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Abstract

Zonal pricing with countertrading (a market-based redispatch) gives arbitrage opportunities to
the power producers located in the export-constrained nodes. They can increase their profit
by increasing the output in the day-ahead market and decrease it in the real-time market
(the inc-dec game). For a six-node and a 24-node system, we numerically show that this
leads to large inefficiencies in a standard zonal market. We also show how the inefficiencies
can be significantly mitigated for these two examples by changing the design of the real-time
market. We consider a two-stage game with oligopoly producers, wind-power shocks and real-
time shocks. The game is formulated as a two-stage stochastic Equilibrium Problem with
Equilibrium Constraints (EPEC), which we recast into a two-stage stochastic Mixed-Integer
Linear Constraints (MILC).

Keywords: Two-stage game, Zonal pricing, Wholesale electricity market

1. Introduction

Over the last two decades, a number of countries have deregulated their electricity industry
in order to create competitive electricity markets. These markets have different methodologies
to handle transmission congestion. The US and some other countries use nodal pricing while
Europe and Australia have favored zonal pricing. Nodal pricing explicitly considers the trans-
mission constraints and all accepted bids are paid with the local price in the node where the
participant is located. Zonal pricing is an approximation of the nodal pricing regime. It aggre-
gates specific nodes in order to create zones with uniform prices. Compared to nodal pricing,
the zonal approximation would normally lead to a less efficient day-ahead dispatch. On the
other hand, it could be argued that zonal pricing simplifies clearing of the day-ahead market
and that it facilitates hedging and intra-day trading, see Ahlqvist et al. (2018). Moreover,
market participants, especially consumers, often favor zonal pricing.

We consider zonal markets where all stages are market based, as in UK. The first stage is
the day-ahead market. In the economic dispatch related to the day-ahead market, each zone
is assumed to be a copper plate and only transmission constraints between zones are consid-
ered. The second stage is the real-time market, where all transmission constraints are fully
represented in the economic dispatch problem. The simplified representation of transmission
constraints in the day-ahead market may cause overloading of some of the transmission lines.
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This is relieved by counter-trading in the real-time market; the system operator accepts bids
which reduce the production in the export constrained nodes and accepts bids which increase
the production in the import constrained nodes.

Different representations of the transmission constraints in the two stages give different
prices in the two stages. This gives producers an arbitrage opportunity. Harvey and Hogan
(2000a) and Harvey and Hogan (2000b) show that a producer in an export constrained node
can increase its profit by selling more in the day-ahead market and then buy back power at a
lower price in the real-time market. This kind of bidding behavior is referred to as the increase-
decrease (inc-dec) game. As explained by Alaywan et al. (2004) this game contributed to the
electricity crisis in California and to that California and other markets in the US switched
from zonal to nodal pricing. According to Neuhoff et al. (2011), there are also problems with
the inc-dec game in the British electricity market. EU is currently pushing for market-based
redispatches and wants to increase cross-border flows (the 70 % rule). System operators in
Europe are worried that these changes will increase the inc-dec problem. As an example, Hirth
et al. (2019) estimate that, due to the inc-dec game, the transacted volume in the German
real-time market would increase by 3-7 times, if Germany would introduce a market-based
redispatch. In this paper, we develop mathematical models to quantify inefficiencies and other
problems related with zonal pricing. We also present a new real-time market design which can
potentially mitigate these problems. At least it significantly reduces the inc-dec problems for
the two networks that we simulate.

Several researchers have analyzed the zonally-priced electricity markets. Green (2007),
Bjørndal and Jörnsten (2007) and Bjørndal et al. (2012) consider a one-stage game of a whole-
sale market with zonal pricing. Ruderer and Zöttl (2012) consider a regulated (non-market
based) redispatch without the inc-dec game, as in the German electricity market. Bjørndal
et al. (2013) analyze market power in zonal electricity markets with a day-ahead stage and a
re-dispatch stage. They assume that all producers are price-takers in the day-ahead stage and
accordingly, they ignore arbitrage possibilities and the inc-dec game. Holmberg and Lazarczyk
(2015) make an analytical comparison of nodal, zonal and discriminatory pricing and conclude
that even if the optimal dispatch of the producers are the same in all pricing approaches, the
inc-dec game results in extra profit for the producers located at the export-constrained nodes.
Holmberg and Lazarczyk (2015) disregard imperfect competition and focus on imperfections
caused by arbitrage opportunities. Dijk and Willems (2011) consider both imperfect competi-
tion and arbitrage opportunities but their analytical analysis is limited to two-node networks.
They show that the extra profit for export constrained producers distorts the investment signals
and this causes a long-run social welfare loss.

