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Abstract

We study mechanism design under endogenously incomplete commitment as it arises in

contracting with escape clauses. An escape clause permits the agent to end a contractual

relationship under specified circumstances, after which the principal can offer an ex-post

contract. Escape clauses are valuable when the maximal number of initial contracts is smaller

than the number of agent types. We identify a sufficient condition for incentive optimality of

ex-post contracting. Escape clauses are always incentive optimal under severely constrained

contracting. On the margin, the optimal escape clause balances the benefit of a better

adapted contract against an increase in dynamic inefficiency.
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1 Introduction

Escape clauses are contract stipulations that specify contingencies under which one or more

parties to a contract can terminate the agreement.1 In effect, an escape clause is a safety valve

that enables contracting parties to avoid satisfying the conditions of the agreement, for instance

if circumstances render fulfillment of the contractual terms too costly. Public service contracts

are a key domain for the use of escape clauses. The Swedish Electricity Act, for instance, states

that the following provisions apply to the regulation of electricity distribution networks:

“The regulatory authority may change the revenue cap during the regulatory period

by request of the regulated firm if:

1. circumstances warrant a substantial increase in the revenue cap; or

2. for other valid reasons.”2

If a network owner activates the escape clause in accordance with this act, then the regulatory

authority is under legal obligation to provide a modified regulatory contract. However, the legal

framework places no restrictions on this new contract other than the requirement that it must

be a revenue cap. This arrangement has two interesting properties that sets it apart from the

mechanisms typically analyzed in contract theory. First, the agreement between the principal

and the agent contains the possibility of ex-post contracting in the sense that the principal in

certain situations will propose a contract after the agent has communicated with the principal.

Second, the possibility for ex-post contracting is included in the agreement by contractual design,

and occurs at the agent’s initiative.3

The situation above cannot be described within the two most common paradigms of contract

theory. In a complete commitment framework, the principal engages in pure ex-ante contracting.

This means that the principal commits to all contractual offers prior to any communication from

the agent to the principal. The second paradigm is one of exogenously incomplete commitment.

In that setting, the principal by assumption is unable to commit to parts of the initial agreement,

an inability which leads to instances of ex-post contracting.4

Motivated by escape clauses, we develop a framework that deviates from the two previous

paradigms by exploring contracting under endogenously incomplete commitment. The principal

has the power to commit to pure ex-ante contracting, but can also deviate from this premise.

Specifically, the mechanism offered to the agent may include an escape clause that the agent

can invoke under stated conditions. Triggering the escape clause renders the initial agreement

void and leads to subsequent ex-post contracting.

1The Cambridge Dictionary defines an escape clause as “a statement in a contract that allows you to break all
or part of the contract under particular conditions.” dictionary.cambridge.org/dictionary/english/escape-clause

2Ellag (1997:857), 5 kap. 20 §; riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/ellag-
1997857 sfs-1997-857. Our translation.

3Escape clauses are also common in real estate and venture capital agreements. A similar stipulation is a break
clause, typically featured in tenancy agreements, by which a party can end a contract prematurely. These clauses
usually do not require the principal to make a subsequent contract offer, but they do not prevent the principal
from doing so, either. As the principal generally cannot lose from proposing a new contract after a previous
agreement has ended, such agreements are also likely to feature ex-post contracting.

4Other terminology for describing such problems is mechanism design with limited or imperfect commitment.
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We ask the following fundamental questions:

• What are the contractual implications of introducing an escape clause?

• When does the principal’s optimal mechanism include an escape clause?

• Which trade-offs do the principal face when designing an optimal escape clause?

The principal cannot gain anything from including an escape clause under complete commit-

ment power if contracting is unconstrained. This implies that the principal can offer and enforce

an unlimited number of contracts up front without any cost. The agreement then specifies one

(possibly unique) contract for every possible future pay-off relevant state of the world. The prin-

cipal chooses this mechanism to maximize its expected surplus subject to all relevant incentive

compatibility (IC) and individual rationality (IR) constraints by the agent. We assume instead

that contracting is constrained in the sense that the number of different contracts the principal

can offer the agent up front is smaller than the number of pay-off relevant states of the world.

This realistic deviation from the standard framework creates a raison d’être for an escape clause

by increasing contractual flexibility in an agreement between a principal and an agent.

We introduce constrained contracting in the Baron and Myerson (1982) framework of how

to regulate a monopoly with unknown costs. The principal (a regulatory authority) contracts

with one agent (a monopoly firm) to produce quantity q of a good in exchange for transfer t.

The agent has private information about its constant marginal cost θi. The principal knows

the domain and probability distribution over the agent’s cost types i ∈ {1...., I} = I. A larger

i means that the agent has higher marginal cost. Under the standard regularity condition

of increasing virtual marginal cost, the second-best optimal mechanism consists of a menu of

I different ex ante contracts, one contract xsbi = (qsbi , t
sb
i ) for every cost type. However, the

principal cannot implement this menu because of constrained contracting: the maximum number

of unique contracts in any ex-ante menu is restricted to at most K < I by assumption.

The principal can adapt to an environment with constrained contracting in several ways. The

first is to offer pooling contracts to a subset A ⊆ I of cost types. The principal then commits

up front to a menu containing no more than K different contracts. An agent that subsequently

reports marginal cost θj , j ∈ A, receives the stipulated contract xj . Second, the principal can

exclude a subset C ⊆ I of cost types. An agent that reports marginal cost θj , j ∈ C, receives the

null contract q0 = t0 = 0. Third, the principal can insert an escape clause into the mechanism

offered to the agent. This escape clause is characterized in terms of a subset B ⊆ I that does not

involve any stipulated contract offer. Instead, an agent that reports marginal cost θj , j ∈ B, will

receive a subsequent contract offer xj from the principal. The escape clause increases flexibility

by allowing contracts to adapt to the circumstance of the agent ex post. The principal achieves

this flexibility without any substantial increase in the number of contracts offered to the agent.

The principal makes at most K + 1 contract offers on the equilibrium path regardless of the

size of B because ex-post contracts are offered after the agent has reported marginal cost. For

instance, the agent never receives more than a single contract offer in the polar extreme case of

pure ex-post contracting, where A = ∅.
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The contractual implications of an escape clause Introducing an escape clause is associ-

ated with two fundamental incentive problems. The principal must prevent abuse of the escape

clause since activating it can otherwise be a profitable way for the agent to improve contract

conditions. Incentive compatibility of the ex-ante menu is maintained by increasing the transfer

payment for any reported marginal cost θj , j ∈ A. An escape clause therefore increases the

expected informational rent of the agent. The second fundamental problem is a ratchet effect

that arises because of contractual opportunism (Weitzman, 1980; Freixas et al., 1985). Consider

an agent with marginal cost θi = θj , j ∈ B, so that the agent triggers the escape clause by a

truthful cost report. Suppose the principal believes that the agent will only ever exaggerate its

marginal cost. The principal then infers from the cost report θj that the agent has marginal cost

θi ≤ θj . The escape clause renders the initial agreement void, so the agent’s outside option to

an ex-post contract is no contract at all. The principal prevents unnecessary transfer payments

by offering an ex-post contract that gives zero rent to an agent with marginal cost θi = θj .

The agent foresees this contractual opportunism by the principal and therefore lies about its

cost. Manipulation of cost reports to maintain informational rent under ex-post contracting

constitutes the ratchet effect.

Ex-post contracting causes the revelation principle to break down (Laffont and Tirole, 1988).

Bester and Strausz (2001) demonstrate that a stochastic revelation principle applies instead in

situations such as the above. There exists an incentive efficient direct mechanism in which the

agent reports its true cost with positive probability. The agent’s reporting strategy and the

ex-post contracts by the principal form a Perfect Bayesian Equilibrium (PBE). The cost reports

by the agent are optimal given the agent’s correct anticipation of how these reports affect future

contract offers; the ex-post contract offers are sequentially rational subject to the principal’s

posterior beliefs about the agent’s cost being based on the agent’s actual reporting strategies

and derived using Bayes’ rule.

A reporting strategy for which the agent possibly exaggerates marginal cost, but also delivers

a truthful report with positive probability, cannot be sustained as an equilibrium under an escape

clause. Consequently, the agent sometimes understates marginal cost in equilibrium. The IC

constraints for such cost types are locally both downward- and upward-binding, and so the

ratchet effect implies pooling within B. If θB is the smallest and θB the largest cost report

that triggers the escape clause, all cost reports θj , j ∈ {B, ..., B − 1}, yield the same contract

offer xB in equilibrium. Introducing an escape clause therefore increases the contractual degree

of freedom by at most 2 contract offers compared to a mechanism with complete commitment.

Further, all cost types contained in A are more efficient than those in B, which are more efficient

than those in C.5 An agent that triggers the escape clause does so because the initial contract

offers are insufficient to provide the required return given the agent’s production cost. The

purpose of an escape clause is to enable a relatively inefficient agent to obtain a contract better

suited to that agent’s particular circumstances.

The ratchet effect also implies that the informational content to the principal when observing

any specific cost report θj , j ∈ B, is limited. We show that uniform randomization across B\B
5Specifically, A = {1, ..., A}, B = {B, ..., B}, where B = A+ 1, and C = {B + 1, ..., I} if B ≤ I − 1.
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for an agent with marginal cost θi, i ∈ B, is an optimal reporting strategy. All cost reports

that trigger the escape clause, other than perhaps θB, then are equally (un)informative. Hence,

the principal’s loss in expected surplus from offering a vague escape clause is limited, relative

to specifying the exact circumstances B under which the escape clause applies. A vague escape

clause essentially allows the agent to opt out of an initial menu of contracts at free will.

When mechanisms contain an escape clause Entering an escape clause into a mechanism

increases flexibility by increasing the number of contracts in equilibrium, but this comes at the

cost of increased informational rent. Ex-post contracts are furthermore dynamically inefficient

because they entail a trade-off between output and rent extraction that is inefficient from an ex

ante perspective. This inefficiency occurs because the informational rent to the agent associated

with the escape clause is sunk when the principal makes the ex-post contract offer. Because of

these inefficiencies, it is not self-evident that the principal will always find it optimal to include

an escape clause under constrained contracting.

We consider first the case of severely constrained contracting in which the principal at most

can offer one single contract up front (K = 1). This assumption captures the “one-size-fits-

all” property of many agreements. It is then better for the principal to engage in pure ex-post

contracting rather than offer a single pooling contract up front. Doing so increases the flexibility

of contracts without creating any additional informational rent. The model therefore predicts

mechanisms with severely constrained contracting always to contain an escape clause.

Things are more complicated if the principal can offer multiple contracts up front (K ≥ 1).

We establish a sufficient condition on the menu of pure ex-ante contracts when it is optimal to

include an escape clause in the mechanism. Let qA be the output of the least efficient agent θA

that operates under the ex-ante menu. Pooling a subset of cost types in an ex-ante contract

distorts this output upward from a second-best perspective, qA > qsbA . Such upward distortion

occurs also under ex-post contracting because of dynamic inefficiency. Introducing an escape

clause that only applies to an agent with marginal cost θA, increases the expected surplus of

the principal if output exceeds the first-best level, qA > qfbA . The ex-post contract xfbA under the

escape clause then provides a better balance between efficiency and informational rent than the

ex-ante contract, from a second-best perspective. The output condition is satisfied, for instance

if the principal places sufficient weight on efficiency relative to rent extraction.

The trade-offs involved in designing an escape clause An escape clause is characterized

in terms of its lower and upper boundaries θB and θB. Broadening it by reducing the lower

boundary to θB−1 = θA has two effects on the expected surplus of the principal. An agent with

marginal cost θA will now be on an ex-post instead of an ex-ante contract. This modification

benefits the principal all else equal if it reduces the output distortion. However, this modification

also increases ex-post output because an agent that triggers the escape clause on average now is

more efficient than before. This output expansion has a first-order negative effect on expected

informational rent. On the margin, an optimally designed escape clause balances the benefit of

a better adapted contract against the cost of an increase in dynamic inefficiency.
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In our interpretation, K literally means the number of different contracts offered to the agent

up front. More generally, K is equal to the maximal number of non-trivially binding IC and IR

constraints in an ex-ante mechanism. In this sense, K is a measure of contract complexity. We

treat K as a parameter. One could argue that contracting costs are what constrain the number of

contracts. We illustrate in a simple example how even small contracting costs can be sufficient to

render constrained contracting efficient from the viewpoint of the principal. One can also think of

other types of clauses that trigger ex-post contracting, such as renegotiation clauses. Our general

message is that there are circumstances under constrained contracting where mechanisms with

ex-post contracting dominate all those with complete commitment. If renegotiation or other

clauses are better than escape clauses from the viewpoint of the principal, such a result would

reinforce the argument for mechanisms with endogenously incomplete commitment.

Related literature Our paper contributes to the literature on mechanism design with in-

complete commitment. Seminal contributions were Freixas et al. (1985) and Laffont and Tirole

(1988), who analyzed short-term contracting in a multi-period framework.6 Bester and Strausz

(2001, 2007), Skreta (2006), and, more recently, Doval and Skreta (2021) have developed a more

general methodology for analyzing mechanisms with incomplete commitment.7 Commitment

issues arise naturally in a setting with repeated sales (e.g. Tirole, 2016; Beccuti and Möller,

2018; Breig, 2020), in organizations (e.g. Shin and Strausz, 2014) and in auctions (e.g. Varti-

ainen, 2013; Skreta, 2015; Akbarpour and Li, 2020). A common denominator of these papers is

that limited commitment is imposed. Ours appears to be the first to consider commitment as

a mechanism design variable, specifically in the form of an escape clause.8 Applying the Bester

and Strausz (2001) methodology enables us to characterize equilibrium contracts under incom-

plete commitment in much larger detail than what is usually the case.9 In particular, we show

that nearly all ex-post contracts will be the same and that uniform randomization strategies

form part of an incentive optimal mechanism.10

We consider mechanisms in which the agent receives a transfer in exchange for completing

an assigned task. Following Holmström (1984), a large literature has developed in which the

principal and the agent contract on some action by the agent, but where no contingent transfers

6The literature on dynamic contracting in which the principal commits to a long-term contract, is surveyed in
Bergemann and Välimäki (2019).

7A precursor is Kumar (1985), who characterizes a “noisy” revelation principle in a sequential incentive mech-
anism.

8Fudenberg and Tirole (1983) analyze bargaining under incomplete information. A seller proposes to trade an
indivisible good at an initial price. If the buyer declines the offer, then the seller proposes a revised price. The
buyer either accepts or rejects the new offer, after which the game ends. They make the interesting observation
that the seller may benefit from adding the second stage, i.e. introduce ex-post contracting. Contracting is
constrained in their setting by an assumption that the seller provides a single price offer in the first stage.

9Fiocco and Strausz (2015) fully characterize the equilibrium in a two-period model of optimal regulation
without commitment where the agent can be one of two cost types.

10This randomization strategy is similar to that found in the classical analysis of strategic information trans-
mission by Crawford and Sobel (1982). The informed agent (Sender) submits a signal containing pay-off relevant
information to the principal (Receiver) who then takes an action that affects both. Sender randomizes across
signals to increase expected rent. The model can sustain partition equilibria that are more or less informative.
Our model features transfer payments and an ex-post participation constraint by the agent. These features reduce
the informativeness of the agent’s cost reports that trigger the escape clause in our setting.
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are available for accomplishing incentive compatibility. Since the fundamental design issue is

how much freedom to leave to the agent, these are often referred to as models of optimal del-

egation; see Amador and Bagwell (2013) for a general treatment. In our context, contracting

is constrained by the number of different contracts the principal can offer the agent up front,

whereas contracting is constrained by the lack of transfers in delegation problems. This con-

straint also leaves room for escape clauses to improve efficiency (e.g. Bagwell and Staiger, 2005;

Beshkar and Bond, 2017; Coate and Milton, 2019). In particular, Halac and Yared (2020) show

that the optimal mechanism features an escape clause if the principal can verify the agent’s

type by paying a fixed cost. Delegation models differ from the current framework by featuring

complete commitment. The only issue for implementation is to ensure incentive compatibility

by the agent. This property is plausible for typical applications such as design of international

agreements and fiscal rules. The purpose of escape clauses in such contexts is to permit mem-

bers to temporarily suspend their obligations under the agreement for a limited period of time

to allow them to respond to temporary shocks, but there is no ex-post contracting.11,12

We organize our paper into the following sections. Section 2 describes the contracting problem.

Section 3 characterizes mechanisms under complete commitment (pure ex-ante contracting).

We establish fundamental properties of contracts and reporting strategies in mechanisms with

incomplete commitment in Section 4, which results in a proposition on vague escape clauses. Sec-

tion 5 demonstrates the dominance of pure ex-post over pure ex-ante contracting under severely

constrained contracting. Section 6 identifies a sufficient condition for when ex-post contracting

is incentive optimal under general constrained contracting. We establish the fundamental trade-

offs involved in designing an optimal escape clause in Section 7. Section 8 discusses key modeling

assumptions, whereas Section 9 concludes the paper. Lengthy proofs are in the appendix.

2 The contracting problem

The agent (here a monopoly firm) can be one of a finite number I ≥ 2 of types. An agent of type

i ∈ {1, 2, ..., I} = I has constant marginal production cost of 0 < θi <∞. Types are ranked in

order of increasing production cost: θi+1 > θi for all i ∈ {1, ..., I − 1}. Let ν = (ν1, ..., νi, ..., νI)

be the probability distribution over the set of possible types θ = (θ1, ..., θi, ..., θI), with νi > 0

for all i ∈ I, and
∑I

i=1 νi = 1. To simplify indexation, we define a null type θ0 ∈ [0, θ1) that

occurs with probability ν0 = 0. Also, we let Gi =
∑i

j=0 νj be the probability that the agent has

marginal production cost less than or equal to θi.

A contract x = (q, t) is a pair specifying an output requirement q ≥ 0 that the agent has

to satisfy and an associated transfer of t ≥ 0 from the principal to the agent (transfers are

non-negative because the agent cannot be forced to produce at a loss). An agent with marginal

11Halac and Yared (2020) have an extension with limited commitment. Since the principal anyway always
implements her most-preferred action subsequent to verification, limited commitment plays a role in their model
only in the event the agent has not triggered the escape clause.

12Optimal contracting has been extended to a dynamic framework by way of the theory of optimal monetary
discretion; see for instance, Athey et al. (2005), Halac and Yared (2014).
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cost θi operating under contract x obtains the rent

Ui(x) = t− θiq.

The principal (here a regulatory authority) achieves the corresponding surplus of

Wi(x) = S(q)− t+ αUi(x) = S(q)− θiq − (1− α)Ui(x)

under contract x, where S(q) is the principal’s utility function of output q. This function is

continuous, twice continuously differentiable and strictly concave, with S(0) = 0. The parameter

α ∈ (0, 1) in the principal’s objective function reflects the weight the principal attaches to the

rent of the agent. For any given output q, the principal wants to minimize the agent’s rent by

setting the transfer t as small as possible. We assume that the outside no-contract option has a

value of zero both to the principal and the agent and that agent participation is voluntary.

Under complete information, the principal would set Ui(x) = 0 and maximize

W fb
i (q) = S(q)− θiq

over q. We assume that S′(q) < θI for some q > 0 and that limq→0 S
′(q) > 0 is sufficiently

large that the first-best contract xfbi = (qfbi , t
fb
i ) entails strictly positive and bounded output

and transfer payments:

qfbi = S′−1(θi) > 0, tfbi = θiq
fb
i > 0 ∀i ∈ I.

We assume that the first-best contract is always strictly better from the principal’s point of

view than the outside option: wfbi = W fb
i (qfbi ) > 0 ∀i ∈ I. The menu xfb = (xfb1 , ..., x

fb
i , ..., x

fb
I )

of first-best contracts thus involves full participation in the sense that all cost types produce a

strictly positive output in this mechanism.

We study a contracting problem with incomplete information. The setup is standard in the

sense that everything is common knowledge except that the agent has private information about

its marginal cost θi prior to contracting. The principal only knows the distribution characteristics

θ and ν. The solution to this problem typically specifies a menu of contracts, one for each cost

report of the agent. We deviate from this setup by limiting the total number of contracts K

the principal can offer the agent up front. K is then a measure of the contractual constraints,

with a smaller K meaning a more constrained environment. We refer to the polar case K = 1

as one of severely constrained contracting. For K ≥ I, contracting is effectively unconstrained.

We also deviate from the standard paradigm by assuming that the principal can reserve some

flexibility to contract ex post.

Specifically, we analyze the following game between the principal and the agent:

Stage 0: The principal constructs two disjoint subsets A ⊂ I ∪ ∅ and B ⊂ I ∪ ∅ and a subset

C which contains the types not in A or B. The set C is empty if A ∪ B contains all types I.

