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Abstract

We consider a uniform-price procurement auction with indivisible units
and private independent costs. We find an explicit solution for a Bayesian
Nash equilibrium, which is unique if demand shocks are suffi ciently evenly
distributed. The equilibrium has a price instability in the sense that a mi-
nor change in a supplier’s realized cost can result in a drastic change in the
market price. We quantify the resulting volatility and show that it is re-
duced as the size of indivisible units decreases. In the limit, the equilibrium
converges to the Supply Function Equilibrium (SFE) for divisible goods if
costs are common knowledge.
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1 Introduction

Many procurement auctions trade indivisible units or have bid constraints that
force suppliers to offer their goods with stepped supply functions. Such markets
often have unpredictable and significant price variations even if demand is certain
and costs are common knowledge (or have small variations). Similar to von der
Fehr and Harbord (1993), we refer to this as a price instability. One illustrative
example is the Bertrand-Edgeworth game, where capacity-constrained suppliers
compete on prices and each supplier is paid its own price (Edgeworth, 1925; Kruse
et al., 1994; Deneckere and Kovenock, 1996).1 Another illustrative example is the
related model of a uniform-price auction by von der Fehr and Harbord (1993).
In the Nash equilibrium of both models, each supplier has positive mark-ups and
chooses offers randomly to avoid a situation where the best response of a rival
is to slightly undercut the supplier.2 In both models, a supplier offers its entire
production capacity at one price. In this paper we are the first to analyse price
instability in markets where each supplier has multiple indivisible units and is
allowed to offer each unit at a different price. We focus on procurement auctions,
but results are analogous for sales auctions.
We generalize von der Fehr and Harbord’s model by considering a uniform-

price auction where each supplier offers a number of indivisible units at different
prices. Another generalisation is that we allow suppliers to have private and inde-
pendent costs. Producers are symmetric ex-ante, before they receive information
about their cost. The sequence is such that each supplier receives a signal of its
cost and then chooses an offer price, with higher signals leading to higher prices.
As illustrated in Figure 1, this gives rise to an offer price range for each indivis-
ible unit of the supplier. We solve for a pure-strategy Bayesian NE, where each
supplier chooses offer prices for each of its units in order to maximise its expected
profit given its private information. We show that if the cost uncertainty is suffi -
ciently small and either indivisible units are suffi ciently small or demand shocks
are suffi ciently evenly distributed, then there exists one symmetric pure-strategy
Bayesian Nash equilibrium where the offer price ranges for the different units of
a supplier will not overlap, as illustrated in Figure 1. We call this property step
separation. We explicitly solve for the symmetric equilibrium and prove that it is
the unique equilibrium if demand shocks are suffi ciently evenly distributed. In the
special case with two units per supplier, we also analyze NE where offer ranges of
units overlap, as can occur with highly non-uniformly distributed demand shocks.
Overlapping offer prices for non-overlapping marginal costs leads to welfare losses.
For circumstances with small indivisible units and small cost uncertainties, we

show that the standard deviation of a supplier’s equilibrium offer is approximately

1In Bertrand-Edgeworth games, price instability means that suppliers sell goods at different
prices, which violates the law of one price. This phenomenon is sometimes called price dispersion
(Varian, 1980).

2In case firms choose prices sequentially as in a dynamic Bertrand game, then they can
undercut each other sequentially, which will give rise to Edgeworth price cycles (Maskin and
Tirole, 1988; Noel, 2007).
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Unit 1 Unit 2 Unit 3 Unit 4

Price/cost

Offer price ranges for units

Marginal cost range for units

Figure 1: Illustration of price instability where small variations in costs introduces
large changes in the offer prices of a supplier. Offer price and marginal cost
ranges of its indivisible units are non-overlapping in this example. In addition,
the maximum offer price of one unit equals the minimum offer price of the next
unit. We refer to this as step-separation without gaps.

given by (I − 1) (pn − cn) /(
√

12n), where I is the number of symmetric suppliers
and pn − cn is the approximate mark-up for the n’th unit (the n’th cheapest unit
of a supplier). For parameter values that are typical in a wholesale electricity
market, this approximation would imply that the standard deviation in the offer
for the most expensive production unit is in the range 0.2%-5% of the reservation
price. Our analysis indicates that bid volatility should be less pronounced for
less expensive production units. We also estimate the standard deviation of the
market price (price instability) for each demand level. It can be 0.1%-3% of the
reservation price for the highest demand level and tends to be smaller for lower
demand levels.
In the limit where costs are common knowledge, our Bayesian NE with price

instability corresponds to a mixed-strategy NE in accordance with the purification
theorem (Harsanyi, 1973). We let the size of indivisible units decrease to show that
the mixed-strategy NE converges to the supply function equilibrium (SFE); a pure-
strategy NE in a market with divisible goods which was originally characterized
by Klemperer and Meyer (1989). The convergence result confirms a conjecture
made by Newbery (1998) and gives theoretical support to the use of SFE to
approximate equilibria with bid constraints in wholesale electricity markets as in
Green and Newbery (1992), Anderson and Hu (2008), Holmberg and Newbery
(2010) and Vives (2011), and analogous approximations in sales auctions: Wilson
(1979), Wang and Zender (2002), Hortaçsu and McAdams (2010), Rostek and
Weretka (2012), and Ausubel et al. (2014).
A supplier’s optimal offer prices for its indivisible units are determined from

the characteristics of its residual demand curve, which is uncertain. This is due to
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uncertainties in both the auctioneer’s demand and in the competitors’supply, with
the latter arising from imperfect knowledge of competitors’costs, or because they
randomize their offers. The standard approach in the literature when calculat-
ing the best response for such circumstances is to first characterize the stochastic
residual demand curve of a supplier by a probability distribution function, the
market distribution function (Anderson and Philpott, 2002b). Analogous proba-
bility distributions have been used by Wilson (1979) and in the empirical study of
the Turkish treasury auction by Hortaçsu and McAdams (2010). A methodologi-
cal contribution in this paper is that we develop a discrete version of the market
distribution function, which is suitable when analysing markets with indivisible
units. We derive necessary and suffi cient conditions for the best response of a sup-
plier facing a stochastic residual demand process. Wolak (2007) and Kastl (2012)
present related necessary conditions, which are suitable for empirical studies of
multi-unit auctions with various bid constraints. Our main contribution is that
we establish a suffi cient condition for global optimality that is crucial when Nash
equilibria are constructed in multi-unit auctions with indivisible units.
A related paper by Holmberg et al. (2013) considers a divisible-good auction

where costs are common knowledge among suppliers, permissible prices are given
by a discrete set and suppliers choose quantities from a continuous set for each
permissible price. Discrete prices imply that a supplier who wants to undercut a
competitor needs to undercut it by a considerable amount and this means that
NE can exist without price instability.3 Holmberg et al. (2013) prove that pure-
strategy NE in this setting converge to SFE as the tick-size (the distance between
permissible price levels) shrinks to zero. This result is mainly relevant for markets
with significant tick-sizes such as financial exchanges with continuous trading and
related call markets, a single-round auction that opens or closes the exchange.
In this paper, we consider indivisible units and offer prices that are chosen

from a continuum (i.e. no tick-size); a setting where price instability has been a
concern. Our model is particularly relevant for the Colombian electricity market,
where suppliers submit one offer price for the entire capacity of each production
plant (Wolak, 2009). But our setting is also relevant for other electricity mar-
kets. Power generators often have constraints on both minimum and maximum
output and often have an optimum output level in-between, where the effi ciency
is highest. Many market operators of deregulated electricity markets in U.S. take
such constraints into account (Baldick et al., 2005). Several European countries
—Austria, Benelux, France, Germany, Slovenia and the Nordic countries —allow
producers to make indivisible block-orders for a plant, which must be completely
accepted or rejected (Meeus et al., 2009). Our setting also has relevance for auc-
tions with restrictions on the number of bids per supplier/plant, which are used
in most single-round multi-unit auctions (Kastl, 2012; Holmberg et al., 2013).
However, our setting is more restrictive as we constrain not only the number of
steps, but also the length of each step. Moreover, our results could be useful when
analysing bidding in experimental studies of multi-unit auctions, which often have

3Anderson and Xu (2004) studied a related problem with discrete prices, but they did not
analyse equilibrium convergence.
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a simple set-up similar to our setting (Brandts et al., 2014; Le Coq, 2017).
Our purpose, methodology and results significantly depart from convergence

studies by Reny (1999), McAdams (2003) and Kastl (2012). It is likely that their
arguments could be used to prove that our uniform-price auction with indivisible
units has a pure-strategy Bayesian Nash equilibrium and that this equilibrium
would converge to a related pure-strategy Bayesian NE in the limit game with
divisible units. However, with such a non-constructive mathematical argument
we wouldn’t be able to characterize the price instability occurring for this pure-
strategy Bayesian NE, or determine how price instability depends on the size of
indivisible units. Unlike Reny, McAdams and Kastl, we also analyse the reverse
problem. For costs that are common knowledge among suppliers, we show that for
every symmetric SFE in the limit game with divisible-goods there is one mixed-
strategy NE in a corresponding auction with indivisible units that converges to the
symmetric SFE as the size of indivisible units decreases. This proves that an SFE
is a robust approximation of the equilibrium in an auction with many indivisible
units; there are no drastic changes in the equilibrium if the size of indivisible units
increases from zero to a small number.
Wolak (2007) and Kastl (2011,2012) show that smooth bid-function approx-

imations may not be accurate in some circumstances, and that it is sometimes
preferable to apply empirical models that consider details in the bidding format.
Empirical studies of the wholesale electricity market in Texas (ERCOT) show that
offers of the two to three largest producers in this market, who submit a large set
of offer prices per producer, roughly match Klemperer and Meyer’s first-order con-
dition for continuous supply functions, while the fit is worse for small producers
(Sioshansi and Oren, 2007; Hortaçsu and Puller, 2008). Hortaçsu et al. (2017)
show that the prediction of producers’bidding behaviour in Texas can be improved
if one takes into account that large and small producers have different strategic
abilities.
Anwar (2006) analyses Nash equilibria of auctions with indivisible units that

all have the same marginal cost, which is common knowledge among suppliers.
However, our main contributions do not overlap with his results, because he does
not explicitly solve for Nash equilibria, quantify the price instability nor prove
equilibrium convergence. Ausubel et al. (2014) present examples where an auc-
tioneer sells two indivisible units, but otherwise their analysis focuses on divisible
goods.
We introduce the baseline model with a symmetric duopoly and suffi ciently

evenly distributed demand shocks in Section 2. In Section 3 we derive necessary
and suffi cient conditions for the best response, and we characterise Bayesian NE
for our baseline model. We explicitly solve for a unique Bayesian NE, which is
step-separated, and we prove equilibrium convergence. The extension in Section 4
considers weaker demand assumptions where uniqueness cannot be ensured. For
cases with 2 indivisible units per supplier and costs that are common knowledge,
this section provides a more complete equilibrium analysis, including NE where
offer ranges overlap. Section 5 considers multiple suppliers for the special case
when costs are common knowledge. Section 5.1 uses stylized facts to predict price
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instability in wholesale electricity markets. Section 6 concludes. All proofs are in
the online Appendix.

2 The model

In our baseline model, I = 2 suppliers compete in a single-shot game by making
offers in a uniform-price auction. Each supplier has N indivisible production units
of equal size h with a total production capacity q = Nh.4 Producers have private
and independent costs.5 The cost of each production unit of supplier i is decided
by its private signal αi, which is chosen by nature and which is not observed by
the competitor.6 There is no loss in generality in assuming that the range of αi
values is uniformly distributed on [0, 1], so that the probability distribution of
a signal is G (αi) = αi.7 We assume that suppliers are symmetric ex-ante; the
marginal cost for the n’th unit of supplier i is given by cn(αi). We suppose that
cn(αi) is weakly and continuously increasing in αi and strictly increasing in n.
In the special case where costs do not depend on signals, i.e. costs are common
knowledge among suppliers, independent signals effectively act as randomization
devices that help suppliers to independently randomize their strategies in a mixed-
strategy NE, in accordance with the purification theorem by Harsanyi (1973). We
write Cn(αi) = h

∑n
m=1 cm(αi) for the total cost for supplier i of supplying an

amount nh. We assume that the highest marginal cost, cN(1), is strictly smaller
than the reservation price p. We also require successive units of supplier i ∈ {1, 2}
not to have overlapping ranges for their marginal costs, as illustrated in Figure 1,
i.e.

cn−1(α) < cn(0) (1)

for all n = 2...N and α ∈ (0, 1).8

4Production capacities in our procurement setting corresponds to purchase constraints in
sales auctions. As an example, the U.S. Treasury auction has a 35% rule, which prevents anyone
from buying more than 35% of the auctioneer’s supply. Spectrum auctions by the Federal
Communications Commission (FCC) have similar rules. California has purchase limits in its
auction of Greenhouse Gas emission allowances. The purchase constraints are used to avoid a
situation where a single bidder can corner the secondary market.

5Note that suppliers’production costs can still be correlated over time if the auction were
to be repeated. Marginal costs can for example consist of a fuel cost that is the same for all
suppliers (common knowledge) and a part that is private information, and which is independent
of the competitor’s private information.

6Our results would change if suppliers’ costs were dependent. It is less critical whether a
producer receives a one-dimensional or multi-dimensional signal, such as a vector with individual
cost information for each of its production units. The Bayesian NE with step separation that we
solve for should be the same, as long as suppliers receive independent signals and the (marginal)
probability distribution for a unit’s cost does not depend on the dimensionality of the signal.

7Note that we are free to choose the cost parameterization to achieve this. Assume that there
is some signal α̃ with the probability distribution G̃ (α̃) and cost function c̃n(α̃), for which this
is not true. Then we can always define a new signal α = G̃ (α̃) and define a new cost function
cn(α) = c̃n(G̃−1 (α)), which would satisfy our assumptions.

8If, in practice, the auction was to be repeated a month later, it could very well be that the
cost of unit n − 1 at that later point is higher than the cost of unit n today. It could even be
that the ordering of units with respect to costs could be different a month later.
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We analyse Bayesian Nash equilibria, where each supplier i first observes its sig-
nal αi and then chooses an optimal offer price pin(αi) for each unit n ∈ {1, . . . , N}.
We consider cases where pin(αi) is a continuous, piecewise smooth and strictly in-
creasing function of its signal αi. Thus outcomes where a sharing rule is needed
to clear the auction can be neglected. Moreover, offers are monotonic, i.e. pin(αi)
is strictly increasing with respect to the unit number n for a given αi.
Given a value of αi and a set of offer prices {pin(αi)}Nn=1, the stepped supply of

supplier i as a function of price is:

si(p, αi) = h sup{n : pin(αi) ≤ p}.

Note that si(p, αi) is a weakly decreasing function of αi and weakly increasing
with respect to p.
Similar to von der Fehr and Harbord (1993), we assume that demand is un-

certain and inelastic up to the reservation price. The demand shock β is realized
after suppliers have submitted their offers and is independent of suppliers’ sig-
nals. In wholesale electricity markets the shock could correspond to uncertainty
in consumers’demand (including own production, e.g. solar power) and uncer-
tainty in the output of renewable power (e.g. wind power) or must-run plants
from non-strategic competitors.9

On the demand side we consider a similar bidding format, and similar discrete-
ness, to that which occurs on the supply side. Hence, we assume that the demand
shock β can take values on the set Q (h) = {h, 2h, 3h..., 2Nh}, where each element
in the set Q (h) occurs with a positive probability, implying that all the suppliers’
capacity is required at the highest level of demand. We let F (β) be the probability
distribution of the demand shock β, i.e. F (b) = Pr (β ≤ b) with b ∈ Q (h), and let
f (β) be the probability mass function f (b) = Pr (β = b) > 0 for b ∈ Q (h). Note
that in case β = 0 would occur with a positive probability, then we can always
transform the problem to an equivalent problem with the same Bayesian NE and
where β = 0 occurs with zero probability.10

In order to characterize the uncertainty of the demand, we find it useful to
introduce:

τm =
f(mh)− f((m− 1)h)

f((m− 1)h)
(2)

9There is an analogous supply shock in many multi-unit sales auctions. In Mexico, Finland
and Italy, the treasury sometimes reduce the quantity of issued bonds after the bids have been
received (McAdams, 2007). In treasury auctions in U.S. there is often an uncertain amount of
non-competitive bids from many small non-strategic investors (Wang and Zender, 2002; Rostek et
al., 2010). IPOs sometimes incorporate the so-called “Greenshoe Option”, which allow issuing
firms to increase the amount of shares being offered by up to 15% after the bids have been
submitted (McAdams, 2007).
10Given any strategy profile for the players we may write πi(k) for the expectation over α

values of the profit made by player i when demand is k, so that the expected profit for player
i is Πi =

∑IN
k=1 f (kh)πi(k), since πi(0) = 0. In the case that f (0) > 0 we can consider a new

set of demand probabilities f ′ with f ′(0) = 0 and f ′(kh) = f(kh)/(1− f (0)), k = 1, 2, ..., IN , so
that the expected profit becomes Π

′
i = Πi/(1 − f (0)). Thus an equilibrium under f is still an

equilibrium under f ′.
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for m = 2..., 2N . The parameter τm is the relative increase in probability mass as
the demand outcome increases from m− 1 to m units. Note that both f(mh) and
f((m− 1)h) are non-negative, so τm ≥ −1.

