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1 Introduction

Over the past decades, the increasing availability of panel data sets has triggered a rapid
development of econometric tools to efficiently exploit the information contained therein
(see e.g. Arellano, 2003, Hsiao, 2003, and Baltagi, 2008, for extensive overviews of these
methods). When analyzing panel data using regression models, the question arises whether
the data can be pooled or not. Typically, it is asked whether the data can be pooled across
different cross-sectional units such as persons, firms, or countries (see e.g. Baltagi et al.,
2008, and references therein). Less attention has been paid to poolability over time. In
many empirical studies it is simply assumed that regression coefficients do not vary over
time. However, the panels available often cover rather long time periods, introducing the
question of whether it is reasonable to expect that the effects of explanatory variables
remain constant over time. Therefore, we propose a novel approach to modelling time-
varying covariate effects in panel data regressions. In doing so, we envision scenarios
where the cross-sectional dimension is larger than the temporal dimension.

An obvious solution to allowing variables’ effects to vary flexibly over time is to simply
incorporate interactions of covariates and time dummies into the regression model. This
simple solution leads to certain problems, though, the most important one being over-
fitting of the model, i.e. overly wiggly and hard-to-interpret covariate effects. We therefore
propose using penalized regressions in this context. Specifically, the basic idea of our
approach is to incorporate flexible interactions of covariates and time into the regression
model, and then penalize the differences between adjacent coefficients.

This approach has several virtues. First, the flexible interactions of explanatory vari-
ables and time allow for covariate effects that vary freely over time without being restricted
by parametric assumptions. Yet, the penalization of differences between adjacent coeffi-
cients avoids the problem of over-fitting. Second, our proposed method is rather flexible
with respect to the type of penalization used. We will focus on two types of penalties:
the group lasso (least absolute shrinkage and selection operator) and the fused lasso. The
former predominantly produces covariate effects that vary rather smoothly over time, and
the latter allows for piecewise constant covariate effects that may exhibit distinct ‘jumps’
at particular points in time. Which of these ways for coefficients to change over time that
is most empirically reasonable depends on the particular application. Third, penalties
may not only be imposed on differences between adjacent (time-varying) coefficients but
also on other coefficients. Since lasso-type penalties can shrink coefficients to be exactly
zero, our proposed approach can therefore also be used for model selection (in fact, as
the term ‘selection operator’ indicates, this is the original purpose of lasso-type penal-
ties). Fourth, our approach can be applied to the broad class of generalized linear models
(GLMs), which constitutes the most widely used framework in applied econometrics. Fifth
and last, our approach can be implemented using standard software, and the only thing
required for model estimation is an adequate preparation of the data set. This makes the
proposed methodology particularly useful for applied researchers who look for a flexible,

2



yet practically manageable way to estimate time-varying effects in panel data models.
To illustrate the usefulness of the proposed methodology, we revisit a well-known em-

pirical puzzle in international trade: the so-called ‘death of distance’. Researchers in
international economics have for quite some time discussed that due to the falling costs of
transportation, distance – which is one of the key variables for explaining variations in the
size of bilateral trade flows – should become less important as a trade barrier over time
(see e.g. Cairncross, 1997). Interestingly, however, conventional wisdom among empirical
researchers investigating this phenomenon is that distance, if anything, becomes more im-
portant over time (see e.g. Disdier and Head, 2008, and references therein). We therefore
apply our penalized regression framework to estimate the well-known gravity model of in-
ternational trade, allowing the effects of distance to vary over time. Unlike the majority
of previous studies, we do not find a temporal trend in the distance effect.

The major goal of this paper is to introduce a novel approach to modelling time-varying
covariate effects in panel regressions. To the best of our knowledge, penalized regression
techniques have up to now not been used to model time-varying coefficients in a panel
data context. Moreover, since penalized regression in general has only been discussed
rather sparingly in the economics literature, we aim to make this method more accessible
to the empirical economic researcher. To assist empirical researchers who wish to employ
this methodology, we have included step-by-step instructions on how to prepare the data
set and perform the regressions in the Appendix. Our empirical analysis is interesting in
its own right, and we intend to also make a contribution to the field of international trade.
As mentioned above, the ‘death of distance’ has been extensively discussed in the trade
literature. It is therefore noteworthy that our empirical findings differ from the majority
of existing empirical results based on standard gravity models.

Despite the focus on the panel gravity model, the method we propose can be used in
a broad range of economic applications where the effects of explanatory variables can be
expected to vary over time. Moreover, our proposed method can also be used to allow
covariate effects to vary over other dimensions than calendar time. The only requirement
is that these dimensions have a natural ordering. A short list of examples includes duration
time in (discrete-time) hazard models, an individual’s age or income in micro panel studies,
and the size of geographical units (countries, states, etc.) in macro panel studies.

The remainder of the paper is organized as follows. Section 2 introduces our proposed
method. It shows how penalized estimation can be used to estimate time-varying covariate
effects in panel data models, and provides a detailed discussion of the lasso-type penalties
that we propose. Section 3 contains the empirical application of our proposed method to the
‘death of distance’ in international trade. It gives a brief overview of the existing literature
in that field, and provides a thorough discussion of our empirical findings. Section 4
contains concluding remarks.
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2 Modelling Time-Varying Coefficients in Panel Regressions

Let yit denote the outcome of a specific cross-sectional unit i (i = 1, . . . , N) in period t

(t = 1, . . . , T ), and let uit = (u1,it, . . . , um,it)> be a vector of realizations of explanatory
variables that may vary over time.1 In GLMs it is assumed that the density of yit belongs to
the linear exponential family (LEF) of densities, i.e. f(yit) = exp{a(µit)+b(yit)+c(µit)yit},
with conditional mean µit = E(yit|uit). Standard GLMs specify µit to be of the single-index
form

µit = g(α + u>itϕ), (1)

with intercept α, parameter vector ϕ = (ϕ1, . . . , ϕm)>, and response function g(·) that
varies across models, depending for example on restrictions on the range of yit. Inter-
cept α and parameter vector ϕ are typically estimated using (quasi-)maximum likelihood
techniques. The log-likelihood to be maximized is then

l(α,ϕ) = lnL(α,ϕ) =
N∑

i=1

T∑

t=1

a(g(α + u>itϕ)) + b(yit) + c(g(α + u>itϕ))yit. (2)

The quasi-maximum likelihood estimator (MLE) maximizes this log-likelihood, but it is no
longer assumed that the LEF density is correctly specified (see e.g. Cameron and Trivedi,
2005, Ch. 5.7). However, even with a misspecified LEF density, the quasi-MLE is consistent
provided that E(yit|uit) = g(α+u>itϕ) (see Gourieroux et al., 1984, for a proof). The class
of GLMs depicted above is widely applicable, since it includes many popular models such
as Poisson, logit, probit, exponential, or linear regression models as special cases.