Stage 1: The principal commits to a menu xA = {xj}j∈A of ex-ante contracts, xj = (qj , tj) >
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(0, 0) for all j ∈ A if A 6= ∅, and to xj = x0 = (0, 0) for all j ∈ C if C 6= ∅. The menu xA consists

of at most K different contracts: |xA| ≤ K.13

Stage 2: The agent accepts or rejects the Stage 1 offer.

• Rejection: The principal and the agent each receive their reservation utility 0. Game over.

• Acceptance: The game continues to the next stage.

Stage 3: The agent reports marginal cost θj , j ∈ I.

• If A 6= ∅ and j ∈ A, then the agent produces qj in exchange for tj . Game over.

• If C 6= ∅ and j ∈ C, then the agent receives the null contract x0. Game over.

• If B 6= ∅ and j ∈ B, then the game continues to the next stage.

Stage 4: The principal offers an ex post contract xj = (qj , tj).

Stage 5: The agent accepts or rejects xj .

• Rejection: The principal and the agent each receive their reservation utility 0. Game over.

• Acceptance: The agent produces qj in exchange for tj . Game over.

The mechanism features pure ex-ante contracting if B = ∅. This is the standard complete

commitment setting of mechanism design, adapted here to the context of constrained contracting.

The mechanism features incomplete commitment if B 6= ∅. We interpret this property as the

inclusion of the following escape clause in the mechanism:

All initial contract offers by the principal are void if the agent reports marginal cost

θj, j ∈ B. The agent will receive a new contract offer from the principal subsequent

to invoking this clause.

The menu of contracts x = (xA,xB), xB = {xj}j∈B, is direct by assumption. Bester and

Strausz (2001) show for the class of games we consider here that the principal cannot gain

anything by extending communication to more general message spaces. The result applies if the

principal contracts with one single agent with private information about his type in a discrete

and finite type space, the menu of contracts x and the agent’s reporting strategy Σ (see below)

maximize the expected surplus of the principal, and the agent communicates its type with the

principal only once. The information that forms the basis of the principal’s contract offer in

Stage 4 differs from the information underlying contract offers in Stage 1 because the later-stage

contract offer builds on information that the principal has obtained from communicating with

the agent, namely the cost report θj , j ∈ B. The menu xB contains all elements of B, but at most

one of them will ever be proposed in equilibrium. Hence, the maximal number of contracts with

positive output offered along the equilibrium path is K + 1. Observe also that the principal can

always offer the null contract x0 regardless of K. This is not unreasonable given the simplicity

of this particular contract. The null contract allows us to handle partial participation, where

some types do not produce a positive quantity in equilibrium, in a simple manner.

13We denote the cardinality or rank of a set Υ by |Υ|. The cardinality measures the number of unique elements
in Υ, not the total number of elements.
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A mechanism with incomplete commitment (ex post contracting) may involve the agent

misrepresenting its type with positive probability in equilibrium. The reporting strategy of an

agent of type i ∈ I is a probability distribution σi = (σ1i, ..., σji, ..., σIi)
T ∈ ∆I−1, where ∆I−1

is the I − 1 standard simplex. Specifically, σji ∈ [0, 1] is the probability that an agent of type

i ∈ I claims to be of type j ∈ I. We let σi = σii denote the probability that i truthfully reports

its type. Let Σ = (σ1, ...,σi, ...,σI) ∈ ∆2(I−1) be the I × I matrix of reporting probabilities.

We call µji the posterior probability attached by the principal to the event that the agent has

marginal cost θi when the agent has reported marginal cost θj .

By way of terminology introduced in Bester and Strausz (2001), the mechanism (x,Σ|A,B)

is incentive feasible given (A,B) if it meets the following conditions:

Ui(xi) ≥ 0 ∀i ∈ I (1)

Ui(xi) ≥ Ui(xj) = Uj(xj) + (θj − θi)qj ∀(i, j) ∈ I × I (2)

σi > 0, σji(Ui(xi)− Ui(xj)) = 0 ∀(i, j) ∈ I × I (3)

xj ∈ arg max
x′∈R2

+

∑I
i=1 µjiWi(x

′) ∀j ∈ B if B 6= ∅ (4)

µji =
νiσji∑I
h=1 νhσjh

∀(i, j) ∈ I × I (5)

|xA| ≤ K (6)

Constraints (1) and (2) are the standard individual rationality and incentive compatibility con-

straints. The ex-post menu xB and agent reporting strategy Σ must jointly form a PBE to be

part of an incentive feasible contract if B 6= ∅. The three constraints (3)-(5) are the associated

equilibrium conditions. First, (3) is a rationality constraint on Σ that keeps an agent of type i at

least indifferent between truth-telling and lying given that the agent correctly expects to receive

xj if it invokes the escape clause by reporting j ∈ B. Second, (4) is a sequential rationality

constraint on xB requiring that xj maximize the expected surplus of the principal subsequent

to every cost report θj , j ∈ B, and given the principal’s Stage 4 distribution of beliefs about

the agent’s true marginal cost θi. Third, (5) is a consistency requirement that the principal’s

posterior beliefs satisfy Bayes’ rule. The final constraint (6) appears because of constrained

ex-ante contracting, and does not appear in Bester and Strausz (2001). We use Γ(A,B) to label

the set of incentive feasible mechanisms given (A,B).

A mechanism (x̂, Σ̂|A,B) is incentive efficient if it maximizes the principal’s expected surplus

W (x,Σ|A,B) =
∑I

i=1

∑I
j=1 νiσjiWi(xj) (7)

in the set Γ(A,B) of incentive feasible mechanisms. Observe that the principal optimizes both

over the menu of contracts x and the reporting strategy Σ.

Complete commitment represents the default mode in mechanism design analysis where no

additional contracting occurs after the agent has reported its type (pure ex-ante contracting).

Bester and Strausz (2001) consider the alternative setting of exogenously incomplete commit-

9



ment, i.e. for given (A,B) in the present context. Our paper attempts to bridge the cap

between the two paradigms by endogenizing commitment. Specifically, at Stage 0 of the game,

the principal chooses (A,B) to maximize the expected surplus W (x̂, Σ̂|A,B). A mechanism

(x∗,Σ∗|A∗,B∗) that solves this problem is incentive optimal.

There can be instances when an incomplete commitment mechanism can do as well as one

with complete commitment, but no better. We stack the deck against ex-post contracting:

Definition 1 (Escape clauses are minimal) An incentive feasible mechanism (x∗,Σ∗|A∗,B∗)
containing an escape clause (B∗ 6= ∅) is incentive optimal if and only if it maximizes the prin-

cipal’s expected surplus:

W (x∗,Σ∗|A∗,B∗) ≥W (x̂, Σ̂|A,B) ∀(A,B) ⊂ [I ∪ ∅]× [I ∪ ∅], A ∩ B = ∅, (8)

and the escape clause is minimal in the following sense:

W (x∗,Σ∗|A∗,B∗) > W (x̂, Σ̂|A,B) ∀(A,B) ⊂ [I ∪ ∅]× [B∗ ∪ ∅],A ∩ B = ∅,B 6= B∗. (9)

The incentive optimal mechanism entails endogenous incomplete commitment if B∗ 6= ∅. The

incentive optimal escape clause is minimal in the sense that the principal cannot find an incentive

feasible mechanism with a smaller or no escape clause that delivers the same expected surplus.

By implication, the principal must strictly benefit from abandoning the complete commitment

framework for the incentive optimal mechanism to contain an escape clause. Otherwise, pure

ex-ante contracting is incentive optimal.

3 Mechanisms with complete commitment

This section analyzes the properties of incentive efficient mechanisms under the assumption that

the principal commits to an ex-ante menu of contracts (A 6= ∅), but does not engage in ex-post

contracting (B = ∅). These mechanisms establish benchmarks against which we are able to

evaluate the merits and drawbacks of incomplete commitment mechanisms.

By the revelation principle, we can restrict attention to truth-telling mechanisms, i.e. incen-

tive feasible mechanisms for which Σ = I, where I is the I-dimensional identity matrix. The

principal then maximizes (7) over xA subject to (1), (2) and (6). Incentive compatibility implies

that output is non-increasing in the agent’s marginal cost. Hence, A = {1, ..., A}, where θA is

the marginal cost of the least efficient agent that produces positive output in the mechanism.

The mechanism features full participation if A = I. Otherwise, C = {A+ 1, ..., I}.
Set A is partitioned into K̃ ≤ K cost groups, A = {A1, ...,Ak, ...,AK̃}, because of con-

strained contracting. Each cost group consists of all cost types that operate under the same

contract. Cost groups are convex because output is non-increasing in marginal cost. We denote

by xAk = (qAk , tAk) the contract for cost group Ak. We will sometimes use xAk = (qAk , tAk)

as a substitute for xAk , where Ak is the least efficient cost type contained in Ak. In particular,

xAK̃ = xA = (qA, tA) since A is the upper boundary cost type in AK̃ .

10



The principal minimizes transfer payments to minimize agency rent. By standard arguments

(see the appendix), the IR constraint of the upper boundary cost type A in A and the IC con-

straints of all more efficient types are locally downward-binding, so the pure ex-ante mechanism

(x̂, I|A, ∅) is incentive efficient only if transfers are set in a way that

Ui(x̂i) =
∑A−1

j=i
(θj+1 − θj)q̂j+1 ∀i ∈ {1, 2, ..., A− 1}, UA(x̂A) = 0. (10)

The rent of an agent with cost θi is found by adding up the rents for less efficient types, loosely

the discrete type version of the well-known integral in the continuous type case.

Substituting the expressions for agency rent into (7) yields the principal’s expected surplus

W (x̂, I|A, ∅) =

A∑
i=1

νiWi(x̂i) =

K̃∑
k=1

νAkW̃Ak(q̂Ak). (11)

of the incentive efficient mechanism. In this expression, νAk =
∑

i∈Ak νi measures the ex-ante

probability that agent’s marginal cost belongs in cost group Ak.

W̃Ak(q) = S(q)− [
∑
i∈Ak

νi
νAk

(θi + (1− α)(θAk − θi) +
GAk−1

νAk
(1− α)(θAk − θAk−1

)]q (12)

is the principal’s utility of output q in cost group Ak minus the virtual production cost of this

output, where
GAk−1

νAk
is the hazard rate of cost group Ak. We let GA0 = 0.

Maximization of W̃Ak(q) over q yields the incentive efficient output in cost group Ak as the

solution to

S′(q̂Ak) =
∑
i∈Ak

νi
νAk

(θi + (1− α)(θAk − θi)) +
GAk−1

νAk
(1− α)(θAk − θAk−1

). (13)

Output is downward distorted to extract rent from more efficient cost groups. The principal’s

expected surplus becomes

W̃{i}(q) = W sb
i (q) = S(q)− (θi +

Gi−1

νi
(1− α)(θi − θi−1))q

if cost group Ak consists of one single cost type, Ak = {i}. The incentive efficient output then

is the second-best efficient output, q̂{i} = qsbi , solved by

S′(qsbi ) = θi +
Gi−1

νi
(1− α)(θi − θi−1). (14)

We employ the standard regularity assumption

θi +
Gi−1

νi
(1− α)(θi − θi−1) < θi+1 +

Gi
νi+1

(1− α)(θi+1 − θi) ∀i ∈ {1, ..., I − 1} (15)

of increasing virtual marginal production cost. This implies that it is incentive efficient to take

full advantage of all contractual flexibility, meaning that the incentive efficient number K̂ of cost
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groups satisfies K̂ = A for all A ≤ min{K; I}.
Contracting is unconstrained if the principal can offer at least as many contracts as there

are cost types, K ≥ I. Note that excluding some agent types from producing output by offering

them the null contract could still be profitable if the cost savings on informational rent are

sufficient. The principal’s expected surplus associated with offering the second-best contract

to an agent with marginal production cost θi equals νiw
sb
i = νiW

sb
i (qsbi ) under unconstrained

contracting. It is easy to verify that wsbi is strictly decreasing in marginal cost θi. We ensure

that the second-best efficient mechanism (xsb, I|I, ∅) with full participation is incentive optimal

under unconstrained contracting by imposing the assumption that wsbI > 0.

Let (x̂, I|Â, ∅) be a mechanism that maximizes the principal’s expected surplus under com-

plete commitment if contracting is constrained, K < I. Â = {1, ..., Â} is the subset of cost

types that produce positive output in this mechanism. The above assumptions imply that the

mechanism takes full advantage of all contractual flexibility, K̂ = K ≤ Â.

To derive the properties of incentive efficient partitioning Â = {Â1, ..., Âk, ..., ÂK} of Â into

cost groups forK ≥ 2, compare expected surplusW (x̂, I|Â, ∅) to what the principal could achieve

under a modified mechanism (x, I|Â, ∅) where an agent with marginal cost θÂk is transferred to

a less efficient cost group: Ak = Âk\Âk and Ak+1 = Âk+1∪Âk, k ≤ K−1. All other cost groups

remain unchanged if K ≥ 3. The menu of contracts has the following properties: xj = (q̂j , tj),

tj = t̂j − (θÂk − θÂk−1)(qÂk − qÂk+1
) for all j ∈ {1, ...Âk − 1}, xÂk = x̂Âk+1, and xÂj = x̂j for all

j ∈ {Âk + 1, ...I}. The difference in expected surplus between the two mechanisms simplifies to

W (x̂, I|Â, ∅)−W (x, I|Â, ∅) = νÂk [W sb
Âk

(q̂Âk)−W sb
Âk

(q̂Âk+1)] ≥ 0. (16)

By an analogous argument, an agent with marginal cost θÂk+1 optimally belongs in cost group

Âk+1 only if W sb
Âk+1

(q̂Âk+1) ≥W sb
Âk+1

(q̂Âk). Similar conditions arise for the boundary cost type

Â under partial participation. We summarize these findings as follows:

Lemma 1 Assume that the mechanism (x̂, I|Â, ∅) maximizes the principal’s expected surplus

under complete commitment and constrained contracting (K < I).

1. Output in cost group Âk is characterized by (13). Under pooling, |Âk| ≥ 2:

(a) Output is downward distorted relative to the second-best efficient output of the most

efficient cost type in Âk, q̂Âk < qsb
Âk−1+1

.

(b) Output is upward distorted relative to the second-best efficient output of the least

efficient cost type in Âk, q̂Âk > qsb
Âk

.

2. The upper boundary type Âk in interior cost group k ∈ {1, ...,K − 1}, K ≥ 2, satisfies the

principal’s local incentive compatibility constraint:

W sb
Âk

(q̂Âk)−W sb
Âk

(q̂Âk+1
) ≥ 0 ≥W sb

Âk+1
(q̂Âk)−W sb

Âk+1
(q̂Âk+1

). (17)
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3. The upper bound Â to ex-ante contracting under partial participation, Â ≤ I − 1, satisfies

the principal’s individual rationality constraint:

W sb
Â

(q̂Â) ≥ 0 ≥W sb
Â+1

(q̂Â). (18)

Notice the similarity between (17) and (18), the local downward and upward IC constraints,

and the IR constraint of the agent. The difference is that the principal’s constraints above are

evaluated using the second-best welfare function W sb
i (q).

4 Properties of mechanisms with incomplete commitment

The principal cannot implement (xsb, I|I, ∅) if K < I, by the assumption that |xsb| = I. If

the principal still wants to maintain complete commitment, it can pool cost types into cost

groups or reduce participation in the mechanism. We proceed in this section by considering

the fundamental properties of incentive feasible and incentive optimal mechanisms under the

assumption that these mechanisms also feature ex-post contracting (B 6= ∅).
In any mechanism (x,Σ|A,B) that features incomplete commitment (B 6= ∅), we let θB be

the minimal and θB the maximal cost report that yields ex-post contracting: (B,B) ∈ B × B,

B ≤ B, and B ⊆ {B, ..., B}. We do not impose convexity on B. Recall that θA is the maximal

cost report that yields ex-ante contracting.

Lemma 2 (Fundamental properties of contracts) Assume that the mechanism (x,Σ|A,B)

is incentive feasible and features incomplete commitment (B 6= ∅).

1. B has at most two unique contracts: |xB| ∈ {1, 2}.

2. If |xB| = 2, then:

(a) All cost reports θj, j ∈ {B, ..., B − 1}, yield the same ex-post contract offer xB =

(qB, θBqB).

(b) Cost report θB yields ex-post contract offer xfbB .

Assume that the incentive optimal mechanism (x∗,Σ∗|A∗,B∗) features incomplete commitment

(B∗ 6= ∅).

3. This mechanism exploits all available flexibility: |x∗A∗ | = K.

4. All cost types contained in B∗ are less efficient that those contained in A∗.

(a) All ex-post contracts have lower output than all ex-ante contracts: q∗B∗ < q∗A∗.

(b) All ex-post contracts render the upper boundary cost type B∗ indifferent between pro-

ducing and not: x∗B∗ = (q∗B∗ , θB∗q
∗
B∗) and x∗B∗ = (q∗B∗ , θB∗q

∗
B∗).

5. All cost types contained in C∗ are less efficient that those contained in B∗ if the mechanism

features partial participation (C∗ 6= ∅).
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Ex-ante contracting occurs whenever the agent reports marginal cost equal to or below threshold

θA∗ , whereas ex-post contracting only occurs after the agent reports marginal cost above this

threshold. Hence, the escape clause applies to circumstances when the cost of supplying output

is reportedly high. It can also be the case that there is no production at all. This happens if

B∗ ≤ I − 1, and the agent reports marginal cost above θB∗ .

Incomplete commitment increases the degrees of freedom in the mechanism by at most 2

contract offers compared to complete commitment. The number of different contracts contained

in the menu x of incentive feasible contracts equals |x| = |xA|+ |xB| ≤ K + 2 under incomplete

commitment. This limited additional flexibility is not an artifact of defining incentive optimal

mechanisms in terms of those with minimal escape clauses: the result applies to all incentive

feasible mechanisms. Instead, flexibility is limited under ex-post contracting by the ratchet effect

that renders incentive compatibility constraints both downward- and upward-binding.

The “no-distortion-at-the-bottom” contract xfbB for |xB| = 2, follows from the discretionary

nature of a mechanism with incomplete commitment. This mechanism still leaves an informa-

tional rent to a relatively efficient agent θi < θB. Unlike in the complete commitment setting,

however, the transfer payments necessary to reach incentive compatibility are sunk after the

agent has announced marginal cost θB in Stage 4 of the game. Consequently, there is no trade-

off between efficiency and rent extraction. If |xB| = 2, the agent reports θB only if it indeed

represents the agent’s true marginal cost. Upon observing cost report θB, the principal’s se-

quentially rational choice therefore is to offer the first-best efficient contract.

Lemma 2 contains a lot of information about the incentive optimal menu x∗ of contracts,

except for the sequentially rational quantity q∗B∗ . This quantity depends on the incentive opti-

mal reporting strategy Σ∗. For its characterization, it is helpful to introduce some additional

notation. Let B∗ = {B∗, ..., B∗ − 1} if |x∗B∗ | = 2 and B∗ = B∗ if |x∗B∗ | = 1. By this construction,

any cost report θj , j ∈ B∗ activates the escape clause, leading the principal to offer the contract

x∗B∗ in Stage 4 in the incentive optimal mechanism. The number |B∗| of elements contained in

B∗ is equal to B∗ −A∗ − 1 if |x∗B∗ | = 2 and B∗ −A∗ if |x∗B∗ | = 1.

Lemma 3 (Fundamental properties of reporting strategies) For any incentive optimal

mechanism (x∗∗,Σ∗∗|A∗∗,B∗∗) that features incomplete commitment (B∗∗ 6= ∅), there exists an

incentive optimal mechanism (x∗,Σ∗|A∗,B∗) that also features incomplete commitment (B∗ 6=
∅), with the reporting strategy Σ∗ fulfilling the following properties:

1. With respect to cost types in A∗:

(a) Relatively efficient types truthfully report their cost: σ∗i = 1 ∀i ∈ {1, ..., A∗ − 1} if

A∗ ≥ 2.

(b) The upper boundary type A∗ may invoke the escape clause: σ∗A∗ ≤ 1, σ∗jA∗ =
1−σ∗

A∗
|B∗|

∀j ∈ B∗.

2. With respect to cost types in B∗:

(a) The lower boundary type B∗:

14



i. truthfully reveals its cost if the escape clause is minimal: σ∗B∗ = 1 if B∗ = B∗;

ii. may choose not to invoke the escape clause if the clause is very small: σ∗B∗A∗ =

1− σ∗B∗ ≥ 0 if B∗ = B∗ − 1 and |x∗B∗ | = 2. In that case, the A∗ type invokes the

escape clause with zero probability: (1− σ∗B∗)(1− σ
∗
A∗) = 0;

iii. uniformly randomizes across all types in B∗ otherwise: σ∗jB∗ = 1
|B∗| ∀j ∈ B

∗ if

B∗ = B∗ − 1 and |x∗B∗ | = 1 or if B∗ ≤ B∗ − 2.