Assumption 1: Demand is suffi ciently evenly distributed so that

−1 < 3kτ k < 1 (3)

for k ∈ {2, 3, . . . , 2N} .
Thus we limit the proportional variation in the probability mass function in

moving from one demand level to the next. We allow for larger relative variations
in the probability mass function for small demand levels (small k).
Following the occurrence of a demand shock β, the auctioneer clears the market

at the lowest price where supply is weakly larger than demand.

p = inf

{
r : β ≤

2∑
i=1

si(r, αi)

}
.

We consider a uniform-price auction, so all accepted offers are paid the clearing
price p. Thus, the payoff of a supplier i is a random variable depending on the
realized demand and the other supplier offer; when n units are sold at price p the
payoff is:

πi = pnh− Cn(αi).

We denote the expected profit of supplier i with information αi who submits a
stack of offer prices {rn(αi)}Nn=1 by Πi (r1, r2, ...rN , αi) = E (πi (r1, r2, ...rN)|αi).

3 Analysis

3.1 Best response

We start our analysis by deriving the best response of a supplier, who is facing an
uncertain residual demand. The uncertainty comes about as demand is uncertain
and also because competitors’offers are uncertain. Generally, the uncertain resid-
ual demand in a multi-unit auction can be characterized by a market distribution
function as in Anderson and Philpott (2002) or equivalently by Wilson’s (1979)
probability distribution of the market price. In our case, we use a discrete version
of the market distribution function, Ψi (n, p), which gives the probability that the
offer of the nth unit of supplier i is rejected if offered at the price p. In our ap-
plication, the rejection probability depends on properties of the random demand
shock β and how the competitor j’s stepped supply function changes with respect
to its cost signal αj. We have

Ψi (n, p) = Pr(β − sj(p, αj) < nh).

It follows from our assumptions that Ψi (n, p) will be continuous and piecewise
smooth as a function of p. We can show the following result (all proofs are in the
online Appendix).
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Lemma 1

∂Πi (r1, r2, ...rN , αi)

∂rn
= nh (Ψi (n+ 1, rn)−Ψi (n, rn)) (4)

−∂Ψi (n, rn)

∂rn
h (rn − cn(αi)) ,

provided that ∂Ψi (n, rn) /∂rn exists.

In the case where the left and right derivatives of ∂Ψi(n,rn)
∂rn

do not match, then it
is easy to see that (4) will still hold provided we choose either left or right deriva-
tives consistently. The result in (4) can be interpreted as follows. Assume that sup-
plier i increases the offer price of its unit n, then there are two counteracting effects
on the expected pay-off. The revenue increases for outcomes when the offer for
unit n is price-setting, which occurs with the probability Ψi (n+ 1, rn)−Ψi (n, rn).
Thus the first term in (4) corresponds to a price-effect; the marginal gain from in-
creasing the offer price of the nth unit if acceptance was unchanged. On the other
hand, a higher offer price means that there is a higher risk that the offer of the nth
unit is rejected. This is the quantity effect. The marginal loss in profit is given
by the increased rejection probability ∂Ψi(n,rn)

∂rn
for the nth unit times the pay-off

from this unit when it is on the margin of being accepted. Thus ∂Πi(r1,r2,...rN ,αi)
∂rn

equals the price effect minus the loss related to the quantity effect.
We can identify the right-hand side of (4) as being a discrete version of An-

derson and Philpott’s (2002b) Z function for uniform-price auctions.11 Thus we
define:

Definition 1

Zi (n, rn, αi) = nh (Ψi (n+ 1, rn)−Ψi (n, rn))− ∂Ψi (n, rn)

∂rn
h (rn − cn(αi)) , (5)

where we take the right-hand derivative of Ψi if left and right derivatives do not
match.

Hence, Zi (n, rn, αi) is the right-hand derivative of Πi with respect to rn, which
is independent of other offer prices rm, where m 6= n. We use Z−i (n, rn, αi) to
denote the left-hand derivative of Πi (r1, r2, ...rN , αi) in the following result.

Lemma 2 A set of offers {r∗n}
N
n=1 is globally optimal for supplier i for signal αi

if, for each n:

Zi (n, rn, αi)
≤ 0 for rn ≥ r∗n
≥ 0 for rn < r∗n.

(6)

If Πi is differentiable at r∗n then a necessary condition for offer prices {r∗n}
N
n=1 to

be optimal for signal αi is
Zi (n, r

∗
n, αi) = 0.

11Note that we have chosen our Z function to have a sign opposite to Anderson and Philpott
(2002b). Thus there is also a corresponding change in our optimality conditions.
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In case the left and right derivatives differ at r∗n, the necessary condition generalizes
to

Zi (n, r
∗
n, αi) ≤ 0 and Z−i (n, r∗n, αi) ≥ 0.

Intuitively, we can interpret Lemma 2 as follows: an offer r∗n (αi) is optimal for
unit n for signal αi if the quantity effect dominates for all prices above r∗n (αi) and
the price effect dominates for all prices below this price.

3.2 Step separation without gaps

In this subsection, we use the optimality conditions from the previous subsection
to show that in many cases the equilibrium must have the property that the lowest
offer of unit n is at the same price as the highest offer for the previous unit n− 1.
We refer to this as step separation without gaps, which we illustrated in Figure 1.
We can show the following for a duopoly.

Lemma 3 Under Assumption 1, the Bayesian NE must have the following prop-
erties:

1. Offer ranges for successive units of supplier i ∈ {1, 2} do not overlap and do
not have any gaps between them, i.e. pin−1 (1) = pin (0) for n ∈ {2, . . . , N}.

2. For the highest realized cost, the highest offer price of supplier i ∈ {1, 2} is
at the reservation price, i.e. piN (1) = p.

3. The Bayesian NE must be symmetric, i.e. p1
n (α) = p2

n (α) for α ∈ [0, 1] and
n ∈ {1, . . . , N} .

Assumption 1, i.e. that demand needs to be suffi ciently evenly distributed, is
needed to rule out overlap. In Section 4, we will give an example where overlap
occurs for highly non-uniform demand distributions. As shown in the online Ap-
pendix (Lemma 8), gaps between the offer price ranges of successive units of a
supplier can be ruled out in general, even without Assumption 1. This result is
established by showing that if player i has a gap with pin−1 (1) < pin (0), i.e. the
player does not have any offer in this range of prices, then player j 6= i can always
improve an offer in this range by increasing it. Thus, in equilibrium, there will also
be a matching gap in the offer of player j. But this implies that player i will gain
from increasing the offer price pin−1 (1), which contradicts the optimality of player
i’s offers. Symmetry of the equilibrium offers for unit N follows from observing
that the first-order conditions and the initial condition p1

N (1) = p2
N (1) = p are

symmetric. The property that offers are step separated without gaps implies that
p1
N−1 (1) = p2

N−1 (1), which gives a symmetric initial condition for the next unit.
Repetition of this argument gives symmetry for all units.
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3.3 Uniqueness and existence

In this subsection we establish uniqueness and existence of an equilibrium with
step separated offers.

Proposition 1 Under Assumption 1, there is a unique Bayesian Nash equilib-
rium, which is symmetric and has strictly positive mark-ups, i.e. pn (α) > cn(α)
for α ∈ [0, 1]. The equilibrium is given by the set of solutions {pn (α)}Nn=1 and can
be computed from the end-conditions

pN (1) = p,

pn (1) = pn+1 (0) , ∀n ∈ {1, . . . , N − 1} ,

and

pn (α) = pn (1)
(ατ 2n + 1)1/(nτ2n)

(τ 2n + 1)1/(nτ2n)

+ (ατ 2n + 1)1/(nτ2n)

∫ 1

α

cn(u) (uτ 2n + 1)−1/(nτ2n)−1

n
du. (7)

If demand is uniformly distributed then Assumption 1 is satisfied, and by
noting what happens as τ 2n approaches zero, we see that (7) is replaced by:

pn (α) = pn (1) e
α−1
n +

∫ 1

α

cn(u)e
α−u
n

n
du. (8)

Next we analyse how offers depend on the probability distribution of the de-
mand shocks. According to (2), a high τ 2n value means that the probability is
high that the auctioneer buys 2n units relative to the probability that the auc-
tioneer buys 2n − 1 units. For the unique equilibrium, which is symmetric and
step-separated, this relaxes competition for unit n of a supplier and makes it op-
timal for the supplier to increase the offer price of this unit. It follows from the
proof of Proposition 2 that the sensitivity of offer prices to changes in τ 2n is larger
when mark-ups are high.

Proposition 2 If Assumption 1 is satisfied, then the offer price pn (αi) of the
unique Bayesian NE weakly increases for every unit n ∈ {1, . . . , N} and αi ∈ [0, 1]
if τ 2n is weakly increased for every n ∈ {1, . . . , N}. Thus offer prices (weakly) in-
crease if outcomes where the auctioneer buys an even number of units become more
likely and outcomes where the auctioneer buys an odd number of units become less
likely.

Proposition 1 simplifies as follows when costs are common knowledge. In this
limit of our model, the private signals do not influence costs; they are simply used
as randomization devices by the suppliers when choosing their offers. Thus our
symmetric Bayesian Nash equilibrium corresponds to a symmetric mixed-strategy
Nash equilibrium.
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Corollary 1 If Assumption 1 is satisfied and costs are common knowledge, then
there is a unique equilibrium. This is a symmetric mixed-strategy Nash equilibrium,
which is defined by the end-conditions:

pN (1) = p,

pn (1) = pn+1 (0) ∀n ∈ {1, . . . , N − 1} ,

and

pn (α) = (pn (1)− cn)

(
ατ 2n + 1

τ 2n + 1

)1/(nτ2n)

+ cn. (9)

An α-value gives the probability that unit n is offered at a lower price than
pn (α), which corresponds to a probability distribution. Thus (9) can be rewritten
in the following form,

Θn (p) =

(
p− cn

pn (1)− cn

)nτ2n (
1 +

1

τ 2n

)
− 1

τ 2n

, p ∈ [pn (0) , pn (1)] , (10)

where Θn (p) is the probability distribution for offer prices of unit n for the mixed
strategy NE in Corollary 1.
Proposition 1 can be used to estimate the variance of a supplier’s offer for its

n’th unit:

Proposition 3 If the unit size h is suffi ciently small and Assumption 1 is satis-
fied, then the variance of an offer pn (α) can be approximated by

(pn (1)− ĉ)2 h2

12γ2
+O

(
h3
)
,

where γ = nh and pn (1) is determined by Proposition 1 and

ĉ = (τ 2n + 1)1/(nτ2n)

∫ 1

0

cn(u)
(

1− (uτ 2n + 1)−1/(nτ2n)−1
)
du, (11)

which ensures that ĉ ∈ [cn(0), cn(1)].

Thus when a unit is small and the cost uncertainty of the unit is small relative
to its mark-up, then the variance of an offer can be approximated by (pn(1)−cn)2

12n2
.

This term captures bid volatility that is driven by the indivisibility of units, where
a small change in the realized marginal cost has a significant effect on the offer
price.

3.4 Equilibrium convergence

The result in Proposition 3 also applies to cases where costs are common knowl-
edge. Thus for a given output of a supplier, volatility decreases as the size of units
decrease (n increases). This suggests that the mixed-strategy NE in Corollary
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1 converges to a pure-strategy NE. This subsection establishes that the mixed-
strategy NE converges to a supply function equilibrium (SFE), i.e. a pure-strategy
Nash equilibrium of smooth supply functions for divisible goods. We know from
Holmberg (2008) and Anderson (2013) that there is a unique supply function equi-
librium for production capacities q when inelastic demand has support in the range
[0, 2q]. We let C̃ ′ (Q) be the non-decreasing marginal cost of the divisible output
Q. The unique SFE is symmetric. For duopoly markets it can be determined from
Klemperer and Meyer’s (1989) differential equation:

P ′ (Q) =
P (Q)− C̃ ′(Q)

Q
(12)

and the boundary condition P (q̄) = p. The solution to this differential equation
is presented by Rudkevich et al. (1998), Anderson and Philpott (2002a) and
Holmberg (2008). They also verify that this continuous solution is an SFE, i.e. no
producer has a profitable deviation.
We get a related difference equation fromCorollary 1 and the condition pn−1 (1) =

pn (0); equilibrium offers for the highest signal can be determined from:

pn−1 (1) = (τ 2n + 1)−1/(nτ2n) (pn (1)− cn) + cn. (13)

A solution to this equation is referred to as a discrete solution.
Below we consider a sequence of auctions with successively larger integers N

and with closely related exogenous demand shock distributions, such that the limit

distribution has a well-defined continuous probability density f (b) = limN→∞
f(b)
h
,

where h = q
N
and b = hdb/he is the smallest demand shock in the set Q (h) =

{h, 2h, 3h..., 2Nh} that is not smaller than b. Moreover, the limiting distribution
is such that f

′
(b) /f (b) is bounded in the interval [0, 2q]. Below we will show

that the discrete solution of (13), and accordingly also mixed-strategy NE in the
sequence of auctions, converges to the SFE of the continuous model in the limit
as the size of the indivisible production units h decreases towards 0.
The market design that we consider and the resulting optimality conditions

that we derive are quite different from Holmberg et al. (2013). For example there
is no price instability in their model. However, a similarity is that the convergence
arguments in both papers partly apply techniques used in the numerical analysis
of differential equations (Le Veque, 2007). These techniques can be used to prove
that the solution of a difference equation converges to the solution of an associated
differential equation. The first step is to show consistency, i.e. that the difference
equation converges to the associated differential equation.

Lemma 4 The difference equation

pn−1 (1) = (τ 2n + 1)−1/(nτ2n) (pn (1)− cn) + cn (14)

can be approximated by

pn (1)− pn−1 (1) =
pn (1)− cn

n
+O

(
h2
)

13



and is consistent with the differential equation in (12) if

nh → Q,

cn → C̃ ′(Q)

and
cn < pn (1)

when h→ 0.

We can use a continuous SFE to approximate the solution to a discrete problem,
so that the error is the difference between the two solutions. Then the convergence
of the differential and difference equations (consistency) ensures that the local error
that is introduced over a short price interval is reduced as the size of the production
units, h, becomes small. However, this does not ensure that the discrete solution
will converge to the continuous solution when h→ 0, because accumulated errors
may still grow at an unbounded rate along a fixed price interval as h becomes
smaller and the number of production units increases. Hence the next step in the
convergence analysis is to establish stability, i.e. that small changes in pn (1) does
not drastically change pn (0). Convergence, is verified by the proposition below.

Proposition 4 Let P (Q) be the unique pure-strategy continuous supply function
equilibrium for divisible units, then there exists a corresponding mixed-strategy
NE for indivisible units with properties as in Corollary 1, which converges to the
continuous supply function equilibrium in the sense that pn (αi) → P (nh) when

h→ 0 and cn → C̃ ′(nh). If
∣∣∣f ′(x)

∣∣∣ < f(x)
3x
, i.e. the slope of the probability density

of the demand shock is relatively small in the limit, then this ensures that the
mixed-strategy NE is the unique equilibrium in the auction with indivisible units
when h→ 0.