In model (1) it is assumed that regression coefficients ϕ1, . . . , ϕm do not vary over time.
Since this is a very strong assumption, we may relax it by writing

µit = g(ηit), (3)

where

ηit = αt +
p∑

j=1

xj,it · βj +
q∑

l=1

zl,it · γl,t,

with p + q = m. This implies that intercept αt and coefficients in γt = (γ1,t, . . . , γq,t)>

are allowed to vary with time t, whereas β = (β1, . . . , βp)> is time-invariant. In other
words, x1, . . . , xp are the covariates (from {u1, . . . , um}) that are restricted to have con-
stant effects across time, and z1, . . . , zq denote the covariates (from {u1, . . . , um}) that are
allowed to exhibit time-varying effects. Model (3), however, has a lot of parameters, and
estimating them using conventional (quasi-)maximum likelihood techniques may lead to
instable results. The resulting wiggly coefficient vectors may then be hard to interpret in
an economically meaningful manner. Furthermore, some coefficients in γt may actually
be time-invariant. So on the one hand, the aim of the analysis should be to determine

1For notational convenience, we focus on the balanced panel data case. However, as discussed below,
unbalanced data can be analyzed accordingly.
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which γ-coefficients are time-varying, and which are not. On the other hand, time-varying
coefficients should be estimated in an adequate fashion. In order to accomplish this, we
propose the use of penalized estimation techniques.

2.1 Penalized Estimation of Time-Varying Coefficients

In empirical applications it is often reasonable to assume that covariate effects do not vary
erratically but rather smoothly over time. This implies that adjacent coefficients γl,t and
γl,t−1 can be expected to be similar or, equivalently, that differences δl,t = γl,t − γl,t−1

should be small. Therefore, we propose to not maximize the (quasi-)log-likelihood

l(α, β, γ) = lnL(α, β, γ) =
N∑

i=1

T∑

t=1

a(g(ηit)) + b(yit) + c(g(ηit))yit,

but its penalized version
lp(α, β, γ) = l(α, β, γ)− λJ(γ), (4)

where penalty J(γ) penalizes differences between adjacent γ-parameters, γ = (γ>1 , . . . , γ>T ).
The strength of penalization (and hence the smoothness) is controlled by tuning parameter
λ ≥ 0.2 A particular virtue of this approach is that a variety of penalties J(γ) with
differing properties can be employed when maximizing (4). A concrete penalty that effects
smoothness is, for example, given by

J(γ) =
q∑

l=1

T∑

t=2

(γl,t − γl,t−1)2 =
q∑

l=1

T∑

t=2

δ2
l,t. (5)

From (4) and (5), the intuition behind the penalization approach becomes obvious.
Using a λ-value strictly greater than zero and squared differences of adjacent γ-parameters,
large parameter differences have a negative impact on the target function lp(α, β, γ) that is
to be maximized. Thus, estimated parameter differences will be smaller than they would
have been in standard models without penalization.3 However, for any fixed λ < ∞, the
asymptotic properties of the estimator are not affected by the penalty. As the penalized
estimates (α̂, β̂, γ̂) maximize lp(α, β, γ) at (4), they also maximize

1
N

lp(α, β, γ) =
1
N

l(α, β, γ)− λ

N
J(γ).

Now, assuming that T is fixed as N → ∞, the penalty term λJ(γ)/N vanishes, but the
ordinary log-likelihood term l(α, β, γ)/N does not (with probability one). Hence, the pe-
nalized estimates tend (almost surely) towards the non-penalized estimates obtained if the
usual log-likelihood l(α, β, γ) is maximized. Consequently, for any given λ, the penalized

2With λ = 0 there is no penalization, and lp(α, β, γ) is, of course, equivalent to l(α, β, γ).
3From (4) and (5), it should also be clear that covariates should be standardized to have equal variance in

order to avoid that coefficient values, and thus the strength of penalization, are scale dependent. However,
as discussed below in Section 2.1.3, there may be instances where varying strengths of penalization are
desired. In this case, covariates can be scaled to have different variances.
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estimator has the same asymptotic properties as the conventional MLE. In particular, if
the latter is consistent, the penalized estimator is consistent, too.

By penalizing squared differences of adjacent γ-parameters, as in (5), large shifts in
parameter values are avoided (see e.g. Gertheiss and Tutz, 2009). However, by using (5),
it is not possible to distinguish between γ-coefficients that are actually varying across
time and those that are not. To see this, recall that a time-constant γl implies that
γl,1 = γl,2 = . . . = γl,T ; in other words, δl,t = 0 for all t = 2, . . . , T . When using (5),
estimated γ-coefficients are only set equal for the limit case λ → ∞, and in this case,
γ-coefficients are fit as time-constant for all l = 1, . . . , q. To be able to discriminate
between time-varying and time-invariant coefficients, a penalty is needed so that for some
l ∈ {1, . . . , q} the entire group of coefficients {γl,1, . . . , γl,T } is set equal, whereas coefficients
for the remaining l are left time-varying. Of course, this group-wise selection should be
done in a data-driven way, and an adequate penalty for that purpose is the so-called group
lasso (Yuan and Lin, 2006).

2.1.1 Group Lasso

The group lasso

J(γ) =
q∑

l=1

√√√√
T∑

t=2

(γl,t − γl,t−1)2 =
q∑

l=1

√√√√
T∑

t=2

δ2
l,t (6)

is a modification of the original lasso (Tibshirani, 1996) that allows for group-wise selection
of covariates. In order to maximize (4), the group lasso will shrink parameter differences
δl,t, thereby generating smooth time variations in the effects of z-covariates. For a large
enough value of λ, the group lasso will (simultaneously) force the whole group of parameter
differences {δl,2, . . . , δl,T } to be zero (see e.g. Yuan and Lin, 2006, or Gertheiss et al., 2011),
implying that the effect of zl is constant over time. For λ-values larger than a distinct value
λmax, differences δl,t will be set to zero for all l (and t), implying that no covariate has
time-varying effects. If also β-coefficients are to be penalized, the group lasso penalty term
in (6) can be extended to include β-parameters. The result of this is that x-covariates
can be excluded from the model in a data-driven way, which is a further virtue of this
approach. Of course, this model selection property of the group lasso can also be applied
to the time-varying z-covariates. For that purpose, the coefficients γl,1 = δl,1 (l = 1, . . . , q)
have to be included in the penalty term in (6) as separate groups of size one. This way, it
can be determined whether a particular covariate effect is time-varying, time-constant, or
irrelevant.4 Note that using this penalization approach allows the researcher to not only
assess the statistical significance of covariates and their time interactions but also their
(economic) importance. In other words, if covariates or their time interactions contribute
relatively little to the maximization of the (quasi-)likelihood, they may be removed from
the model even if they are statistically significant by common standards. When working

4Note that this may lead to the somewhat hard-to-interpret scenario where a covariate is excluded from
the model but its time interactions are not. In practice, however, this is very unlikely to happen.
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with very large panel data sets, where estimates tend to be significant at all common
significance levels, assessing the relative importance of explanatory variables may be very
fruitful. It may help in finding parsimonious model specifications without jeopardizing the
model’s explanatory power.

For computing estimates α̂, β̂, and γ̂, algorithms proposed for the group lasso in GLMs
(Meier et al., 2008), and implemented in the R package grplasso (Meier, 2009), can be
used. Thus, our proposed method can be readily applied to a broad class of models by
using freely available standard software. The only thing required for this software to be
applicable is a re-parametrization of model (3) using parameters δl,t instead of γl,t. With
δl,1 = γl,1 and δl,t = γl,t − γl,t−1 (for t ≥ 2), we have γl,t = δl,1 + . . . + δl,t, and hence

ηit = αt +
p∑

j=1

xj,it · βj +
q∑

l=1

zl,it ·
t∑

k=1

δl,k

= αt +
p∑

j=1

xj,it · βj +
q∑

l=1

T∑

k=1

z̃l,ik · δl,k,

with

z̃l,ik =

{
zl,it if k ≤ t,

0 otherwise.

