)
\(154 \mathrm{c}(20)=0\)
\(155 \mathrm{c}(22)=0\)
\(156 c(24)=0\)
\(157 c(26)=0\)
\(158 \mathrm{c}(28)=0\)
\(159 c(30)=0\)
\(160 \mathrm{c}(32)=0\)
\(161 c(34)=0\)
\(162 c(36)=0\)
163
164 'initiering'
165 '------------------'
\(166 \mathrm{p}(0)=\mathrm{PA}\)
168 a \((0)=-A+E A * A P A\)
\(169 \mathrm{a}(1)=(-1+\mathrm{EA} * \mathrm{APA} / \mathrm{A}) *(\mathrm{c} 0 * \mathrm{Nk} 0+\mathrm{Tl} 0)\)
\(170 \mathrm{a}(2)=(-1+\mathrm{EA} * \mathrm{APA} / \mathrm{A}) *(\mathrm{c} 1 * \mathrm{Nk} 1+\mathrm{Tl} 1)\)
171 for \(j=3\) to 18
\(172 \mathrm{a}(\mathrm{j})=(-1+E A * A P A / A) * \operatorname{Tr}(\mathrm{j})\)
173 next
```

174 '
$175 \mathrm{~d}(0,0)=$ APA
176 for $\mathrm{j}=1$ to 18
$177 \mathrm{~d}(0,2 * \mathrm{j}-1)=\mathrm{Q} * \mathrm{APA} * \operatorname{Nr}(\mathrm{j}) / \mathrm{A}$
$178 \mathrm{~d}(0,2 * \mathrm{j})=\mathrm{Q} * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) / \mathrm{A}$
179 next
180 for $\mathrm{j}=1$ to 2
181 for $\mathrm{k}=1$ to 2
$182 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k})=\mathrm{xder}$ Tlok
$183 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k}-1)=\mathrm{xderNlok}$
184 next
185 next
$186 \mathrm{~d}(1,0)=\mathrm{APA} *(\mathrm{c} 0 * \mathrm{Nk} 0+\mathrm{T} 10) / \mathrm{A}$
$187 \mathrm{~d}(1,1)=\mathrm{fnNelast}(1) / \mathrm{p}(1) * \operatorname{Nr}(1)$
$188 \mathrm{~d}(1,2)=$ fnTelast (1) $/ \mathrm{p}(1) * \operatorname{Tr}(1)$
$189 \mathrm{~d}(1,3)=0$
$190 \mathrm{~d}(1,4)=0$
$191 \mathrm{~d}(2,0)=\mathrm{APA} *(\mathrm{c} 1 * \mathrm{Nk} 1+\mathrm{Tl} 1) / \mathrm{A}$
$192 \mathrm{~d}(2,1)=0$
$193 \mathrm{~d}(2,2)=0$
$194 \mathrm{~d}(2,3)=\mathrm{fnNelast}(2) / \mathrm{p}(2) * \operatorname{Nr}(2)$
$195 \mathrm{~d}(2,4)=\mathrm{fnTelast}(2) / \mathrm{p}(2) * \operatorname{Tr}(2)$
196 for $\mathrm{n}=0$ to 3
197
198
199 for $\mathrm{j}=\mathrm{m} 1$ to m 2
200 for $\mathrm{k}=\mathrm{m} 1$ to m 2
$201 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k})=\mathrm{xder} \mathrm{T}(\mathrm{n})$
$202 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k}-1)=\mathrm{xder} \mathrm{N}(\mathrm{n})$
203 next
204 next
205 next
206 for $\mathrm{j}=3$ to 18
$207 \mathrm{~d}(\mathrm{j}, 0)=\mathrm{APA} * \operatorname{Tr}(\mathrm{j}) / \mathrm{A}$
$208 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{j}-1)=\mathrm{fnNelast}(\mathrm{j}) / \mathrm{p}(\mathrm{j}) * \mathrm{Nr}(\mathrm{j})$
$209 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{j})=\mathrm{fnTelast}(\mathrm{j}) / \mathrm{p}(\mathrm{j}) * \operatorname{Tr}(\mathrm{j})$
210 next
211 for $\mathrm{j}=1$ to 18
212 for $\mathrm{k}=1$ to 18
$213 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k})=\mathrm{d}(\mathrm{j}, 2 * \mathrm{k})+\mathrm{Q} * \operatorname{Tr}(\mathrm{k}) * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) / \mathrm{A} / \mathrm{A}$
$214 \mathrm{~d}(\mathrm{j}, 2 * \mathrm{k}-1)=\mathrm{d}(\mathrm{j}, 2 * \mathrm{k}-1)+\mathrm{Q} * \operatorname{Nr}(\mathrm{k}) * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) / \mathrm{A} / \mathrm{A}$
215 next
216 next
217 '