It is known that the inc-dec game can be mitigated by making the day-ahead market
more similar to the real-time market. As in the US reforms, this can for example be done
by introducing nodal pricing in the day-ahead market, so that all network constraints are
considered already day-ahead. An observation made in this paper is that it should also be
possible to reduce arbitrage opportunities by making the real-time market more similar to a
zonal day-ahead market. Hence, we would like to investigate whether making the real-time
market more similar to a zonal day-ahead market could improve efficiency for zonal markets.
This is one of the contributions of this paper. We study this for two systems with multiple
nodes and imperfect competition.

2



We assume that each producer chooses a bid price for its plant1 and in our simulations we
consider two different methods to set prices in the real-time market: (i) pay-as-bid pricing as in
Britain and (ii) optimal zonal pricing. Optimal zonal pricing means that all constraints of the
network are considered by the real-time market, but we add an extra constraint which requires
that the clearing price must be the same for all nodes within a zone. Bjørndal and Jørnsten
(2001) and Bjørndal et al. (2012) apply the optimal zonal pricing concept to the day-ahead
market2. The extra constraint in the real-time market would, all else equal (including all bids),
make the design less efficient. In our model, it will be particularly inefficient to introduce
this constraint, because the system operator will sometimes need to spill wind to uphold the
zonal constraint. On the other hand, the zonal constraint makes the real-time market more
similar to a day-ahead zonal market. This reduces price differences between the day-ahead and
real-time market, which mitigates the inc-dec game. Overall, the market efficiency improves
substantially in our two examples, compared to our model of the British design. In one of
our examples, optimal zonal pricing is roughly as efficient as nodal pricing, which we use as a
benchmark.

We formulate the two-stage price game as a two-stage stochastic Equilibrium Problem with
Equilibrium Constraints (EPEC). The two-stage stochastic EPEC is reformulated as a set
of Mixed-Integer Linear Constraints (MILC)3. A feasible point which satisfies the developed
MILC model is a Subgame Perfect Nash Equilibrium (SPNE) of the two-stage game. The
algorithm is explained in more detail in a parallel paper, Sarfati et al. (2018a), that studies the
inc-dec game for a zonal market of the Nordic type.

In this study, we consider net-demand uncertainties in the day-ahead market and we com-
pare the welfare of electricity markets where the real-time market design is either pay-as-bid
pricing or optimal zonal pricing. The set of permissible price bids is discrete in our model.
This means that we have the set of equilibria under control. We can, in principle, solve for all
SPNE, and we can verify that all best responses are global best responses. We propose two
methodologies to manage multiple equilibria. The first methodology applies a iterative proce-
dure and finds all SPNE of the game. This methodology is relevant for small-scale examples
where the computation of the MILC model takes shorter time. The second methodology for
tackling multiple SPNE, which we also use in Sarfati et al. (2018b), is to build a SPNE band.
The SPNE band is divided into several subintervals and a representative SPNE is found in each
subinterval. This methodology allows us to find a set of representative SPNE with controlled
tolerance. The developed MILC model and the two methodologies to tackle multiple SPNE are
demonstrated on a 6-node system and the IEEE 24-node example system for the alternative
market designs that we consider.

In our model, the market/system operator makes sure that there is a feasible dispatch for
any combination of bids. Thus similar to Willems (2002), we can avoid equilibrium ambigu-

1In this paper, we consider a price-bid or Bertrand game. However, in principle our approach could be
changed to the Cournot game (quantity-bid game) or price-quantity-bid game as in Hesamzadeh and Biggar
(2012) and Hesamzadeh and Biggar (2013).