If also the time-varying intercept αt is to be smoothed, it can be re-parameterized analo-
gously by using ν1 = α1 and νt = αt − αt−1 (for t ≥ 2). Thus, it can be easily included in
the group lasso penalty by using

J(α, γ) = J̆(ν, δ) =

√√√√
T∑

t=2

ν2
t +

q∑

l=1

√√√√
T∑

t=2

δ2
l,t.

Unlike δl,1, however, ν1 must not be included in the penalty, i.e. the global intercept
must not be penalized. The Appendix provides a detailed description of how the above
re-parametrization and the required scaling of covariates can be performed in practice.

2.1.2 Fused Lasso

In some instances it may be reasonable to assume that coefficients γl,t are piecewise constant
over time. In that case, the influence of covariate zl does not vary across most of the time
periods t = 1, . . . , T , but for some distinct time points t∗1 < t∗2 < . . . the effect changes, for
example due to some external events. When estimating the regression coefficients, these
breakpoints, or ‘jumps’, in the coefficient function should be identified. For simultaneous
estimation of coefficients and identification of jumps, fused lasso-type penalties (Tibshirani
et al., 2005) can be used. The penalty term in (4) is then specified as

J(γ) =
q∑

l=1

T∑

t=2

|γl,t − γl,t−1| =
q∑

l=1

T∑

t=2

|δl,t|. (7)
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Using this L1-penalty, separate differences δl,t of adjacent coefficients γl,t and γl,t−1 can
be fitted as exactly zero, thus yielding piecewise constant coefficient profiles and selecting
relevant jumps. Just like the group lasso, the fused lasso penalty can be extended to
include parameters βj , γl,1 = δl,1, and νt (for t ≥ 2). Since, for groups of size one (i.e.
separate differences δl,t), the L1-norm in (7) is equivalent to the L2-norm in (6), existing
software for computing group lasso solutions (see Section 2.1.1) can also be employed to
estimate models with fused lasso-type penalties.5

2.1.3 Adaptive Penalties

For improving the estimation and selection performance when the number of observations
becomes large, so-called adaptive penalties have been proposed (see e.g. Zou, 2006, Zhang
and Lu, 2007, Wang and Leng, 2008, Meier et al., 2009, or Gertheiss and Tutz, 2012).
The decisive modification is to weight the penalty terms by the inverse of the respective
unpenalized parameter estimates. For the group lasso penalty (6), for example, we obtain
the adaptive version

J(γ) =
q∑

l=1

wl‖δl‖, (8)

with weights wl = ‖δ̃l‖−1 based on the unpenalized estimates δ̃l = (δ̃l,2, ..., δ̃l,T )>, and the

L2-norm ‖δl‖ =
√∑T

t=2 δ2
l,t. The adaptive fused lasso penalty is simply

J(γ) =
q∑

l=1

T∑

t=2

wl,t|δl,t|, (9)

with wl,t = |δ̃l,t|−1.
The intuition behind this weighting procedure is rather straightforward. With very

large data sets, unpenalized point estimates can be expected to be rather accurate. Thus,
if the unpenalized estimates of parameter differences δ̃l = (δ̃l,2, ..., δ̃l,T )> are large, the
time variations in the respective covariate effects can be expected to be of significance.
Consequently, the corresponding penalization should be small. And this is exactly what is
achieved by using ‖δ̃l‖−1 or |δ̃l,t|−1, respectively, as weights in the penalty term.

2.2 Unbalanced Panels

So far, for notational convenience, we have focused on balanced panel data. However,
it is often the case in practice that not every unit i is observed for all t ∈ {1, . . . , T}.
In fact, data on trade volumes, as considered in the empirical part of this paper, are
almost always unbalanced. Unbalanced data, however, do not constitute a problem, and
regression coefficients can still be estimated as long as the number of missing combinations
of i and t is not too large. In fact, if penalty (6) is used, the model remains uniquely

5However, if the penalty consists exclusively of fused lasso-type terms, more efficient algorithms (such
as the path algorithm by Park and Hastie, 2007) exist.
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identified even if there are no observations at all for some t ∈ {1, . . . , T}. In that case, the
coefficient estimates δ̂l,t for time periods without observations would be obtained through
linear interpolation of the estimated adjacent coefficients.

2.3 Penalized (Quasi-)Poisson Models

Since the empirical part of this paper is concerned with the estimation of gravity models
for trade, and since (quasi-)Poisson regression is the recommended tool for estimating
such models (see e.g. Santos Silva and Tenreyro, 2006, or Westerlund and Wilhelmsson,
2009), this section provides a detailed presentation of penalized (quasi-)Poisson models as
a special case of the penalized GLMs discussed above.

Let the volume of trade yit between any pair of countries i at time t be modelled as

yit = exp(ηit) + υit, (10)

where, as before,

ηit = αt +
p∑

j=1

xj,it · βj +
q∑

l=1

zl,it · γl,t,

and it is merely assumed that E(υit|xit, zit) = 0. Hence, we have

µit = E(yit|xit, zit) = exp(ηit). (11)

For estimating regression coefficients in model (11), we follow McCullagh and Nelder
(1989). We specify a variance function V ar(yit|xit, zit) = v(µit), and solve the so-called
generalized estimation equations. With the specification v(µit) = µit = exp(ηit), this leads
to solving

∑

i,t

[yit − exp(ηit)]xit = 0,

∑

i

[yi1 − exp(ηi1)]zi1 = 0,

...∑

i

[yiT − exp(ηiT )]ziT = 0, (12)

with xit = (x1,it, . . . , xp,it)> and zit = (1, z1,it, . . . , zp,it)> (the 1 accounts for intercept
αt). A desirable feature of this estimator is that it is consistent even if the variance
function v(µit) is misspecified. Only the conditional mean µit = exp(ηit) has to be specified
correctly (see e.g. Gourieroux et al., 1984, or McCullagh and Nelder, 1989). Furthermore,
the estimator defined by (12) is equivalent to the (quasi-)MLE based on the Poisson log-
likelihood. In other words, the estimator defined by (12) is also obtained by maximizing
the Poisson (log-)likelihood over α-, β-, and γ-coefficients from model (11). Therefore,
a penalized version of this estimator can be obtained by maximizing the penalized log-
likelihood

lp(α, β, γ) = lnL(α, β, γ)− λJ(γ), (13)
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where for L the Poisson likelihood L =
∑

i,t yit ln(µit)− µit + const is used. For J(γ), any
penalty discussed in Section 2.1 can be used.

2.4 Tuning Parameter Selection

A remaining task in practice is the selection of the tuning parameter λ, which determines
the strength of penalization. A common approach for selecting tuning parameters is K-
fold cross-validation. For this, the data are (randomly) split into K (roughly) equal-sized
parts. Then, for each part k = 1, . . . ,K, the model is fit to the remaining K − 1 parts
of the data, and the prediction error of the fitted model is calculated when predicting the
outcome variables yit of the kth sub-sample. Lastly, the K estimates of prediction error
are combined (see Hastie et al., 2009), and the resulting measure of prediction error is
minimized as a function of the tuning parameter(s) of interest.