$218 \mathrm{~b}(0)=\mathrm{PA} * \mathrm{APA}+\mathrm{A}+\mathrm{Q} * \mathrm{APA} *(\mathrm{c} 0 * \mathrm{p}(1) * \mathrm{Nk} 0+\mathrm{p}(1) * \mathrm{Tl} 0) / \mathrm{A}$
$219 \mathrm{~b}(0)=\mathrm{b}(0)+0 * \mathrm{APA} *(\mathrm{c} 1 * \mathrm{p}(2) * \mathrm{Nk} 1+\mathrm{p}(2) * \mathrm{Tl} 1) / \mathrm{A}$
220 for $\mathrm{j}=3$ to 18
$221 \mathrm{~b}(0)=\mathrm{b}(0)+\mathrm{p}(\mathrm{j}) * Q * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) / \mathrm{A}$
222 next
$223 \quad b(1)=c 0 * f n N e l a s t(1) * N k 0+f n T e l a s t(1) * T 10 \quad$ 'xderTlok och'
$224 \mathrm{~b}(1)=\mathrm{b}(1)+\mathrm{c} 0 * \mathrm{Nk} 0+\mathrm{T} 10$
'xderNlok
225 for $\mathrm{j}=1$ to 18
$226 \mathrm{~b}(1)=\mathrm{b}(1)+\mathrm{Q} * \mathrm{Nk} 0 * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) * \mathrm{c} 0 * \mathrm{p}(1) / \mathrm{A} / \mathrm{A}$
$227 \mathrm{~b}(1)=\mathrm{b}(1)+\mathrm{Q} * \mathrm{~T} 10 * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) * \mathrm{p}(1) / \mathrm{A} / \mathrm{A}$
228 next
$229 \mathrm{~b}(2)=\mathrm{c} 1 * \mathrm{fnNelast}(2) * \mathrm{Nk} 1+\mathrm{fnTelast}(2) * \mathrm{Tl} 1 \quad$ sätts till 0'
$230 \mathrm{~b}(2)=\mathrm{b}(2)+\mathrm{c} 1 * \mathrm{Nk} 1+\mathrm{T} 11$
231 for $\mathrm{j}=1$ to 18
$232 \mathrm{~b}(2)=\mathrm{b}(2)+\mathrm{Q} * \mathrm{Nk} 1 * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) * \mathrm{c} 1 * \mathrm{p}(2) / \mathrm{A} / \mathrm{A}$

```
\(233 \mathrm{~b}(2)=\mathrm{b}(2)+\) Q \(* \mathrm{Tl} 1 * \mathrm{APA} * \operatorname{Tr}(\mathrm{j}) * \mathrm{p}(2) / \mathrm{A} / \mathrm{A}\)
234 next
235 for \(\mathrm{j}=3\) to 18
\(236 \quad \mathrm{~b}(\mathrm{j})=\operatorname{Tr}(\mathrm{j})\)
237 for \(k=3\) to 18
\(238 \quad \mathrm{~b}(\mathrm{j})=\mathrm{b}(\mathrm{j})+\mathrm{d}(\mathrm{j}, 2 * \mathrm{k}) * \mathrm{p}(\mathrm{k})\)
239 next
240 next
241 '
242 'SLUT PA INITIERINGEN'
243 'UTRÄKNING AV OPTIMAL MARGINELL PRISJUSTERING'
244 ' '
245 for \(\mathrm{j}=0\) to 18
246 pi \((\mathrm{j})=\mathrm{b}(\mathrm{j})\)
247 for \(k=0\) to 36
\(248 \quad \mathrm{pi}(\mathrm{j})=\mathrm{pi}(\mathrm{j})-\mathrm{d}(\mathrm{j}, \mathrm{k}) * \mathrm{c}(\mathrm{k})\)
249 next
250 next
251 for \(\mathrm{j}=0\) to 18
252 numerator \(=\) numerator \(+\mathrm{p}(\mathrm{j}) * \mathrm{p}(\mathrm{j}) * \mathrm{pi}(\mathrm{j}) * a(\mathrm{j})\)
253 denominator \(=\) denominator \(+\mathrm{p}(\mathrm{j}) * \mathrm{p}(\mathrm{j}) * \mathrm{pi}(\mathrm{j}) * \mathrm{pi}(\mathrm{j})\)
254 next
255 lambda=-numerator/denominator
256 for \(\mathrm{k}=0\) to 18
\(257 \mathrm{dLp}(\mathrm{k})=\mathrm{p}(\mathrm{k}) * \mathrm{a}(\mathrm{k})+\mathrm{l} \operatorname{ambda} * \mathrm{p}(\mathrm{k}) * \mathrm{pi}(\mathrm{k})\)
258 delta2 \(=\) delta \(2+d L p(k) * d L p(k)\)
259 next
260 delta=sqr(delta2)
261 for \(\mathrm{k}=0\) to 18
\(262 \mathrm{dLp}(\mathrm{k})=10 * \mathrm{dLp}(\mathrm{k}) /\) delta
263 print klass\$(k) tab(27);
264 print using"\#\#.\#\#\#"; dLp(k)
265 next
266 print " lambda \(=" \operatorname{tab}(27)\);
267 print using"\#\#\#.\#\#\#"; lambda
268 system
```