2This is related to flow-based market coupling, see van den Bergh et al. (2016), which Central Western
Europe (CWE) has introduced in the day-ahead electricity market. Sarfati et al. (2019) study the inc-dec game
in markets with flow-based zonal pricing in the day-ahead market.

3In previous version of this paper, Hesamzadeh et al. (2018), we reformulate the two-stage stochastic EPEC
model as a mixed-integer nonlinear program which requires a special algorithm to compute the global optimal
solution.
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ities and the Generalized Nash equilibrium concept. These are well-known issues in Cournot
games where the move of one player directly sets its own output and therefore constrains the
permissible moves of other players in capacity constrained transmission networks, as explained
by Stoft (1999).

More broadly, our method is related to previous studies of EPEC problems. Zhang and Xu
(2013) analyze numerical methods that can be used to solve for a two-stage stochastic EPEC.
Zhang et al. (2010) use a Cournot model and Zhang and Kim (2010) a linear supply function
equilibrium model to study the strategic behavior of producers that participate in a forward
and day-ahead market without transmission constraints. Zhang and co-authors formulate their
models as mixed-complimentarity problems, which are either solved using the PATH solver or
reformulated as a NLP problem. Holmberg and Willems (2015) consider a related problem
where producers sell a portfolio of option contracts in the first stage and then compete with
supply functions in the spot market. They consider a problem with symmetric producers and
are able to solve the problem analytically. One contribution by Holmberg and Willems (2015)
to the EPEC literature is that it establishes conditions for which solutions to EPEC problems
are SPNE for games with a continuous strategy space. Hu and Ralph (2007) analyze bilevel
games for spot markets with nodal pricing. In an EPEC model, several agents make rational
decisions in each stage. This is a generalization of a Mathematical Program with Equilibrium
constraints (MPEC), see Moiseeva and Hesamzadeh (2018). An MPEC models a situation
where only one agent makes a decision in the first stage and several agents make rational
decisions in the second stage, as in a Stackelberg game.

The main contribution of this work is fourfold: (i) We put forward the conjecture that the
inc-dec game can be mitigated by making the design of real-time markets more similar to a
zonal day-ahead market. (ii) As a theoretical test of such a design, we propose that optimal
zonal pricing can be used in the real-time market. It considers all constraints of the network
and an extra constraint which requires that the clearing price in the real-time market must be
the same for all nodes within a zone. (iii) We model a two-stage price-bid game to analyze
zonal markets considering two different real-time pricing approaches: (a) pay-as-bid pricing as
in Britain and (b) optimal zonal pricing. The two-stage price-bid game is formulated as a two-
stage stochastic EPEC. Then it is reformulated as a two-stage stochastic MILC model. (iiii)
We simulate two networks where optimal-zonal pricing in the real-time market significantly
mitigates the inc-dec game.

This paper is organized as follows: The two-stage game and the market designs considered
in this study are explained in section 2. Section 3 derives the mathematical model of the two-
stage game. Section 4 presents two methodologies to tackle the multiple-SPNE issue. Sections
5 and 6 demonstrate the application of the mathematical model on a 6-node and the IEEE
24-node example systems. Section 7 concludes the paper.

2. Description of two-stage game

We consider a two-stage electricity market which employs zonal pricing. The first stage
is the day-ahead market and the second one is the real-time market. We assume that both
markets are physical and that oligopolistic producers participate in both markets.

The competition in a two-stage electricity market is modeled as a two-stage game under
uncertainty. In the first stage, each producer chooses its day-ahead bid considering the pre-
sumed day-ahead decisions of its rivals and the Nash equilibrium in the real-time market. After

4



producers submit their optimal day-ahead bids, the net-demand uncertainty (ω) is realized and
revealed to all producers. In the second stage, each producer chooses its real-time bids (up-
regulation and down-regulation bids) given the day-ahead dispatch results and the presumed
real-time bids decisions of its rivals and submits it to the system operator. The system operator
clears the real-time market after the net-demand shocks (s|ω) have been realized.