One way to evaluate the predictive performance of a model is to use the cumulative
(cross-validated) deviance. The deviance for observation i at time t is defined as

Dit = −2 (lnL(µ̂it)− lnL(yit)) , (14)

with L(µ̂it) denoting the likelihood at the estimated (conditional) mean of response y for
observation i at time t, and L(yit) being the likelihood if the observed value yit is plugged
in instead of µ̂it. In general, the likelihood is maximized if the observed values yit are
plugged in, and it should be as large as possible for fitted values µ̂it. Hence we have
Dit ≥ 0 for all i, t, and minimizing the cumulative (cross-validated) deviance leads to an
adequate λ-parameter.

Another way to determine λ is the rule that the same criterion should be used as has
been used to estimate model parameters α, β and γ. When fitting the (quasi-)Poisson
model, we use the Poisson likelihood to compute (14). This leads to the so-called quasi-
deviance for the general model (11)

Qit = −2(yit ln(µ̂it)− µ̂it − (yit ln(yit)− yit)). (15)

However, since the term (yit ln(yit)− yit) in (15) does not depend on λ, it can be neglected
when minimizing Qit. Consequently, we will use the adjusted quasi-deviance

Q∗
it = −2(yit ln(µ̂it)− µ̂it) (16)

to determine λ in the penalized (quasi-)Poisson model.

3 Empirical Application: The ‘Death of Distance’ in Inter-
national Trade

Within the field of international economics, one of the most stable empirical relationships
is captured by the gravity model. In this model, bilateral trade between two countries is
to a large extent explained by the size of the two countries’ economies and the distance
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between them. Since the latter variable is typically thought to capture transport costs for
shipping goods from the exporter to the importer, it has been a popular prediction that
falling transport and communication costs would lead to the ‘death of distance’ (see e.g.
Cairncross, 1997). In other words, the importance of distance as an impediment to trade is
expected to decrease over time. At the same time, conventional wisdom among researchers
applying gravity models has, to the contrary of this belief, been that distance, if anything,
becomes more important over time. For instance, Carrère and Schiff (2005) summarize the
gravity literature by stating that most gravity model estimations “find that the negative
impact of distance on bilateral trade increases over time”. In a similar way, Brun et al.
(2005), note that “when the model is estimated separately for several years, the absolute
value of the coefficient almost always increases over time”.

The discrepancy between theoretical predictions and empirical findings regarding the
historical evolution of the distance effects in international trade makes the issue an impor-
tant research puzzle with a strong policy relevance. Furthermore, from a methodological
perspective, the issue is a suitable example of a research question where our proposed
methodology offers clear advantages compared to traditional methods. Empirical research
on international trade is typically carried out using very large data sets, implying that
most variables will become statistically significant even though they may not necessarily
be economically relevant. Our approach is therefore particularly useful as a tool to deter-
mine whether changes in the effects of distance over time are truly economically important,
rather than merely statistically significant. We will therefore apply our proposed method-
ology to estimate a standard gravity model where the effect of distance on bilateral trade
is allowed to change yearly. It is important to stress, however, that the question of why
the effect of distance does or does not change over time is beyond the scope of this paper.
Instead, we focus on offering a methodologically well-grounded answer to the question of
how the effect of distance actually evolves over time in a standard gravity model.

We will begin by presenting a brief overview of the previous research in the literature.
Thereafter, we will outline our own empirical strategy, and then illustrate how the results
differ when we compare our approach with a more traditional methodology.

3.1 Previous Research

The gravity model is one of the most commonly used tools to assess effects of trade policy
and economic integration, and there are therefore hundreds of studies available, using a
broad range of samples. While most studies do not allow the effect of distance to vary
over time, investigating how the estimated distance effects vary in studies investigating
different time periods is an indirect way to assess how the distance effect evolves over
time. This approach has been used in an ambitious meta analysis of estimated distance
effects performed by Disdier and Head (2008). Using a large number of estimated distance
coefficients from a wide range of gravity studies, these authors find that there is a significant
increase (in absolute terms) in the estimated distance effects after 1970. For example,
according to their meta-regression results, distance impedes trade by 37% more after 1990
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than it did during the time period 1870 to 1969.
There are also studies that estimate gravity models where the distance effect is allowed

to vary over time. For instance, when estimating a standard gravity specification where
the distance variable is interacted with a linear time trend and time squared, Brun et al.
(2005) find that the impact of distance on trade increases over time.6 In another study,
Coe et al. (2007) capture changes in the effects of distance over time in two ways: by
repeated cross-sectional regressions and by estimating a pooled model where the distance
parameter is allowed to shift through the interaction with decade-specific dummies. When
using nonlinear models, they find a decreasing distance effect, though not when using
log-linear models. Carrère et al. (2010) capture changes in the distance coefficient by
first conducting repeated cross-sectional regressions on five-year averages and then using a
panel framework where the distance variable is interacted with a linear time trend and time
squared. When analyzing a broad sample of trading countries, they draw the conclusion
that the elasticity of trade with respect to distance becomes larger over time. Looking at
trade for disaggregated industries, Berthelon and Freund (2008) draw the same conclusion
for many of the industries by comparing the estimated elasticities for two time periods
(1985-1990 and 2001-2004).

3.2 Empirical Strategy

As outlined in Section 3.1, there are gravity studies where the effect of distance has been
allowed to vary over time. However, this has typically been done by either performing
repeated cross-sectional regressions, which is an inefficient way of using the information
available in trade data, or by exploiting the panel structure of the data, but then placing
strong parametric restrictions on the allowed evolution of the distance effect. In this study,
we estimate panel gravity models where the distance effect is allowed to vary arbitrarily
over time without being restricted by parametric assumptions. In order to illustrate the
usefulness of the methodology we propose, we contrast our preferred penalized approach
with a flexible ‘traditional’ model that could potentially constitute a good approach to
capturing the temporal evolution of the distance effect. The flexible ‘traditional’ model
that we use as the benchmark contains interactions of the distance variable with year
dummies. This way, separate coefficients for every year can be estimated, and the distance
effect is allowed to vary freely over time. In our proposed penalized approach, we use
the same flexible model with separate coefficients for every year, but we then additionally
penalize the differences between adjacent coefficients (see Section 2). In doing so, we
can simultaneously assess how the effect of distance changes over time and whether these
changes are economically important. Moreover, by utilizing the model selection capacity
of our approach, we can evaluate the relative importance of various explanatory variables

6Our main interest lies in the methodological aspects, and therefore we focus on estimations from
standard gravity models. As shown by Brun et al. (2005) and some of the other studies reviewed, adding
important control variables, or focusing on sub-samples of countries with specific characteristics, can reverse
the finding of an increasing distance effect.
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for explaining the volumes of bilateral trade.
We use data on aggregated bilateral trade between 185 importing countries and 195

exporting countries – at all levels of development – for the years 1962 to 2006 (for a full
list of countries included in the sample, see Table A1 in the Appendix). The very long
time period covered implies that if the effect of distance on trade changes over time, we
should have a good chance of identifying this change. The set of explanatory variables (for
a full list of variable definitions and data sources, see Table A2 in the Appendix) is rather
standard and resembles what one would typically find in the gravity literature. Against
that background we would again like to stress that we do not have the ambition to offer
explanations as to why the effect of distance does or does not change over time. Our goal
is instead to establish whether or not it actually does change by applying the penalized
(quasi-)Poisson model described in Section 2.3.