Thus an SFE is a robust approximation of the NE in an auction with many
indivisible units; there are no drastic changes in the equilibrium as the size of
indivisible units increases from zero to a small number.
It follows directly from (14) that offer prices of indivisible units increase with

respect to costs and the reservation price, which is similar to the symmetric SFE
for divisible units (Holmberg, 2008). A difference, however, is that the symmetric
SFE is ex-post optimal and independent of the probability distribution of demand
shocks (Klemperer and Meyer, 1989). In our model for indivisible units, equi-
librium offers do depend on the demand uncertainty as shown in Proposition 2.
However, as shown above this dependence will weaken as units get smaller and
disappear in the limit where h→ 0.
We end this section with a simple example. When the demand is uniformly

distributed (so τ 2n = 0), we obtain from (9) that:

pn (α) = (pn (1)− cn) e
α−1
n + cn. (15)

We illustrate this formula in Figure 2 for 20 indivisible units per supplier. In
Figure 2 we also compare our equilibrium for indivisible units with the supply
function equilibrium for perfectly divisible goods. The comparison illustrates that
the supply function equilibrium (SFE) approximation works well in this example.
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Figure 2: Offer prices for the unique, symmetric mixed-strategy NE (solid line)
in a duopoly market with uniformly distributed demand where each producer has
20 indivisible units, each with the size 0.5. The equilibrium is compared with an
SFE for divisible-goods (dotted line).

4 Extension 1: Alternative demand shock as-
sumptions

4.1 Existence

In this extension, we will first show that existence of the step-separated Bayesian
NE can be established for weaker conditions than Assumption 1.
Assumption 1′: Demand is such that:

(k − 1) τ k − (k − 2) τ k−1 ≥ −1 (16)

for all k ∈ {2, . . . , 2N}.
This condition is for example satisfied for any demand distribution as long as

indivisible units are suffi ciently small. This is a property that we used in the proof
of Proposition 4.

Proposition 5 The Bayesian NE described in Proposition 1 exists, but is not
necessarily unique, under Assumption 1′.

Later in this section, we will show that Assumption 1′ is suffi cient to ensure
uniqueness in the special case where N = 2 and costs are common knowledge.

4.2 Highly non-uniform demand

So far, our equilibrium analysis has focused on Nash equilibria with step separation
and no gaps. In this subsection, we will analyse alternative equilibria for the
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special case where N = 2 and costs are common knowledge, with c1(α) = c1 and
c2(α) = c2. Without loss of generality, we take h = 1. We write fk = f(k) for
k = 1, 2, 3, 4. The first step is to explore the conditions that are required for
overlap to occur.

Lemma 5 In a duopoly market where costs are common knowledge and each sup-
plier has two units, ranges of equilibrium offers for units 1 and 2 can only overlap
if

(p0 − c1) (τ 2 − 1− 2τ 3) > (c2 − c1)(τ 2 + 1)
1− 1

τ2 , (17)

where p0 = p1 (0).

The condition (17) involves p0 and this can only be determined when the
solution with overlap is given. However we easily deduce from this condition
that 2τ 3 < τ 2 − 1 since the right hand side of the inequality is non-negative, and
p0 > c1. Thus we see that the distribution of demand shocks needs to be rather
non-uniform to get overlap. In particular, f2 should be large relative to f1 to satisfy
this condition. This means that both producers can be fairly confident that they
will sell at least one unit, which pushes up the equilibrium offer for the first unit in
accordance with Proposition 2. Whether this is suffi cient to get overlap depends
on other parameters: costs, the reservation price and the probability mass for
other demand levels.
One issue with overlap is that production costs will no longer be effi cient. We

have by assumption that cn−1(α) < cn(0), so if each producer has two units, the
ineffi ciency occurs when the auctioneer has a total demand of two units and buys
them from the same producer. We define pH to be the highest price for the first
unit and pL to be the lowest price for the second unit, so [pL, pH ] is the range
where overlap occurs. The expected welfare loss is given by:

W = 2f2(c2 − c1)

∫ pH

pL

θ2(p) (1−Θ1(p)) dp, (18)

where, as before, we write Θn(p) for the probability distribution of offer prices for
unit n and we write θn(p) for its derivative. The example below illustrates that
even if demand is rather non-uniform and far from satisfying Assumption 1, the
overlap may be negligible in the sense that welfare losses are small. The condition
in (17) indicates that overlap and hence welfare losses can be avoided if p0 (and
p̄) is decreased, so that mark-ups are lower.

Example 1 We solve for a symmetric mixed-strategy NE with overlap. We will
set c1 = 1 and c2 = 2. We consider values f0 = 0, f1 = 1/8, f2 = f3 = 3/8,
f4 = 1/8. Thus τ 2 = 2, τ 3 = 0 and τ 4 = −2/3. It is easiest to solve the
equilibrium backwards. We set p0 = 3, solve for Θ1(p) and Θ2(p) and then set p
equal to the price where Θ2(p) = 1. We note that condition (17) holds. We use
results from the proof of Lemma 5 in the online Appendix when constructing the
equilibrium, and equation references are to the online appendix. It follows from
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(83), (84) and ρ1 = f2/f1 = τ 2 + 1 that the first-order condition in the range p0

to pL gives

Θ1(p) = −1

2
+

1

2

(
p− 1

2

)2

,

θ1(p) =
1

2

(
p− 1

2

)
.

Recall that τ 3 = (f3 − f2) /f2 = 0. Hence, it follows from equation (82) in the

online Appendix that the value for pL is obtained from

2− θ1(pL)(pL − c2) = 0

giving pL = 4.3723 and Θ1(pL) = 0.92154. The solution in the overlap region can
be determined numerically from the equations (77) and (78). We find that Θ1(p)
reaches 1 at pH = 4.4689 when Θ2(pH) = 0.001349. Now for the region pH to p
we revert to the differential equation which has solution

Θ2(p) =
1

−τ 4

+K(p− c2)2τ4 ,

for constant K. Hence

0.001349 =
3

2
+K(2.4689)−4/3

giving K = −5.0007. Thus

Θ2(p) =
3

2
− 5.0007(p− 2)−4/3

and
θ2(p) = 6.6676(p− 2)−7/3.

This will work with a value of p = 7.624 since at this point Θ2(p) = 1. Using
(18) and numerical results for the overlap region, we estimate the welfare loss to
2.64 × 10−5, which is small in comparison to the total expected production cost
1/8 + 3/8× 2 + 3/8× 4 + 1/8× 6 + 1.32× 10−5 = 3. 125.

As a last step, we verify that there are no profitable deviations for a supplier, if the
competitor bids in accordance with the symmetric solution above. First, we realize
that the supplier cannot gain by undercutting p0. We solve for a mixed-strategy
NE in the range [p0, pH ], so the expected payoff is the same for any offer price in
that range. We use properties of Z (1, p) in (70) to verify that it is not profitable
for the supplier to increase its offer for its first unit above pH . The expected payoff
from the second unit is the same for offers in the range [pL, p]. For lower prices
we can use Z(2, p) in Lemma 7 in the online Appendix to verify that it is not
profitable to undercut pL for unit 2.
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The next Proposition illustrates that if we are able to go through all possible
types of equilibria in detail, then we can rule out overlap for a wider parameter
range in comparison to Lemma 3, and in this case Assumption 1′ ensures both
existence and uniqueness of the equilibrium.

Proposition 6 In a duopoly market where costs are common knowledge, each
supplier has two units, and the demand shocks satisfies Assumption 1′, the mixed-
strategy equilibrium with step separation in Corollary 1 is a unique equilibrium.

4.3 Narrow demand support

It is well-known from Klemperer and Meyer (1989), von der Fehr and Harbord
(1993), Green and Newbery (1992), McAdams (2007), Holmberg (2008), Genc
and Reynolds (2011) and Anderson (2013) that NE in uniform-price auctions are
normally unique if the support of the demand shocks is suffi ciently wide, so that
any offer is price-setting with some probability. In Proposition 1 we proved this
for our setting. On the other hand, if a producer knows with certainty that an
offer will never be price-setting, then this gives the producer more flexibility for
this offer. This means that the initial condition that is used to solve for SFE is
undetermined, so that there is a range of NE. This also holds in our setting. If,
contrary to our assumptions, each supplier would have a capacity to produce at
least 2N units, so that it would be able to meet the maximum demand on its
own, then unused production capacity will effectively work as a price cap if all
of it is offered at a price p∗ (or just above). Thus in this case, there would be
a continuum of symmetric Bayesian NE of the type presented in Proposition 1,
but with an initial condition pN (1) = p∗ ∈ (cN (1) , p). Similar to the analysis of
a divisible-good auction by Genc and Reynolds (2011), the size of the set of NE
should decrease as the production capacity is reduced from 2N to N (where the
equilibrium is typically unique).

Example 2 Similar to Example 1, we will set c1 = 1 and c2 = 2. But we set
f1 = f2 = 1/2, so that τ 2 = 0, and f3 = f4 = 0. We also set p = 4. Consider
any p∗ ∈ (2, 4). It follows from (15) that there is a symmetric mixed-strategy NE
with p1 (α) = (p∗ − 1) eα−1 + 1 and p2 (α) ∈

[
p∗,min

(
4, p

∗−α
1−α

)]
. This equilibrium

strategy gives an expected payoff of p∗−1
2
. The offer for the second unit is always

rejected in the symmetric equilibrium, which gives the producer some freedom.
Still, p2 (α) should be in the range [p∗, p] and suffi ciently close to p∗ to ensure that
it will not be possible for the competitor to increase its payoff by offering the first
unit above p∗.

Bayesian NE would still be symmetric when there is excess capacity in the
market (see Lemma 14 in the online Appendix), if we disregard that the equilib-
rium could be asymmetric for offers that are never accepted. However, similar
to SFE (Genc and Reynolds, 2011), we expect that there will be a continuum of
asymmetric Bayesian NE when minimum demand is larger than h (the unit size).
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In particular, if our setting were to allow for flat offers (i.e. a producer chooses
the same offer price for each of its units) and if minimum demand is suffi ciently
high so that there is at least one player that cannot meet demand on its own, then
the set of NE would include the asymmetric NE outlined by von der Fehr and
Harbord (1993), where one producer offers at the price cap and the other makes a
suffi ciently low offer. Related NE have also been analysed by Fabra et al. (2006),
Crawford et al. (2007), and Banal-Estañol and Micola (2009).

5 Extension 2: Multiple suppliers

In this section we generalize some results to multiple suppliers, I ≥ 2. We use
similar assumptions as in the duopoly case, but the demand shock β can now
take values on the set Q (h) = {h, 2h, 3h..., INh}. In a similar way we take the
inequality of Assumption 1’ to apply for k ∈ {2, . . . , IN}. We know from the
duopoly case that small cost uncertainties and the distribution of demand shocks
have a negligible impact on step separated offers and the standard deviation of
such offers, if units are suffi ciently small. In this section, we will therefore focus
on cases when costs are common knowledge and when estimating the standard
deviation of offers we will assume that demand is uniformly distributed. This will
significantly simplify our calculations. We use K = I − 1 to denote the number of
competitors of a supplier.

Proposition 7 In a multi-unit auction with I = K + 1 ≥ 2 symmetric suppliers
and costs that are common knowledge, the set of solutions {pn (α)}Nn=1 as defined
by the end-conditions

pN (1) = p,

pn (1) = pn+1 (0) , ∀n ∈ {1, . . . , N − 1} ,

and
pn (α) = cn + (pn (1)− cn) e−

∫ 1
α g(u)du/n, (19)

where α is a random variable that is uniformly distributed in the interval [0, 1] and

g (u) =

K−1∑
v=0

K!
(K−1−v)!v!

uv (1− u)K−1−v f ((n+ v +K(n− 1))h)

K∑
v=0

K!
v!(K−v)!

uv (1− u)K−v f ((n+ v +K(n− 1))h)

, (20)

constitutes a symmetric mixed-strategy NE if Assumption 1′ is satisfied. The offer
range of the mixed-strategy NE can be approximated from:

pn (1)− pn−1 (1) =
(pn (1)− cn)K

n
+O

(
h2
)
. (21)

We get the following results for the special case where demand is uniformly
distributed.
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Proposition 8 In a multi-unit auction with uniformly distributed demand, I =
K + 1 ≥ 2 symmetric suppliers and costs that are common knowledge among
suppliers, the set of solutions {pn (α)}Nn=1 as defined by the end-conditions

pN (1) = p,

pn (1) = pn+1 (0) , ∀n ∈ {1, . . . , N − 1} ,

and
pn (α) = cn + (pn (1)− cn) eK(α−1)/n, (22)

where α is a random variable that is uniformly distributed in the interval [0, 1],
constitutes a symmetric mixed-strategy NE. The equilibrium is unique. The vari-
ance of the offer pn (α) is given by

(pn (1)− cn)2K2

12n2
+O

(
h3
)
. (23)

Conditional on the demand level (n− 1) (K + 1) + m, where m ∈ [1, K + 1], the
variance of the market price can be approximated by:

(pn (1)− cn)2

n2

K2 (K −m+ 2)m

(K + 2)2 (K + 3)
+O

(
h3
)
. (24)

Order statistics are used to calculate the variance of the market price for a given
demand level (n− 1) (K + 1) +m, so this variance depends on m, the number of
suppliers that sell n units. The remainingK+1−m suppliers sell n−1 units. If we
keep maximum demand and the market capacity (K + 1) q fixed, N , the number
of units per supplier is inversely proportional to (K + 1). We have pN (1) = p,
so it is clear from (23) that the volatility in the offer price of a supplier’s most
expensive unit increases with more producers in the market. It follows from (24)
that this is also true for the volatility in the market price. The explanation is
that the offer range of the most expensive unit increases when there are more
competitors in the market. This increases the volatility, but it also reduces the
average mark-up of the most expensive unit and mark-ups for cheaper units.
Next, we will analyse equilibrium convergence for multiple suppliers and how

the bid volatility changes with output. In the latter case, it will be useful to
know under what conditions offers in a divisible-good auction are convex. By
differentiating P (Q) in Holmberg (2008), it can be shown that P ′′ (Q) > 0 for
Q ∈ [0, Nh], if

C̃ ′′ (Q) < (I − 2) II−1QI−2

(
p̄

(Iq̄)I−1
− C̃ ′ (Q)

(IQ)2

)
+ (25)

(I − 1) (I − 2) II−1QI−2

∫ Nh

IQ

C̃ ′ (x/I) dx

xI

for Q ∈ [0, q̄]. This will be the case when the reservation price p̄ is suffi ciently high
or the marginal cost of a supplier, C̃ ′ (Q), is suffi ciently flat. Electricity markets
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often have very high reservation prices and convex inverse supply functions are
consistent with hockey-stick bidding that has been observed in practice, i.e. ob-
served offer prices and estimated mark-ups become drastically larger near the total
production capacity of the market (Hurlbut et al., 2004; Holmberg and Newbery,
2010).

Proposition 9 Let P (Q) be the unique pure-strategy continuous supply function
equilibrium for divisible units, then, if demand is uniformly distributed, there exists
a unique mixed-strategy NE for indivisible units with properties as in Proposition
8, which converges to the continuous supply function equilibrium in the sense that
pn (αi)→ P (nh) when h→ 0 and cn → C̃ ′(nh). If, in addition, the divisible-good
auction satisfies the condition in (25), then the volatility and offer price range of
a supplier’s offer increases with respect to n in the auction with indivisible units
if h is suffi ciently small.