(b) Intermediary types randomize across different cost reports that yield ex-post contract-

ing: σ∗ji = 1
|B∗| ∀(i, j) ∈ {B

∗ + 1, B∗ − 1} ×B∗ if B∗ ≤ B∗ − 2.

(c) The upper boundary type B∗ randomizes between all types of cost reports that yield

ex-post contracting:

i. σ∗B∗ < 1 and σ∗jB∗ =
1−σ∗

B∗
|B∗| ∀j ∈ B

∗ if |x∗B∗ | = 2;

ii. σ∗jB∗ = 1
|B∗| ∀j ∈ B

∗ if |x∗B∗ | = 1.

3. Cost types in C∗ truthfully report their cost if the mechanism features partial participation:

σ∗i = 1 ∀i ∈ C∗ if C∗ 6= ∅.

Lemma 3 almost completely characterizes the incentive optimal reporting strategy under in-

complete commitment, despite the potentially large set of cost types and cost reports. In this

mechanism, any relatively efficient agent tends to choose its designated ex-ante contract in equi-

librium. A possible exception occurs if the agent has boundary marginal cost θA∗ . This agent

potentially triggers the escape clause by exaggerating marginal cost.

If σA∗ < 1, the only other agent type that would potentially choose anything other than its

designated contract in equilibrium is an agent with marginal cost of θB∗ . This agent understates

marginal cost with positive probability by randomizing across all cost types in B∗. Such behavior

mitigates contractual opportunism by the principal and ensures that more efficient types in B∗

receive an informational rent even under incomplete commitment.

By using the properties of incentive optimal ex-post contracts established in Item 4 of Lemma

2 and uniform randomization established in Lemma 3, we now apply (4) to characterize q∗B∗ for

|x∗B∗ | = 2:

S′(q∗B∗) =

∑B∗

i=A∗ νi(θi + (1− α)(θB∗ − θi))− νA∗σ∗A∗(θA∗ + (1− α)(θB∗ − θA∗))− νB∗σ∗B∗θB∗
νA∗(1− σ∗A∗) + νB∗ − νB∗σ∗B∗

,

(19)

where νB∗ =
∑

i∈B∗ νi is the ex-ante probability that the agent has a cost type in B∗. We can

set σ∗B∗ = 0 in the above equation to get q∗B∗ for |x∗B∗ | = 1.

To see how ex-post contracting affects the outcome, compare q∗B∗ to the incentive efficient

quantity q̂B∗ in an ex-ante mechanism where B∗ constitutes a separate a cost group. We obtain

this quantity by replacing Ak with B∗, Ak with B∗ and Ak−1 with A∗ in equation (13). The

difference

S′(q̂B∗)−S′(q∗B∗) =
GA∗

νB∗
(1−α)(θB∗−θA∗)+

∑
i∈B∗

ανi
νA∗(1− σ∗A∗)(θi − θA∗) + νB∗σ

∗
B∗(θB∗ − θi)

νB∗(νA∗(1− σ∗A∗) + νB∗ − νB∗σ∗B∗)
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in marginal utility is strictly positive, so q∗B∗ > q̂B∗ . The ex-post contract is less distorted than

the ex-ante one. Contrary to the ex-ante contract, the ex-post contract does not account for

sunk informational rents to more efficient types. This is the first term of the right-hand side

of the above expression. The relatively efficient cost type A∗ may invoke the escape clause, so

reducing the virtual marginal cost of output under the ex-post contract. This effect is captured

by the terms involving σ∗A∗ . If |x∗B∗ | = 2, the virtual marginal cost of the ex-post contract is

further reduced when the inefficient cost type B∗ is more likely to report its cost truthfully.

This final effect is captured by the terms involving σ∗B∗ .
14 We summarize the most important

qualitative features of incentive optimal mechanisms with incomplete commitment as:

Observation 1 The incentive optimal mechanism includes an escape clause in order to better

adapt to situations in which the agent has high marginal costs. Ex-post contracts are distorted

from an ex-ante perspective mainly because (i) the principal treats informational rent as a sunk

cost when making the ex-post contract offer; (ii) the agent may trigger the escape clause by

exaggerating its cost.

Vague escape clauses The transactions between the principal and the agent build on highly

structured communication in the mechanisms described above. Those mechanisms describe for

each possible cost report θj which contract xj (j ∈ A) of K specified options the agent shall

receive, whether the cost report triggers the escape clause (j ∈ B 6= ∅), or whether the agent

shall not produce anything at all (j ∈ C 6= ∅). Such high level of contractual detail can be costly

to implement in practice, of which delineating the exact boundaries of the escape clause seems

particularly challenging. In practice, such contract stipulations are often formulated in more

ambiguous terms. An example of a vaguely stipulated escape clause is:

The agent has the right to obtain a new contract offer from the principal if the agent’s

costs are substantially higher than expected. All initial contract offers by the principal

are void if the agent invokes this clause.

Contrary to the escape clause that forms the foundation of the incentive optimal direct mech-

anism, the above clause does not state the precise circumstances under which it applies. The

ambiguity that arises comes from the adverb ”substantially”, which is not defined in the con-

tract.15 The key question so moves to whether detailed communication would add real economic

value in this context.

To gauge the value of communication, assume that the incentive optimal mechanism features

complete ex-post pooling in the sense of |x∗B∗ | = 1, so that x∗j = x∗B∗ for all j ∈ B∗. On the basis

14An agent with marginal cost θB∗ may understate marginal cost to θA∗ under very particular circumstances;
see Lemma 3. If B∗ = B∗ − 1 and |x∗B∗ | = 2, the incentive optimal quantity q∗B∗ is given by the solution to

S′(q∗B∗) =
νB∗σ

∗
B∗ (θB∗+(1−α)(θB∗−θB∗ ))+νB∗ (1−σ∗B∗ )θB∗

νB∗σ
∗
B∗+νB∗ (1−σ∗

B∗ )
.

15Maggi and Staiger (2011) and Gennaioli and Ponzetto (2017) develop rigorous models of vague contract
stipulations and provide examples of vague contract provisions.
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of uniform reporting strategies in Lemma 3, the principal forms posterior beliefs of

µ∗jA∗ = µ∗A∗ =
νA∗(1− σ∗A∗)

νA∗(1− σ∗A∗) + νB∗
, µ∗ji = µ∗i =

νi
νA∗(1− σ∗A∗) + νB∗

, ∀i ∈ B∗. (20)

after receiving a cost report of θj , j ∈ B∗. All cost reports are equally (un)informative since they

all yield the same posterior beliefs. The expected surplus to the principal of this mechanism is

K∑
k=1

∑
i∈A∗k

νiWi(x
∗
A∗k

) + νA∗(1− σ∗A∗)[WA∗(x
∗
B∗)−WA∗(x

∗
A∗K

)] +
∑
i∈B∗

νiWi(x
∗
B∗) (21)

as a function of the K contracts x∗A∗ = (x∗A∗1
, ..., x∗A∗k

, ..., x∗A∗K
) presented to the agent ex ante,

and the ex-post contract x∗B∗ .

Consider now an alternative sequence of events:

Stage 1: The principal commits to the menu x∗A∗ of contracts, augmented by the vague escape

clause (VEC):

The agent always has the right to obtain a new contract offer from the principal. All

initial contract offers by the principal are void if the agent invokes this clause.

Stage 2: Depending on its marginal cost θi, the agent:

• Selects x∗A∗k
if i ∈ A∗k and i < A∗.

• Selects x∗A∗K
with probability σ∗A∗ and invokes VEC with probability 1− σ∗A∗ if i = A∗.

• Invokes VEC if i ∈ B∗.
• Outright rejects the offer if i ∈ C∗ 6= ∅.

Stage 3: The principal offers x∗B∗ if the agent has invoked VEC in Stage 2.

Communication in the above mechanism is restricted in the sense that the agent never directly

reports its cost to the principal. The agent either self-selects one of the ex-ante contracts,

invokes the escape clause, or completely rejects the offer, after which the game ends. The

escape clause here represents an option the agent can exercise after receiving x∗A∗ . The agent

does not need to communicate anything to the principal other than its decision. Clearly, this

restricted communication mechanism augmented by VEC delivers the expected surplus (21) to

the principal if the agent and the principal play the sequence of events specified in Stage 2 and

in Stage 3.

In Stage 3, the principal does not have any detailed cost reports upon which to form beliefs

after the agent has invoked the escape clause. Instead, the principal uses the likelihood by which

the agent invokes the escape clause, given its marginal cost, to derive posterior beliefs of

µV ECA∗ =
νA∗(1− σ∗A∗)

νA∗(1− σ∗A∗) + νB∗
, µV ECi =

νi
νA∗(1− σ∗A∗) + νB∗

, ∀i ∈ B∗.

concerning the agent’s marginal cost. This is precisely the same distribution of beliefs (20) as

in the incentive optimal direct mechanism. Hence, x∗B∗ is sequentially rational in Stage 3.
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In Stage 2, all cost types i ∈ I, except possibly A∗, obtain Ui(x
∗
i ). Rationality for these

cost types then follows from incentive compatibility (2) of x∗. An agent with marginal cost θA∗

either selects x∗A∗K
and obtains UA∗(x

∗
A∗) or invokes VEC and obtains UA∗(x

∗
B∗). Randomizing

among the two is rational by (3). Hence, the behaviors in Stage 2 and Stage 3 form a PBE.

Communication has economic value if the incentive optimal mechanism (x∗,Σ∗|A∗, B∗) fea-

tures partial ex-post pooling, |x∗B∗ | = 2. The principal now draws different inferences about the

agent’s true marginal cost, depending on whether the agent reports marginal cost θB∗ or some

other marginal cost θj , j ∈ B∗. Moreover, sequential rationality of a reduced communication

mechanism does not follow from incentive feasibility of the incentive optimal mechanism.

Proposition 1 Assume that the incentive optimal (direct) mechanism features incomplete com-

mitment. Then there exists a restricted communication mechanism augmented by a vague escape

clause that can be sustained as a PBE. This mechanism generates in the limit νB∗ → 0 the same

expected surplus to the principal as the incentive optimal (direct) mechanism.

Proposition 1 shows that the value of communication is small in the context of this model.

For instance, it is negligible in a large type space (so that νi is small for all i ∈ I). A policy

implication is that for the initial menu of contracts x∗A∗ , the principal has little to gain from

specifying a detailed escape clause. The vague escape clause (VEC) formulated as an option on

behalf of the agent can do nearly as well in equilibrium.

Effectively, the properties of the ex ante contracts determine the content of the escape clause.

Suppose the principal offers one single contract x = (t, q) up front. Absent any escape clause,
t
q defines the threshold marginal cost for accepting this contract if θ1 <

t
q < θI . Under a VEC,

the two equations

t− θAq = (θI − θA)qV EC

and

S′(qV EC) =

I∑
i=A+1

νi
1−GA

(θi + (1− α)(θI − θi))

characterize the lower cut-off θA for activating the escape clause and the ex-post quantity qV EC

as functions of x in a full participation mechanism. The first expression is an incentive com-

patibility constraint that renders an agent with marginal cost θA indifferent between x and the

anticipated ex-post contract xV EC = (qV EC , θIq
V EC). The second expression characterizes the

sequentially rational output in the ex-post contract. The contract x augmented by VEC can

potentially sustain multiple equilibria. However, this is also the case in the direct mechanism.

The methodology applied in this paper assumes that the mechanism selects the equilibrium that

maximizes the expected surplus of the principal.

This section has characterized properties of incentive optimal mechanisms under incomplete

commitment. However, we have not yet established if there are circumstances under which the

principal strictly prefers incomplete commitment over pure ex-ante contracting. To answer this

question in the affirmative and gain additional intuition about the nature of incentive optimal
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contracts under endogenously incomplete commitment, we now consider some specific examples

of the more general model.

5 Severely constrained contracting

Consider the polar extreme case where the principal can offer at most one ex-ante contract:

K = 1. Many real-life contracts have this ”one-size-fits-all” property. We first compare pure

ex-ante with pure ex-post contracting. This analysis is interesting in its own right by providing

insights into the relative merits of offering contracts ex ante relative to ex post. In the first case,

the principal commits to one single contract x = (q, t). An agent with marginal cost θi ≤ t
q

accepts this contract, but rejects it if less efficient. Under pure ex-post contracting, the principal

does not propose any contract up front. Instead, the principal states an upper bound θB above

which there will be no contract with the agent. If the agent reports marginal cost θj ≤ θB, then

the principal offers a contract xj = (qj , tj) based on this cost report. The ex-post contracting

situation is particularly simple under full participation. The agent then reports its cost, after

which the principal offers a contract. We will demonstrate that the principal prefers pure ex-post

over pure ex-ante contracting for K = 1.

The surplus-maximizing ex-ante contract By the results in Section 3, the incentive effi-

cient pure ex-ante contract x̂A = (q̂A, θAq̂A) that yields production for all cost types i ∈ {1, ..., A}
and no production for the less efficient cost types i ∈ {A+ 1, ..., I} under partial participation,

A ≤ I − 1, has output requirement q̂A given by

S′(q̂A) =
A∑
i=1

νi
GA

(θi + (1− α)(θA − θi)). (22)

The principal’s expected surplus of this contract equals:

W̃A(q̂A) =
A∑
i=1

νi[S(q̂A)− (θi + (1− α)(θA − θi))q̂A].

Denote by x̂Â the contract offer that maximizes the principal’s expected surplus across all ex

ante mechanisms under K = 1, and assume that the maximum is unique:

W̃Â(q̂Â) > W̃A(q̂A) ∀A ∈ I ∪ ∅, A 6= Â. (23)

Incentive feasible ex-post contracts Assume that ex-post contracting occurs for all cost

reports j ∈ {1, ..., B}, B ≥ 2. In light of the results in Section 4, we consider a menu of two

ex post contracts (xB, x
fb
B ). All cost reports θj , j ∈ {1, ..., B − 1}, yield the same contract offer

xB = (qB, θBqB), where qB is characterized by

S′(qB) =

B∑
i=1

νi
GB − νBσB

(θi + (1− α)(θB − θi))−
νBσBθB

GB − νBσB
< θB = S′(qfbB ). (24)
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In this expression, σB ∈ (0, 1) is the probability that an agent with marginal cost θB truthfully

reports its cost, whereas this agent reports marginal cost θj with probability 1−σB
B−1 for all j <

B. An agent with marginal cost θi < θB randomizes uniformly across all cost reports θj ,

j ∈ {1, ..., B − 1}. If B ≤ I − 1, then an agent with marginal cost θi > θB truthfully reports

marginal cost and receives the null contract. By comparison of (24) with (22), we see that the

ex-post quantity qB converges to q̂B when σB → 0. The ex-post quantity increases as the agent

becomes more truthful,
dqB
dσB

=
−ανB
S′′(qB)

∑B−1
i=1 νi(θB − θi)

(GB − νBσB)2
> 0

because the perceived marginal cost of an agent that reports θj < θB is smaller when σB is

larger.

The expected surplus of the principal equals

Ω̃B(qB, σB) =

B−1∑
i=1

νi[S(qB)− (θi + (1− α)(θB − θi))qB] + νB[(1− σB)W fb
B (qB) + σBw

fb
B ]

= W̃B(qB) + νBσB[wfbB −W
fb
B (qB)]

in the ex-post mechanism. The principal benefits from the agent being more truthful,

dΩ̃B(qB, σB)

dσB
= νB[wfbB −W

fb
B (qB)] > 0,

because an agent with marginal cost θB is more likely to receive a contract better suited to its

particular circumstances if σB is larger. The marginal effect on qB of an increase in σB has only

a second-order effect on the principal’s expected surplus.

Even the agent benefits in expectation from a more truthful reporting strategy:

d

dσB

B∑
i=1

νiUi(xB) =

B−1∑
i=1

νi(θB − θi)
dqB
dσB

> 0.

The agent is indifferent between truthfully reporting its cost θB and understating it to θj < θB,

all else equal. However, the agent benefits from the indirect effect
dqB
dσB

> 0 because the higher

output increases informational rent whenever the agent has marginal cost θi < θB. Both the

principal and the agent therefore agree ex ante that more truthful behavior would be better

under pure ex-post contracting.

There is an upper bound to the truthfulness that the principal can implement. If an agent

with marginal cost θB is too honest, then it can become sequentially rational for the principal

to exclude this cost type after receiving a cost report θj < θB. Doing so would then allow the

principal to save on informational rent without sacrificing too much efficiency. We denote by

xdA = (qdA, θAq
d
A) the surplus maximizing ex-post contract that just leaves an agent with marginal

cost θA, A ∈ {1, ...B − 1}, indifferent between accepting or rejecting the ex-post contract offer.

Under pure ex-post contracting, this deviation contract is given by xdA = x̂A. The expected

deviation surplus is then proportional to W̃A(q̂A). Instead, the expected surplus of offering xB
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is proportional to W̃B(qB)− νBσBW fb
B (qB). Hence, xB is sequentially rational if and only if

W̃B(qB)− νBσBW fb
B (qB) ≥ W̃A(q̂A), ∀A ∈ {1, ...B − 1}. (25)

Conversely,

W̃B−1(q̂B−1) + νBW
fb
B (qB)− W̃B(qB)

= W̃B−1(q̂B−1)− W̃B−1(qB) +GB−1(1− α)(θB − θB−1)qB > 0

implies that there is an upper bound to the agent’s honesty σB in the sequentially rational ex

post contract, as argued.

Comparison of ex-post and ex-ante contracting Assume that Â ≥ 2 and compare the

incentive efficient ex-ante contract x̂Â to the menu (xÂ, x
fb

Â
) of ex-post contracts (B = Â):

Ω̃Â(qÂ, σÂ)− W̃Â(q̂Â) = Ω̃Â(qÂ, σÂ)− Ω̃Â(q̂Â, σÂ) + νÂσÂ[wfb
Â
−W fb

Â
(q̂Â)] > 0 ∀σÂ > 0. (26)

In the above expression, Ω̃Â(qÂ, σÂ) > Ω̃Â(q̂Â, σÂ) because qÂ represents a better trade-off

between efficiency and rent extraction than q̂Â, given σÂ. In addition, ex-post contracting allows

to supply a tailor-made contract to an agent with marginal cost θÂ. Seeing as x̂Â maximizes

the principal’s expected surplus across all incentive feasible pure ex-ante contracts, we conclude

that (xÂ, x
fb

Â
) strictly outperforms all pure ex-ante contracts.

Still, we have not yet established sequential rationality of xÂ. To do so, we reproduce the

necessary and sufficient condition (25) with the appropriate change in notation:

W̃Â(qÂ)− νÂσÂW
fb

Â
(qÂ) ≥ W̃A(q̂A), ∀A ∈ {1, ...Â− 1}.

The left-hand side of this expression converges to W̃Â(q̂Â) as σÂ → 0 because then qÂ → q̂Â.

By way of (23), it follows that xÂ is sequentially rational for σÂ > 0 sufficiently close to zero.

We can then conclude:

Proposition 2 The principal strictly prefers pure ex-post over pure ex-ante contracting if con-

tracting is severely constrained (K = 1), and the principal’s surplus-maximizing ex-ante contract

involves some pooling of cost types (Â ≥ 2).

Under severely constrained contracting, ex-post contracts generally offer superior adaptability to

the economic environment compared to a pure ex-ante contract, despite strategic manipulation

of cost reports by the agent.16 Since under ex-post contracting the principal can always add an

ex-ante contract without reducing expected surplus, the following result follows directly:

16A sufficient condition for Â ≥ 2 in Proposition 2 is W sb
2 (qfb1 ) > 0. This condition is satisfied for instance if

θ2 − θ1 is small since then W sb
2 (qfb1 ) ≈ wfb1 > 0.
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Proposition 3 The incentive optimal mechanism features an escape clause if contracting is

severely constrained (K = 1), and the principal’s surplus-maximizing ex-ante contract involves

some pooling of cost types (Â ≥ 2).

6 Constrained contracting

So far we have established the general incentive optimality of introducing an escape clause if

contracting is severely constrained in the sense that the principal offers a one-size-fits-all contract

under ex-ante contracting (K = 1). The incremental value of ex-post contracting is smaller if

the principal can offer more complex contracts ex ante, that is, when K is larger, because then

the principal can include more contingencies into the menu of contracts already beforehand.

However, it is reasonable to assume that the principal might have insufficient degrees of freedom

to be able to include all potential contingencies ex ante. This occurs for any K if the type space

is sufficiently large. This plausible scenario leads to the question whether escape clauses are

incentive optimal for more complex mechanisms K ≥ 1? The next result establishes a simple

sufficient condition for this to be the case:

Lemma 4 Denote by (x̂, I|Â, ∅) the mechanism that maximizes the principal’s expected surplus

in the set of mechanisms with complete commitment (B = ∅). Let q̂Â be the output of the least

efficient agent that delivers positive output in this mechanism. The incentive optimal mechanism

(x∗,Σ∗|A∗,B∗) features incomplete commitment (B∗ 6= ∅) if q̂Â > q̂fb
Â

.