Before presenting our empirical results, we want to point out a methodological detail
that has been discussed in the gravity literature. A well-known problem in the trade
literature is that the sources for data on trade volumes – in our case COMTRADE – do not
typically differentiate between observations of zero trade flows and missing observations.
Missing observations could therefore be truly missing observations of zero or positive trade
flows, or an actual observation of a trade flow with the value zero. As has been extensively
discussed in the literature about estimating gravity models (see e.g. Santos Silva and
Tenreyro, 2006), the zeroes contain a lot of information, and failure to take them into
account can lead to biased estimates. To separate zero-trade volumes from missing values,
we therefore apply the following baseline rule: if a country has no recorded imports from
any country in a particular year, import volumes between that country and all other
countries are considered to be missing for that year; if a country has recorded imports
from some (but not all) countries in a particular year, import from the remaining countries
is considered to be zero. We also evaluate the ramifications of this proceeding by estimating
a model where all non-positive observations are excluded.

3.3 General Results

Table 1 shows the results obtained from a (penalized) Poisson model using various values
of the penalization parameter λ.7 Due to the large number of observations in the analyzed
data set, we have used adaptive penalties (see Section 2.1.3). In particular, the results
in Table 1 originate from Poisson models penalized by the adaptive group lasso penalty
given in (8). Results obtained when using the adaptive fused lasso penalty given in (9) are
discussed in Section 3.4 below.

The first column of Table 1 shows the results from a conventional Poisson model where
the coefficients were not penalized (i.e. λ = 0). The results confirm what is typically
found in gravity studies. Both the importer’s GDP and the exporter’s GDP significantly

7Note that (for λ > 0) all the coefficients reported in Table 1, except the main effect of distance, were
penalized. As discussed below, including the main effect of distance into the penalty renders the results
virtually unaffected.
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increase the volume of trade. Both the importer’s population and the exporter’s population
decrease the volume of trade. As compared to GDP, however, the effects are smaller in
absolute values, and the effect of the importer’s population is not significant on the 1%-
level. If the two trading partners share a common border, a common official language,
or a common currency, the volume of trade is increased. The same holds if the trading
partners have a common colonial history, and if they used to have a common colonizer.
If both the importer and the exporter are members of the GATT (or later in the period
WTO) or the same RTA (Regional Trade Agreement), trade is increased. The same holds
if the importer is an ACP country and the exporter a member of the EU or vice versa.8

As expected, the distance between the two trading partners has a strongly negative effect
on their trade volumes. The coefficient may be interpreted as the elasticity of trade with
respect to distance, so a 1% increase in bilateral distance is associated with a decrease in
trade of about 0.6%. This is well in line with many previous findings (see e.g. Leamer and
Levinsohn, 1995, and Disdier and Head, 2008).

In addition to the above mentioned covariates, we have also included four sets of dummy
variables into the model. Besides flexible distance-time interactions, that allow the distance
effect to vary freely over time, we have included year dummies, importer dummies, and
exporter dummies to account for unobserved temporal and country-specific heterogeneity.
According to compound Wald-type tests, all the four sets of dummy variables are significant
on the 1‰-level, indicating that variations in the distance effect as well as unobserved
year- and country-specific effects have a non-negligible impact on trade. Using penalized
estimation techniques, we can evaluate the relative importance of these sets of dummy
variables (as compared to the other covariates in the model). Since we are primarily
interested in (the temporal evolution of) the distance effect, we will put particular focus
on the distance-time interactions.

Introducing a small penalty with λ = 1 slightly changes the estimation results (see the
second column of Table 1) and provides a first indication of the relative importance of the
included covariates.9 While most coefficients are hardly affected by this small penalization,

8It is noteworthy that both these variables are significant. Broadly speaking, they capture the trade pref-
erences offered by the European Union to African, Caribbean and Pacific countries through the Yaoundé,
Lomé and Cotonou agreements. Since these preferences are non-reciprocal, i.e. the ACP countries do not
offer better than most favored nation (MFN) market access to EU countries, while they themselves export
under preferential conditions, one should theoretically expect an effect only in one direction of trade. It is
possible that stringent rules of origin combined with the permission of cumulation of origin when importing
intermediate goods from EU countries could be an explanation for the positive effect on trade from the
EU to ACP countries.

9With the introduction of a penalty term, P -values are no longer reported. Since lasso-type penalties
allow for ‘corner solutions’ when maximizing (4), analytical derivatives of the maximized target function
(and thus asymptotic standard errors) may not be available. Of course, standard errors of penalized
estimates could be obtained using e.g. bootstrap methods. However, we have not pursued this, since
significance is not an issue here. Due to the very large data set that we analyze, all but three coefficients in
the unpenalized model are significant even on the 1‰-level. Moreover, the remaining three coefficients are
the first to be shrunk to zero as the strength of penalization is increased, and they are no longer contained
in the model that we prefer.
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Table 1: Estimation Results

Poisson Penalized Poisson

(λ = 0) λ = 1 λ = 106 λ = 108 λ = 108.4 λ = 108.8 λ = 1010

Log GDP 0.7089 0.7289 0.7283 0.7260 0.7281 0.7354 0.7577
(importer) (0.000)

Log GDP 0.7163 0.6986 0.6982 0.6960 0.6967 0.6988 0.6955
(exporter) (0.000)

Log population −0.1180 −0.0036 −0.0029 0 0 0 0
(importer) (0.027)

Log population −0.5162 −0.0101 −0.0096 −0.0020 0 0 0
(exporter) (0.000)

Common border 0.4887 0.4924 0.4911 0.4792 0.4564 0.4059 0
(0.000)

Common language 0.2786 0.2757 0.2750 0.2541 0.2227 0.1201 0
(0.000)

Common currency 0.0755 0.1130 0.1108 0 0 0 0
(0.012)

Colonial history 0.3427 0.3445 0.3428 0.2439 0.0522 0 0
(0.000)

Common colonizer 0.1049 0.0806 0.0694 0 0 0 0
(0.020)

GATT/WTO 0.3559 0.3171 0.3150 0.2373 0.1572 0 0
(0.000)

RTA 0.6755 0.6619 0.6599 0.6202 0.5738 0.4608 0
(0.000)

ACP to EU 0.4074 0.3517 0.3426 0 0 0 0
(0.000)

EU to ACP 0.4666 0.4210 0.4066 0 0 0 0
(0.000)

Log distance −0.5990 −0.5389 −0.5374 −0.5496 −0.5747 −0.6239 −0.7056
(0.000)

Distance-time yes yes yes yes no no no
interactions (0.000)

Year dummies yes yes yes yes yes yes no
(0.000)

Importer dummies yes yes yes yes yes yes no
(0.000)

Exporter dummies yes yes yes yes yes yes yes
(0.000)

Observations 774,708 774,708 774,708 774,708 774,708 774,708 774,708
Deviance (×1012) −3.423 −3.423 −3.423 −3.422 −3.421 −3.418 −3.374