5.1 Price instability in wholesale electricity markets

In this subsection, we use our theoretical results to make a straightforward cal-
culation to roughly estimate how large price instability would be for wholesale
electricity markets in practice. We start by estimating price instability for the
most expensive production unit and then we argue that the price instability is
smaller for cheaper units.
In electricity markets, the production cost of a plant is primarily determined

by fuel costs and its effi ciency, which are fairly well-known and often assumed to be
common knowledge (Green and Newbery, 1992; von der Fehr and Harbord, 1993;
Rudkevich et al., 1998; Anderson and Hu, 2008; Holmberg and Newbery, 2010).
Wolak (2007) uses a detailed empirical model to study bidding in the Australian
electricity market, and he finds that a model where costs are common knowledge
and producers choose offers to maximize their profits cannot be rejected. Here
we assume that the unit size is small and that the cost uncertainty is suffi ciently
small, so that (1) is satisfied. Under these circumstances, the standard deviation
of a supplier’s most expansive unit can be estimated from (23).12

(pN (1)− cN)K√
12N

≈ pK√
12N

, (26)

because pN (1) = p. Moreover, wholesale electricity markets around the world
would typically have reservation prices in the range $1,000-$20,000/MWh (Holm-
berg et al., 2013; Stoft, 2002), which often is much higher than the marginal cost
of the most expensive unit. Market concentration in wholesale electricity markets
as measured by the Herfindahl-Hirschman Index (HHI) is typically in the range
1000-2000, both in Europe (Newbery, 2009) and U.S. (Bushnell et al., 2008). This
degree of market concentration can be represented by 5-10 symmetric suppliers,

12In a duopoly market this approximation holds for private costs and general demand distrib-
utions. We believe that this is the case also for multiple firms. However, for multiple firms, we
only establish this approximation for cases with uniformly distributed demand and costs that
are common knowledge.
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Figure 3: Offer prices for the unique, symmetric mixed-strategy NE in an oligopoly
market with uniformly distributed demand and 500 units divided between 10 sup-
pliers.

which gives an estimate of K. From the discussion in Holmberg et al. (2013) and
Green and Newbery (1992), it is reasonable to assume that each representative
supplier chooses 50-500 offer prices each, which gives an estimate of N . It follows
from (26) that in a market with 5 suppliers and 500 offer prices per supplier, the
volatility of a supplier’s most expensive unit is small, as measured by the standard
deviation, around 0.2% of the reservation price. According to Proposition 8, the
volatility of the market price is 0.1%-0.2% of the reservation price for demand
outcomes where all suppliers sell at least N −1 = 499 units. On the other hand, if
the market instead has 10 suppliers and 50 offer prices per supplier, then the price
volatility of a producer’s most expensive offer would be fairly large, 5% of the
reservation price. In this case, the volatility of the market price is 1%-3% of the
reservation price for demand outcomes where all suppliers sell at least N − 1 = 49
units. However, it is rare that offers from the most expensive units are accepted
in wholesale electricity markets and it follows from Proposition 9 that offer price
ranges and volatility of offers tends to decrease for cheaper units, at least if the
reservation price is high and units are small. This is consistent with Figure 3,
where we plot the mixed-strategy NE for 10 suppliers and 50 indivisible units per
supplier, and with Figure 4, which plots the volatility (standard deviation as a
percentage of the reservation price) as a function of the demand level for the same
example.
Our simple and approximate calculation does not consider that in practice

suppliers would normally sell a large part of their output in advance with forward
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Figure 4: Standard deviation of the clearing price and standard deviation of a
supplier’s offer price as a percentage of the reservation price for different demand
levels in an oligopoly market with uniformly distributed demand and 500 units
divided between 10 suppliers.

contracts. As shown by Newbery (1998) and Holmberg (2011) this lowers mark-
ups in electricity markets and (23) indicates that this should also mitigate price
instability. Another factor that our analysis neglects is that producers’cost in-
formation (signals) could be positively correlated in practice. Vives (2011) shows
that correlation of signals could have a large impact on equilibrium offers. There
is less impact from correlated signals when the demand uncertainty dominates
the cost uncertainty. Still, we believe that correlation of costs could influence the
volatility of offers.

6 Conclusions

We consider a procurement multi-unit auction where each supplier makes an offer
for each of its indivisible units, as in the Colombian electricity market. Related set-
ups are often used in experimental studies of multi-unit auctions. Our design could
also represent restrictions in the bidding format and restrictions in the production
technology, such as production constraints or non-convex costs. Suppliers are
symmetric ex-ante, before they receive private independent cost information. A
supplier submits a higher offer for a unit when its costs are higher. This gives an
offer price range for each indivisible unit of the supplier. We show that if the cost
uncertainty is suffi ciently small and units are suffi ciently small, then there exists
a Bayesian Nash Equilibrium in which the offer price ranges for the different units
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of a supplier do not overlap. We call this property step separation. In this case
we can explicitly solve for equilibria in the multi-unit auction. We prove that this
is the unique equilibrium if the auctioneer’s demand is uncertain and suffi ciently
evenly distributed. In a duopoly market, offer prices increase if outcomes where
the auctioneer buys an even number of units become more likely and outcomes
where the auctioneer buys an odd number of units become less likely. In the
special case with two units per supplier, we also analyze NE where offer ranges of
units overlap, as can occur with highly non-uniformly distributed demand shocks.
Overlapping offer prices for non-overlapping marginal costs lead to welfare losses,
but they are very small in the examples that we have considered.
Indivisibility of units introduce a bid volatility: a small change in the realized

cost of a unit has a much larger impact on the offer price of the unit. We show that
the resulting standard deviation of a supplier’s equilibrium offer is approximately
given by (I − 1) (pn − cn) /(

√
12n), where I is the number of symmetric suppliers

and pn − cn is the approximate mark-up for the n’th unit (the n’th cheapest unit
of a supplier). If the size of units are small, the influence on this volatility from
small cost uncertainties and the probability distribution of demand shocks is negli-
gible. For parameter values that are typical in a wholesale electricity market, this
approximation would imply that the standard deviation in the offer for the most
expensive production unit of a supplier could be substantial, in the range 0.2%-
5% of the reservation price. The standard deviation of the market price (price
instability) has a somewhat lower magnitude. Price instability is less pronounced
for less expensive production units if the reservation price is suffi ciently high or
marginal costs are suffi ciently flat. Our model predicts that the price instability
decreases when the size of indivisible units decreases, or equivalently when sup-
pliers are allowed to offer supply functions with more steps. In practice, we also
believe that financial contracts would mitigate this volatility.
In the limit where costs are common knowledge, the Bayesian NE with unstable

prices becomes a mixed-strategy NE, in accordance with Harsanyi’s purification
theorem. We prove that this mixed-strategy NE converges to a pure-strategy,
supply-function equilibrium (SFE) without price instability when the unit size de-
creases towards zero. We also prove the reverse result that for every symmetric
SFE for divisible units there exists a corresponding mixed-strategy NE for indi-
visible units, which converges to the SFE as the size of indivisible units decreases.
These results give theoretical support to the use of smooth SFE to approximate
stepped supply function offers in wholesale electricity markets, as in Green and
Newbery (1992).
The paper also contributes by introducing a discrete version of Anderson and

Philpott’s (2002b) market distribution function and Wilson’s (1979) probability
distribution of the market price. We use this tool to characterize the uncertainty
in the residual demand of a supplier. We also derive conditions for the globally
best response of a supplier facing a given discrete market distribution function.
These conditions can be used in both empirical and theoretical studies of auctions
with multiple indivisible units.
Similar to SFE (Anderson, 2013; Holmberg, 2008) and related results for sales
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auctions (McAdams, 2007), our uniqueness result relies on the auctioneer’s de-
mand varying in a suffi ciently wide range. A continuum of alternative equilibria
would occur if maximum demand is lower than the total market capacity. If de-
mand is certain, it has been popular in the literature that analyses multi-unit
auctions with stepped bid functions to select the equilibrium that does not have
price instability. When bidders’costs/values are common knowledge this corre-
sponds to selecting a pure-strategy NE, as in Banal-Estañol and Micola (2009),
Crawford et al. (2007), von der Fehr and Harbord (1993), Kremer and Nyborg
(2004a; 2004b) and Fabra et al. (2006). These NE are rather extreme, since
the market price is either at the marginal cost or reservation price.13 Still, such
bidding behaviour has been observed in the capacity market of New York State’s
electricity market, which is dominated by one supplier and where the demand
variation is small (Schwenen, 2015). On the other hand, bidding in electricity
spot markets (Sioshansi and Oren, 2007; Hortaçsu and Puller, 2008; Wolak, 2007)
and experimental results by Brandts et al. (2014) are inconsistent with this type
of extreme pure-strategy NE, and closer to the equilibria that we solve for in this
paper.
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Appendix A: Best response

In the proofs, we find it convenient to identify the values of α that give rise to
offer prices for given units n. We define

α̂i(p, n) = sup(αi : si(p, αi) ≥ nh), n = 1, 2..., N,

with α̂i(p, n) = 0 if si(p, 0) < nh. Thus α̂i is the probability that supplier i will sell
at least n units at the clearing price p. It follows from our assumptions for pin(αi)
that α̂i is increasing, continuous and piecewise smooth with respect to the price
and decreasing with respect to n. To simplify our equations, we set α̂i(p, 0) = 1
and α̂i(p,N + 1) = 0. We let

∆α̂i(p, n) = α̂i(p, n)− α̂i(p, n+ 1) ≥ 0.

Thus ∆α̂i(p, n) is the probability that an αi value is chosen by nature such that
an agent will sell exactly nh units at price p.

Lemma 6 The expected profit of supplier i for a set of offer prices {rn}
N
n=1 and

a signal αi is given by:

Πi (r1, r2, ...rN , αi) =
N∑
n=1

(Ψi (n+ 1, rn)−Ψi (n, rn)) (nhrn − Cn(αi))

+
N∑
n=1

∫ rn+1
rn

∂Ψi(n+1,p)
∂p

(nhp− Cn(αi)) dp,

(27)

where we choose ∂Ψi(n+1,p)
∂p

to equal the right-hand derivative of Ψi at any isolated
point where left and right derivatives do not match.

Proof. We first calculate the probability that supplier i sells exactly n units.
This can occur under two different circumstances. In the first case, rn is price-
setting. This occurs when the nth unit of supplier i is accepted and the competi-
tor’s last accepted unit has an offer price below rn. The probability for this event
is Ψi (n+ 1, rn)−Ψi (n, rn).
Next we consider the case where supplier i sells exactly n units at a price

p ∈ (rn, rn+1), which is set by the residual demand of supplier i. This occurs
when the nth unit of supplier i is accepted and the competitor’s last accepted
unit has an offer price in the interval (rn, rn+1). The probability that the com-
petitor has its last accepted offer price in an interval [p, p+ ∆p] is given by
Ψi (n+ 1, p+ ∆p) − Ψi (n+ 1, p). When the derivative exists, this approaches
∂Ψi(n+1,p)

∂p
∆p as ∆p → 0. Thus we can write the total expected profit of the sup-

plier as in (27). By assumption Ψi (n+ 1, p) has only isolated points where it is
non-smooth, and consequently the choice of derivative value at these points will
not affect the integral.

Proof. (Lemma 1) We have from (27) that



∂Πi (r1, r2, ...rN , αi)

∂rn
=

(
∂Ψi (n+ 1, rn)

∂rn
− ∂Ψi (n, rn)

∂rn

)
(nhrn − Cn(αi))

+nh (Ψi (n+ 1, rn)−Ψi (n, rn))

+
∂Ψi (n, rn)

∂rn
((n− 1)hrn − Cn−1(αi))

−∂Ψi (n+ 1, rn)

∂rn
(nhrn − Cn(αi)) ,

which can be simplified to (4). Recall that Cn(αi) = h
∑n

m=1 cm(αi).

Proof. (Lemma 2) Suppose (6) is satisfied and that there is another set
of monotonic offers {rn}

N
n=1, such that Πi (r

∗
1, r
∗
2, ...r

∗
N , αi) < Πi (r1, r2, ...rN , αi).

However, this leads to a contradiction. Zi (n, rn, αi) is the right-hand derivative
of Πi with respect to rn whenever offers of supplier i are monotonic, so it follows
from (6) that ∂Πi(r1,r2,...rN ,αi)

∂rn
≤ 0 for almost all rn ≥ r∗n and that

∂Πi(r1,r2,...rN ,αi)
∂rn

≥
0 for almost all rn < r∗n. Thus the expected profit must (weakly) decrease as
the set of offer prices is changed from {r∗n}

N
n=1 to {rn}

N
n=1. We realize that this

change can be done in steps without violating the constraint that offer prices
must be monotonic with respect to n. This gives the suffi cient condition for a best
response. The necessary conditions follow straightforwardly from Zi (n, rn, αi)
being the derivative of Πi with respect to rn.

Below we show how Ψi and Zi can be expressed in terms of α̂j values for the
duopoly market that we are studying.

Lemma 7 In a duopoly market

Ψi (n, p) =
N∑
m=0

∆α̂j(p,m)F ((n+m− 1)h) (28)

and

Zi (n, rn, αi) = nh
N∑
m=0

∆α̂j(rn,m)f((n+m)h)

−h (rn − cn(αi))

N−1∑
m=0

∂α̂j (rn,m+ 1)

∂rn
f((n+m)h) (29)

where we interpret ∂α̂j
∂rn

as a right derivative where left and right derivatives differ.

Proof. An offer of n units at price p by supplier i is rejected if the competitor
j 6= i offers exactlym units at the price p, which occurs with probability∆α̂j(p,m),
when demand at this price is less than n + m units, which has the probability
F ((n+m− 1)h). We get Ψi (n, p) in (28) by summing across all m ∈ {0, . . . , N}.
We have f((n+m)h) = F ((n+m)h) − F ((n+m− 1)h), so it follows from



Definition 1 and (28) that

Zi (n, rn, αi) = nh
N∑
m=0

∆α̂j(rn,m)f((n+m)h)

−h (rn − cn(αi))
N∑
m=0

(
∂α̂j (rn,m)

∂rn
− ∂α̂j (rn,m+ 1)

∂rn

)
F ((n+m− 1)h)

= nh
N∑
m=0

∆α̂j(rn,m)f((n+m)h)

−h (rn − cn(αi))
N−1∑
m=−1

∂α̂j (rn,m+ 1)

∂rn
F ((n+m)h)

+h (rn − cn(αi))
N∑
m=0

∂α̂j (rn,m+ 1)

∂rn
F ((n+m− 1)h) ,

which can be simplified to (29), because ∂α̂j(p,0)

∂rn
=

∂α̂j(p,N+1)

∂rn
= 0.

Appendix B: Step separation without gaps

Lemma 8 In a Bayesian Nash equilibrium, pin−1 (1) ≥ pin (0) for each n ∈ {2, . . . , N},
i.e. there are no gaps between the offer price ranges of successive units of a supplier
i ∈ {1, 2}.

Proof. Assume to the contrary that pin−1 (1) < pin (0) for some n ∈ {2, . . . , N}.
Thus for any price in the range

(
pin−1 (1) , pin (0)

)
agent i sells exactly (n−1)h units.

In other words ∆α̂i(p, n− 1) = 1 and ∆α̂i(p,m) = 0 for p ∈
(
pin−1 (1) , pin (0)

)
and

m 6= n−1. In addition, ∂α̂i(p,m)
∂p

= 0 for p ∈
(
pin−1 (1) , pin (0)

)
and m ∈ {1, . . . , N}.

Now, first suppose that supplier j makes some offer in this price range. Hence
there is some ñ ∈ {1, . . . , N}, α̃ with p̃ = pjñ(α̃) ∈

(
pin−1 (1) , pin (0)

)
. Then we

have from Lemma 7 and Definition 1,

Zj (ñ, p̃, α̃) =
∂Πj (r1, r2, ...rN , α̃)

∂rñ
= ñh

N∑
m=0

∆α̂i(p̃,m)f((ñ+m)h)

= ñhf((ñ+ n− 1)h) > 0,

because f((ñ+ n− 1)h) > 0 (we assume that every value of demand from 0 up
to 2N is possible). Hence supplier j would gain from increasing its offer price
for unit ñ when observing signal α̃. This cannot occur in equilibrium, and so we
deduce that there is no offer from supplier j in the range

(
pin−1 (1) , pin (0)

)
. This

implies that ∂α̂j(p,m)

∂p
= 0 for p in this range.

With a similar argument as above, it now follows that

Zi(n− 1, p, 1) =
∂Πj (r1, r2, ...rN , 1)

∂rn−1

= (n− 1)h

N∑
m=0

∆α̂j(p,m)f((n− 1 +m)h)

= (n− 1)hf((2n− 2)h) > 0,



for p ∈
(
pin−1 (1) , pin (0)

)
. Hence, supplier i will gain by increasing its offer price

for unit n− 1 when observing signal αi = 1. Hence the strategy is not optimal for
supplier i and again we have a contradiction. We can use the same argument to
rule out that piN (1) < p.

Lemma 9 In a duopoly market, offer ranges for successive units of the same
supplier do not overlap in an equilibrium, i.e. pin−1 (1) ≤ pin (0) for n ∈ {2, . . . , N},
if

f ((n− 2)h) < Γnf ((n− 1)h) and f ((n− 1)h) < Γnf (nh) (30)

where

Γn =

(
n− 1

n− 2

)
min [f ((n− 3)h) , f ((n− 2)h)]

max [f ((n− 2)h) , f ((n− 1)h)]

for n ∈ {3, . . . , N}.

Proof. We let piZ be the highest price at which there is an overlap for supplier
i, thus we have piZ = pini−1 (1) > pini (0) for some ni, and pin−1 (1) ≤ pin (0) for
n > ni. Without loss of generality we can assume that piZ ≥ pjZ and we will need
to deal separately with the two cases piZ = pjZ and p

i
Z > pjZ .