Proof. If |ÂK | = 1, then q̂Â = qsb
Â
< qfb

Â
; see Section 3. Hence, q̂Â > q̂fb

Â
implies |ÂK | ≥ 2.

Consider a modified mechanism (x, I|A,B) in which Ak = Âk for all k ∈ {1, ...,K− 1} if K ≥ 2,

AK = ÂK\Â and B = Â. x has the following properties: xj = (q̂j , t̂j − (θÂ − θÂ−1)(q̂Â − q
fb

Â
))

for all j ∈ A and xÂ = xfb
Â

. We first check incentive feasibility of the modified mechanism.

Individual rationality (1) and incentive compatibility (2) follow from

Ui(xi)− Ui(xj) = Ui(x̂i)− Ui(x̂j) ≥ 0 ∀(i, j) ∈ A×A

Ui(xi)− Ui(xfbÂ ) = Ui(x̂i)− Ui(x̂Â) + (θÂ−1 − θi)(q̂Â − q
fb

Â
) ≥ 0 ∀i ∈ A

Ui(xi)− Ui(xj) = Ui(x̂i)− Ui(x̂j) + (θÂ − θÂ−1)(q̂Â − q
fb

Â
) > 0 ∀(i, j) ∈ {Â, ..., I} × A

Ui(xi)− Ui(xfbÂ ) = (θi − θÂ)qfb
Â
> 0 ∀i ∈ {Â+ 1, ..., I}, Â ≤ I − 1

Ui(x
fb

Â
) = (θÂ − θi)q

fb

Â
≥ 0 ∀i ∈ Â

This mechanism trivially satisfies (3) because all types truthfully report cost with probability 1.

xfb
Â

is sequentially rational (4) because the only type that reports θÂ is an agent with marginal

cost θÂ. By truthfulness, the posterior probabilities (5) are µjj = 1 for all j ∈ I. The mechanism

satisfies the contracting constraint (6) by |xA| = |x̂Â|. The expected surplus to the principal of
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the modified mechanism equals

W (x, I|A,B) =
Â−1∑
i=1

νiWi(x̂i) + νÂw
fb

Â
+GÂ−1(1− α)(θÂ − θÂ−1)(q̂Â − q

fb

Â
).

The difference

W (x, I|A,B)−W (x̂, I|Â, ∅) = νÂ[W sb
Â

(qfb
Â

)−W sb
Â

(q̂Â)]

in expected surplus is strictly positive by strict concavity of W sb
Â

(q) and qsb
Â
< qfb

Â
< q̂Â. As

we have found an incentive feasible mechanism with incomplete commitment that strictly out-

performs all incentive feasible mechanisms with complete commitment, the incentive optimal

mechanism must feature incomplete commitment.

Pooling a subset of cost types into cost group ÂK implies that the output of the least efficient

cost type Â is inefficiently high from a second-best perspective, q̂Â > qsb
Â

; see Lemma 1. This

output could potentially be upward distorted even compared to the first-best output, q̂Â > qfb
Â

.

Even a principal that completely discards informational rent in the choice of qÂ would then from

an ex ante perspective prefer the first-best efficient contract for an agent with marginal cost θÂ.

One way to reach this efficiency gain is to include an escape clause in the mechanism.

To illustrate the usefulness of Lemma 4, subtract (13) from S′(qfb
Â

) = θÂ to get:

νÂK [S′(qfb
Â

)− S′(q̂Â)] =
∑
i∈ÂK

ανi(θÂ − θi)−GÂK−1
(1− α)(θÂ − θÂK−1

)

. The first term on the right-hand side is the effect of pooling cost types into a cost group.

The second term is the adjustment for informational rent. The pooling effect tends to increase

and the rent effect tends to reduce q̂Â relative to qfb
Â

. The rent effect is zero by GÂK−1
= 0 if

contracting is severely constrained (K = 1). It vanishes also in the limit as α→ 1 because rent

extraction plays a negligible role for output q̂Â when α is close to one. We conclude:

Proposition 4 The incentive optimal mechanism contains an escape clause if the principal

attaches sufficient weight to efficiency relative to rent extraction (α is sufficiently close to 1).

It is sometimes the case that the principal can offer more complex contracts than one-size-

fits-all. It is also reasonable to assume that the principal sometimes places a lot of weight on

rent extraction in the design of the mechanism. Note that the above results do not apply when

K ≥ 2 and α is small. However, there are still plausible circumstances under which the incentive

optimal mechanism features incomplete commitment:

Proposition 5 Assume that the mechanism (x̂, I|Â, ∅) that maximizes the principal’s expected

surplus in the set of mechanisms with complete commitment features partial participation (Â ≤
I − 1). Assume also that the incremental difference in marginal production costs is small for

boundary cost types (θÂ+1 − θÂ−1 is close to zero). The incentive optimal mechanism contains

an escape clause if W sb
Â

(qfb
Â

) > 0.
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Proof. If Â ≤ I − 1 and θÂ+1 − θÂ−1 is close to zero, then W sb
Â

(q̂Â) ≈ W sb
Â+1

(q̂Â) ≈ 0; see

(18). If also W sb
Â

(qfb
Â

) > 0, then W sb
Â

(qsb
Â

) > W sb
Â

(qfb
Â

) > W sb
Â

(q̂Â). Strict concavity of W sb
Â

(q),

qfb
Â
> qsb

Â
and q̂Â > qsb

Â
(Lemma 1) then imply q̂Â > qfb

Â
.

If the type space is large and the mechanism (x̂, I|Â, ∅) features partial participation, then the

principal is indifferent between including an agent with marginal cost θA in the mechanism and

excluding the agent, i.e. W sb
Â

(q̂Â) = 0. It is then worthwhile to include this agent via an escape

clause if W sb
Â

(qfb
Â

) > 0.

This section and the previous have established circumstances under which the incentive

optimal mechanism features incomplete commitment in terms of an escape clause. However, we

have not discussed the trade-offs faced by the principal in the design of the escape clause. This

is the topic of our next section.

7 Trade-offs in the design of an escape clause

To delineate the boundaries of the escape clause in incentive optimal mechanisms, we assume

that the number I of potential cost realizations is large, so that the probability νi of any single

cost realization θi is small. In this case, truth-telling by an agent with marginal cost θA∗ , uniform

randomization across B∗ also for an agent with marginal cost θB∗ , and a single ex-post contract

x∗B∗ form part of an (approximately) incentive optimal mechanism with incomplete commitment.

This mechanism delivers expected surplus

w∗ =
∑
i∈A∗

νiWi(x
∗
i ) + ΩB∗(q

∗
B∗).

to the principal. In this expression,

ΩB∗(q
∗
B∗) =

∑
i∈B∗

νi[S(q∗B∗)− (θi + (1− α)(θB∗ − θi))q∗B∗ ]

defines the expected surplus of the ex-post contract x∗B∗ = (q∗B∗ , θB∗q
∗
B∗).

Assume that |B∗| ≥ 2. Compare the expected surplus w∗ to a modified mechanism (x,Σ|A,B)

in which the boundary type B∗ is included in the least efficient cost group, AK = A∗K ∪B
∗, and

the escape clause is correspondingly reduced to B = B∗\B∗. All other cost groups remain the

same as before, Ak = A∗k for all k ∈ {1, ...K−1} if K ≥ 2. The modification of the escape clause

reduces ex-post output qB < q∗B∗ in the sequentially rational ex-post contract xB = (qB, θB∗qB)

because the escape clause now consists of less efficient cost types. The ex-ante contracts are

modified as follows. Every contract xAk = (q∗A∗k
, tAk), k ∈ {1, ...K}, has the same output re-

quirement as in the incentive optimal contract, and all transfer payments are adjusted by the

same amount: tAk − t∗A∗k = (θB∗ − θA∗)(q∗A∗ − q∗B∗)− (θB∗ − θB∗)(q∗B∗ − qB).17

We can decompose the net benefit to the principal of the incentive optimal mechanism over

17The proof that this mechanism is incentive feasible is available on request.
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the modified one into three separate effects:

w∗ −W (x,Σ|A,B) = ν∗B[W sb
B∗(q

∗
B∗)−W

sb
B∗(q

∗
A∗)]

−GB∗(1− α)(θB∗ − θB∗)(q∗B∗ − qB)− [ΩB(qB)− ΩB(q∗B∗)].

The first term on the right-hand side is the effect on the principal’s expected surplus of an agent

with marginal cost θB∗ producing ex-post output q∗B∗ instead of ex-ante output q∗A∗ , evaluated on

the basis of the second-best welfare function W sb
B∗(q). Ex-post output q∗B∗ is larger under escape

clause B∗ compared to qB under the smaller escape clause B = {B∗+1, ..., B∗} because an agent

that has invoked the escape clause on average is more efficient under B∗ than B. The increase

in output has a first-order effect on ex ante expected informational rent because the principal

chooses q∗B∗ and qB ex post after the informational rent is sunk. The dynamic inefficiency of a

larger escape clause is measured by the first negative term on the second row above. The final

effect is the inefficiency of output q∗B∗ relative to qB under the ex-post welfare function ΩB(q).18

A mechanism with complete commitment requires W sb
B∗(q

∗
B∗) ≥ W sb

B∗(q
∗
A∗) for efficiency; see

(17). However, a mechanism is incentive optimal only if:

W sb
B∗(q

∗
B∗)−W

sb
B∗(q

∗
A∗) ≥

GB∗

ν∗B
(1− α)(θB∗ − θB∗)(q∗B∗ − qB).

We interpret the left-hand side of this inequality as the marginal benefit of flexibility associated

with an agent that has marginal cost θB∗ operating under an ex-post contract x∗B∗ that is

better suited to that agent (from the principal’s perspective) than the ex-ante contract x∗A∗ .

This marginal benefit must be sufficiently large to outweigh the dynamic inefficiency associated

with ex-post contracting under the escape clause on the right-hand side of the inequality. We

summarize this fundamental trade-off as:

Remark 1 The design of an incentive optimal escape clause balances the marginal benefit of a

better adapted contract against the marginal increase in dynamic inefficiency.

8 Discussion

Contract complexity We have interpreted K literally as the number of contracts contained

in the ex-ante menu offered to the agent. Many real-life mechanisms have this property. Reg-

ulatory mechanisms most often have only one single contract. Mobile subscription plans with

different monthly download allowances, mortgage loans with different interest rate maturities,

and electricity retail contracts with hourly, monthly or yearly average prices, are examples of

menus of contracts with a finite number of offers. However, in our context the principal could as

well specify a single ex-ante rule x(θ) = (q(θ), t(θ)) with the property that all xAk , k ∈ {1, ...,K},
lie somewhere on x(θ). With this continuous formulation, it is not meaningful to discuss con-

strained contracting in terms of the number of contracts.

18This final effect is of second-order importance in a large type space in the sense that
ΩB(q∗B∗ )−ΩB(qB)

θB∗+1−θB∗
→ 0 for

θB∗+1 − θB∗ → 0.
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We say that a local incentive compatibility constraint Ui(xi) = Ui(xi+1) is non-trivially

binding if xi 6= xi+1 (trivially binding if xi = xi+1). Likewise, an individual rationality constraint

Ui(xi) = 0 is non-trivially binding if xi 6= x0 (trivially binding if xi = x0). An incentive efficient

mechanism with pure ex-ante contracting features K non-trivially binding IC and IR constraints

in our model. These binding constraints pin down the expected surplus to the principal and the

agent of the mechanism. The continuous mapping x(θ) will have these exact same properties.

Therefore the parameter K in a more general sense represents a measure of contract complexity.

The larger is K, the more complex is the mechanism.

Sources of constrained contracting The number K of contracts the principal can offer

the agent ex ante is exogenous in the model. There can be several reasons why a principal

would limit the number of contracts. For instance, the Swedish Regulatory Authority for the

Electricity Market offers one single regulatory contract to avoid discriminating across different

electricity distribution networks ex post. We here briefly explore a different avenue to explain

K < I. Assume now that the number K of contracts is endogenous, but there is a fixed cost

C of adding each additional contract to any given menu of contracts. This cost arises both for

ex-ante and ex-post contracts. An important difference is that the cost of specifying an ex-ante

contract xj , j ∈ A, arises regardless of whether the agent actually invokes this contract at a

later stage, whereas the cost of specifying ex-post contract xj only arises after the agent has

activated the escape clause by reporting marginal cost θj , j ∈ B.

This contracting cost approach, introduced by Dye (1985), has suffered criticism for being too

ad hoc, as it is difficult to relate the economic magnitude of such costs relative to other important

economic effects of contracting. For instance, Segal (1999) argues that the economic value of

a contract is likely to be large relatively to the cost of writing the contract. If so, contracts

should be close to being complete (K is close to I in this setting). From that perspective, costs

of writing contracts cannot explain the prevalence of incomplete contracting.

We subscribe to the idea that adding an arbitrary contract to an initial menu of contracts

is unlikely to be very costly. However, not all contract additions will generate economic value

to the principal. In our setting, any additional contract must be incentive compatible relative

to the initial menu of contracts. Second, the incremental contract must increase the principal’s

expected surplus relative to the initial menu. Identifying an incentive compatible, surplus in-

creasing contract is much more challenging in terms of time and resources than simply adding

an arbitrary contract. The complexity of this task is probably larger and its incremental value

smaller as the number of initial contracts is larger. Hence, we assume that contracting costs

are non-negligible. Still, we will characterize circumstances under which the principal would

constrain the number of ex-ante contracts and include an escape clause rather than increase the

number of ex-ante contracts, even for small C > 0.

Let us consider the simplest possible framework with two cost types: I = {1, 2}. The

principal has four options under pure ex-ante contracting. The first is a single contract x̂2 =

(q̂2, θ2q̂2) that is acceptable to the agent regardless of its marginal cost. This mechanism yields
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expected surplus

W̃2(q̂2) = ν1W
fb
1 (q̂2) + ν2W

sb
2 (q̂2)− C,

where the output q̂2 > qfb2 is characterized by S′(q̂2) = ν1(θ1 + (1 − α)(θ2 − θ1)) + ν2θ2. We

assume that contracting costs are small relative to the value of contracting in the sense that

W sb
2 (q̂2) > C. The second option is a single contract that only the most efficient agent will

accept:

W̃1(qfb1 ) = ν1w
fb
1 − C.

The third option is to supply the second-best mechanism at the expense of increased contracting

costs:

wsb = ν1w
fb
1 + ν2w

sb
2 − 2C.

The fourth option, null contracting, is dominated by the first option by the assumption of small

contracting costs.

Consider now the mechanism with incomplete commitment. The principal offers the contract

x1 = (qfb1 , θ1q
fb
1 + (θ2− θ1)qfb2 ) up front. The agent receives this contract by reporting marginal

cost θ1. The agent invokes the escape clause by reporting marginal cost θ2, after which the

principal offers the ex-post contract xfb2 . The agent truthfully reports its cost even in this case.

This mechanism is incentive feasible and yields an expected surplus of

wB = ν1w
fb
1 − C + ν2[W sb

2 (qfb2 )− C].

The principal faces a trade-off relative to the second-best mechanism of

wB − wsb = ν1C − ν2[wsb2 −W sb
2 (qfb2 )].

On the one hand, the principal reduces expected contracting costs by including an escape clause

in the mechanism. On the other, the second-best contract xsb2 offers a better trade-off between

efficiency and rent extraction from an ex-ante perspective than the discretionary contract xfb2

when the agent is inefficient. Importantly, the benefit of increasing the number of contracts

from 1 to 2 is measured in terms of the expected incremental increase in surplus. This increase

can be small even if the value of contracting is large. For instance, reduced contracting costs

dominate increased contractual efficiency for arbitrary C > 0 if the likelihood of a high cost

event is small, i.e. ν2 is small. Intuitively, an ex-post contract is better than an ex-ante contract

to cover unlikely events. The cost effect dominates also if α is sufficiently close to one or if ν1

is sufficiently close to zero. The net benefit to the principal of second-best relative to first-best

contracting is small if ν1(1 − α) is close to zero because then the principal mainly cares about

efficiency in the choice of qsb2 .19

The mechanism with an escape clause beats the ex-ante mechanism with production only by

19The marginal efficiency effect wsb2 −W sb
2 (qfb2 ) vanishes in the limit as α → 1 because then qsb2 → qfb2 . To

obtain the second result, use L’Hôpital’s rule to get limν1→0
wsb

2 −W
sb
2 (q

fb
2 )

ν1
= limν1→0[S′(qsb2 ) − θ2] dq

sb

dν1
= 0 and

therefore limν1→0
wB−wfb

ν1
= C > 0.
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the efficient agent, wB > W̃1(qfb1 ), as W sb(qfb2 ) > W sb(q̂2) > C. However, it does not necessarily

beat the pure ex-ante contract x̂2. The difference

wB − W̃2(q̂2) = ν1[wfb1 −W
fb(q̂2)] + ν2[W sb

2 (qfb2 )−W sb(q̂2)− C].

in expected surplus can be positive or negative, depending on the circumstances. It is positive

if ν2 is small or if α is close to one and C < wfb2 −W fb(q̂2). It is not optimal to modify x̂1 by

adding an escape clause if ν1 is small.20

Remark 2 Constrained contracting (K < I) can be justified even on the basis of small con-

tracting costs, for instance if the likelihood of inefficient outcomes is sufficiently small or the

principal cares sufficiently about efficiency relative to minimizing agency rent.

Other clauses The benchmark against which we evaluate mechanisms with incomplete com-

mitment is the mechanism (x̂, I|Â, ∅) that maximizes the principal’s expected surplus in the set

of incentive feasible mechanisms with complete commitment. The general message of the paper

is that incentive feasible mechanisms sometimes exist that strictly improve upon the complete

commitment benchmark under constrained contracting. All such improvements must necessarily

involve some form of incomplete commitment.

We have interpreted incomplete commitment as the inclusion of an escape clause that the

agent can trigger by reporting marginal cost θj , j ∈ B, where the subset B is specified in the

mechanism offered to the agent at the initial stage of interaction. All initial contract offers

are void if the agent invokes the escape clause. This formulation of incomplete commitment is

inspired by qualitative properties of real-life escape clauses. However, our results do not rule

out the possibility that other mechanisms featuring incomplete commitment could outperform

mechanisms with escape clauses, from the viewpoint of the principal.

A renegotiation clause is similar in spirit to an escape clause. Invoking a renegotiation clause

also triggers ex-post contracting. A main difference is that the agent under a renegotiation

clause will reject any ex-post contract offer that delivers lower rent than the best possible ex-

ante contract, whereas the ex-post contract merely is required to outperform the outside option

under the escape clause.21

Under the escape clause, the value of the agent’s outside option is zero, regardless of the

agent’s marginal cost. In turn, the value of the outside option is type dependent and therefore

private information under the renegotiation clause. To see the implications, assume that the

agent receives one of K ex-ante contracts for cost reports θj , j ∈ A = {1, ...A}. The agent

triggers the renegotiation clause by reporting θj , j ∈ B = {A + 1, ...B}, B ≥ A + 1. Finally,

20However, pure ex-post contracting always yields strictly higher expected surplus than the pure ex-ante contract
x̂2 by Proposition 2. Adding contractual costs to the equations does not matter for the comparison in (26) because
the expected contracting cost equals C in either mechanism under full participation. Under partial participation,
ex-post contracting not only is more efficient but also reduces the expected contracting cost under severely
constrained contracting.

21A renegotiation clause means that the mechanism may feature partial renegotiation (i.e. only for a subset of
cost reports) as opposed to full renegotiation as has previously been studied by Hart and Tirole (1988), Laffont
and Tirole (1990), and more recently by Maestri (2017).
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the agent receives the null contract for all cost reports θj , j ∈ C = {B + 1, ...I} if B ≤ I − 1.

Suppose an agent with marginal cost θi, i ∈ B, has invoked the renegotiation clause. This agent

will accept the ex-post contract xj if and only if

Ui(xj) ≥ Ui(xA).22

The right-hand side of this ex-post individual rationality constraint depends on the agent’s

marginal cost θi, unlike in the case of the escape clause where the right-hand side is zero. This

modification has an impact on the principal’s sequentially rational choice of the ex-post contract.

For instance, the principal is unable to extract all rent ex post even if the agent truthfully

reports marginal cost. This property should dampen the ratchet effect associated with ex-post

contracting and will most likely also affect the extent to which the agent manipulates cost reports

in equilibrium. As our paper has shown, such effects have implications for the incentive optimal

mechanism that are far from obvious.

9 Conclusion

This paper has developed a theory of endogenously incomplete commitment in mechanism de-

sign, framed in the context of escape clauses. Triggering an escape clause terminates the initial

agreement and generates a revised contract offer from the principal. The motive for an escape

clause arises from an assumption of constrained contracting, in the sense that the maximal

number of different contracts the principal can propose up front is smaller than the size of the

agent’s type space. The admissible number of ex ante contracts represents a measure of contract

complexity.