Note: λ denotes the tuning parameter used in the penalized regression models. All penalized estimates
were obtained using the adaptive penalty given in (8). Deviance refers to the (cumulative) adjusted
quasi-deviance given in (16). For the unpenalized Poisson model, P -values based on robust Huber-White
standard errors (White, 1980) are provided in parentheses. The P -values for groups of dummy variables
are based on robust Wald-type tests of the compound hypothesis that all coefficients are equal to zero.
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the coefficients on the importer’s and the exporter’s population are strongly shrunk in
absolute values. This suggests that neither the importer’s population nor the exporter’s
population contribute much to explaining trade volumes. The third column of Table 1
shows that increasing the strength of penalization from λ = 1 to λ = 106 renders the
results virtually unaffected. Columns 4 to 7 of Table 1 show that increasing the strength
of penalization up to and beyond λ = 108 affects the estimation results quite substantially
and causes some coefficient values to be shrunk to zero (i.e. the corresponding covariates
are effectively removed from the regression). When imposing a very strong penalization
with λ = 1010, only four explanatory variables remain in the model: the importer’s and
the exporter’s GDP, distance, and the set of exporter dummies. This suggests that these
covariates are the most important ones for explaining the volume of trade.

Table 2 provides a more detailed picture of the relative importance of the covariates
included in the regression. The table shows the order in which the covariates are removed
from the regression and the corresponding λ-values. The first covariate to be dropped is
common colonizer at a λ-value of 107.2. The first set of dummy variables that is removed
from the regression is the set of distance-time interactions at a λ-value of 108.4. In other
words, for a strength of penalization corresponding to λ = 108.4 or higher, the effect of
distance is constant across time. The covariates that are dropped last are the importer’s
and the exporter’s GDP, suggesting that these covariates are the most important ones for
explaining the volume of trade.

Table 2: Importance of Covariates

λ Covariates excluded

107.2 common colonizer

107.6 log population (importer)

108.0 common currency, ACP to EU, EU to ACP

108.4 distance-time interactions, log population (exporter)

108.8 colonial history, GATT/WTO

109.2 common language

109.6 year dummies, common border, RTA

1010.0 importer dummies

1010.4 exporter dummies

1010.8

1011.2

1011.6 log GDP (importer), log GDP (exporter)

As Table 2 shows, the main effect of distance is never shrunk to zero. This is due
to the fact that the corresponding coefficient was not penalized in order to rule out the
somewhat hard-to-interpret scenario, where the main effect of distance is excluded from
the model but the distance-time interactions are not. However, we also estimated a model
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with a penalized distance coefficient, and the scenario mentioned above did not occur. In
fact, the distance coefficient was the third last to be removed from the model (at a λ-
value of 1010.8), suggesting that the distance between the trading partners, together with
the two GDP-variables, constitute the three most important covariates. Of course, this
is a very reassuring result, because it is precisely these variables that constitute the very
core of the theoretical gravity model. That they are the last variables to disappear when
we progressively increase the strength of penalization is therefore well in line with what
we would expect to see. Thus, this example offers a neat illustration of how penalized
regression can be used to discriminate between profoundly influential covariates and those
that are merely statistically significant. In applications such as ours, where researchers
increasingly work with very large data sets and therefore tend to find statistical significance
for most covariates, the latter distinction becomes very important to make.

The above results raise the question of how large the strength of penalization should
be. To determine the strength of penalization, we consider the (cumulative) adjusted
quasi-deviance obtained from five-fold cross validation (see Section 2.4). Figure 1 shows
the cross-validated quasi-deviance as a function of the tuning parameter λ. For λ ranging
from 1 to 108.4 the deviance function is roughly constant. For larger λ-values the deviance
function increases markedly. This suggests that the value of λ chosen should not exceed
108.4. Since the deviance function does not exhibit a distinct minimum, the exact value
of λ that should be chosen is not straightforward to determine. In this case, we propose
to choose a relatively heavy penalization corresponding to λ = 108.4, as this leads to a
parsimonious and readily interpretable model which still has good explanatory power in
terms of cross-validated deviance. However, since the deviance function is rather flat for
λ ≤ 108.4, it is important to make sure that the estimation results are not markedly affected
by small changes in λ.

As Table 1 shows, increasing the value of λ from 108 to 108.4 induces only two noteworthy
changes in the estimation results. First, the exporter’s population is removed from the
set of explanatory variables. However, the effect of this covariate is negligible even for
lower values of λ. Second, the distance-time interactions are removed from the regression,
implying that the effect of distance is constant for λ ≥ 108.4. Since we are mainly interested
in how the effect of distance changes over time, we scrutinize the distance effect and its
dependence on λ in the following section.

3.4 The Distance Effect

In what follows, we focus on the evolution of the distance effect over time. Figure 2 shows
the distance effects obtained from the penalized Poisson model with four different values
for the tuning parameter λ.

Without penalization, the distance effect varies rather erratically over time. As the
dash-dotted line shows, the distance effect reaches a maximum (in absolute terms) of
about −0.67 in 1969, and a minimum of about −0.47 in 1980. In other words, without
penalization, the distance effect is estimated to be about 40% larger in 1969 than in
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Figure 1: Cross-validated (Quasi-)Deviance as a Function of the Tuning Parameter λ
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Figure 2: The Varying Effect of Distance over Time
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1980. In general, the dash-dotted line obtained from the unpenalized model provides the
impression that the distance effect exhibits a decreasing trend (in absolute terms) over time.
However, introducing just a small penalty with λ = 1 substantially changes the estimated
distance effect function. As the dotted line shows, the yearly changes in the distance effect
are heavily shrunk, making the new, penalized function rather smooth. Moreover, after
penalization, the distance effect no longer exhibits a trend in any direction. The penalized
distance effect appears to be rather constant in the long run, exhibiting only a slightly
inversely u-shaped form. As was the case with the parameter estimates given in Table 1,
increasing the tuning parameter λ from 1 to 106 hardly affects the estimation results.
The dashed line is almost indistinguishable from the dotted line. As the solid line shows,
further increasing the tuning parameter to λ = 108 removes the slightly inversely u-shaped
form and leads to a virtually constant distance effect. As discussed above, for λ-values of
λ = 108.4 and larger, the distance effect is exactly constant.

To test the robustness of the above results, we estimated three additional variants of
the penalized Poisson model: 1) a model, where the main effect of distance was penal-
ized; 2) a model, where the distance-time interactions were not treated as a group but
as individual covariates (fused lasso); and 3) a model where all the ‘zeros’ were excluded.
Moreover, since previous studies have frequently allowed the distance effect to vary over
time in a linear and quadratic fashion, we compared our group lasso approach with such
a parametric specification. Figure 3 shows the estimated distance effects obtained from
these four models.

Figure 3(a) shows the estimated distance effects when the main effect of distance is
penalized. The plotted distance functions are almost indistinguishable from their counter-
parts depicted in Figure 2. Thus, whether the main effect of distance is penalized or not,
is not crucial for the estimation results and the conclusions that can be drawn from them.
As above, the penalized effect of distance does not appear to exhibit any long-run trend,
and, with λ = 108, the distance effect is virtually constant over time.