First we take the case that they are equal. By assumption, offer prices are
strictly increasing with respect to the number of units for a given signal, so
pknk+1 (0) ≥ pknk (1) > piZ > pknk−2 (1) for both firms. Thus we can find a p0,
such that piZ > p0 > max{pini−2 (1) , pjnj−2 (1) , pini (0) , pjnj (0)}. Next, we can iden-
tify signals αjX , α

j
Y , α

i
X , α

i
Y in the range (0, 1), such that p0 = pjnj−1

(
αjX
)

=

pjnj
(
αjY
)

= pini−1 (αiX) = pini (αiY ) in the equilibrium. By assumption pin (α) is
strictly increasing with respect to n and α below the reservation price. Thus
αiX > αiY and α

j
X > αjY . Moreover,

α̂j (p0, n) =


1 for n ≤ nj − 2

αjX for n = nj − 1

αjY for n = nj
0 for n ≥ nj + 1,

and

∆α̂j (p0, n) =


0 for n ≤ nj − 3

1− αjX for n = nj − 2

αjX − α
j
Y for n = nj − 1

αjY for n = nj
0 for n ≥ nj + 1.

It now follows from Lemma 7 that :

Zi
(
ni, p0, α

i
Y

)
= nih(1− αjX)f((ni + nj − 2)h) (31)

+nih
(
αjX − α

j
Y

)
f ((ni + nj − 1)h)

+nihα
j
Y f ((ni + nj)h)

−h
(
p0 − cni(αiY )

) nj∑
m=nj−1

∂α̂j (p0,m)

∂p
f ((ni +m− 1)h) ,



Zi
(
ni − 1, p0, α

i
X

)
= (ni − 1)h(1− αjX)f((ni + nj − 3)h) (32)

+(ni − 1)h
(
αjX − α

j
Y

)
f ((ni + nj − 2)h)

+(ni − 1)hαjY f ((ni + nj − 1)h)

−h
(
p0 − cni−1(αiX)

) nj∑
m=nj−1

∂α̂j (p0,m)

∂p
f ((ni +m− 2)h) .

From (30) we observe that

η =
(
αjX − α

j
Y

) (
Γni+njf ((ni + nj − 1)h)− f ((ni + nj − 2)h)

)
(33)

+αjY
(
Γni+njf ((ni + nj)h)− f ((ni + nj − 1)h)

)
> 0.

We will write

fmax = max [f ((ni + nj − 2)h) , f ((ni + nj − 1)h)] ,

fmin = min [f ((ni + nj − 3)h) , f ((ni + nj − 2)h)] .

Then

Γni+nj
(
p0 − cni(αiY )

) nj∑
m=nj−1

∂α̂j (p0,m)

∂p
f ((ni +m− 1)h)

=

(
ni + nj − 1

ni + nj − 2

)fmin

(
p0 − cni(αiY )

) nj∑
m=nj−1

∂α̂j (p0,m)

∂p

f ((ni +m− 1)h)

fmax︸ ︷︷ ︸
≤1



≤
(
ni + nj − 1

ni + nj − 2

)fmin

(
p0 − cni−1(αiX)

) nj∑
m=nj−1

∂α̂j (p0,m)

∂p

f ((ni +m− 2)h)

fmin︸ ︷︷ ︸
≥1

 ,

because of (1). So we have from the above inequality, (31) and (33) that:

Γni+njZi
(
ni, p0, α

i
Y

)
≥ nihη + nihΓni+nj(1− α

j
X)f((ni + nj − 2)h)

+nih
((
αjX − α

j
Y

)
f ((ni + nj − 2)h) + αjY f ((ni + nj − 1)h)

)
−h
(
ni + nj − 1

ni + nj − 2

)(p0 − cni−1(αiX)
) nj∑
m=nj−1

∂α̂j (p0,m)

∂p
f ((ni +m− 2)h)

 .

Now
(
ni+nj−1

ni+nj−2

)
≤
(

ni
ni−1

)
and so ni ≥

(
ni+nj−1

ni+nj−2

)
(ni − 1). We deduce from (32)

that

Γni+njZi
(
ni, p0, α

i
Y

)
≥ nihΓni+nj(1− α

j
X) (f((ni + nj − 2)h)− f((ni + nj − 3)h))

+

(
ni + nj − 1

ni + nj − 2

)
Zi
(
ni − 1, p0, α

i
X

)
+ nihη. (34)



It follows from our assumptions that α̂j (p0,m) is piecewise differentiable. We
consider a presumed equilibrium. Hence, provided that we do not choose p0 where
some α̂j (p0,m) is non-smooth, we deduce from the necessary conditions in Lemma
2 that

Zi
(
ni − 1, p0, α

i
X

)
= 0 (35)

and
Zi
(
ni, p0, α

i
Y

)
= 0. (36)

By assumption pin (α) is continuous with respect to α. Thus by choosing p0 below
and suffi ciently close to piZ , and thereby αX close enough to 1, we can ensure that
the right-hand side of (34) is strictly greater than zero, which would contradict
(36). This leads to the conclusion that piZ = pjZ cannot occur in equilibrium.
The next step is to consider the case where piZ > pjZ . We choose p0 with

piZ > p0 > max{pini−2 (1) , pini (0) , pjZ}. In this case, we can identify signals αiX , αiY
in the range (0, 1), such that p0 = pini−1 (αiX) = pini (αiY ). Moreover from Lemma
8 we can deduce the existence of mj and αj for which p0 = pjmj(α

j). Thus

α̂j (p0, n) =


1 for n ≤ mj − 1
αj for n = mj

0 for n ≥ mj + 1,

and

∆α̂j (p0, n) =


0 for n ≤ mj − 2

1− αj for n = mj − 1
αj for n = mj

0 for n ≥ mj + 1.

Now we can use Lemma 7 to show

Zi
(
ni, p0, α

i
Y

)
= nih

(
(1− αj)f((ni +mj − 1)h) + αjf ((ni +mj)h)

)
−h
(
p0 − cni(αiY )

) ∂α̂j (p0,mj)

∂p
f ((ni +mj − 1)h) ,

Zi
(
ni − 1, p0, α

i
X

)
= (ni − 1)h

(
(1− αj)f((ni +mj − 2)h) + αjf ((ni +mj − 1)h)

)
−h
(
p0 − cni−1(αiX)

) ∂α̂j (p0,mj)

∂p
f ((ni +mj − 2)h) .

The rest of the proof follows from a contradiction achieved using the same argu-
ment as above, with mj instead of nj and a single term

∂α̂j(p0,mj)

∂p
.

Lemma 10 Under Assumption 1, offer ranges for successive units of supplier i ∈
{1, 2} do not overlap in an equilibrium, i.e. pin−1 (1) ≤ pin (0) for n ∈ {2, . . . , N}.14

14According to Lemma 9 in the online Appendix this statement would also hold for a less
stringent, but also more complex inequality than (3), which is used in Assumption 1.



Proof. Below we show that (3) is suffi cient to satisfy the conditions for Lemma
9. We can deduce immediately from (2) that |τn| < 1/(3n) implies that:

f((n− 1)h) >

(
3n

3n+ 1

)
f(nh), (37)

and

f(nh) >

(
3n− 1

3n

)
f((n− 1)h). (38)

There are two inequalities in (30) that we need to establish. The first inequality
can be written

(n− 1)f ((n− 1)h) min [f ((n− 3)h) , f ((n− 2)h)]

> (n− 2)f ((n− 2)h) max [f ((n− 2)h) , f ((n− 1)h)] .

We have to check four cases.
(a) (n−1)f ((n− 1)h) f ((n− 3)h) > (n−2)f ((n− 2)h) f ((n− 2)h): From (37)
applied at n− 2 we have

f ((n− 3)h) >

(
3n− 6

3n− 5

)
f((n− 2)h) (39)

and with (38) applied at n− 1 we have

f((n− 1)h) >

(
3n− 4

3n− 3

)
f((n− 2)h). (40)

Since

(n− 1)

(
3n− 6

3n− 5

)(
3n− 4

3n− 3

)
=

(
3n− 4

3n− 5

)
(n− 2) > n− 2,

we establish the inequality we require.
(b) (n−1)f ((n− 1)h) f ((n− 2)h) > (n−2)f ((n− 2)h) f ((n− 2)h): From (40)
we can deduce

(n− 1)f ((n− 1)h) >

(
n− 4

3

)
f((n− 2)h) > (n− 2)f((n− 2)h),

which immediately implies the inequality.
(c) (n−1)f ((n− 1)h) f ((n− 3)h) > (n−2)f ((n− 2)h) f ((n− 1)h): From (39)
we obtain

(n−1)f((n−3)h) > (n−1)

(
3n− 6

3n− 5

)
f((n−2)h) = (n−2)

(
3n− 3

3n− 5

)
f((n−2)h),

which immediately implies the inequality.
(d) (n − 1)f ((n− 1)h) f ((n− 2)h) > (n − 2)f ((n− 2)h) f ((n− 1)h): This is
immediate.
Now we turn to the other inequality, we need to establish:

(n− 1)f (nh) min [f ((n− 3)h) , f ((n− 2)h)]

> (n− 2)f ((n− 1)h) max [f ((n− 2)h) , f ((n− 1)h)] .



Again we have four cases to check.
(a) (n− 1)f (nh) f ((n− 3)h) > (n− 2)f ((n− 1)h) f ((n− 2)h): Using (38) and
(39) we have

(n− 1)f (nh) f ((n− 3)h) (41)

> (n− 1)

(
3n− 1

3n

)(
3n− 6

3n− 5

)
f((n− 1)h)f((n− 2)h). (42)

Since (n− 1) (3n− 1)− n(3n− 5) = n+ 1 > 0 we have (n− 1)
(

3n−1
n

) (
1

3n−5

)
> 1

which is enough to show the inequality we require.
(b) (n − 1)f (nh) f ((n− 2)h) > (n − 2)f ((n− 1)h) f ((n− 2)h): Since (n −
1) (3n− 1)−3n(n−2) = 2n+1 > 0, we deduce that (n−1)

(
3n−1

3n

)
> n−2. Then

the inequality follows from (38).
(c) (n − 1)f (nh) f ((n− 3)h) > (n − 2)f ((n− 1)h) f ((n− 1)h): From (37) at
n− 1 we see that

f((n− 2)h) >

(
3n− 3

3n− 2

)
f((n− 1)h). (43)

Together with (41) we deduce that

(n− 1)f (nh) f ((n− 3)h)

>
(n− 1)

n

(
3n− 1

3n− 5

)(
3n− 3

3n− 2

)
(n− 2)f((n− 1)h)f((n− 1)h).

Since (n − 1)(3n − 1)(3n − 3) − n(3n − 5)(3n − 2) = 5n − 3 > 0, we have
(n−1)
n

(
3n−1
3n−5

) (
3n−3
3n−2

)
> 1 and the result is established.

(d)(n− 1)f (nh) f ((n− 2)h) > (n− 2)f ((n− 1)h) f ((n− 1)h): From (38) and
(43) we deduce

(n− 1)f (nh) f ((n− 2)h) > (n− 1)

(
3n− 1

3n

)(
3n− 3

3n− 2

)
f((n− 1)h)f((n− 1)h).

However since (n− 1)(3n− 1)(3n− 3)− 3n(3n− 2)(n− 2) = 3n2 + 3n− 3 > 0 we
have (n− 1)

(
3n−1

3n

) (
3n−3
3n−2

)
> n− 2, and the inequality follows.

Lemma 11 Consider a duopoly market where each supplier has step separation
without gaps in its offer strategy and consider a price p where there is a unique
unit n̂ (p) such that α̂j(p, n̂) ∈ (0, 1), where supplier j 6= i is the competitor of
supplier i. In this case,

Zi (n, rn, αi) = nhα̂j (rn, n̂(rn)) (f ((n+ n̂(rn))h)− f ((n+ n̂(rn)− 1)h))

+nhf ((n+ n̂(rn)− 1)h)

−h (rn − cn(αi))
∂α̂j (rn, n̂(rn))

∂rn
(rn) f ((n+ n̂(rn)− 1)h) ,(44)



The first-order condition for a symmetric Bayesian Nash equilibrium, so that
n̂(rn) = n and α̂i(rn, n) = α̂j(rn, n) = α̂(rn, n) is given by:

(α̂(rn, n)τ 2n + 1)n = (rn − cn(α̂(rn, n)))
∂α̂ (rn, n)

∂rn
. (45)

Proof. For m < n̂(p) we have α̂j(p,m) = 1 and for m > n̂(p) we have
α̂j(p,m) = 0. Thus it follows from Lemma 7 that

Zi (n, rn, αi) = nh (α̂j (rn, n̂(rn))− 0) f ((n+ n̂(rn))h)

+nh (1− α̂j (rn, n̂(rn))) f ((n+ n̂(rn)− 1)h)

−h (rn − cn(αi))
∂α̂j (rn, n̂(rn))

∂rn
f ((n+ n̂(rn)− 1)h) ,

which gives (44). In a symmetric equilibrium n̂(rn) = n, which yields (45), because
the first-order condition is that Zi (n, rn, αi) = 0 and we can divide all terms by
hf ((2n− 1)h).

Lemma 12 Under Assumption 1, the Bayesian NE must be symmetric, i.e. p1
n (α) =

p2
n (α) for α ∈ [0, 1] and n ∈ {1, . . . , N} .

Proof. It follows from the necessary first-order condition implied by (44)
and Zi (n, rn, αi) = 0 that pin (αi) > cn(αi) for αi ∈ [0, 1] and n ∈ {1, . . . , N}.
Using a similar argument as in the proof of Lemma 8, it can be shown that
suppliers must submit identical offer prices for the lowest cost realization, i.e.
p1

1 (0) = p2
1 (0). The two suppliers also have identical costs ex-ante, before signals

have been realized. Thus it follows from the Picard-Lindelöf theorem that the
solution of the symmetric system of differential equations implied by (44) can
only have a symmetric solution, such that p1

1 (α) = p2
1 (α) for α ∈ [0, 1]. Under

the stated assumptions, it follows from Lemma 8 and Lemma 10 that steps are
necessarily separated without gaps, so that pin (1) = pin+1 (0). Thus, we can repeat
this argument N − 1 times to show that p1

1 (α) = p2
1 (α) for α ∈ [0, 1] and n ∈

{1, . . . , N} .

Proof. (Lemma 3) The result follows from Lemma 8, Lemma 10 and Lemma
12.

Appendix C: Existence and uniqueness results

Lemma 13 The first-order conditions for the symmetric Bayesian equilibrium
when cn (1) < pn (1) = pn+1 (0) has a unique symmetric solution for unit n:

pn (α) = pn (1)
(ατ 2n + 1)1/(nτ2n)

(τ 2n + 1)1/(nτ2n)

+ (ατ 2n + 1)1/(nτ2n)

∫ 1

α

cn(u) (uτ 2n + 1)−1/(nτ2n)−1

n
du

> cn(α),



where
p′n (α) > 0. (46)

Proof. In order to solve (45) we write the offer price as a function of the
signal. We have ∂α̂(rn,n)

∂rn
= 1

p′n(α)
where rn = pn (α) and α = α̂(rn, n). Thus

(ατ 2n + 1)n =
(pn (α)− cn(α))

p′n (α)

p′n (α)− pn (α)

(ατ 2n + 1)n
= − cn(α)

(ατ 2n + 1)n
. (47)

Next we multiply both sides by the integrating factor (α + 1/τ 2n)−1/(nτ2n).

p′n (α) (α + 1/τ 2n)−1/(nτ2n) − pn (α) (α + 1/τ 2n)−1/(nτ2n)−1

nτ 2n

= −cn(α) (α + 1/τ 2n)−1/(nτ2n)

(α + 1/τ 2n)nτ 2n

,

so
d

dα

(
pn (α) (α + 1/τ 2n)−1/(nτ2n)

)
= −cn(α) (α + 1/τ 2n)−1/(nτ2n)−1

nτ 2n

.