Our findings demonstrate that it might be in a principal’s best interest to allow some dis-

cretion when it comes to future contracting, even if the principal has access to a very general

reward structure with which to incite agent behavior. In a setting where the principal cannot

cover every possible pay-off relevant contingency by an ex ante contract, the added flexibility

associated with ex-post contracting can be sufficiently valuable to dominate the dynamic ineffi-

ciency associated with discretionary contracting. The principal constrains its own incentive to

abuse the escape clause by delegating the choice whether to activate the clause to the agent.

Many contractual arrangements feature endogenously incomplete commitment, even if not

always an escape clause. A prime example is multi-period contracting. In regulatory and

service procurement agreements, optimal contract length is a major design issue. A longer-

term agreement implies stronger commitment, whereas a sequence of shorter-term agreements

means less commitment. It would be interesting to analyze the trade-off between flexibility and

dynamic efficiency also in a multi-period context.

22Formally, the agent evaluates xj against all xh, h ∈ A. However, incentive compatibility and monotonicity of
output of the menu of ex ante contracts implies Ui(xA)−Ui(xh) = UA(xA)−UA(xh) + (θi− θA)(qh− qA) ≥ 0 for
all (i, h) ∈ B ×A.
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Appendix

We first prove some general results concerning incentive feasible mechanisms in this specific

context, and then provide some characterizations of incentive efficient mechanisms with complete

commitment. In particular, these claims verify that the standard conditions of locally downward-

binding incentive compatibility constraints, individual rationality of the least efficient cost type

and output declining in cost apply also to the present setting.

Claim 1 A mechanism (x,Σ|A,B) satisfies individual rationality (1) and incentive compatibil-

ity (2) if and only if the following conditions are all met:

UI(xI) ≥ 0, (27)

Ui(xi) ≥ Ui(xi+1) ∀i ∈ {1, ..., I − 1}, (28)

Ui(xi) ≥ Ui(xi−1) ∀i ∈ {2, ..., I}, (29)

qi ≥ qi+1 ∀i ∈ {1, ..., I − 1}, (30)

Proof. Necessity of (27)-(29) is obvious. Local incentive compatibility implies

Ui(xi) ≥ Ui+1(xi+1) + (θi+1 − θi)qi+1, Ui+1(xi+1) ≥ Ui(xi)− (θi+1 − θi)qi ∀i ∈ {1, ..., I − 1}.

By rearranging expressions we get

(θi+1 − θi)qi ≥ Ui(xi)− Ui+1(xi+1) ≥ (θi+1 − θi)qi+1 ∀i ∈ {1, ..., I − 1}.

Hence, output is non-increasing in marginal cost in any incentive compatible mechanism, even

if this mechanism features incomplete commitment.

As for sufficiency, the net benefit of truthfully reporting cost θi relative to exaggerating it to

θj , j ∈ {i+ 1, ..., I} can be written as

Ui(xi)−Ui(xj) =

j−1∑
h=i

[Uh(xh)−Uh(xh+1) + (θh+1 − θh)(qh+1 − qj)] ≥ 0 ∀i ∈ {1, ..., I − 1}, (31)
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where non-negativity follows from the assumptions of local downward incentive compatibility

(28) and monotonicity (30). The net benefit of truthfully reporting cost θi relative to under-

stating it to θj , j ∈ {1, ..., i− 1}, equals

Ui(xi)− Ui(xj) =

i∑
h=j+1

[Uh(xh)− Uh(xh−1) + (θh − θh−1)(qj − qh−1)] ≥ 0 ∀i ∈ {2, ..., I}, (32)

where non-negativity follows from the assumptions of local upward incentive compatibility (29)

and monotonicity (30). Individual rationality (1) then follows from

Ui(xi) ≥ Ui(xI) = UI(xI) + (θI − θi)qI ≥ UI(xI) ≥ 0 ∀i ∈ N.

Claim 2 Let (x,Σ|A,B) be an incentive feasible mechanism.

1. If Ui(xi) > Ui(xi+1), then Uh(xh) > Uh(xj) ∀(h, j) ∈ {1, ..., i} × {i+ 1, ..., I}.

2. If Ui(xi) = Ui(xi+1) and qi > qi+1, then Uh(xh) > Uh(xj) ∀(h, j) ∈ {1, ..., i − 1} × {i +

1, ..., I}.

Proof. By (31), the net benefit of truthfully reporting cost θi, relative to exaggerating it to θj ,

j ∈ {i+ 1, ..., I}, satisfies

Ui(xi)− Ui(xj) = Ui(xi)− Ui(xi+1) + (θi+1 − θi)(qi+1 − qj)

+

j−1∑
h=i+1

[Uh(xh)− Uh(xh+1) + (θh+1 − θh)(qh+1 − qj)] > 0

if Ui(xi) > Ui(xi+1). Similarly, the net benefit of truthfully reporting cost θh, h ∈ {1, ...., i− 1},
relative to exaggerating it to θj , j ∈ {i+ 1, ..., I}, satisfies

Uh(xh)− Uh(xj) =
i−1∑
l=h

[Ul(xl)− Ul(xl+1)] +
i−2∑
l=h

(θl+1 − θl)(ql+1 − qj)

+ Ui(xi)− Ui(xi+1) + (θi − θi−1)(qi − qi+1) + (θi+1 − θi−1)(qi+1 − qj)

+

j−1∑
l=i+1

[Ul(xl)− Ul(xl+1) + (θl+1 − θl)(ql+1 − qj)]

≥ Ui(xi)− Ui(xi+1) + (θi − θi−1)(qi − qi+1) > 0

if either Ui(xi) > Ui(xi+1), or Ui(xi) = Ui(xi+1) and qi > qi+1.

Claim 3 Let (x,Σ|A,B) be an incentive feasible mechanism.

1. If Ui+1(xi+1) > Ui+1(xi), then Uh(xh) > Uh(xj) ∀(h, j) ∈ {i+ 1, ..., I} × {1, ..., i}.
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2. If Ui+1(xi+1) = Ui+1(xi) and qi > qi+1, then Uh(xh) > Uh(xj) ∀(h, j) ∈ {i + 2, ..., I} ×
{1, ..., i}.

Proof. By (32), the net benefit of truthfully reporting cost θi+1, relative to understating it to

θj , j ∈ {1, ..., i}, satisfies

Ui+1(xi+1)− Ui+1(xj) = Ui+1(xi+1)− Ui+1(xi) + (θi+1 − θi)(qj − qi)

+
i∑

h=j+1

[Uh(xh)− Uh(xh−1) + (θh − θh−1)(qj − qh−1)] > 0,

by the assumption that Ui+1(xi+1) > Ui+1(xi). The net benefit of truthfully reporting cost θh,

h ∈ {i+ 2, ..., I}, relative to understating it to θj , j ∈ {1, ..., i}, satisfies

Uh(xh)− Ui(xj) =

h∑
l=i+2

[Ul(xl)− Ul(xl−1)] +

h∑
l=i+3

(θl − θl−1)(qj − ql−1)

+ Ui+1(xi+1)− Ui+1(xi) + (θi+2 − θi+1)(qi − qi+1) + (θi+2 − θi)(qj − qi)

+

i∑
l=j+1

[Ul(xl)− Ul(xl−1) + (θl − θl−1)(qj − ql−1)]

≥ Ui+1(xi+1)− Ui+1(xi) + (θi+2 − θi+1)(qi − qi+1) > 0

if either Ui+1(xi+1) > Ui+1(xi), or Ui+1(xi+1) = Ui+1(xi) and qi > qi+1.

Claim 4 Let (x,Σ|A,B) be an incentive feasible mechanism. If qi = qj, then xi = xj.

Proof. Incentive compatibility (2) implies

ti − θiqi ≥ tj − θiqj , tj − θjqj ≥ ti − θjqi ∀(i, j) ∈ I × I.

Rearranging the two expressions yields

θi(qj − qi) ≥ tj − ti ≥ θj(qj − qi) ∀(i, j) ∈ I × I.

If qi = qj , then ti = tj and therefore xi = xj .

We now turn to incentive efficient mechanisms under complete commitment.

Claim 5 A complete commitment mechanism (x̂, Σ̂|A, ∅) with K̂ cost groups is incentive effi-

cient only if

[UAk(x̂Ak)− UAk(x̂Ak+1)][UAk+1(x̂Ak+1)− UAk+1(x̂Ak)] = 0 ∀k ∈ {1, ..., K̂ − 1}, K̂ ≥ 2. (33)

Equation (33) holds also for k = K̂ if K̂ ≤ I − 1.
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Proof. Suppose both the local IC constraints are slack for some k ∈ {1, ..., K̂}. By Claim

2, the downward IC constraints are slack for all cost types θi and cost reports θj , (i, j) ∈
{1, ..., Ak} × {Ak + 1, ..., I} as well. Hence, σ̂ji = 0 for all those combinations. By Claim 3, the

upward IC constraints are slack for all cost types θi and cost reports θj , (i, j) ∈ {Ak + 1, ..., I}×
{1, ..., Ak}. Hence, σ̂ji = 0 even for all these combinations. A marginal reduction in the transfer

payment t̂j by the same amount for all types j ∈ {1, ..., Ak} then increases the principal’s

expected surplus while maintaining incentive feasibility. Then the proposed mechanism cannot

be incentive efficient.

Claim 6 A complete commitment mechanism (x̂, Σ̂|A, ∅) with K̂ cost groups is incentive effi-

cient only if

UAk(x̂Ak) = UAk(x̂Ak+1) ∀k ∈ {1, ..., K̂ − 1}, K̂ ≥ 2, UA(x̂A) = 0. (34)

Proof. We first show that UAk+1(x̂Ak+1) > UAk+1(x̂Ak) for all k ∈ {1, ..., K̂ − 1} if K̂ ≥ 2 and

for k = K̂ if K̂ ≤ I − 1. Suppose instead the local upward IC constraint is binding for some k.

Then the local downward IC constraint in (33) is slack by q̂Ak > q̂Ak+1. An agent with marginal

cost equal to or below θAk will strictly prefer to truthfully report its cost rather than exaggerate

it to θAk+1 or above, by Claim 2. By q̂Ak > q̂Ak+1 and Claim 3, an agent with marginal cost

equal to or above θAk+2 strictly prefers to truthfully report its cost rather than understate it

to θAk or below. Finally, σ̂j(Ak+1) = 0 for all j ∈ {1, ..., Ak−1} if k ≥ 2, again by monotonicity

q̂Ak−1
> q̂Ak .

Construct a perturbed mechanism (x,Σ|A, ∅) by setting tj = t̂j − ε, ε > 0, for all j ∈
{1, ..., Ak} and setting σAk+1 =

∑
j∈Ak σ̂j(Ak+1) + σ̂Ak+1. Everything else is held equal to the

original mechanism. This perturbed mechanism is incentive feasible for all ε sufficiently small.

The difference in expected principal surplus between the two mechanisms is:

W (x,Σ|A, ∅)−W (x̂, Σ̂|A, ∅) =

Ak∑
i=1

νi(1− α)ε+
∑
j∈Ak

νAk+1σ̂j(Ak+1)[WAk+1(x̂Ak+1
)−WAk+1(x̂Ak)],

which is strictly positive. The inequality follows from σ̂Ak+1 = 0 ifWAk+1(x̂Ak) > WAk+1(x̂Ak+1
),

which violates the incentive feasibility condition σ̂Ak+1 > 0. Sine the upward IC condition in

(33) is slack, then the local downward IC constraint in (33) necessarily is binding. To complete

the proof, we need to establish UA(x̂A) = 0. If A ≤ I − 1, then x̂A+1 = x0. The binding

downward IC condition then implies UA(x̂A) = UA(x̂A+1) = UA(x0) = 0. Assume next that

A = I. If UI(x̂I) > 0, then the principal could reduce the transfer for all cost types j ∈ I by

ε > 0 without violating incentive feasibility. Hence, UA(x̂A) = 0 also in this final case.

Proof of Lemma 1

Claim 6 implies Ui(x̂i) = Ui(x̂i+1) = Ui+1(x̂i+1) + (θi+1 − θi)q̂i+1 for all i ∈ {1, ..., A − 1} and

UA(x̂A) = 0 in any incentive efficient mechanism (x̂, I|A, ∅) with complete commitment. We can

then derive the property (10) of agency rent. Substituting these expressions into (7) produces
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(11). This objective function is strictly concave in output. Hence, a mechanism (x̂, I|A, ∅) with

transfer payments that yield (10) and where output is characterized by (13) for all K̂ cost groups,

is incentive efficient if this mechanism is also incentive feasible. The mechanism satisfies (6) by

K̂ ≤ K. We then need to verify individual rationality (1) and incentive compatibility (2). To

do this, we start by demonstrating monotonicity of output. Using a summation by parts,

GAkθAk −GAk−1
θAk−1

=
∑
i∈Ak

[νiθi +Gi−1(θi − θi−1)],

we can write W̃Ak(q) more compactly as

W̃Ak(q) = S(q)−
∑
i∈Ak

νi
νAk

[θi +
Gi−1

νi
(1− α)(θi − θi−1)]q.

Comparing q̂Ak derived from this expression with (14) delivers:

S′(q̂Ak)− S′(qsbAk−1+1) =
∑
i∈Ak

νi
νAk

[θi +
Gi−1

νi
(1− α)(θi − θi−1)

− θAk−1+1 −
GAk−1

νAk−1+1
(1− α)(θAk−1+1 − θAk−1

)] ≥ 0,

Strict concavity of S(q) implies qsbAk−1+1 ≥ q̂Ak with strict inequality if |Ak| ≥ 2. Next,

S′(qsbAk)−S′(q̂Ak) =
∑
i∈Ak

νi
νAk

[θAk +
GAk−1

νAk
(1−α)(θAk−θAk−1)−θi−

Gi−1

νi
(1−α)(θi−θi−1)] ≥ 0

implies q̂Ak ≥ qsbAk with strict inequality if |Ak| ≥ 2. We then get q̂Ak > q̂Ak+1
by qsbAk > qsbAk+1.

These properties establish monotonicity of output: q̂i ≥ q̂i+1 for all i ∈ {1, ..., I − 1}. Locally

downward-binding incentive compatibility, Ui(x̂i) = Ui(x̂i+1) for all i ∈ {1, ..., I − 1}, the zero

rent condition UI(x̂I) = 0, and monotonicity of output imply Ui(x̂i) ≥ Ui(x̂i−1) for all i ∈
{2, ..., I}. Hence, (x̂, I|A, ∅) satisfies (1) and (2) by Claim 1. This completes the proof of Item

1 of the Lemma.

As for Item 2 and Item 3, we first verify that W sb
Ak

(q̂Ak) ≥W sb
Ak

(q̂Ak+1
) for all k ∈ {1, ...K̂−1},

K̂ ≥ 2 in any incentive efficient mechanism. This holds trivially if |Ak| = 1 because then

W sb
Ak

(q̂Ak) = wsbAk ≥ W sb
Ak

(q̂Ak+1
). Assume that |Ak| ≥ 2. The modified mechanism (x, I|Â, ∅)

described in Section 3 satisfies Ui(xi)−Ui(xi+1) = Ui(x̂i)−Ui(x̂i+1) = 0 for all i ∈ {1, ..., Âk−2)

if Âk ≥ 3 and for all i ∈ {Âk, ..., I − 1). Moreover, UÂk−1(xÂk−1) = UÂk−1(xÂk) and UI(xI) =

UI(x̂I) = 0. Output is monotonic by qi = q̂i for all i ∈ I. These properties imply (1) and

(2) by Claim 1. Moreover, |xÂ| = |x̂Â| = K̂ ≤ K. These results verify incentive feasibility of

(x, I|Â, ∅). Incentive efficiency of (x̂, I|Â, ∅) therefore implies W sb
Âk

(q̂Âk) ≥W sb
Âk

(q̂Âk+1
) by (16).

One can use the same recipe to establish also the other properties of Item 2 and Item 3.
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Proof of Lemma 2

We prove the Lemma through a sequence of 7 claims. Assume throughout that K < I so that

the second-best mechanism (xsb, I|I, ∅) is infeasible. Let zj ∈ {j, ..., I} be the maximal cost

type that reports θj with positive probability in the incentive feasible mechanism (x,Σ|A,B):

σjzj > 0 and σji = 0 for all i ∈ {zj + 1, ..., I} if zj ≤ I − 1. The type zj exists by σj > 0.

Claim 7 A mechanism (x,Σ|A,B) with incomplete commitment (B 6= ∅) is incentive feasible

only if tj = θzjqj > 0 ∀j ∈ B.

Proof. Consider the principal’s optimal choice tj in Stage 4 after some cost report θj , j ∈ B. If

tj > θzjqj , then the principal can strictly reduce the transfer and thereby save informational rent

without violating the individual rationality constraint for any type i ∈ I that also reports to

be of type θj with positive probability. If tj < θzjqj , then Uzj (xj) < 0 ≤ Uzj (xzj ) and therefore

σjzj = 0 by (3), which contradicts the assumption that σjzj > 0. This leaves tj = θzjqj as the

only remaining possibility. Substituting tj into (4) and maximizing over qj leads to

qj = S′−1
(∑I

i=1 µji(θi + (1− α)(θzj − θi))
)
≥ S′−1(θI) = qfbI > 0,

where qfbI > 0 by assumption, and qj ≥ qfbI by S′′ < 0 and

θI −
∑I

i=1 µji(θi + (1− α)(θzj − θi)) =
∑I

i=1 µji(α(θI − θi) + (1− α)(θI − θzj )) ≥ 0.

Let B ∈ I be the minimal cost type and B ∈ I the maximal cost type contained in B in a

mechanism with incomplete commitment, i.e. B ∈ B, B ∈ B, B ≤ B and B ⊆ {B, ..., B}. In

particular, the escape clause B need not be convex.

Claim 8 A mechanism (x,Σ|A,B) with incomplete commitment (B 6= ∅) is incentive feasible

only if zj = z ≥ B ∀j ∈ B. Incentive feasibility further implies:

1. xj = xB ∀j ∈ {B, ..., z − 1} if either B ≤ B − 1 or z ≥ B + 1.

2. xj = x0 ∀j ∈ {z + 1, ..., I} if z ≤ I − 1.

Proof. The property zj ≥ B ∀j ∈ B holds trivially if B = 1. Assume that B ≥ 2 and

suppose zj < B for some j ∈ B. Then Uzj (xB) = UB(xB) + (θB − θzj )qB > 0 by UB(xB) ≥ 0,

θB > θzj and qB > 0. By σjzj > 0 and (3), it follows that Uzj (xzj ) = Uzj (xj) = tj − θzjqj = 0.

Uzj (xIB ) > Uzj (xzj ) then follows, which is a violation of (2). We conclude that zj ≥ B ∀j ∈ B.

Suppose zj < zh for some (j, h) ∈ B × B. In this case, Uzj (xzj ) = 0 < (θzh − θzj )qh = Uzj (xh),

which again violates incentive compatibility. Hence, zj = z ≥ B for all j ∈ B.

Consider Item 1 of the claim. B ≤ z − 1 by the assumption of the claim. By the incentive

compatibility constraint (2),

Uz(xz−1) = Uz−1(xz−1)− (θz − θz−1)qz−1 ≤ Uz(xz) = 0.
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Invoking incentive compatibility (2) again, plus individual rationality (1) and Claim 7 yields

Uz−1(xz−1) ≥ Uz−1(xB) = tB − θz−1qB = (θz − θz−1)qB.

Combining these two inequalities delivers

(θz − θz−1)qB ≤ Uz−1(xz−1) ≤ (θz − θz−1)qz−1,

and therefore qB ≤ qz−1. By monotonicity, it must also be the case that qB ≥ qz−1. Hence,

qB = qz−1. Applying monotonicity again yields qj = qz−1 = qB for all j ∈ {B, ..., z − 1}. We

can now invoke Claim 4 to obtain xj = xB for all j ∈ {B, ..., z − 1}.
Consider Item 2 of the claim. Assume that z ≤ I − 1, and suppose either qj > 0 or qj = 0

and tj > 0 for some j ∈ {z + 1, ..., I}. In this case, Uz(xj) = Uj(xj) + (θj − θz)qj > 0 = Uz(xz),

which violates incentive compatibility. By necessity, xj = (0, 0) = x0 for all j ∈ {z+ 1, ..., I}.

Claim 9 A mechanism (x,Σ|A,B) with incomplete commitment (B 6= ∅) is incentive feasible

only if |xB| ∈ {1, 2}. Incentive feasibility implies xj = xB ∀j ∈ {B, ..., B − 1} if B ≤ B − 1.

Proof. We prove the claim in reverse order. Let B ≤ B − 1. By the previous claim, B ≤
B− 1 ≤ z− 1 and then all contracts xj , j ∈ {B, ..., B− 1} are identical and equal to xB. Seeing

as B ⊆ {B, ..., B}, |xB| ∈ {1, 2} if B ≤ B − 1. Obviously, |xB| = 1 if B = B.