Figure 3(b) shows the estimated distance effects when differences in adjacent distance
coefficients are penalized individually rather than group-wise. Such an individual penal-
ization allows the distance effect to vary rather freely from year to year but also to be
constant during longer subperiods. It may be a useful approach when the distance effect
exhibits one or more ‘jumps’ during the long period of time that we study but is constant
during the periods in between these jumps. As compared to the group-wise penalization,
the distance effect varies more erratically when the strength of penalization is small, i.e.
when λ = 1. However, when λ is increased to a value of 106, the distance effect is rather
similar to the group-wise penalized effect, and with λ = 108 the effect is constant.

Figure 3(c) shows the estimated distance effects when all zero-trade volumes are ex-
cluded from the regression. Comparing Figure 3(c) with Figure 2 shows that the estimates
are virtually unaffected by this modification. In other words, our ad hoc procedure to sep-
arate the ‘zeros’ from missing values does not seem to be crucial for the resulting distance
effect estimates.
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Figure 3: The Varying Effect of Distance over Time: Alternative Specifications
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(a) Distance penalized
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(b) Fused lasso
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(c) No ‘zeros’
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(d) Group lasso vs. parametric trend

Lastly, Figure 3(d) shows the estimated distance effect obtained from a parametric
specification with a linear and a quadratic time trend. For comparison, the figure also
depicts group lasso estimates for λ = 0, λ = 1, and λ = 108, as already shown in Figure 2.
Unlike the penalized estimates, the parametric estimates suggest that the effect of distance
varies quite substantially over time.10 In fact, the parametric distance effect function seems
to approximate the flexible (unpenalized) distance effect function. Both of these functions
suggest that the distance effect is markedly larger (in absolute terms) during the 1960s
and early 1970s than during the later years of the observation period. The penalized
estimates do not indicate such a shift in the distance effect, not even when the strength
of penalization is very small. The reason for this discrepancy between the penalized and
the unpenalized estimates might be that the number of observations is comparably small
during the 1960s and early 1970s. As a result, the distance effect estimates are relatively
shaky for these early years, and, consequently, differences in adjacent distance coefficients
are shrunk rather strongly when penalization is introduced.

10Both the linear and the quadratic component of the trend are significant on the 1‰-level. Detailed
results are available upon request.
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To summarize, the above results suggest that our initial finding that the effect of distance
on trade is rather constant across time is robust to changes in the strength and form of
penalization as well as to changes in the data analyzed. It is noteworthy that this finding
of a rather constant distance effect differs from the result obtained when estimating a
parametric model specification where the effect of distance is allowed to vary over time in
a linear and a quadratic fashion. This suggests that our proposed penalized estimation
approach may lead to insights that differ from those obtained in previous studies, where
parametric time trends have typically been estimated.

4 Summary and Conclusions

In this paper, we have argued that estimating panel data models with time-varying co-
variate effects is a new area where penalized regression techniques could be very useful.
In particular, we have proposed the use of lasso-type models where differences between
adjacent time-varying coefficients are penalized. This approach produces predominantly
smooth temporal variations in covariate effects without imposing restrictive parametric as-
sumptions. It also helps us determine whether the temporal variations in covariate effects
are (economically) relevant rather than merely statistically significant. If the temporal
variations make relevant contributions to the explanatory power of the model, the degree
of smoothness will be small, and relevant shifts in covariate effects can still be identified.

In order to illustrate the usefulness of the methodology we propose, we have revisited
the well-known empirical puzzle of the ‘death of distance’ in international trade. By es-
timating a standard gravity model on a very large panel of trade between 185 importers
and 195 exporters over the period 1962-2006, we have compared two ways to investigate
whether (and if so how) the effect of distance on bilateral trade changes over time. As
a benchmark, we have used a very flexible version of a traditional panel specification,
where separate coefficients are estimated for each year by interacting the distance variable
with year dummies. For a researcher who does not wish to use our proposed penalized
regressions, this would be a simple way to allow the effect of distance to vary in a non-
restrictive fashion. We have then compared this benchmark to our proposed method where
we additionally have penalized the differences between adjacent coefficients.

By comparing the benchmark regression with the penalized regressions, we have been
able to draw some interesting conclusions. Our results suggest that the choice between
penalized and unpenalized regressions can influence the empirical conclusions. When we
estimate the flexible model without penalties, the estimated distance effects vary quite sub-
stantially, suggesting that the effect of distance on trade would jump up and down even
over rather limited time periods. For instance, our results suggest that the effect in 1969
would be about 40% larger than in 1980. However, when introducing smoothing penalties
– thereby ensuring that only changes that contribute in a relevant way to explaining vari-
ations in trade flows are considered – the differences become much more limited, even if
the strength of penalization is rather small. This suggests that the potential problem of
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over-fitting when not using penalties should be taken seriously. Indeed, at reasonable levels
of penalization (according to cross-validation performance), our estimation results suggest
that the effect of distance on trade is virtually unchanged over time. In other words, the
approach of using lasso-type penalties helps us to avoid drawing misleading conclusions
about how the effect of distance on trade evolves over time.

In a further analysis, we have also compared our penalized estimation results with the
results obtained from a model where the distance effect is allowed to vary parametrically
over time. Since previous studies have frequently allowed the distance effect to vary over
time in a linear and quadratic fashion, we have contrasted our penalized estimation ap-
proach with such a parametric specification. Again, we have found substantial differences
in the results. While the penalized estimates indicate that the distance effect is rather
constant over time, the parametric estimates exhibit significant changes over time. This
suggests that our proposed penalized estimation approach may lead to insights that differ
from those obtained in previous studies, where parametric time trends have typically been
estimated.

Our empirical application also highlights other advantages of the lasso-type penalties
that we propose. Specifically, in the same way as the penalization assists us in choosing
an appropriate structure of temporal evolution for the distance coefficients, it can also
help us to find a parsimonious model specification. By penalizing all coefficients (except
the global intercept), and progressively increasing the strength of penalization, we can
see which variables that are first dropped from the model, and which variables that make
relevant contributions to the explanatory power of the model at practically any levels of
penalization. Reassuringly, we see that variables where the theoretical expectations of
effects are lower disappear long before the core gravity variables, namely the geographical
distance between the exporter and the importer and their respective GDPs. In the context
of international trade – and any other field where very large data sets are available – this
way to discriminate between factors that are statistically significant due to the large number
of observations, and those that are truly ‘economically’ relevant, can be very beneficial for
applied researchers who take the assessment of policy relevance seriously.
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Appendix A: Auxiliary Tables