Integrating both sides from α to 1 yields:

pn (1) (1 + 1/τ 2n)−1/(nτ2n) − pn (α) (α + 1/τ 2n)−1/(nτ2n)

=

∫ 1

α

−cn(u) (u+ 1/τ 2n)−1/(nτ2n)−1

nτ 2n

du,

so

pn (α) = pn (1)
(α + 1/τ 2n)1/(nτ2n)

(1 + 1/τ 2n)1/(nτ2n)

+ (α + 1/τ 2n)1/(nτ2n)

∫ 1

α

cn(u) (u+ 1/τ 2n)−1/(nτ2n)−1

nτ 2n

du,

which can be immediately written in the form of the Lemma statement. Thus

pn (α) ≥ pn (1)
(α + 1/τ 2n)1/(nτ2n)

(1 + 1/τ 2n)1/(nτ2n)
+

(α + 1/τ 2n)1/(nτ2n) cn(α)
[
− (u+ 1/τ 2n)−1/(nτ2n)

]1

α

= (pn (1)− cn(α))
(α + 1/τ 2n)1/(nτ2n)

(1 + 1/τ 2n)1/(nτ2n)
+ cn(α) > cn(α).

Finally, it follows from (47) that p′n (α) > 0, because we know from (2) that
ατ 2n + 1 ≥ 1− α ≥ 0.



Proof. (Proposition 1) The solution is given by the end-conditions and
Lemma 13 above. We will now verify that this is an equilibrium using the op-
timality conditions in Lemma 2. When proving existence, we will work with
Assumption 1′, which is weaker than Assumption 1. Assumption 1′ is introduced
in Section 4. It is straightforward to show that it implies that:

(k − 1) τ k − (k − 2) τ k−1 ≥ −1 (48)

for all k ∈ {2, . . . , 2N}. By definition we have that τ 2 ≥ −1, so this is equivalent
to:

mτ k − (m− 1) τ k−1 ≥ −1 (49)

for all k ∈ {2, . . . , 2N} and m ∈ {1, . . . , k − 1}, because the condition in (49) is
linear with respect to m, so it is satisfied if and only if it is satisfied at the end
points m = 1 and m = k − 1. By setting k = m+ n̂, the inequality above can be
written in the following form:

mτm+n̂ − (m− 1) τm−1+n̂ ≥ −1 (50)

for all (m, n̂) ∈ {1, . . . , N} × {1, . . . , N}. Next we prove the following:
i) Prove that Zi (m, p, αi) ≤ 0 if p ∈ (pm (αi) , pm (1)). It is known from

Lemma 13 that the first-order solutions are monotonic. Thus α̂i (p,m) ≥ αi and
so cm(α̂i (p,m)) ≥ cm(αi). Thus, it follows from Lemma 11 that

Zi (m, p, αi) ≤ mhα̂j (p,m) (f (2mh)− f ((2m− 1)h)) +mhf ((2m− 1)h)

−h (p− cm(α̂i (p,m)))
∂α̂j(p,m)

∂p
f ((2m− 1)h) = Zi (m, p, α̂i (p,m)) = 0.

(51)
ii) Prove that Zi (m, p, αi) ≤ 0 if p ∈ (pn (0) , pn (1)) where n > m, so that pn (0) ≥
pm (1). For any price p ∈ (pn (0) , pn (1)), it follows from the argument above that

Zi (n, p, 0)

f ((2n− 1)h)h
= nα̂j (p, n)) τ 2n + n− (p− cn(0))

∂α̂j (p, n)

∂p
≤ 0. (52)

Now consider unit ` ∈ {m, . . . , n− 1} at the same price p. We have from the
inequality in (50) that α ((`+ 1) τn+`+1 − `τn+`) + 1 ≥ 0 for α ∈ (0, 1), so

Zi(`,p,αi)
f((n+`−1)h)h

≤ (`+ 1) α̂j (p, n) τn+`+1 + `+ 1

− (p− c`+1(α̃i))
∂α̂j(p,n)

∂p
= Zi(`+1,p,α̃i)

f((n+`)h)h
,

(53)

for any α̃i ∈ [0, 1]. Starting with (52), we can use the expression above, to recur-
sively prove that Zi (`, p, αi) ≤ 0 for all ` ∈ {m, . . . , n− 1}.
iii) Prove that Zi (m, p, αi) ≥ 0 if p ∈ (pm (0) , pm (αi)). It is known from

Lemma 13 that the first-order solutions are monotonic. Thus α̂i (p,m) ≤ αi and
so cm(α̂i (p,m)) ≤ cm(αi). Thus, it follows from Lemma 11 that

Zi (m, p, αi) ≥ mhα̂j (p,m) (f (2mh)− f ((2m− 1)h)) +mhf ((2m− 1)h)

−h (p− cm(α̂i (p,m)))
∂α̂j(p,m)

∂p
f ((2m− 1)h) = Zi (m, p, α̂i (p,m)) = 0.



iiii) Prove that Zi (m, p, αi) ≥ 0 if p ∈ (pn (0) , pn (1)) where m > n, so that
pn (1) ≤ pm (0). For any price p ∈ (pn (0) , pn (1)), it follows from an argument
similar to step i) that

Zi (n, p, 1)

f ((2n− 1)h)h
= nα̂j (p, n) τ 2n + n− (p− cn(1))

∂α̂j (rn, n)

∂p
≥ 0. (54)

Now consider unit ` ∈ {n+ 1, . . . ,m} at the same price p. We have from the
inequality in (50) that α (`τn+` − (`− 1) τn+`−1) + 1 ≥ 0 for α ∈ (0, 1), so

Zi(`,p,αi)
f((n+`−1)h)h

≥ (`− 1) α̂j (p, n) τn+`−1 + `− 1

− (p− c`−1(α̃i))
∂α̂j(p,n)

∂p
= Zi(`−1,p,α̃i)

f((n+`−2)h)h
,

(55)

for any α̃i ∈ [0, 1]. Starting with (54), we can use the expression above, to recur-
sively prove that Zi (`, p, αi) ≥ 0 for all ` ∈ {n+ 1, . . . ,m}.
Finally, the uniqueness result follows from the necessary conditions in Lemma

8, Lemma 10 and Lemma 12.

Proof. (Proposition 2) We have from Lemma 13 that

pn (α) = pn (1)
(ατ 2n + 1)1/(nτ2n)

(τ 2n + 1)1/(nτ2n)

+ (ατ 2n + 1)1/(nτ2n)

∫ 1

α

cn(u) (uτ 2n + 1)−1/(nτ2n)−1

n
du.

We have∫ 1

α

(uτ 2n + 1)−1/(nτ2n)−1

n
du = (ατ 2n + 1)−1/(nτ2n) − (τ 2n + 1)−1/(nτ2n) ,

so

pn (α) =

∫ 1

α

(cn(u)− pn (1))

n
(ατ 2n + 1)1/(nτ2n) (uτ 2n + 1)−1/(nτ2n)−1︸ ︷︷ ︸

Υ

du+ pn (1) .

(56)
Hence,

∂Υ

∂τ 2n

=
− (ατ 2n + 1)

1
nτ2n

n2τ 2
2n (τ 2nu+ 1)

1
nτ2n

(nτ2n+1)

((
ln

(ατ 2n + 1)

(τ 2nu+ 1)

)
− ατ 2n

(ατ 2n + 1)
+
τ 2nu (1 + nτ 2n)

(τ 2nu+ 1)

)
.

(57)
We have τ 2n ≥ −1 and 1 ≥ u ≥ α ≥ 0, so (α−u)τ2n

(τ2nu+1)
≥ −1. Moreover, it follows

from a standard inequality that x
1+x
≤ ln (1 + x) for x ≥ −1. Thus

ln

(
1 +

(α− u) τ 2n

(τ 2nu+ 1)

)
≥ (α− u) τ 2n

(τ 2nu+ 1) + (α− u) τ 2n

=
(α− u) τ 2n

1 + ατ 2n

.



Hence, we have from (57) that

(cn(u)− pn (1))
∂Υ

∂τ 2n

≥ (pn (1)− cn(u)) (ατ 2n + 1)
1

nτ2n

n2τ 2
2n (τ 2nu+ 1)

1
nτ2n

(nτ2n+1)

(
−uτ 2n

1 + ατ 2n

+
τ 2nu (1 + nτ 2n)

(τ 2nu+ 1)

)
≥ 0. (58)

Hence, we have from (56) and (58) that for the same or higher pn (1), a higher
τ 2n will result in a higher pn (αi). We have pN (1) = p irrespective of τ 2n. Thus for
symmetric mixed-strategy equilibria with step separation without gaps, so that
pn−1 (1) = pn (0), a weakly higher τ 2n for n ∈ {1, . . . , N} will weakly increase
pn (αi) for n ∈ {1, . . . , N}. Finally, it follows from (56) and (58) that pn (αi) is
more sensitive to changes in τ 2n when mark-ups, (pn (1)− cn), are high.
Proof. (Proposition 3) It will be convenient to set β = 1

nτ2n
. First we note

that

(ατ 2n + 1)β
∫ 1

α

(uτ 2n + 1)−β−1

n
du = 1− (ατ 2n + 1)β

(τ 2n + 1)β

and ∫ 1

0

(
1− (uτ 2n + 1)−β−1

)
du = (τ 2n + 1)−β . (59)

It follows from (7) and (59) that

pn (α) = A (α) +B (α) + ĉ

where

A (α) = (pn (1)− ĉ) (ατ 2n + 1)β

(τ 2n + 1)β
,

B (α) = (ατ 2n + 1)β
∫ 1

α

(cn(u)− ĉ) (uτ 2n + 1)−β−1

n
du,

and ĉ is a fixed marginal cost, which we choose to define as in (11). It follows
from (59) that ĉ ∈ [cn(0), cn(1)].
Thus the variance of the offer price is given by:

E
[
p2
n (α)

]
− E [pn (α)]E [pn (α)]

= E
[
A2 (α)

]
− (E [A (α)])2 + E

[
B2 (α)

]
− (E [B (α)])2

+2E [A (α)B (α)]− 2E [A (α)]E [B (α)] . (60)



We have:

E [B (α)] =

∫ 1

0

(ατ 2n + 1)β
∫ 1

α

(cn(u)− ĉ) (uτ 2n + 1)−β−1

n
dudα

=

∫ 1

0

(cn(u)− ĉ) (uτ 2n + 1)−β−1

n

∫ u

0

(ατ 2n + 1)β dαdu

=

∫ 1

0

(cn(u)− ĉ) (uτ 2n + 1)−β−1

n

(uτ 2n + 1)β+1 − 1

1/n+ τ 2n

du

=

∫ 1

0

(cn(u)− ĉ)

(
1− (uτ 2n + 1)−β−1

)
1 + nτ 2n

du = 0, (61)

because of (11), which was the intention with this choice.
Now we may approximate

τ 2n =
f(2nh)− f(2nh− h)

f(2nh− h)

= hf ′(2γ) + (1/2)f
′′
(2γ) +O(h3)

where we fix nh = γ so that as h gets smaller we increase n in order to consider
the same point in the underlying demand distribution. So we have

τ 2n = hρ+ h2σ +O(h3)

where ρ = f ′(2γ) and σ = (1/2)f
′′
(2γ) And

β =
1

nτ 2n

=
1

γρ+ hγσ
+O(h2).

Now we notice that when τ 2n = hρ+ h2σ we have from a Taylor expansion(
1− (uτ 2n + 1)−β−1

)
1 + nτ 2n

=

(
1− (uhρ+ uh2σ + 1)

−β−1
)

1 + γρ+ hγσ

= h
u

γ
+O(h2).

Thus, using the fact that cn(u)− ĉ = O (h) in order to satisfy (1)

0 = E [B (α)] =
h

γ

∫ 1

0

u (cn(u)− ĉ) du+O
(
h3
)
,

so ∫ 1

0

u (cn(u)− ĉ) du = O
(
h2
)
. (62)



Moreover we will show that the other terms involving B(α) are all either O(h3)
or smaller. We have

E
(
B2 (α)

)
=

∫ 1

0

(ατ 2n + 1)2β

∫ 1

α

(cn(u)− ĉ)2 (uτ 2n + 1)−2β−2

n2
dudα

=

∫ 1

0

(cn(u)− ĉ)2 (uτ 2n + 1)−2β−2

n2

∫ u

0

(ατ 2n + 1)2β dαdu

=

∫ 1

0

(cn(u)− ĉ)2 (uτ 2n + 1)−2β−2

n2

(uτ 2n + 1)2β+1 − 1

2/n+ τ 2n

du

=

∫ 1

0

(cn(u)− ĉ)2

(
(uτ 2n + 1)−1 − (uτ 2n + 1)−2β−2

)
2n+ n2τ 2n

du

=
h2

γ2

∫ 1

0

u (cn(u)− ĉ)2 du+O
(
h5
)

= O
(
h4
)
,

where the final step makes use of a Taylor expansion and that we have by necessity
that cn(u)− ĉ = O (h). Similarly, it follows that

E [A (α)B (α)]

=

∫ 1

0

(ατ 2n + 1)β (pn (1)− ĉ)
(
ατ 2n + 1

τ 2n + 1

)β ∫ 1

α

(cn(u)− ĉ) (uτ 2n + 1)−β−1

n
dudα

=

∫ 1

0

(cn(u)− ĉ) (pn (1)− ĉ) (uτ 2n + 1)−β−1

n (τ 2n + 1)β

∫ u

0

(ατ 2n + 1)2β dαdu

= (pn (1)− ĉ)
∫ 1

0

(cn(u)− ĉ) (uτ 2n + 1)β − (uτ 2n + 1)−β−1

(2 + nτ 2n) (τ 2n + 1)β
du

=
(pn (1)− ĉ)

n

h

γ

∫ 1

0

u (cn(u)− ĉ) du+O
(
h3
)

= O
(
h3
)
,

where the final step makes use of a Taylor expansion and (61).
We have,

E [A (α)] =

∫ 1

0

(
(pn (1)− ĉ)

(
ατ 2n + 1

τ 2n + 1

)β)
dα

= (pn (1)− ĉ) (τ 2n + 1)1+β − 1

τ 2n (τ 2n + 1)β (1 + β)
.

And thus from a Taylor series expansion

(E [A (α)])2 = (pn (1)− ĉ)2

(
1− h

γ
+

1

12

h2

γ2
(8γρ+ 7)

)
+O(h3).



Similarly,

E
[
A2 (α)

]
=

∫ 1

0

(
(pn (1)− ĉ)2

(
ατ 2n + 1

τ 2n + 1

)2β
)
dα

= (pn (1)− ĉ)2 (τ 2n + 1)1+2β − 1

τ 2n (τ 2n + 1)2β (1 + 2β)

= (pn (1)− ĉ)2

(
1− h

γ
+

2

3

h2

γ2
(γρ+ 1)

)
+O(h3)

Thus the variance of the offer is given by

E
[
p2
n (α)

]
− E [pn (α)]E [pn (α)]

= E
[
A2 (α)

]
− (E [A (α)])2 +O(h3)

= (pn (1)− ĉ)2 1

12

h2

γ2
+O(h3).

Appendix D: Equilibrium convergence

Proof. (Lemma 4) A discrete approximation of an ordinary differential equa-
tion is consistent if the local truncation error is infinitesimally small when the
step length is infinitesimally small (LeVeque, 2007). The local truncation error
is the discrepancy between the continuous slope and its discrete approximation
when values pn in the discrete system are replaced with samples of the continuous
solution P (nh). The difference equation can be written as follows:

pn−1 = (τ 2n + 1)−1/(nτ2n) (pn − cn) + cn

We have τ 2n = f(2nh)−f((2n−1)h)
f((2n−1)h)

, so τ 2n → f ′(2nh)h
f(2nh)

when h → 0. By assumption
f ′(2nh)
f(2nh)

is bounded, so τ 2n = O (h). By means of a MacLaurin series expansion we
obtain:

(τ 2n + 1)−1/(nτ2n) = e−1/n +
τ 2n

2n
e−1/n +O

(
h3
)

= 1− 1

n
+O

(
h2
)
,

so the difference equation can be written:

pn−1 = cn + (1− 1/n) (pn − cn) +O
(
h2
)

pn − pn−1

h
= (pn − cn) /(nh) +O (h) .

This gives a discrete estimate of the slope of the continuous solution if we replace
values in the discrete system are replaced with samples of the continuous solution



P (nh). To calculate the local truncation error, υn, subtract this discrete estimate
of the slope from the slope of the continuous solution which is given by (12), so

υn =
P (nh)− C ′(nh)

nh
− (pn − cn) /(nh) +O (h) , (63)

Hence, it follows from our assumptions that lim
h→0

υn = 0.