Claim 9 establishes Item 1 of Lemma 2. Consider Item 2. |xB| = 1 if z ≥ B + 1 by Claim 8.

Hence, |xB| = 2 implies z = B. Claims 7, 8 and z = B then imply xj = (qj , θBqj) for all j ∈ B.

Invoking Claim 9 yields xj = xB = (qB, θBqB) for all j ∈ {B, ..., B − 1} if |xB| = 2. Next:

Ui(xi) ≥ Ui(xB) = (θB − θi)qB > (θB − θi)qB = Ui(xB) ∀i ∈ {1, ..., B − 1}.

The first (weak) inequality follows from incentive compatibility, the second (strict) inequality

from qB 6= qB by xB 6= xB and monotonicity of output. Furthermore,

Ui(xi) = Ui(x0) = 0 > −(θi − θB)qB = Ui(xB) ∀i ∈ {B + 1, ...I}, B ≤ I − 1.

The first string of equalities follow from z = B for |xB| = 2 and Claim 8. Ui(xi) > Ui(xB)

for all i 6= B implies σBi = 0 for all i 6= B by (3). Hence, µBB = 1 by (5) if |xB| = 2. Upon

observing cost report θB, the principal attaches posterior probability equal to one that the agent

in fact has marginal cost θB. The sequentially rational choice for the principal is then to offer

xfbB and obtain ex-post surplus wfbB > 0. This completes the proof of Item 2 of Lemma 2. To

prove items 3-5, we now characterize additional properties of incentive efficient and incentive

optimal mechanisms with incomplete commitment. The next claim states that local incentive

compatibility constraints are binding even in mechanisms with incomplete commitment.

Claim 10 Consider a mechanism (x̂, Σ̂|A,B) that entails ex-ante contracting (A 6= ∅) and

incomplete commitment (B 6= ∅). Let the mechanism have the following properties: B ≥ 2,
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q̂Ak > q̂B for some cost group Ak, and x̂j = x̂B ∀j ∈ {Ak + 1, ..., B − 1} if Ak ≤ B − 2. This

mechanism is incentive efficient only if

[UAk(x̂Ak)− UAk(x̂B)][UAk+1(x̂B)− UAk+1(x̂Ak)] = 0, (35)

the local incentive compatibility constraint Ak is downward binding for Ak ≤ B − 2,

UAk(x̂Ak) = UAk(x̂B), (36)

and

UAl(x̂Al) = UAl(x̂Al+1
) ∀l ∈ {1, ..., k − 1}, k ≥ 2. (37)

Proof. The proof of identity (35) is analogous to the proof of Claim 5 and the proofs of identities

(36) and (37) are analogous to the proof of Claim 6.

We finally prove three claims of incentive optimal mechanisms.

Claim 11 A mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ 6= ∅) is in-

centive optimal only if |x∗A∗ | = K and q∗j /∈ {q∗B∗ , q
∗
B∗} for all j ∈ A∗.

Proof. Suppose |x∗A∗ | < K, and denote the corresponding number of cost groups by K∗ ≤ K−1.

Construct a modified mechanism (x∗,Σ∗|A,B) as follows: Al = A∗l for all l ≤ K∗ if K∗ ≥ 1. If

|x∗B∗ | = 2, then AK∗+1 = B∗\B∗ and B = B∗. If |x∗B∗ | = 1, then AK∗+1 = B∗ and B = ∅. The

modified mechanism is incentive feasible since the menu of contracts and reporting strategies are

the same as in the initial mechanism. Both mechanisms also yield the same expected surplus

to the principal. Seeing as B ⊂ B∗ ∪ ∅, (x∗,Σ∗|A∗,B∗) is not minimal in the sense of (9), and

therefore cannot be incentive optimal.

Assume next that |x∗A∗ | = K, but q∗j ∈ {q∗B∗ , q
∗
B∗} for some j ∈ A∗k. Then x∗A∗k

∈ {x∗B∗ , x
∗
B∗}

by Claim 4. Construct a modified mechanism (x∗,Σ∗|A,B) as follows: Al = A∗l for all l 6= k

if K ≥ 2. If |x∗B∗ | = 2 and x∗A∗k
= x∗B∗ , then Ak = A∗k ∪ B∗\B∗ and B = B∗. If |x∗B∗ | = 2 and

x∗A∗k
= x∗B∗ , then Ak = A∗k∪B∗ and B = B∗\B∗. If |x∗B∗ | = 1, then Ak = A∗k∪B∗ and B = ∅. By

way of an identical arguments as above, the proposed mechanism is not minimal in the sense of

(9), and therefore cannot be incentive optimal.

An immediate implication of Claim 11 is that B∗ = {B∗, ..., B∗}. This property holds trivially

if either B∗ = B∗ − 1 or B∗ = B∗. If B∗ ≤ B∗ − 2 and j ∈ A∗ for some B∗ < j < B∗, then

q∗j = q∗B∗ by Claim 8, which violates Claim 11.

Let z∗ be the maximal cost type that with positive probability invokes the escape clause

by reporting cost θj , j ∈ B∗, in an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) that features

incomplete commitment (B∗ 6= ∅).

Claim 12 Assume that the incentive optimal mechanism (x∗,Σ∗|A∗,B∗) features incomplete

commitment (B∗ 6= ∅), where B∗ ≤ I − 1. If q∗B∗+1 > 0, then z∗ = B∗ + 1.
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Proof. We first demonstrate that z∗ ≤ B∗ + 1. This is obviously true if B∗ ∈ {I − 1, I}, but

the result holds also for B∗ ≤ I − 2. For if z∗ ≥ B∗+ 2, then q∗j = q∗B∗ for all j ∈ {B∗, ..., z∗− 1}
by Claim 8. In particular, q∗B∗+1 = q∗B∗ , which violates the necessary condition of incentive

optimality established in Claim 11. Invoking Claim 8 delivers z∗ ∈ {B∗, B∗ + 1}. Assume that

q∗B∗+1 > 0. If z∗ = B∗, then UB∗(x
∗
B∗) = 0 < (θB∗+1 − θB∗)qB∗+1 = UB∗(x

∗
B∗+1), which violates

incentive compatibility. This leaves z∗ = B∗ + 1 as the only remaining possibility.

Claim 13 A mechanism (x∗,Σ∗|A∗,B∗) that features incomplete commitment (B∗ 6= ∅) is in-

centive optimal only if z∗ = B∗.

Proof. The result follows directly if B∗ = I since we already established z∗ ≥ B∗ in Claim 8.

Let B∗ ≤ I − 1. The proof proceeds as follows: We first show that x∗B∗+1 = xfbB∗+1 if q∗B∗+1 > 0.

We then show that the principal in that case can obtain strictly higher expected surplus than

in the proposed mechanism by modifying the escape clause. Hence, incentive optimality implies

q∗B∗+1 = 0. We already showed in the proof of Claim 12 that z∗ ∈ {B∗, B∗+1}. The final part of

the proof establishes that z∗ 6= B∗ + 1 if q∗B∗+1 = 0. This leaves z∗ = B∗ as the only remaining

possibility for B∗ ≤ I − 1.

It cannot be the case that q∗B∗+1 = q∗B∗ , because this would violate Claim 11. If q∗B∗+1 ∈
(0, q∗B∗), then z∗ = B∗ + 1 by Claim 12. Hence, x∗j = x∗B∗ for all j ∈ B∗ by Claim 8. Moreover,

A∗K = {B∗+1} identifies the maximal cost group in A∗ because x∗j = x0 for all j ∈ {B∗+2, ..., I}
if B∗ ≤ I − 2; see Claim 8. The local downward incentive compatibility constraint UB∗(x

∗
B∗) ≥

UB∗(x
∗
B∗+1) is slack because UB∗+1(x∗B∗+1) = UB∗+1(x∗B∗) and q∗B∗ > q∗B∗+1. By Claim 2, it

follows that Ui(x
∗
i ) > Ui(x

∗
j ), and therefore σ∗ji = 0, for all (i, j) ∈ {1, ..., B∗} × {B∗ + 1, ..., I}.

If B∗ ≤ I − 2, then upward-binding IC and strict monotonicity also imply σ∗ji = 0 for all (i, j) ∈
{B∗+ 2, ..., I}×{1, ..., B∗} by Claim 3. Moreover, Ui(x

∗
i ) = Ui(x0) = 0 > −(θi− θB∗+1)q∗B∗+1 =

Ui(x
∗
B∗+1) imply σ∗(B∗+1)i = 0 for all i ∈ {B∗+2, ..., I}. In particular, Ui(x

∗
i ) > Ui(x

∗
B∗+1) for all

i 6= B∗ + 1 if q∗B∗+1 ∈ (0, q∗B∗). As the principal cannot reduce informational rent by distorting

q∗B∗+1, it follows that x∗B∗+1 = xfbB∗+1. Finally, σ∗j(B∗+1) = 0 for all j ∈ {1, ..., B∗ − 1} if B∗ ≥ 2

by UB∗(x
∗
B∗) ≥ UB∗(x

∗
B∗−1), q∗B∗−1 > q∗B∗ and Claim 3. Based on this information, we can write

the principal’s expected surplus of the proposed incentive optimal mechanism as:

W (x∗,Σ∗|A∗,B∗) =

B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1[

∑
j∈B∗

σ∗j(B∗+1)WB∗+1(x∗B∗) + σ∗B∗+1w
fb
B∗+1].

Consider the alternative mechanism (x∗,Σ|A,B), where Al = A∗l for all l ∈ {1, ...,K − 1},
if K ≥ 2, AK = B∗ and B = {B∗ + 1}. Also, let σB∗+1 = 1. Reporting strategies remain

unchanged otherwise. Setting xB∗+1 = xfbB∗+1 = x∗B∗+1 is sequentially rational following the

cost report θB∗+1 in the modified mechanism: Ui(x
∗
i ) > Ui(x

∗
B∗+1) for all i 6= B∗ + 1 implies

σ(B∗+1)i = 0 for all i 6= B∗ + 1, which in turn implies that the principal attaches posterior

probability equal to 1 to the event that the agent has cost θB∗+1 after observing that particular
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cost report. The expected surplus to the principal of the modified mechanism equals

W (x∗,Σ|A,B) =
B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1w

fb
B∗+1.

The difference

W (x∗,Σ|A,B)−W (x∗,Σ∗|A∗,B∗) = νB∗+1(1− σ∗B∗+1 −
∑
j∈B∗

σ∗j(B∗+1))w
fb
B∗+1

+ νB∗+1

∑
j∈B∗

σ∗j(B∗+1)[w
fb
B∗+1 −WB∗+1(x∗B∗)]

in expected surplus between the two mechanisms is strictly positive by x∗B∗ 6= x∗B∗+1 = xfbB∗+1

and because z∗ = B∗ + 1 implies
∑

j∈B∗ σ
∗
j(B∗+1) > 0. Having eliminated all other possibilities,

it follows that q∗B∗+1 = 0.

We next establish z∗ 6= B∗ + 1 if q∗B∗+1 = 0. Suppose z∗ = B∗ + 1. Everything is nearly the

same as in the previous part of the proof, except now x∗B∗+1 = x0 instead of x∗B∗+1 = xfbB∗+1. In

particular, the expected surplus of the proposed incentive optimal mechanism is:

W (x∗,Σ∗|A∗,B∗) =
B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1

∑
j∈B∗

σ∗j(IB∗+1)WIB∗+1(x∗B∗).

Consider a modified mechanism (x,Σ|A∗,B), where B ={B∗, ..., B∗ + 1}, xB∗+1 = xfbB∗+1 and

σi = σ∗i + σ∗(B∗+1)i for all i ∈ {B∗ + 2...., I} if B∗ ≤ I − 2. All other contracts and reporting

strategies remain the same as in the initial mechanism. Even this mechanism is locally upward-

binding at θB∗+1, UB∗+1(xfbB∗+1) = UB∗+1(x∗B∗) = 0, and is incentive feasible if q∗B∗ > qfbB∗+1.

We now demonstrate q∗B∗ > qfbB∗+1. On the basis of the locally upward-binding IC constraint

UB∗+1(x∗B∗+1) = UB∗+1(x∗B∗), monotonicity q∗B∗ > 0 = q∗B∗+1 and Claim 3, we obtain σ∗ji = 0

for all (i, j) ∈ {B∗+ 2, ...I}× {1, ..., B∗} if B∗ ≤ I − 2. Upon observing a cost report θj , j ∈ B∗,
the principal therefore obtains the expected ex-post surplus

S(q∗B∗)−
B∗+1∑
i=1

µ∗ji[θi + (1− α)(θB∗+1 − θi)]q∗B∗ , µ
∗
ji =

νiσ
∗
ji∑B∗+1

h=1 νhσ
∗
jh

,

of offering the contract x∗B∗ = (q∗B∗ , θB∗+1q
∗
B∗). The equilibrium quantity q∗B∗ is then character-

ized by

S′(q∗B∗) =

B∗+1∑
i=1

µ∗ji[θi + (1− α)(θB∗+1 − θi)] < θB∗+1 = S′(qfbB∗+1),

where the inequality follows from

θB∗+1 −
B∗+1∑
i=1

µ∗ji[θi + (1− α)(θB∗+1 − θi)] = α

∑B∗

i=1 νiσ
∗
ji(θB∗+1 − θi)∑B∗+1

h=1 νhσ
∗
jh

> 0.
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Strict concavity of S(q) then implies q∗B∗ > qfbB∗+1.

The expected surplus in the modified mechanism is

W (x,Σ|A∗,B) =

B∗∑
j=1

B∗∑
i=1

νiσ
∗
jiWi(x

∗
j ) + νB∗+1[

∑
j∈B∗

σ∗j(IB∗+1)WIB∗+1(x∗B∗) + σ∗B∗+1w
fb
B∗+1].

The difference in expected surplus between the two mechanisms is

W (x,Σ|A∗,B)−W (x∗,Σ∗|A∗,B∗) = νB∗+1σ
∗
B∗+1w

fb
B∗+1 > 0,

which contradicts the assumed incentive optimality of (x∗,Σ∗|A∗,B∗). We conclude that q∗B∗+1 =

0 implies z∗ 6= B∗ + 1.

We can now draw conclusions about incentive optimal mechanisms with incomplete commitment.

Claim 11 proves Item 3 of Lemma 2. By way of z∗ = B∗ and Item 2 of Claim 8, C∗ =

{B∗ + 1, ..., I} if B∗ ≤ I − 1. This proves Item 5. Moreover, B∗ ∪ C∗ = {B∗, ..., I}. By

A∗ 6= ∅, and since A∗, B∗ and C∗ partition I ∪ ∅, it follows that B∗ ≥ 2 and A∗ = {1, ..., A∗},
where A∗ = B∗ − 1. This proves the first part of Item 4 of Lemma 2. Item 4(a) follows from

Claim 11 and monotonicity. Item 4(b) follows from Claim 7, Claim 8 and z∗ = B. Obviously,

UB∗(x
∗
B∗) = UB∗(x

∗
B∗) = 0.

Proof of Lemma 3

We first demonstrate some general properties of Σ∗ in incentive optimal mechanisms (x∗,Σ∗|A∗,B∗)
that feature incomplete commitment (B∗ 6= ∅). This is done in the following claims.

Claim 14 Consider a mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ 6= ∅)
and incomplete commitment (B∗ 6= ∅). This mechanism is incentive optimal only if the following

conditions are all met:

1. σ∗ji = 0 ∀(i, j) ∈ {1, ...A∗ − 1} × {B∗, ..., I} if A∗ ≥ 2.

2. σ∗ji = 0 ∀(i, j) ∈ {1, ..., B∗ − 1} × {B∗, ...I} if q∗B∗ > q∗B∗.

3. σ∗ji = 0 ∀(i, j) ∈ {1, ..., B∗ − 1} × C∗ if C∗ 6= ∅.

4. σ∗ji = 0 ∀(i, j) ∈ {B∗ + 1, ..., I} × A∗ if B∗ ≤ I − 1.

5. σ∗jB∗ = 0 ∀j ∈ {1, ..., A∗ − 1} such that q∗j > q∗A∗, if A∗ ≥ 2.

6. σ∗ji = 0 ∀(i, j) ∈ C∗ × (A∗ ∪ B∗) if C∗ 6= ∅.

Proof. By combining incentive compatibility conditions, we obtain:

Ui(x
∗
i )−Ui(x∗j ) = Ui(x

∗
i )−Ui(x∗h)+Uh(x∗h)−Uh(x∗j )+(θh−θi)(q∗h−q∗j ) ≥ (θh−θi)(q∗h−q∗j ). (38)

Hence, σ∗ji = 0 if (θh − θi)(q∗h − q∗j ) > 0 for some h ∈ I.
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Item 1: If h = A∗, then the rightmost expression in (38) is strictly positive for all (i, j) ∈
{1, ..., A∗ − 1} × {B∗, ..., I} by q∗A∗ > q∗B∗ ≥ q

∗
j for all j ∈ {B∗, ..., I}.

Item 2: If h = B∗ − 1, then the rightmost expression in (38) is strictly positive for all (i, j) ∈
{1, ..., B∗ − 2} × {B∗, ...I} by q∗B∗−1 > q∗B∗ ≥ q∗j for all j ∈ {B∗, ...I}.

Item 3: If h = B∗, then the rightmost expression in (38) is strictly positive for all (i, j) ∈
{1, ..., B∗ − 1} × C∗ by q∗B∗ > 0.

Item 4: If h = B∗, then the rightmost expression in (38) is strictly positive for all (i, j) ∈
{B∗ + 1, ..., I} × A∗ by q∗j ≥ q∗A∗ > q∗B∗ for all j ∈ A∗.

Item 5: If h = A∗, then the rightmost expression in (38) is strictly positive for all j ∈ {1, ..., A∗−
1} that satisfy q∗j > q∗A∗ .

Item 6: If h = B∗, then the rightmost expression in (38) is strictly positive for all (i, j) ∈ C∗×A∗

by q∗j ≥ q∗A∗ > q∗B∗ ≥ q∗B∗ for all j ∈ A∗. Ui(x
∗
i ) = 0 > −(θi − θB∗)q

∗
j = Ui(x

∗
j ) for all

(i, j) ∈ C∗ × B∗ completes the proof.

Claim 15 A mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ 6= ∅), incom-

plete commitment (B∗ 6= ∅) and partial participation (C∗ 6= ∅), is incentive optimal only if∑
j∈C∗ σ

∗
jB∗ = 0.

Proof. We consider two cases separately. In case one, q∗B∗ > q∗B∗ . By Claim 14, σ∗IB∗ i = 0 for

all i 6= B∗. Upon observing θB∗ , the principal therefore deduces that the agent with probability

one has cost θB∗ . The sequentially rational ex-post contract then equals x∗B∗ = xfbB∗ . This holds

for any σ∗B∗ > 0. The expected surplus of the principal equals

W (x∗,Σ∗|A∗,B∗) =
B∗−1∑
i=1

B∗−1∑
j=1

νiσ
∗
jiWi(x

∗
j ) +

B∗−1∑
j=B∗

νB∗σ
∗
jB∗WB∗(x

∗
B∗) + νB∗σ

∗
B∗w

fb
B∗ .

Let a modified mechanism (x∗,Σ|A∗,B∗) differ from the previous mechanism only by σB∗ =∑I
j=B∗ σ

∗
jB∗ . The principal can implement x∗ also under the modified reporting strategy because

the change from Σ∗ to Σ does not affect posterior beliefs about the agent’s true cost type θi

upon observing cost report θj , j ∈ B∗. The difference

W (x∗,Σ|A∗,B∗)−W (x∗,Σ∗|A∗,B∗) =
∑
j∈C∗

νB∗σ
∗
jB∗w

fb
B∗ ,

in the principal’s expected surplus is strictly positive if
∑

j∈C∗ σ
∗
jB∗ > 0, which would contradict

the assumed incentive optimality of (x∗,Σ∗|A∗,B∗).