Table A1: List of Countries (Exporters and Importers) Included in the Analysis

Afghanistan Colombia Haiti Mauritius Slovak Rep.
Albania Comoros Honduras Mexico Slovenia
Algeria Congo, Dem. Rep. Hong Kong Micronesia, Fed. Sts. Solomon Islands
Andorra Congo, Rep. Hungary Moldova Somalia
Angola Costa Rica Iceland Mongolia South Africa
Antigua & Barbuda Cote d’Ivoire India Morocco Spain
Argentina Croatia Indonesia Mozambique Sri Lanka
Armenia Cuba Iran, Islamic Rep. Namibia St. Kitts & Nevis
Aruba Cyprus Iraq Nepal St. Lucia
Australia Czech Rep. Ireland Netherlands St. Vincent &

the Grenadines
Austria Denmark Israel New Caledonia Sudan
Azerbaijan Djibouti Italy New Zealand Suriname
Bahamas, The Dominica Jamaica Nicaragua Swaziland
Bahrain Dominican Rep. Japan Niger Sweden
Bangladesh East Timor Jordan Nigeria Switzerland
Barbados Ecuador Kazakhstan Norway Syrian Arab Rep.
Belarus Egypt, Arab Rep. Kenya Oman Tajikistan
Belgium El Salvador Kiribati Pakistan Tanzania
Belize Equatorial Guinea Korea, Rep. Palau Thailand
Benin Eritrea Kuwait Panama Togo
Bermuda Estonia Kyrgyz Rep. Papua New Guinea Tonga
Bhutan Ethiopia Lao PDR Paraguay Trinidad & Tobago
Bolivia Faeroe Islands Latvia Peru Tunisia
Bosnia & Herzegovina Fiji Lebanon Philippines Turkey
Botswana Finland Lesotho Poland Turkmenistan
Brazil France Liberia Portugal Tuvalu
Brunei French Polynesia Libya Puerto Rico Uganda
Bulgaria Gabon Lithuania Qatar Ukraine
Burkina Faso Gambia, The Luxembourg Romania United Arab Emirates
Burundi Georgia Macao Russian Federation United Kingdom
Cambodia Germany Macedonia, FYR Rwanda United States
Cameroon Ghana Madagascar Samoa Uruguay
Canada Greece Malawi San Marino Uzbekistan
Cape Verde Greenland Malaysia Sao Tome & Principe Vanuatu
Cayman Islands Grenada Maldives Saudi Arabia Venezuela
Central African Rep. Guatemala Mali Senegal Vietnam
Chad Guinea Malta Seychelles Yemen
Chile Guinea-Bissau Marshall Islands Sierra Leone Zambia
China Guyana Mauritania Singapore Zimbabwe
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Table A2: Overview of Variables and Data Sources

Variable Definition & Data Source

Trade Bilateral imports from the United Nations’ Comtrade.

Log GDP Log of importer’s or exporter’s GDP. Data from the World Bank’s
World Development Indicators (WDI) online.

Log population Log of importer’s or exporter’s population. Data from the World Bank’s
World Development Indicators (WDI) online.

Common border Takes the value one if the trading countries share a border
Data from CEPII, http://www.cepii.fr.

Common language Takes the value one if the trading countries share the same
official language. Data from CEPII, http://www.cepii.fr.

Common currency Takes the value one if the trading countries share the same currency.
Data from Head et al. (2010), available via CEPII, http://www.cepii.fr.

Colonial history Takes the value one if the trading countries share a common
colonial history, i.e. the importer (exporter) has been a colony to the exporter
(importer). Data from CEPII, http://www.cepii.fr.

Common colonizer Takes the value one if the trading countries have had the same colonizer
after 1945. Data from CEPII, http://www.cepii.fr.

GATT/WTO Takes the value one if both countries are members of the General
Agreement on Tariffs and Trade (GATT) or the World Trade Organization (WTO).
Data from Head et al. (2010), available via CEPII, http://www.cepii.fr.

RTA Takes the value one if both countries are members of same Regional
Trade Agreement. Data from Head et al. (2010), available via CEPII,
http://www.cepii.fr.

ACP to EU Takes the value one if the exporter is an ACP (African, Caribbean and Pacific)
country and the importer is an EU country. Put differently, if the exporter is
granted non-reciprocal trade preferences by the European Union through the Yaoundé,
Lomé and Cotonou agreements. Data from Head et al. (2010), available via CEPII,
http://www.cepii.fr.

EU to ACP Same as the ‘ACP to EU’ variable, but covering trade in the other direction.
Data from Head et al. (2010), available via CEPII, http://www.cepii.fr.

Log distance Log of distance in km between the trading countries’ capitals.
Data from (CEPII), http://www.cepii.fr.
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Appendix B: Practical Guideline

As discussed in Section 2, estimating the models proposed in this paper using the R
software package grplasso (Meier, 2009) requires a particular preparation of the data set.
This Appendix provides a detailed description of how model re-parametrization can be
performed in practice, and a step-by-step instruction for model estimation.

To start with, we consider a single explanatory variable z that is allowed to exhibit
time-varying effects. Again, for notational convenience, we consider the balanced data
case. Using the required interaction of z with a set of time dummies, the corresponding
linear predictor is given by




z11 0 . . . . . . 0
...

...
. . . . . .

...
zN1 0 . . . . . . 0
0 z12 0 . . . 0
...

...
...

. . .
...

... zN2 0 . . . 0

... 0
. . . . . .

...
...

...
. . . . . . 0

...
...

... 0 z1T

...
...

...
...

...
0 0 . . . 0 zNT




︸ ︷︷ ︸
Z

·




γ1

γ2

...

...
γT




.

︸ ︷︷ ︸
γ

Now, using the re-parametrization δ1 = γ1 and δt = γt − γt−1, we have




γ1

γ2

...
γT




=




δ1

δ2 + δ1

...
δT + . . . + δ1




=




1 0 · · · 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1




︸ ︷︷ ︸
L

·




δ1

δ2

...
δT




.

︸ ︷︷ ︸
δ
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Thus, the linear predictor Zγ can be expressed as ZLδ, where

ZL =




z11 0 . . . 0
...

...
. . .

...
zN1 0 . . . 0

z12 z12
...

...
...

...
...

...

zN2 zN2
...

...
...

...
...

...

z1T z1T . . . z1T

...
...

. . .
...

zNT zNT . . . zNT




.

If intercept αt and q time-varying coefficients γl,t are to be smoothed, the corresponding
design matrix is given by

D =




1 0 · · · 0 z1,11 0 · · · 0 · · · zq,11 0 · · · 0
...

...
. . .

...
...

...
. . .

... · · · ...
...

. . .
...

1 0 · · · 0 z1,N1 0 · · · 0 · · · zq,N1 0 · · · 0

1 1
...

... z1,12 z1,12
...

... · · · zq,12 zq,12
...

...
...

...
...

...
...

...
...

... · · · ...
...

...
...

1 1
...

... z1,N2 z1,N2
...

... · · · zq,N2 zq,N2
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 1 · · · 1 z1,1T z1,1T · · · z1,1T · · · zq,1T zq,1T · · · zq,1T

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...
1 1 · · · 1 z1,NT z1,NT · · · z1,NT · · · zq,NT zq,NT · · · zq,NT




.

Now, in order to estimate model (4) using the R software package grplasso, the following
procedure can be applied:

1. Arrange the data as in design matrix D above.

2. Decide whether conventional penalization or adaptive penalization is to be used; if
conventional penalization is chosen, go to step 3, otherwise go to step 4.

3. Divide every column in D except the first one (global intercept) by the standard
deviation of the respective column entries, σc, and continue with step 5.
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4. Divide every column in D except the first one by wl ·σc (group lasso) or wl,t ·σc (fused
lasso), where σc denotes the standard deviation of the respective column entries, and
weights wl and wl,t are defined as in Section 2.1.3.

5. Determine λmax using the command lambdamax().

6. Select an adequate λ-value (between 0 and λmax) through cross-validation (see Sec-
tion 2.4).

7. Estimate the desired model using the command grplasso().

8. For better interpretability, the estimated coefficients may be back-transformed through
division by σc, and using the relations δ1 = γ1 and δt = γt − γt−1.
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