Proof. (Proposition 4) Lemma 4 states that the discrete difference equation
is a consistent approximation of the continuous differential equation. To show that
the discrete solution converges to the continuous solution, it is necessary to prove
that the stepped solution exists and is numerically stable, i.e., the error grows at
a finite rate over the finite interval [a, b], where a = C̃ ′ (0) and b = p. The proof is
inspired by LeVeque’s (2007) convergence proof for general one-step methods. It
follows from the difference equation in Lemma 4 that

dpn−1 (1)

dpn (1)
= (τ 2n + 1)−1/(nτ2n) =

1

(τ 2n + 1)1/(nτ2n)
∈ [0, 1] ,

because τ 2n + 1 ≥ 1 when τ 2n ≥ 0 and τ 2n + 1 ≤ 1 when τ 2n ≤ 0. Thus
we can introduce a Lipschitz constant λ = 1 (LeVeque, 2007) that uniformly

bounds
∣∣∣dpn−1(1)
dpn(1)

∣∣∣ for each h. Define the global error at the quantity nh by En =

pn (1) − P (nh). It follows that the global error satisfies the following inequality
at the unit N − 1:∣∣EN−1

∣∣ = |pN−1 (1)− P (nh)| ≤ λ
∣∣EN

∣∣+ h
∣∣υN ∣∣ , (64)

where υN is the local truncation error as defined by (63). Similarly

|En| = |pn (1)− P (nh)| ≤ λ
∣∣En+1

∣∣+ h
∣∣υn+1

∣∣ . (65)

Let υmax ≥ |υn| for n ∈ {1, . . . , N}. From the inequality in (65) and λ = 1, we can
show by induction:

|En| ≤
∣∣EN

∣∣+
N∑

m=n+1

h |υm|

≤
∣∣EN

∣∣+Nhυmax =
∣∣EN

∣∣+ υmaxq.

(66)

The consistency property established in Lemma 4 ensures that the truncation error
υmax can be made arbitrarily small by decreasing h. Moreover, pN (1) = P (q) = p,
so
∣∣EN

∣∣ = 0. Thus from (66), |En| → 0 when h → 0, proving that the discrete
solution converges to the continuous one.
Note that (48), which corresponds to Assumption 1′ in Section 4, is satisfied

when h is suffi ciently small. Hence, it follows from Corollary 1 and Proposition
5 that the discrete solution corresponds to a mixed-strategy NE. The uniqueness
condition corresponds to Assumption 1 when h→ 0.



Appendix E: Alternative demand assumptions

Proof. (Proposition 5) This follows from the proof of Proposition 1.
In the following proofs, it will be helpful to parameterise the space of f values

using three positive parameters ρ1 = f2/f1 = τ 2 + 1, ρ2 = f3/f2 = τ 3 + 1, and
ρ3 = f4/f3 = τ 4 + 1. We have from Lemma 7:

Zi(1, r1, α) = f1(1−Θ1(r1)) + f2(Θ1(r1)−Θ2(r1)) + f3Θ2(r1) (67)

− (f1θ1(r1) + f2θ2(r1))(r1 − c1) (68)

Zi(2, r2, α) = 2f2(1−Θ1(r2)) + 2f3(Θ1(r2)−Θ2(r2)) + 2f4Θ2(r2)

− (f2θ1(r2) + f3θ2(r2))(r2 − c2) (69)

Lemma 14 The equilibrium must be symmetric in a duopoly market where costs
are common knowledge and each supplier has two units.

Proof. The first step is to show that both firms make offers in the same range
for each unit. It follows from Lemma 8 that both firms have their highest offer of
the second unit at the price cap. A similar proof can be used to show that both
firms make the lowest offer of the first unit at the same price p0. If firms have
different highest offer for the first unit, then we let firm i be the firm with the
highest such offer. We denote the highest offers from the first unit by p(1)

H and p(2)
H

with p(i)
H > p

(j)
H . We use a similar notation for the lowest offer from the second

unit, p(i)
L and p(j)

L . First-order conditions and initial conditions are symmetric for

p ∈
(
p

(i)
H , p̄

)
, so strategies must also be symmetric in that range. One implication

of this is that p(i)
L < p

(i)
H (i.e. supplier i has overlapping offer ranges) is only

possible if also p(j)
L < p

(i)
H . Thus, in case offer ranges of firm i are overlapping,

then there will be a range of prices p ∈
(
p∗, p

(i)
H

)
with p∗ ≥ max

(
p

(i)
L , p

(j)
H

)
, where

firm i has offers from its first and second units while θ1(p) = 0 and Θ1(p) = 1 for
supplier j, so it follows from (67) that

Zi(1, p, α) = f2(1−Θ2(p)) + f3Θ2(p)− f2θ2(p)(p− c1) = 0 (70)

Zi(2, p, α) = 2f3(1−Θ2(p)) + 2f4Θ2(p)− f3θ2(p)(p− c2) = 0. (71)

or equivalently

(1−Θ2(p)) + ρ2Θ2(p)− θ2(p)(p− c1) = 0

2(1−Θ2(p)) + 2ρ3Θ2(p)− θ2(p)(p− c2) = 0.

The conditions above are identities for a range of prices. Differentiation of the two
conditions yield:

(ρ2 − 2) θ2(p)

p− c1

= θ′2(p)

(2ρ3 − 3) θ2(p)

p− c2

= θ′2(p),



so we need ρ2−2
p−c1 = 2ρ3−3

p−c2 , but this equality cannot be maintained for a range of

prices when c2 > c1. Thus, we must have p
(i)
L = p

(i)
H if p(i)

H > p
(j)
H . Strategies are

symmetric in the range p ∈
(
p

(i)
H , p̄

)
, so we must have p(j)

L = p
(i)
L = p

(i)
H > p

(j)
H .

However, such a gap would violate Lemma 8. Thus overlapping offer ranges can
only occur when p(i)

H = p
(j)
H . We can use a similar argument to prove that we also

need p(i)
L = p

(j)
L . Thus, in case of overlapping offers, firms must have identical

offer ranges for each unit and they have symmetric conditions in each price range.
Hence, we can use a similar argument as in the proof of Lemma 12 to show that
the equilibrium must be symmetric, irrespective of overlap.
Proof. (Lemma 5) We consider an equilibrium solution in which offers are

strictly monotonic for a given signal, so Θ1(p) > Θ2(p) (corresponding to lower
bids for the first unit) and Zi(1, r1, α) = Zi(2, r2, α) = 0. We will assume that
there is an overlap, so that p > pH > pL > p0.
Consider the possibility that the highest price offer for unit 1 at pH is increased.

At equilibrium this cannot improve profit. So the right limit Zi(1, p+
H , 1) ≤ 0.

There is a possible discontinuity in Zi at pH in the case that there is a discontinuity
of θ1 or θ2 at pH . Looking at limits on the right hand side from Zi(2, p

+
H , α) = 0

we have

f2(1−Θ2(pH)) + f3Θ2(pH) ≤ f2θ2(p+
H)(pH − c1)

2f3(1−Θ2(pH)) + 2f4Θ2(pH) = f3θ2(p+
H)(pH − c2).

On the left hand side we have

f2(1−Θ2(pH)) + f3Θ2(pH) = (f1θ1(p−H) + f2θ2(p−H))(pH − c1),

2f3(1−Θ2(pH)) + 2f4Θ2(pH) = (f2θ1(p−H) + f3θ2(p−H))(pH − c2).

Hence

f2θ2(p+
H) ≥ f1θ1(p−H) + f2θ2(p−H)

f3θ2(p+
H) = f2θ1(p−H) + f3θ2(p−H).

Thus either (1) θ1(p−H) = 0 and θ2(p+
H) = θ2(p−H) or (2) (f2/f1) ≥ (f3/f2) (equiv-

alently ρ1 ≥ ρ2) when it is possible that there is a discontinuity θ2(p+
H) > θ2(p−H).

We start by showing ρ1 ≥ ρ2. We suppose that ρ1 < ρ2 and derive a contra-
diction. Thus we have case (1) and the equations at p−H become

f2(1−Θ2(pH)) + f3Θ2(pH)− f2θ2(pH)(pH − c1) = 0, (72)

2f3(1−Θ2(pH)) + 2f4Θ2(pH)− f3θ2(pH)(pH − c2) = 0.

Eliminating θ2(pH) we obtain

(1 + (ρ2 − 1)Θ2(pH)) (pH − c2) = (pH − c1) (2 + 2(ρ3 − 1)Θ2(pH)) . (73)



This determines an equation for pH if the function Θ2 is known But the value of
pH can also be found by solving the differential equation defining Θ2 starting at p
and setting pH to be the p value where (72) holds, i.e.

(1− ρ2)Θ2(p) + (p− c1)θ2(p)− 1 = 0. (74)

The differential equation for θ2 is

2 + 2(ρ3 − 1)Θ2(p)− (p− c2)θ2(p) = 0

which has solution

Θ2(p) =
1

1− ρ3

+K0(p− c2)2(ρ3−1),

for constant K0. Using the boundary condition Θ2(p) = 1 shows that

Θ2(p) =
1

1− ρ3

− ρ3

1− ρ3

(
p− c2

p− c2

)2ρ3−2

, (75)

θ2(p) =
2ρ3

(p− c2)

(
p− c2

p− c2

)2ρ3−3

. (76)

The assumption made in defining pH from (74) is that in moving down from
p, Θ2(p) does not become zero before pH is reached (if this happened we would
instead have a step separated solution). Hence there is an additional condition
required. The p value at which Θ2 becomes zero in the step separated case is,
from (75),

p̃L = c2 + (p− c2) (ρ3)
1

2−2ρ3 .

At this point from (76) we have

θ2(p̃L) =
2

(p− c2)
(ρ3)

1
2ρ3−2 .

To see whether there is a solution for pH we can see whether there is a change of
sign in the left hand side of (74) between p and p̃L. At p̃L the left hand side takes
the value

(c2 + (p− c2) (ρ3)
1

2−2ρ3 − c1)
2

(p− c2)
(ρ3)

1
2ρ3−2 − 1

=
2(c2 − c1)

(p− c2)
(ρ3)

1
2ρ3−2 + 1 > 0.

At p the left hand side of (74) is

−ρ2 + (p− c1)(
2ρ3

(p− c2)
),

which is negative as is required for this case (1) if

ρ2 (p− c2) > 2ρ3(p− c1).



As c2 > c1 this implies ρ2 > 2ρ3.
Since θ1(p−H) = 0 and θ1 must remain positive we must have θ

′
1(p−H) < 0. In

the overlap region we have

(f1θ1(p) + f2θ2(p))(p− c1) = f1 + (f2 − f1)Θ1(p) + (f3 − f2)Θ2(p),

(f2θ1(p) + f3θ2(p))(p− c2) = 2f2 + 2(f3 − f2)Θ1(p) + 2(f4 − f3)Θ2(p),

which can be written

(θ1(p) + ρ1θ2(p))(p− c1) = 1 + (ρ1 − 1)Θ1(p) + ρ1(ρ2 − 1)Θ2(p) (77)

(θ1(p) + ρ2θ2(p))(p− c2) = 2 + 2(ρ2 − 1)Θ1(p) + 2ρ2(ρ3 − 1)Θ2(p). (78)

multiplying the first equation by (p− c2)ρ2 and the second by (p− c1)ρ1 allows us
to eliminate θ2(p) giving

(p− c1)(p− c2)(ρ2 − ρ1)θ1(p) = (1 + (ρ1 − 1)Θ1(p) + ρ1(ρ2 − 1)Θ2(p)) (p− c2)ρ2

− (2 + 2(ρ2 − 1)Θ1(p) + 2ρ2(ρ3 − 1)Θ2(p)) (p− c1)ρ1.

Hence

(p− c1)(p− c2)(ρ2 − ρ1)θ1(p) =

(p− c2)ρ2 − 2(p− c1)ρ1 + ((ρ1 − 1)(p− c2)ρ2 − 2(ρ2 − 1)(p− c1)ρ1) Θ1(p)

+ (ρ1(ρ2 − 1)(p− c2)ρ2 − 2ρ2(ρ3 − 1)(p− c1)ρ1) Θ2(p).

Taking derivatives we have

(p− c1)(p− c2)(ρ2 − ρ1)θ′1(p) + (2p− c2 − c1 + c1c2)(ρ2 − ρ1)θ1(p)

= (ρ1(ρ2 − 1)(p− c2)ρ2 − 2ρ2(ρ3 − 1)(p− c1)ρ1) θ2(p)

+ (ρ1(ρ2 − 1)ρ2 − 2ρ2(ρ3 − 1)ρ1) Θ2(p)− 2ρ1 + ρ2

+ ((ρ1 − 1)(p− c2)ρ2 − 2(ρ2 − 1)(p− c1)ρ1) θ1(p)

+ ((ρ1 − 1)ρ2 − 2(ρ2 − 1)ρ1) Θ1(p).

Now consider the values at pH when Θ1(pH) = 1 and θ1(pH) = 0. This equation
then reads

2ρ1 − ρ2 − (ρ1 − 1)ρ2 − 2(ρ2 − 1)ρ1 + (pH − c1)(pH − c2)(ρ2 − ρ1)θ′1(pH) =

(ρ1(ρ2 − 1)(pH − c2)ρ2 − 2ρ2(ρ3 − 1)(pH − c1)ρ1) θ2(pH)

+ (ρ1(ρ2 − 1)ρ2 − 2ρ2(ρ3 − 1)ρ1) Θ2(pH).

Hence

θ′1(p) =
ρ1ρ2

(ρ2 − ρ1)(pH − c1)(pH − c2)

(
((ρ2 − 1)(pH − c2)− 2(ρ3 − 1)(pH − c1)) θ2(pH)

+ (ρ2 − 2ρ3 + 1) Θ2(pH)− 1

)
.

We need θ′1(p) < 0 and since we are assuming ρ1 < ρ2 we need

((ρ2 − 1)(pH − c2)− 2(ρ3 − 1)(pH − c1)) θ2(pH) + (ρ2 − 2ρ3 + 1) Θ2(pH) < 1.



Moreover from the Z = 0 conditions

1 + (ρ2 − 1)Θ2(pH) = θ2(pH)(pH − c1),

2 + 2(ρ3 − 1)Θ2(pH) = θ2(pH)(pH − c2).

So the condition becomes

2(ρ2−1)+2(ρ2−1)(ρ3−1)Θ2(pH)−2(ρ3−1)−2(ρ3−1)(ρ2−1)Θ2(pH)+(ρ2 − 2ρ3 + 1) Θ2(pH) < 1,

which simplifies to

(ρ2 − 2ρ3 + 1) Θ2(pH) < 2ρ3 − 2ρ2 + 1. (79)

From this we deduce that 2ρ3 − 2ρ2 + 1 > 0. So

ρ2 < 2− (ρ2 − 2ρ3 + 1) < 2.

From our previous condition (73) on pH we know that

((pH − c2)(ρ2 − 1)− 2(pH − c1)(ρ3 − 1)) Θ2(pH) = pH − 2c1 + c2.

As pH−2c1+c2 > 0 we can deduce that ((pH − c2)(ρ2 − 1)− 2(pH − c1)(ρ3 − 1)) >
0 . Thus we can multiply both sides of (79) by this quantity and get

(ρ2 − 2ρ3 + 1) ((pH − c2)(ρ2 − 1)− 2(pH − c1)(ρ3 − 1)) Θ2(pH)

< (2ρ3 − 2ρ2 + 1) ((pH − c2)(ρ2 − 1)− 2(pH − c1)(ρ3 − 1)) .

Hence

(2ρ3 − 2ρ2 + 1) ((pH − c2)(ρ2 − 1)− 2(pH − c1)(ρ3 − 1))−(ρ2 − 2ρ3 + 1) (pH − 2c1 + c2) > 0,

i.e.
2 (ρ2 − ρ3) ((2− ρ2)(c1 − c2)− (pH − c1)(ρ2 − 2ρ3 + 1)) > 0.

But now making use of a number of inequalities that we have derived we observe
that ρ2 > ρ3, 2− ρ2 > 0, c1 − c2 < 0 and (pH − c1)(ρ2 − 2ρ3 + 1) > 0. This gives
a contradiction from our initial assumption that ρ1 < ρ2.
In the next step we rule out overlap when ρ1 = ρ2. Assume that this is the

case, then subtracting (77) and (78) and evaluating the resulting expression at p+
L

yields:
0 < (θ1(p) + ρ1θ2(p))(c2 − c1) = −1− (ρ1 − 1)Θ1(p) < 0, (80)

because Θ2(pL) = 0. This is an obvious contradiction, so we must have ρ1 > ρ2.
Now we consider the other end of the overlap region, and make a similar

argument at pL. For an optimal choice we have, looking at derivatives to the left,

f1(1−Θ1(pL)) + f2Θ1(pL)− f1θ1(p−L)(pL − c1) = 0, (81)

2f2(1−Θ1(pL)) + 2f3Θ1(pL)− f2θ1(p−L)(pL − c2) ≥ 0,



and looking at derivatives to the right,

f1(1−Θ1(pL)) + f2Θ1(pL)− (f1θ1(p+
L) + f2θ2(p+

L))(pL − c1) = 0,

2f2(1−Θ1(pL)) + 2f3Θ1(pL)− (f2θ1(p+
L) + f3θ2(p+

L))(pL − c2) = 0.