In case two, q∗B∗ = q∗B∗ , so that x∗j = x∗B∗ for all j ∈ B∗. We now introduce some notation that

will be useful later. Recall from the main text the definition B∗ = {B∗, ..., B∗ − 1} if |x∗B∗ | = 2

and B∗ = B∗ if |x∗B∗ | = 1. After observing a cost report j ∈ B∗, the principal’s option is

whether to offer the contract x∗B∗ or save on informational rent by excluding one or more of the

least efficient cost types. The maximal surplus the principal can achieve by offering a deviation
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contract x∗djh = (q∗djh, θhq
∗d
jh) in Stage 4 that leaves an agent of cost type h ∈ {A∗, ..., B∗ − 1}

indifferent between accepting or rejecting the ex-post contract, equals
Ωjh(σ∗jh)∑B∗
i=A∗ νiσ

∗
ji

, where

Ωjh(σjh) =
h∑

i=A∗

νiσjiWi(x
d
jh) =

h∑
i=A∗

νiσji[S(qdjh)− (θi + (1− α)(θh − θi))qdjh], (39)

xdjh = (qdjh, θhq
d
jh) is the ex-post contract offered by the principal in that case, and

S′(qdjh) =

∑h
i=A∗ νiσji(θi + (1− α)(θh − θi))∑h

i=A∗ νiσji
, (40)

characterizes the optimal output given the reporting strategy σjh = (σjA∗ , ..., σjh). The contract

x∗djh results from replacing σjh by σ∗jh in (39) and (40). The Stage 4 expected surplus of offering

x∗B∗ subsequent to a cost report θj , j ∈ B∗, equals
Ω∗
jB∗∑B∗

i=A∗ νiσ
∗
ji

, where

Ω∗jB∗ =
B∗∑
i=A∗

νiσ
∗
jiWi(x

∗
B∗) =

B∗∑
i=A∗

νiσ
∗
ji[S(q∗B∗)− (θi + (1− α)(θB∗ − θi))q∗B∗ ]

By these definitions, x∗B∗ is sequentially rational if and only if

Ω∗jB∗ ≥ Ωjh(σ∗jh) ∀(j, h) ∈ B∗ × {A∗, ..., B∗ − 1}. (41)

In particular, x∗B∗ is sequentially rational only if WB∗(x
∗
B∗) ≥ 0. Otherwise, the principal would

be strictly better off by excluding the least efficient cost type under ex-post contracting and

offering instead a deviation contract.

Consider now the specific case where q∗B∗ = q∗B∗ , so that |x∗B∗ | = 1. Suppose σ∗lB∗ > 0 for

some l ∈ C∗. Construct a modified mechanism (x,Σ|A∗,B∗) where σlB∗ = σ∗lB∗ − ε ≥ 0, ε > 0,

and

σjB∗ = σ∗jB∗ +

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)∑

j′∈B∗
∑B∗

i=A∗ νiσ
∗
j′i(θB∗ − θi)

ε ∀j ∈ B∗.

All other reporting strategies remain the same as before. By this construction,
∑

j∈B∗(σjB∗ −
σ∗jB∗) = ε. Also, the contract xB∗ = (qB∗ , θB∗qB∗), where

S′(qB∗) =

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θi + (1− α)(θB∗ − θi)) + νB∗θB∗ε∑

j∈B∗
∑B∗

i=A∗ νiσ
∗
ji + νB∗ε

,

is sequentially rational for all cost reports j ∈ B∗ if and only if

ΩjB∗(σjB∗) ≥ Ωjh(σ∗jh) ∀(j, h) ∈ B∗ × {A∗, ..., B∗ − 1}. (42)

A marginal increase in ε has no effect on the right-hand side of (42). The marginal effect of ε on

xB∗ has only a second-order effect on the principal’s surplus, i.e.
∂ΩjB∗
∂ε = νB∗

∂σjB∗
∂ε WB∗(xB∗).
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The derivative

∂WB∗(xB∗)

∂ε
= (S′(qB∗)− θB∗)

∂qB∗

∂ε
= −α

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)∑

j∈B∗
∑B∗

i=A∗ νiσ
∗
ji + νB∗ε

∂qB∗

∂ε

is strictly positive by

∂qB∗

∂ε
=

ανB∗

S′′(qB∗)

∑
j∈B∗

∑B∗

i=A∗ νiσ
∗
ji(θB∗ − θi)

(
∑

j∈B∗
∑B∗

i=A∗ νiσ
∗
ji + νB∗ε)2

< 0.

Since
∂ΩjB∗
∂ε > νB∗

∂σjB∗
∂ε WB∗(x

∗
B∗) ≥ 0 for all ε > 0, xB∗ is sequentially rational for all ε > 0.

The key question is how ε affects the principal’s ex-ante expected surplus. If UA∗(x
∗
A∗) =

UA∗(x
∗
B∗), then

∂

∂ε
W (x,Σ|A∗,B∗) = νB∗WB∗(xB∗)− (GA∗−1 + νA∗σ

∗
A∗)(1− α)(θB∗ − θA∗)

∂qB∗

∂ε
> 0.

The case with UB∗(x
∗
A∗) = UB∗(x

∗
B∗) is qualitatively similar. We conclude that σ∗jB∗ = 0 for all

j ∈ C∗ also when q∗B∗ = q∗B∗ .

Claim 16 Consider a mechanism (x∗,Σ∗|A∗,B∗) that features ex-ante contracting (A∗ 6= ∅)
and incomplete commitment (B∗ 6= ∅). Assume that B∗ = B∗. This mechanism is incentive

optimal only if σ∗B∗ = 1.

Proof. Item 1 of Claim 14 implies
∑A∗−1

j=1 σ∗jB∗ = 0 if A∗ ≥ 2. Claim 15 implies
∑I

j=B∗+1 σ
∗
jB∗ =

0 if B∗ ≤ I − 1. Hence, σ∗A∗B∗ + σ∗B∗ = 1 if B∗ = B∗. σ∗A∗B∗ > 0 only if UB∗(x
∗
B∗) = UB∗(x

∗
A∗).

In that case, UA∗(x
∗
A∗) > UA∗(x

∗
B∗) by strict monotonicity q∗A∗ > q∗B∗ . As we have previously

verified, σB∗i = 0 for all i 6= B∗ in those conditions, which establishes x∗B∗ = xfbB∗ . The principal’s

expected surplus then equals

W (x∗,Σ∗|A∗,B∗) =

A∗∑
i=1

A∗∑
j=1

νiσ
∗
jiWi(x

∗
j ) + (1− σ∗B∗)WB∗(x

∗
A∗) + σ∗B∗w

fb
B∗ .

in an incentive optimal mechanism where B∗ = B∗ and σ∗B∗ < 1. Consider a modified mechanism

(x,Σ|A∗,B∗) that differs from the original mechanism by a reduced transfer tA∗k = t∗A∗k
− (θB∗ −

θA∗)(q
∗
A∗−q∗B∗) to all cost groups A∗k, k ∈ {1, ...,K}, and by σB∗ = 1. Everything else is the same

as in the original mechanism. This mechanism is incentive feasible and has expected surplus

W (x,Σ|A∗,B∗) = W (x∗,Σ∗|A∗,B∗)+GA∗(θB∗−θA∗)(q∗A∗−q∗B∗)+(1−σ∗B∗)(w
fb
B∗−WB∗(x

∗
A∗)),

which is strictly larger than W (x∗,Σ∗|A∗,B∗). Hence, B∗ = B∗ implies σ∗B∗ = 1.

Claim 17 applies the Revelation Principle to the menu of ex-ante contracts and invokes the three

previous claims.
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Claim 17 For any incentive optimal mechanism (x∗,Σ∗∗|A∗,B∗) that features incomplete com-

mitment (B∗ 6= ∅), there exists an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) where the re-

porting strategy Σ∗ has the following properties:

1. σ∗i = 1 ∀i ∈ {1, ..., A∗ − 1} if A∗ ≥ 2.

2.
∑B∗−1

j=A∗ σ
∗
ji = 1, i ∈ {A∗, B∗} if |x∗B∗ | = 2.

3.
∑B∗

j=A∗ σ
∗
ji = 1, i ∈ {A∗, B∗} if |x∗B∗ | = 1.

4. σ∗A∗B∗(1− σ
∗
A∗) = 0.

5.
∑B∗−1

j=B∗ σ
∗
ji = 1, i ∈ {B∗ + 1, ..., B∗ − 1} if B∗ ≤ B∗ − 2 and |x∗B∗ | = 2.

6.
∑

j∈B∗ σ
∗
ji = 1, i ∈ {B∗ + 1, ..., B∗ − 1} if B∗ ≤ B∗ − 2 and |x∗B∗ | = 1.

7.
∑

j∈B∗ σ
∗
jB∗ = 1.

8. σ∗jB∗ > 0 ∀j ∈ B∗.

9. σ∗i = 1 ∀i ∈ C∗ if C∗ 6= ∅.

Proof. Construct Σ∗ as follows: If A∗ ≥ 2, then σ∗i = 1 ∀i ∈ {1, ..., A∗ − 1}. For i ∈ {A∗, B∗},
σ∗A∗i =

∑
j∈A∗ σ

∗∗
ji and σ∗ji = σ∗∗ji ∀j ∈ {B∗, ..., I}. Moreover, σ∗ji = σ∗∗ji ∀(i, j) ∈ {B∗+1, ..., B∗}×

I if B∗ ≤ B∗−1, and finally σ∗i = 1 ∀i ∈ C∗ if C∗ 6= ∅. The modification from Σ∗∗ to Σ∗ does not

affect posterior beliefs for any reported j ∈ B∗ in Stage 4 of the game. Hence, (x∗,Σ∗|A∗, B∗)
is incentive feasible. To derive incentive optimality, observe that

νi(σ
∗
ji − σ∗∗ji )Wi(x

∗
j ) = 0 ∀(i, j) ∈ I × {B∗, ..., I} and ∀(i, j) ∈ {B∗ + 1, ..., I} × A∗ if B∗ ≤ I − 1

because either σ∗ji = σ∗∗ji or Wi(x
∗
j ) = 0 in all those cases. This result explains the second row

below:

W (x∗,Σ∗|A∗,B∗)−W (x∗,Σ∗∗|A∗,B∗)

=
∑B∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗ji )Wi(x

∗
j )

=
∑A∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗ji )Wi(x

∗
j )

=
∑A∗

i=1

∑A∗

j=1 νi(σ
∗
ji − σ∗∗ji )[Wi(x

∗
j )−Wi(x

∗
i ) +Wi(x

∗
i )]

=
∑A∗

i=1 νi[
∑A∗

j=1 σ
∗
jiWi(x

∗
j )−

∑A∗

j=1 σ
∗∗
jiWi(x

∗
i )]

=
∑A∗

i=1 νi[σ
∗
i −

∑A∗

j=1 σ
∗∗
ji ]Wi(x

∗
i ) = 0.

(43)

The third row follows from∑A∗

j=1 νB∗(σ
∗
jB∗ − σ

∗∗
jB∗)WB∗(x

∗
j )

=
∑A∗

j=1 νB∗(σ
∗
jB∗ − σ

∗∗
jB∗)WB∗(x

∗
A∗) = 0

where ∑A∗

j=1 σ
∗
jB∗ = σ∗A∗B∗ =

∑A∗

j=1 σ
∗∗
jB∗
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by construction of Σ∗. In the fourth row, we have added and subtracted Wi(x
∗
i ) inside the

square brackets. The fifth row follows from:

σ∗∗ji (Wi(x
∗
i )−Wi(x

∗
j )) = 0 ∀(i, j) ∈ A∗ ×A∗.

This property obviously holds for σ∗∗ji = 0, but also for σ∗∗ji > 0 because then Wi(x
∗
i ) = Wi(x

∗
j ).

For Wi(x
∗
i ) > Wi(x

∗
j ) it would have been better to set σ∗∗ji = 0. For Wi(x

∗
i ) < Wi(x

∗
j ), it would

have been better to set σ∗∗i = 0, which would violate the condition that σ∗∗i > 0 in an incentive

feasible mechanism. The first equality in the last row of (43) follows from σ∗ji = 0 ∀(i, j) ∈
A∗ × A∗, i 6= j. The second equality is implied by σ∗i = 1 =

∑A∗

j=1 σ
∗∗
ji ∀i ∈ {1, ..., A∗ − 1} if

A∗ ≥ 2, and σ∗A∗ =
∑A∗

j=1 σ
∗∗
jA∗ by construction of Σ∗.

Item 1 Follows directly from the construction of Σ∗.

Item 2 By construction of Σ∗,
∑A∗−1

j=1 σ∗ji = 0, i ∈ {A∗, B∗}, if A∗ ≥ 2. If |x∗B∗ | = 2, then

q∗B∗ > q∗B∗ , and we can apply Item 2 of Claim 14 to get
∑I

j=B∗ σ
∗
ji = 0, i ∈ {A∗, B∗}.

Item 3 From the proof of the previous item, we have
∑I

j=A∗ σ
∗
ji = 1, i ∈ {A∗, B∗}. The result

then trivially follows if B∗ = I. Let B∗ ≤ I − 1, so that C = {B∗ + 1, ..., I}. We can then apply

Item 3 of Claim 14 to obtain
∑I

j=B∗+1 σ
∗
jA∗ = 0 and also

∑I
j=B∗+1 σ

∗
jB∗ = 0 if B∗ ≤ B∗ − 1.

We can finally apply Claim 15 to obtain
∑I

j=B∗+1 σ
∗
jB∗ = 0 if B∗ = B∗.

Item 4 Observe that σ∗A∗B∗ > 0 only if UB∗(x
∗
B∗) = UB∗(x

∗
A∗). But then UA∗(x

∗
A∗) > UA∗(x

∗
B∗)

by q∗A∗ > q∗B∗ . From Claim 2, we then obtain UA∗(x
∗
A∗) > UA∗(x

∗
j ), and therefore σ∗∗jA∗ = 0, for

all j ∈ {B∗, ..., I}. Hence, 1 =
∑I

j=1 σ
∗∗
jA∗ =

∑A∗

j=1 σ
∗∗
jA∗ = σ∗A∗ .

Item 5 Assume that B∗ ≤ B∗ − 2. From Item 4 of Claim 14, we get
∑A∗

j=1 σ
∗
ji = 0 for all

i ∈ {B∗ + 1, ..., B∗ − 1}. |x∗B∗ | = 2 implies q∗B∗ > q∗B∗ , and we can invoke Item 2 of Claim 14 to

get
∑I

j=B∗ σ
∗
ji = 0 for all i ∈ {B∗ + 1, ..., B∗ − 1}.

Item 6 Follows directly from Item 3 and Item 4 of Claim 14.

Item 7 If B∗ ≤ B∗−1, then Item 4 of Claim 14 implies
∑

j∈A∗ σ
∗
jB∗ = 0, whereas

∑
j∈C∗ σ

∗
jB∗ = 0

if C∗ 6= ∅ from Claim 15. If B∗ = B∗, then the result follows directly from Claim 16.

Item 8 Follows directly from z∗ = B∗.

Item 9 Follows directly from the construction of Σ∗.

Claim 17 still differs from Lemma 3 in a number of aspects. One difference is that Lemma 3

is specific about the randomization strategies an agent with marginal cost θi, i ∈ {A∗, ..., B∗},
uses for cost reports θj , j ∈ {B∗, ..., B∗ − 1} if |X∗B∗ | = 2 and j ∈ B∗ if |X∗B∗ | = 1, that cause

the principal to implement the ex post contract x∗B∗ . We next establish incentive optimality of

uniform randomization strategies.

Claim 18 For any incentive optimal mechanism (x∗,Σ∗∗|A∗,B∗) that features incomplete com-

mitment (B∗ 6= ∅), there exists an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) in which the

reporting strategy Σ∗ has the following properties:
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1. σ∗ji =
1−σ∗

A∗i
B∗−A∗−1 ∀(i, j) ∈ {A

∗, ..., B∗ − 1} × {B∗, ..., B∗ − 1} if |x∗B∗ | = 2,

2. σ∗jB∗ =
1−σ∗

B∗
B∗−A∗−1 ∀j ∈ {B

∗, ..., B∗ − 1} if |x∗B∗ | = 2,

3. σ∗ji =
1−σ∗

A∗i
B∗−A∗ ∀(i, j) ∈ {A

∗, ..., B∗} × B∗ if |x∗B∗ | = 1.

Proof. Using the results in Claim 17, we can write the principals’ expected surplus as

B∗∑
i=1

νiWi(x
∗
i ) + νA∗(1− σ∗∗A∗)[WA∗(x

∗
B∗)−WA∗(x

∗
A∗)] + νB∗σ

∗∗
A∗B∗

× [WB∗(x
∗
A∗)−WB∗(x

∗
B∗)] + νB∗(1− σ∗∗B∗)[WB∗(x

∗
B∗)−WB∗(x

∗
B∗)]

(44)

in the incentive optimal mechanism (x∗,Σ∗∗|A∗, B∗). The expected surplus depends on Σ∗∗ only

through (σ∗∗A∗ , σ
∗∗
A∗B∗ , σ

∗∗
B∗) if |x∗B∗ | = 2 and (σ∗∗A∗ , σ

∗∗
A∗B∗) if |x∗B∗ | = 1. Let (σ∗A∗ , σ

∗
A∗B∗ , σ

∗
B∗) =

(σ∗∗A∗ , σ
∗∗
A∗B∗ , σ

∗∗
B∗). Then Σ∗ only modifies cost reports θj , j ∈ B∗ = {B∗, ..., B∗ − 1} if |x∗B∗ | =

2 and in B∗ = B∗ if |x∗B∗ | = 1. Everything else is the same as in the original mechanism.

Therefore, the mechanism (x∗,Σ∗|A∗,B∗) also yields expected surplus (44). To close the proof,

we demonstrate sequential rationality of x∗B∗ in the modified mechanism. Recall x∗B∗ = x∗B∗ if

|x∗B∗ | = 1.

By way of the uniform distribution of reporting strategies in Σ∗, the posterior beliefs re-

garding agent costs are identical for all j ∈ B∗. The maximal surplus the principal can achieve

by offering a deviation contract xdh = (qdh, θhq
d
h) in Stage 4 that leaves an agent of cost type

h ∈ {A∗, ..., B∗ − 1} indifferent between accepting or rejecting the ex-post contract is propor-

tional to

Ωh =

h∑
i=A∗

νi(1− σ∗∗A∗i)[S(qdh)− (θi + (1− α)(θh − θi))qdh]

where

S′(qdh) =

∑h
i=A∗ νi(1− σ∗∗A∗i)(θi + (1− α)(θh − θi))∑h

i=A∗ νi(1− σ∗∗A∗i)
.

In the above expressions, σ∗∗A∗i = 0 for all i ∈ {B∗+ 1, ..., h} if h ≥ B∗+ 1. If |x∗B∗ | = 2, then the

principal’s expected surplus of offering x∗B∗ at Stage 4 subsequent to a cost report θj , j ∈ B∗, is

proportional to

Ω∗B∗ =
B∗−1∑
i=A∗

νi(1− σ∗∗A∗i)[S(q∗B∗)− (θi + (1− α)(θB∗ − θi))q∗B∗ ] + νB∗(1− σ∗∗B∗)[S(q∗B∗)− θB∗q
∗
B∗ ].

If |x∗B∗ | = 1, then the principal’s expected surplus of offering x∗B∗ at Stage 4 subsequent to a

cost report θj , j ∈ B∗, is proportional to

Ω∗B∗ =

B∗−1∑
i=A∗

νi(1− σ∗∗A∗i)[S(q∗B∗)− (θi + (1− α)(θB∗ − θi))q∗B∗ ] + νB∗ [S(q∗B∗)− θB∗q
∗
B∗ ].
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The mechanism (x∗,Σ∗|A∗,B∗) is incentive feasible if and only if the following sequential ratio-

nality constraint is met:

Ω∗B∗ ≥ Ωh ∀h ∈ {A∗, ..., B∗ − 1}. (45)

We now show that sequential rationality (41) of x∗B∗ in the original mechanism implies

sequential rationality (45) of x∗B∗ in the modified mechanism. Summing up (41) over all j ∈ B∗

gives:

Ω∗B∗ ≥
∑
j∈B∗

Ωjh(σ∗∗jh) = Ω̄h(Σ∗∗h ) ∀h ∈ {A∗, ..., B∗ − 1}. (46)

If |x∗B∗ | = 2, then Σ∗∗h is a (B∗ − B∗) × (h + 1 − A∗) matrix that identifies how each of the

cost types i ∈ {A∗, ..., h} randomizes across cost reports θj , j ∈ {B∗, ..., B∗ − 1}. Instead, Σ∗∗h
has dimension (B∗ − A∗) × (h + 1 − A∗) if |x∗B∗ | = 1, because then the agent may optimally

randomize across all cost types j ∈ B∗. The final step is to show that Ω̄h(Σ∗∗h ) ≥ Ωh.

Consider the problem of minimizing Ω̄h(Σh) over Σh subject to 0 ≤ σji ≤ 1 for all σji ∈ Σh,∑B∗−1
j=B∗ σji = 1 − σ∗∗A∗i for all i ∈ {A∗, ..., h} if |x∗B∗ | = 2 and

∑B∗

j=B∗ σji = 1 − σ∗∗A∗i for all

i ∈ {A∗, ..., h} if |x∗B∗ | = 1. By way of the envelope theorem we obtain:

∂Ωjh

∂σji
= νiWi(x

d
jh) = νi[S(qdjh)− (θi + (1− α)(θh − θi))qdjh],

with the cross-partial derivative of

∂2Ωjh

∂σji∂σjl
= −νiνl

[S′(qdjh)− θi − (1− α)(θh − θi))][S′(qdjh)− θl − (1− α)(θh − θl)]∑h
i=A∗ νiσjiS

′′(qdjh)
.