Thus

f1θ1(p+
L) + f2θ2(p+

L) = f1θ1(p−L)

f2θ1(p+
L) + f3θ2(p+

L) ≥ f2θ1(p−L).

Now as we have shown ρ1 > ρ2 we can deduce that θ2(p+
L) = 0, and hence there

is no discontinuity in θ1 at pL. Thus

f1(1−Θ1(pL)) + f2Θ1(pL)− f1θ1(pL)(pL − c1) = 0,

2f2(1−Θ1(pL)) + 2f3Θ1(pL)− f2θ1(pL)(pL − c2) = 0. (82)

Eliminating θ1(pL) we obtain

((1−Θ1(pL)) + ρ1Θ1(pL)) (pL − c2) = (pL − c1) (2(1−Θ1(pL)) + 2ρ2Θ1(pL)) .

This determines an equation for pL if the function Θ1 is known. The differential
equation for the range (p0, pL) is

1 + (ρ1 − 1)Θ1(p)− θ1(p)(p− c1) = 0.

This has solution
Θ1(p) =

1

1− ρ1

+K1(p− c1)(ρ1−1),

for constant K1. At p0 we have boundary condition Θ1(p0) = 0. Hence

Θ1(p) =
1

1− ρ1

(
1−

(
p− c1

p0 − c1

)(ρ1−1)
)
, (83)

θ1(p) =
1

p0 − c1

(
p− c1

p0 − c1

)(ρ1−2)

. (84)

The p value at which Θ1 becomes 1 if this differential equation describes the whole
set of prices at which unit 1 is offered (the step separated case) is

p̃H = c1 + (p0 − c1) ρ
1

(ρ1−1)
1 .

To see whether there is a solution for pL we can see whether there is a change of
sign in the left hand side of

2 + 2(ρ2 − 1)Θ1(p)− θ1(p)(p− c2) = 0

between p0 and p̃H . At p0 we have

θ1(p0) =
1

p0 − c1



and so the left hand side is

2− (p0 − c2)

p0 − c1

> 0.

At p̃H the left hand side takes the value

2 + 2
ρ2 − 1

1− ρ1

(
1−

(
p̃H − c1

p0 − c1

)(ρ1−1)
)
−
(

1

p0 − c1

(
p̃H − c1

p0 − c1

)(ρ1−2)
)

(p̃H − c2)

=
2(ρ2 − ρ1)

1− ρ1

−
(

2(ρ2 − 1)

1− ρ1

p̃H − c1

p0 − c1

+
p̃H − c2

p0 − c1

)(
p̃H − c1

p0 − c1

)(ρ1−2)

=
2(ρ2 − ρ1)

1− ρ1

− 1

(1− ρ1) (p0 − c1)

(
(2ρ2 − 1− ρ1) (p0 − c1) ρ

1
(ρ1−1)
1 + (1− ρ1) (c1 − c2)

)
ρ
(ρ1−2)
(ρ1−1)
1

= (2ρ2 − ρ1)− (c1 − c2)

(p0 − c1)
ρ
(ρ1−2)
(ρ1−1)
1 .

So the condition we require for a change of sign is

(ρ1 − 2ρ2) (p0 − c1) > (c2 − c1)ρ
(ρ1−2)
(ρ1−1)
1 .

This condition, when rephrased in terms of τ 2 and τ 3, is exactly the inequality in
the Lemma statement.
Proof. (Lemma 6) Assumption 1′ implies that 2τ 3 ≥ τ 2 − 1, so it follows

from Lemma 5 that NE with overlap can be ruled out. Moreover, we know from
Lemma 14 that the equilibrium must be symmetric. We have from Corollary 1
that an equilibrium exists if Assumption 1’is satisfied. This is the only NE with
step separation that is symmetric, so it must be the unique NE.

Appendix F: Multiple suppliers

Consider a multi-unit auction with I suppliers. Let ϕ−i (p,m) be the probability
that the K = I − 1 competitors of supplier i together offer at least m units at
price p. To simplify our equations, we set ϕ−i(p, 0) = 1 and ϕ−i(p,N + 1) = 0.
The function ϕ−i (p,m) is a generalised version of α̂j(p,m). In the duopoly case,
we would have ϕ−i (p,m) = α̂j(p,m), where j 6= i. Analogous to ∆α̂j, we also
introduce

∆ϕ−i (p,m) = ϕ−i (p,m)− ϕ−i (p,m+ 1) ,

the probability that competitors of supplier i together offer exactly m units at
price p.

Lemma 15 In an oligopoly market

Zi (n, p, αi) = nh
N∑
m=0

∆ϕ−i (p,m) f ((n+m)h)

−h (p− cn(αi))
N∑
m=0

∂∆ϕ−i(p,m)

∂p
F ((n+m− 1)h) ,

(85)

where Zi (n, p, αi) is defined.



Proof. (Lemma 15) An offer of n units at price p by supplier i is rejected if
the competitors together offer exactly m units at the price p when demand is at
most n+m− 1 units. Thus

Ψi (n, p) =
N∑
m=0

∆ϕ−i (p,m)F ((n+m− 1)h) . (86)

(85) now follows from Definition 1, Lemma 1 and (86).

Consider an outcome with price p, where theK competitors of supplier i submit
step-separated offers that are symmetric ex-ante (before private signals have been
observed) and together sell m units. Let

m̂ =
⌈m
K

⌉
.

Thus m̂ is the smallest integer not smaller than m
K
. For the considered outcome,

each competitor will sell either m̂ units or m̂ − 1 units. The m − K(m̂ − 1)
competitors with the smallest signals will sell m̂ units and the remaining Km̂−m
competitors will sell m̂− 1.

Lemma 16 Consider step-separated offers that are symmetric ex-ante (before pri-
vate signals have been observed) from K competitors, then ∆ϕ−i (p,m) can be
determined from a binomial distribution.

∆ϕ−i (p,m)

=

(
K

m−K(m̂− 1)

)
(α̂ (p, m̂))m−K(m̂−1) (1− α̂ (p, m̂))Km̂−m (87)

if the price is such that m̂ = sj (p, 0) for j 6= i. Otherwise

∆ϕ−i (p,m) = 0. (88)

Proof. ∆ϕ−i (p,m) is the probability that competitors together sell exactly
m units at price p. Competitors’ offers are symmetric ex-ante and have step
separation. If the price is such that m̂ = sj (p, 0), then each supplier sells either
m̂ units (with probability α̂ (m̂, p)) or m̂ − 1 units at price p (with probability
1 − α̂ (m̂, p)). This immediately gives (88). It also follows that m − K(m̂ − 1)
suppliers are selling exactly m̂ units and the other suppliers are selling exactly

m̂ − 1 units. There are
(

K
m−K(m̂− 1)

)
such outcomes each occurring with

a probability (α̂ (m̂, p))m−K(m̂−1) (1− α̂ (p, m̂))Km̂−m, which gives (87). If m̂ >
sj (p, 0), then competitors will sell at most Ksj (p, 0) ≤ K (m̂− 1) < m. Similarly,
if m̂ < sj (p, 0), then competitors will sell at least Ksj (p, 0) > Km̂ ≥ m. Thus
the probability is zero that competitors will together sell m units for such prices,
which gives (88).



Note that the binomial coeffi cient in Lemma 16 is defined as follows:(
K

m−K(m̂− 1)

)
=

K!

(m−K(m̂− 1))! (Km̂−m)!
. (89)

In order to simplify our expressions, we introduce the following notation:

w (u, t) =

(
K
t

)
ut (1− u)K−t (90)

for the probability of t out of K to be chosen where each component has a prob-
ability u of being chosen. It follows from Lemma 15 and Lemma 16 that:

Corollary 2 Consider a multi-unit auction where supplier i has K = I − 1 com-
petitors that submit step-separated offers that are symmetric ex-ante (before private
signals have been observed), then

Zi (n, p, αi) = nh
Km̂∑

m=K(m̂−1)

w (α̂ (p, m̂) ,m−K(m̂− 1)) f ((n+m)h)

−h (p− cn(αi))
Km̂∑

m=K(m̂−1)

∂w(α̂(p,m̂),m−K(m̂−1))
∂p

F ((n+m− 1)h)

if the price is such that m̂ = sj (p, 0) for j 6= i.

Proof. (Proposition 7) In an equilibrium that is symmetric ex-ante, we have
n = m̂. Hence, Corollary 2 gives the following symmetric first-order condition:

n
Kn∑

m=K(n−1)

w (α̂,m−K(n− 1)) f ((n+m)h)

= (p− cn)
∂

∂p

 Kn∑
m=K(n−1)

w (α̂,m−K(n− 1))F ((n+m− 1)h)

 .

So after differentiation

n

p− cn

Kn∑
m=K(n−1)

w (α̂,m−K(n− 1)) f ((n+m)h)

=
∂α̂

∂p

Kn∑
m=K(n−1)+1

w (α̂,m−K(n− 1))

α̂
(m−K(n− 1))F ((n+m− 1)h)

−∂α̂
∂p

Kn−1∑
m=K(n−1)

w (α̂,m−K(n− 1))

1− α̂ (Kn−m)F ((n+m− 1)h) .

The differential equation above can be written in the following form:

n

p− cn
= g (α)

dα

dp
, (91)



where

g (u) =

Kn∑
m=K(n−1)+1

w (u,m−K(n− 1)) (m−K(n− 1))F ((n+m− 1)h)

u
Kn∑

m=K(n−1)

w (u,m−K(n− 1)) f ((n+m)h)

−

Kn−1∑
m=K(n−1)

w (u,m−K(n− 1)) (Kn−m)F ((n+m− 1)h)

(1− u)
Kn∑

m=K(n−1)

w (u,m−K(n− 1)) f ((n+m)h)

.

We can simplify this to:

g (u) =

K−1∑
v=0

w (u, v + 1) (v + 1)F ((n+ v +K(n− 1))h)

u
K−1∑
v=0

w (u, v) f ((n+ v +K(n− 1))h)

−

K−1∑
v=0

w (u, v) (K − v)F ((n+ v +K(n− 1)− 1)h)

(1− u)
K−1∑
v=0

w (u, v) f ((n+ v +K(n− 1))h)

.

Next, we use (89) and (90) to simplify this further.

g (u) =

K−1∑
v=0

K!
v!(K−v−1)!

uv (1− u)K−1−v F ((n+ v +K(n− 1))h)

K−1∑
v=0

w (u, v) f ((n+ v +K(n− 1))h)

−

K−1∑
v=0

K!
v!(K−v−1)!

uv (1− u)K−1−v F ((n+ v +K(n− 1)− 1)h)

K−1∑
v=0

w (u, v) f ((n+ v +K(n− 1))h)

,

which can be simplified to (20). The differential equation in (91) can be separated
as follows:

ndp

p− cn
= g (u) du.

We integrate the left-hand side from pn (α) to pn (1) and the right-hand side from
α to 1. Hence,

n ln

(
pn (1)− cn
pn (α)− cn

)
=

∫ 1

α

g (u) du,

which gives (19). Using Corollary 2 above, it can be verified that this is an equilib-
rium with a similar argument as in the proof of Proposition 1. The approximation
in (21) follows from a Taylor expansion of (19).



Proof. (Proposition 8) In case demand is uniformly distributed, we have
from Proposition 7 and the binomial theorem that

g (u) =

K
K−1∑
v=0

(K−1)!
(K−1−v)!v!

uv (1− u)K−1−v

K∑
v=0

K!
v!(K−v)!

uv (1− u)K−v

=
K (u+ 1− u)K−1

(u+ 1− u)K
= K.

Thus (22) follows from Proposition 7. Similar to the duopoly case, uniformly
distributed demand shocks ensures that if a producer sells more units and has
higher marginal costs, then it has incentives to increase its offer price, so that
pin−1 (1) ≤ pin (0). As for the duopoly case in Section 3.2, one can use this property
and (1) to prove that the equilibrium must be symmetric and have step separation
without gaps, i.e. the equilibrium is unique.
In the next step we calculate the variance of the n’th offer. The expected

mark-up of the offer is given by:∫ 1

0

(pn (1)− cn) eK(α−1)/ndα = (pn (1)− cn)
1− e−K/n
K/n

and the expected value of the mark-up squared is given by:∫ 1

0

(pn (1)− cn)2 e2K(α−1)/ndα = (pn (1)− cn)2 1− e−2K/n

2K/n
.

We use the above results and a Taylor series expansion, for an offer made at a
fixed quantity γ = nh, to get the approximate expression of the variance in (23).
We can also estimate the variance of the market price. Consider the demand

level (n− 1) (K + 1) + m, where m ∈ [1, K + 1]. Thus the auctioneer buys n
units from m suppliers and n− 1 units from K + 1−m suppliers. The probabil-
ity density of the α value that sets the market price is given by order statistics:

(K + 1)

(
K

m− 1

)
αm−1 (1− α)K−m+1. Hence, the expected mark-up of the mar-

ginal offer is:∫ 1

0

(pn (1)− cn) eK(α−1)/n (K + 1)

(
K

m− 1

)
αm−1 (1− α)K−m+1 dα (92)

= (pn (1)− cn)

(
1− K

n

(K −m+ 2)

(K + 2)
+
K2

2n2

(K −m+ 3) (K −m+ 2)

(K + 3) (K + 2)

)
+O

(
h3
)

where we have used the fact that eK(α−1)/n = 1+K (α− 1) /n+ 1
2
K2 (α− 1)2 /n2+

O (h3).
Similarly, the expected value of the marginal offer’s mark-up squared is:∫ 1

0

(pn (1)− cn)2 e2K(α−1)/n (K + 1)

(
K

m− 1

)
αm−1 (1− α)K−m−1 dα (93)

= (pn (1)− cn)

(
1− 2K

n

(K −m+ 2)

(K + 2)
+

2K2

n2

(K −m+ 3) (K −m+ 2)

(K + 3) (K + 2)

)
+O

(
h3
)
.



The variance of the marginal offer is given by:

(pn (1)− cn)2

(
1− 2K

n

(K −m+ 2)

(K + 2)
+

2K2

n2

(K −m+ 3) (K −m+ 2)

(K + 3) (K + 2)

)
−
(

(pn (1)− cn)

(
1− K

n

(K −m+ 2)

(K + 2)
+
K2

2n2

(K −m+ 3) (K −m+ 2)

(K + 3) (K + 2)

))2

+O
(
h3
)
,

which using a Taylor series expansion gives (24).
Proof. (Proposition 9) It follows from Proposition 8 that when demand

is uniform, equilibrium offers for the highest signal can be determined from the
following difference equation:

pn−1 (1) = pn (0) = cn + (pn (1)− cn) e−K/n. (94)

Similar to the proof of Lemma 4, we can use (21) to prove that this difference
equation is consistent with the first-order condition of an SFE for multiple sup-
pliers in Rudkevich et al. (1998), Anderson and Philpott (2002a) and Holmberg
(2008). It follows from Proposition 8 that

∂pn−1 (1)

∂pn (1)
= e−K/n ∈ [0, 1] , (95)

which ensures that the discrete solution is stable also for multiple suppliers, small
changes in pn (1) give finite changes in pn−1 (1). Thus we can use an argument
similar to the proof of Proposition 4 to show that the mixed-strategy NE in Propo-
sition 8 converges to a pure-strategy SFE also for I ≥ 2 suppliers.
Next, a Taylor expansion of (22) and consistency of the first-order condition

imply that

hP ′ (nh) = pn (1)− pn−1 (1) +O
(
h2
)

=
(pn (1)− cn)K

n
+O

(
h2
)

for all n ∈ {1, ..., N}. The left-hand side is strictly increasing with respect to n
when (25) is satisfied. Thus it follows that the offer price range, pn (1)− pn−1 (1),
and volatility, (pn(1)−cn)2K2

12n2
+ O (h3), must also be strictly increasing with respect

to n if h is suffi ciently small.