If we define

yjih = νi[S
′(qdjh)− θi − (1− α)(θh − θi)],

and yjh = (yjA∗h...., yjhh)T , then we can write the Hessian matrix Hjh of Ωjh(σjh) as:

Hjh =
−yjhyTjh∑h

i=A∗ νiσjiS
′′(qdjh)

.

By implication:

σTjhHjhσjh =
−σTjhyjhyTjhσjh∑h
i=A∗ νiσjiS

′′(qdjh)
=

−(σTjhyjh)2∑h
i=A∗ νiσjiS

′′(qdjh)
≥ 0.

Positive definiteness of Hjh implies that Ωjh(σjh) is a convex function. Consequently, Ω̄h(Σh)

is convex because it is a sum of (additively separable) convex functions. Because all constraints

are linear, all solutions to the (B∗ −B∗)× (h+ 1−A∗) [(B∗ −A∗)× (h+ 1−A∗) if |x∗B∗ | = 1]

first-order conditions

νiWi(x
d
jh)− λih − ξjih + ξjih = 0, (47)
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the h+ 1−A∗ equality constraints

B∗−1∑
j=B∗

σji = 1− σ∗∗A∗i if |x∗B∗ | = 2;
B∗∑
j=B∗

σji = 1− σ∗∗A∗i if |x∗B∗ | = 1, (48)

and the (B∗−B∗)× (h+1−A∗) [(B∗−A∗)× (h+1−A∗) if |x∗B∗ | = 1] complementary slackness

conditions

σji ∈ [0, 1], ξ
jih
≥ 0, ξjih ≥ 0, σjiξjih = (1− σji)ξjih = 0 (49)

minimize Ω̄h(Σh). In the first-order condition (47), λih represents the Lagrangian multiplier on

the equality constraint (48), ξ
jih

is the Karush-Kuhn-Tucker (KKT) multiplier on σjih ≥ 0, and

ξjih is the KKT multiplier on σji ≤ 1.

Obviously, Σ∗h, ξ
ji

= ξji = 0 and λih = νiWi(x
d
h) jointly solve (47)-(49). Hence, Ω∗B∗ ≥

Ω̄h(Σ∗∗h ) ≥ Ω̄h(Σ∗h) = Ωh for all h ∈ {A∗, ..., B∗ − 1}.

To close the proof of Lemma 3, we need a final result.

Claim 19 Consider an incentive optimal mechanism (x∗∗,Σ∗∗|A∗∗,B∗∗) that features incom-

plete commitment (B∗∗ 6= ∅), and where σ∗∗ji > 0 for some (i, j) ∈ B∗∗ ×A∗∗. Assume that this

mechanism is characterized either by (i) B∗∗ = B∗∗ − 1 and |x∗∗B∗∗ | = 1, or (ii) B∗∗ ≤ B∗∗ − 2.

Then there exists an incentive optimal mechanism (x∗,Σ∗|A∗,B∗) that also features incomplete

commitment (B∗ 6= ∅), where σ∗ji = 0 for all (i, j) ∈ B∗ ×A∗.

Proof. By way of Item 4 in Claim 14, we know that σ∗∗ji > 0, (i, j) ∈ B∗∗ × A∗∗, implies

i = B∗∗. From Item 2 and Item 3 of Claim 17, we can set σ∗∗jB∗∗ = 0 for all j ∈ {1, A∗∗ − 1} if

A∗∗ ≥ 2. Assume that σ∗∗A∗∗B∗∗ > 0. From Claim 18, we apply uniform randomization to derive

the posterior probability distribution

µ∗∗jB∗∗ = µ∗∗B∗∗ =
νB∗∗(1− σ∗∗A∗∗B∗∗)∑

i∈B∗∗ νi − νB∗∗σ∗∗A∗∗B∗∗ − νB∗∗σ
∗∗
B∗∗

µ∗∗ji = µ∗∗i =
νi∑

i∈B∗∗ νi − νB∗∗σ∗∗A∗∗B∗∗ − νB∗∗σ
∗∗
B∗∗
∀i ∈ {B∗∗ + 1, ..., B∗∗ − 1}

µ∗∗jB∗∗ = µ∗∗B∗∗ =
νB∗∗(1− σ∗∗B∗∗)∑

i∈B∗∗ νi − νB∗∗σ∗∗A∗∗B∗∗ − νB∗∗σ
∗∗
B∗∗

for all j ∈ {B∗∗, ..., B∗∗ − 1} and µ∗∗B∗∗B∗∗ = 1, if |x∗∗B∗∗ | = 2. Instead,

µ∗∗jB∗∗ = µ∗∗B∗∗ =
νB∗∗(1− σ∗∗A∗∗B∗∗)∑
i∈B∗∗ νi − νB∗∗σ∗∗A∗∗B∗∗

µ∗∗ji = µ∗∗i =
νi∑

i∈B∗∗ νi − νB∗∗σ∗∗A∗∗B∗∗
∀i ∈ {B∗∗ + 1, ..., B∗∗}
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for all j ∈ B∗∗ if |x∗∗B∗∗ | = 1. The mechanism has expected surplus

W (x∗∗,Σ∗∗|A∗∗,B∗∗) =
B∗∗∑
i=1

νiWi(x
∗∗
i ) + νB∗∗σ

∗∗
A∗∗B∗∗

[WB∗∗(x
∗∗
A∗∗)−WB∗∗(x

∗∗
B∗∗)]

+ νB∗∗(1− σ∗∗B∗∗)[WB∗∗(x
∗∗
B∗∗)−WB∗∗(x

∗∗
B∗∗)].

Consider the modified mechanism (x∗,Σ∗|A∗,B∗) in which A∗k = A∗∗k for all k ∈ {1, ...K − 1} if

K ≥ 2, A∗K is extended to include the cost type B∗∗, and B∗ is correspondingly reduced. That

is, A∗ = B∗∗ and B∗ = B∗∗+ 1. Let x∗j = x∗∗j for all j 6= B∗∗ and x∗B∗∗ = x∗∗A∗∗ . As for reporting

strategies, let σ∗i = σ∗∗i = 1 for all i ∈ A∗∗ ∪ C∗∗ and σ∗B∗∗ = σ∗∗A∗∗B∗∗ . If |x∗∗B∗∗ | = 2, then

σ∗jB∗∗ =
1−σ∗

B∗∗

B∗∗−B∗∗−2 , σ∗ji = 1
B∗∗−B∗∗−2 , i ∈ {B∗∗ + 1, ..., B∗∗ − 1} , and σ∗jB∗∗ =

1−σ∗∗
B∗∗

B∗∗−B∗∗−2 for all

j ∈ {B∗∗ + 1, ..., B∗∗ − 1}, whereas σ∗B∗∗ = σ∗∗B∗∗ . If |x∗∗B∗∗ | = 1, then σ∗jB∗∗ =
1−σ∗

B∗∗

B∗∗−B∗∗−1 , σ∗ji =
1

B∗∗−B∗∗−1 , i ∈ {B∗∗+1, ..., B∗∗} , for all j ∈ {B∗∗+1, ..., B∗∗}. Observe in particular that σ∗ij = 0

for all (i, j) ∈ B∗ × A∗ by construction. Moreover, W (x∗∗,Σ∗∗|A∗∗,B∗∗) = W (x∗,Σ∗|A∗,B∗).
The modified mechanism is incentive feasible if x∗∗B∗∗ is sequentially rational. It is easy to

verify that the uniform distribution of cost reports Σ∗ yields posterior beliefs µ∗ji = µ∗∗i for all

(i, j) ∈ I × {B∗∗ + 1, ..., B∗∗}. x∗∗B∗∗ is sequentially rational under the reporting strategy Σ∗

because it is sequentially rational under Σ∗∗.

Claims 16-19 map into the items of Lemma 3 as follows. Item 1 of Claim 17 implies Item 1(a).

Item 1 and Item 3 of Claim 18 imply Item 1(b). Claim 16 implies Item 2(a)i. Item 2 and Item 4

of Claim 17 imply Item 2(a)ii. Item 1 and Item 3 of Claim 18 and Claim 19 imply Item 2(a)iii.

Item 1 of Claim 18 and Claim 19 imply Item 2(b). Item 8 of Claim 17 and Item 2 of Claim 18

imply Item 2(c)i. Item 7 of Claim 17 and Item 3 of Claim 18 imply Item 2(c)ii. Item 9 of Claim

17 implies Item 3.

Proof of Proposition 1

Let (x∗,Σ∗|A∗,B∗) be an incentive optimal mechanism with incomplete commitment (B∗ 6= ∅).
We elaborated on the |x∗B∗ | = 1 case in the main text, so we focus here on |x∗B∗ | = 2. There are

two subcases.

Subcase 1 : σ∗A∗B∗ = 0. We start the proof by demonstrating incentive feasibility of a modified

mechanism (x,Σ|A∗,B∗) in which the menu x of contracts has the following properties: xj =

(q∗j , t
∗
j − (θB∗ − θA∗)(q∗B∗ − qB∗)) for all j ∈ A∗, xj = xB∗ = (qB∗ , θB∗qB∗) for all j ∈ B∗, and

S′(qB∗) =

∑B∗

i=A∗ νi(θi + (1− α)(θB∗ − θi))− νA∗σ∗A∗(θA∗ + (1− α)(θB∗ − θA∗))
νA∗(1− σ∗A∗) + νB∗

As for the reporting strategies, σi = σ∗i = 1 for all i ∈ {1, ...A∗−1} if A∗ ≥ 2, and σi = σ∗i = 1 for

all i ∈ C∗ if C∗ 6= ∅. Moreover, σjA∗ =
1−σ∗

A∗
|B∗| for all j ∈ B∗ and σji = 1

|B∗| for all (i, j) ∈ B∗×B∗.
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By subtracting (19) from the above equation, we obtain

S′(qB∗)− S′(q∗B∗) = ανB∗
σ∗B∗ [νA∗(1− σ∗A∗)(θB∗ − θA∗) +

∑
i∈B∗ νi(θB∗ − θi)]

[νA∗(1− σ∗A∗) + νB∗ ][νA∗(1− σ∗A∗) + νB∗ − νB∗σ∗B∗ ]
> 0.

Hence, q∗B∗ > qB∗ by strict concavity of S(q).

Since Ui(xi) − Ui(xj) = Ui(x
∗
i ) − Ui(x∗j ) for all (i, j) ∈ A∗ × A∗, UA∗(xA∗) − UA∗(xB∗) =

UA∗(x
∗
A∗)−UA∗(x∗B∗) and q∗A∗ > qB∗ , one can apply Item 2 of Claim 2 and Item 1 of Claim 3 to

verify individual rationality (1) and incentive compatibility (2) of (x,Σ|A∗,B∗). The mechanism

obviously satisfies the stochastic rationality constraint (3). We calculate the posterior beliefs

(5) of the modified mechanism as:

µjA∗ =
νA∗(1− σ∗A∗)

νA∗(1− σ∗A∗) + νB∗
∀j ∈ B∗, µji =

νi
νA∗(1− σ∗A∗) + νB∗

∀(i, j) ∈ B∗ × B∗.

Moreover |xA∗ | = |x∗A∗ | implies (6). We then need to verify sequential rationality (4) of xB∗ to

establish incentive feasibility of (x,Σ|A∗,B∗). To do so, we fist define the function

Ω̃(σ) = νA∗(1− σ∗A∗)[S(q̃(σ))− (θA∗ + (1− α)(θB∗ − θA∗))q̃(σ)]

+
∑
i∈B∗

νi[S(q̃(σ))− (θi + (1− α)(θB∗ − θi))q̃(σ)]− νB∗σ[S(q̃(σ))− θB∗ q̃(σ)],

where q̃(σ) is implicitly defined by

S′(q̃(σ)) =

∑B∗

i=A∗ νi(θi + (1− α)(θB∗ − θi))− νA∗σ∗A∗(θA∗ + (1− α)(θB∗ − θA∗))− νB∗σθB∗
νA∗(1− σ∗A∗) + νB∗ − νB∗σ

.

By this construction, q̃(σ∗B∗) = q∗B∗ , Ω̃(σ∗B∗) = Ω∗B∗ , see the proof of Claim 18 for a definition,

and q̃(0) = qB∗ . The expected surplus to the principal of offering the ex-post contract xB∗ after

the agent has reported marginal cost θj , j ∈ B∗, equals Ω̃(0)
νA∗ (1−σ∗

A∗ )+νB∗
, whereas the deviation

profit of offering a deviation contract xdh = (qdh, θhq
d
h), h ∈ {A∗, ..., B∗−1}, equals Ωh

νA∗ (1−σ∗
A∗ )+νB∗

,

see the proof of Claim 18 for the definition of Ωh and discussion. Hence, xB∗ is sequentially

rational if and only if Ω̃(0) ≥ Ωh for all h ∈ {A∗, ..., B∗ − 1}. Sequential rationality of x∗B∗ in

the incentive optimal mechanism implies Ω̃(σ∗B∗) ≥ Ωh for all h ∈ {A∗, ..., B∗− 1}. We close the

proof of incentive feasibility by demonstrating Ω̃(0) > Ω̃(σ∗B∗). As

Ω̃′(σ) = −νB∗(S(q̃(σ))− θB∗ q̃(σ)), Ω̃′′(σ) =
−1

S′′(q̃(σ))

ν2
B∗(S

′(q̃(σ))− θB∗)2

νA∗(1− σ∗A∗) + νB∗ − νB∗σ
> 0,

we have Ω̃′(σ) < Ω̃′(σ∗B∗) = −νB∗WB∗(x
∗
B∗) ≤ 0 for all σ < σ∗B∗ , where we demonstrated

WB∗(x
∗
B∗) ≥ 0 in the proof of Claim 15. Hence, Ω̃(0) > Ω̃(σ∗B∗).

By way of incentive feasibility of (x,Σ|A∗,B∗) and |xB∗ | = 1, the following reduced com-

munication mechanism augmented by a vague escape clause (VEC) can be sustained as a PBE:

The principal offers xA∗ in Stage 1. In Stage 2, an agent with marginal cost θi < θA∗ selects

xA∗k , i ∈ A∗k, an agent with marginal cost θA∗ selects xA∗K with probability σ∗A∗ and invokes
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VEC with probability 1 − σ∗A∗ , an agent with marginal cost θi, i ∈ B∗, triggers VEC, an agent

with marginal cost θi > θB∗ rejects the mechanism. In Stage 3, the principal offers the ex-post

contract xB∗ if the agent has invoked the escape clause. This mechanism generates the same

expected surplus to the principal as (x,Σ|A∗,B∗), namely:

W (x,Σ|A∗,B∗) =
∑
i∈A∗

νiWi(x
∗
i ) + νA∗(1− σ∗A∗)[W

fb
A∗(qB∗)−W

fb
A∗(q

∗
B∗)]

+
∑
i∈B∗

νiWi(xB∗) + νA∗(1− α)(θB∗ − θA∗)(q∗B∗ − qB∗),

where νA∗ =
∑

i∈A∗ νi. The net benefit of choosing the incentive optimal mechanism over

(x,Σ|A∗,B∗) can be written as

W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)

= νA∗(1− σ∗A∗)[W
fb
A∗(q

∗
B∗)−W

fb
A∗(qB∗)] +

∑
i∈B∗

νi[Wi(x
∗
B∗)−Wi(xB∗)]

+ νB∗σ
∗
B∗ [w

fb
B∗ −W

fb
B∗(q

∗
B∗)]− νA∗(1− α)(θB∗ − θA∗)(q∗B∗ − qB∗)

limνB∗→0[S′(qB∗) − S′(q∗B∗)] = 0 implies q∗B∗ → qB∗ and x∗B∗ → xB∗ as νB∗ → 0. Therefore,

limνB∗→0[W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)] = 0.

Subcase 2 : σ∗A∗B∗ > 0. This possibility occurs only if B∗ = B∗ − 1 and σ∗A∗ = 1; see Lemma 3.

In this case, σ∗A∗B∗ = 1− σ∗B∗ . The incentive optimal ex-post contract x∗B∗ = (q∗B∗ , θB∗q
∗
B∗) has

output

S′(q∗B∗) =
νB∗σ

∗
B∗(θB∗ + (1− α)(θB∗ − θB∗)) + νB∗(1− σ∗B∗)θB∗

νB∗σ
∗
B∗ + νB∗(1− σ∗B∗)

.

Consider the modified mechanism (x,Σ|A∗,B∗) in which the menu x of contracts has the follow-

ing properties: xj = (q∗j , t
∗
j−(θB∗−θB∗)(q∗B∗−qB∗)) for all j ∈ A∗ and xB∗ = xB∗ = (qB∗ , θB∗qB∗)

where

S′(qB∗) =
νB∗σ

∗
B∗(θB∗ + (1− α)(θB∗ − θB∗)) + νB∗θB∗

νB∗σ
∗
B∗ + νB∗

.

The reporting strategies are as follows: σi = σ∗i = 1 for all i ∈ A∗. If C∗ 6= ∅, then σi = σ∗i = 1

also for all i ∈ C∗. Moreover, σA∗B∗ = 1 − σ∗B∗ , σB∗ = σB∗B∗ =
σ∗
B∗

2 and σB∗B∗ = σB∗ = 1
2 . In

particular,

S′(qB∗)− S′(q∗B∗) =
ανB∗σ

∗
B∗νB∗σ

∗
B∗(θB∗ − θB∗)

[νB∗σ
∗
B∗ ][νB∗σ

∗
B∗ + νB∗(1− σ∗B∗)]

> 0

implies q∗B∗ > qB∗ . It is straightforward to verify that the construction of the transfer payments

in xA∗ , Ui(xi) − Ui(xj) = Ui(x
∗
i ) − Ui(x∗j ) for all (i, j) ∈ A∗ × A∗, UB∗(xB∗) = UB∗(xA∗) and

q∗A∗ > qB∗ imply that the modified mechanism satisfies feasibility conditions (1)-(3) and (6). We

calculate the posterior beliefs (5) of the modified mechanism as:

µjB∗ =
νB∗σ

∗
B∗

νB∗σ
∗
B∗ + νB∗

, µjB∗ =
νB∗

νB∗σ
∗
B∗ + νB∗

j ∈ {B∗, B∗}.
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We finally verify sequential rationality (4) of xB∗ . In the incentive optimal mechanism, x∗B∗ is

sequentially rational if and only if

Ω∗B∗ = νB∗σ
∗
B∗ [S(q∗B∗)−(θB∗+(1−α)(θB∗−θB∗))q∗B∗ ]+νB∗(1−σ

∗
B∗)[S(q∗B∗)−θB∗q

∗
B∗ ] ≥ νB∗σ

∗
B∗w

fb
B∗ .

The right-hand side of this expression is the expected surplus of offering a deviation contract that

is accepted only by an agent with marginal cost θB∗ . The modified contract xB∗ is sequentially

rational if and only if

ΩB∗ = νB∗σ
∗
B∗ [S(qB∗)− (θB∗ + (1− α)(θB∗ − θB∗))qB∗ ] + νB∗ [S(qB∗)− θB∗qB∗ ] ≥ νB∗σ∗B∗w

fb
B∗ .

One can then construct a similar function to Ω̃(σ) above to verify ΩB∗ > Ω∗B∗ , but we omit this

step.

By the properties of (x,Σ|A∗,B∗), the following reduced communication mechanism sus-

tained by a vague escape clause (VEC) can be sustained as a PBE: The principal offers xA∗

in Stage 1. In Stage 2, any agent with marginal cost θi ≤ θA∗ selects xA∗k , i ∈ A∗, an agent

with marginal cost θB∗ selects xA∗K with probability 1− σ∗B∗ and invokes the escape clause with

probability σ∗B∗ , an agent with marginal cost θB∗ triggers the escape clause with probability 1,

an agent with marginal cost θi > θB∗ rejects the mechanism. In Stage 3, the principal offers

the ex-post contract xB∗ if the agent has invoked the escape clause. This mechanism generates

expected surplus

W (x,Σ|A∗,B∗) =
∑
i∈A∗

νiWi(x
∗
i ) + νB∗(1− σ∗B∗)WB∗(x

∗
A∗) + νB∗σ

∗
B∗WB∗(xB∗) + νB∗WB∗(xB∗)

+ (νA∗ + νB∗(1− σ∗B∗))(1− α)(θB∗ − θB∗)(q∗B∗ − qB∗)

to the principal. The net benefit of choosing the incentive optimal over the reduced communi-

cation mechanism can be written as

W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)

= νB∗σ
∗
B∗ [W

fb
B∗(q

∗
B∗)−W

fb
B∗(qB∗)] + νB∗ [W

fb
B∗(q

∗
B∗)−W

fb
B∗(qB∗)]

+ νB∗σ
∗
B∗ [w

fb
B∗ −W

fb
B∗(q

∗
B∗)]− (νA∗ + νB∗)(1− α)(θB∗ − θB∗)(q∗B∗ − qB∗)

Once more, limνB∗→0[W (x∗,Σ∗|A∗,B∗)−W (x,Σ|A∗,B∗)] = 0 since q∗B∗ → qB∗ for νB∗ → 0.
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