In this study, we consider two different pricing approaches in the real-time market which are
summarized in Table 1. Approach 1 assumes that all accepted bids in the real-time market are
paid their bid price as in the real-time market in Britain. In Approach 2, the real-time market
applies optimal zonal pricing. This means that all constraints of the network are considered
by the real-time market, but we add an extra constraint which requires that the clearing price
must be the same for all nodes within a zone. We assume that all accepted bids in the real-time
market are paid with the marginal zonal price (MZP). One of our purposes with this pricing
approach is that it should give similar prices as in the day-ahead market. This should reduce
arbitrage opportunities and mitigate the inc-dec game.

Table 1: Zonal pricing in the real-time market, up-reg: Up-regulation, dn-reg: Down-regulation, no-reg.: no
regulation, PAB: Pay-as-bid, MZP: Marginal zonal price

Accepted bid

System need Approach 1 Approach 2
up-reg. dn-reg. up-reg. dn-reg.

up-reg. PAB PAB MZP MZP
dn-reg. PAB PAB MZP MZP
no-reg. PAB PAB MZP MZP

2.1. Introductory Two-Node Example

We use a simple two-node example, see Fig. 1, to illustrate the inc-dec game and the
considered market designs. Assume that there is one producer with the production capacity
100 MW at each end. Producer u1 has the marginal cost 12 $/MWh and producer u2 has the
marginal cost 11 $/MWh. The transmission capacity of the line is F = 130 MW. A wind farm
is connected to node 1 and it is scheduled to produce 70 MW. Demand is zero at node 1 and
D = 230 MW at node 2. Both nodes are assumed to be in the same zone.

u1W u2

Node 1 Node 2

D

F

Zone

Figure 1: Single line diagram of 2-node example.

There are no shocks in this illustrative example. The system imbalance is zero in the real-
time market, and the real-time market is only used for counter-trading. Thus, there is no
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trading in the real-time market unless the line is overloaded after the day-ahead market. Both
nodes are in the same zone, so the transmission capacity is neglected in the day-ahead market.
Producers use flat bids. Thus the line is overloaded by 40 MW if the bid price of producer u1

is lower than the bid price of producer u2, so that producer u1 has the output 100 MW. The
line is uncongested if producer u1 has higher bid price than producer u2, and then no trading
is needed in the real-time market.

In case the line is overloaded after the day-ahead market, then producer u1 is a buyer in
the real-time market. At first we consider a UK design with pay-as-bid pricing in the real-time
market. Assume that u1 can make bids at 12 $/MWh and $10 $/MWh. This is the only
producer that can offer down-regulation in node 1. Thus it has monopoly power and therefore
chooses to buy at the lowest price possible, i.e. 10 $/MWh. Producer u2 is a seller in the real-
time market. Assume that it can make bids at 11 $/MWh and 13 $/MWh. This is the only
producer that can offer up-regulation in node 2. Thus it has monopoly power and therefore
chooses to sell at the highest price possible, i.e. 13 $/MWh. Thus if the line is overloaded and
all accepted bids are paid with their bid-price, then both producers make a profit of 80 $/h in
the real-time market. Otherwise there is no trade and no profit in the real-time market.

In the day-ahead market, we assume that producer u1 can make bids at 10 $/MWh, 12
$/MWh or 14 $/MWh and that producer u2 can make bids at 11 $/MWh or 13 $/MWh.
The example is constructed such that both bids are at least partly accepted in the day-ahead
market. The highest bid sets the zonal price. The producer with the lowest bid sells 100 MW
in the day-ahead market and the other producer sells 60 MW. If the line is overloaded after the
zonal-clearing then both producers will gain 80 $/h from the real-time market. Otherwise, they
do not gain anything from the real-time market. Thus payoffs are as in Table 2-(a). From this
payoff matrix, we can deduce that there are three SPNE (shown in bold fonts). Two of these
SPNE are where the inc-dec game is played. In these cases, producer u1 undercuts producer u2

in the day-ahead market, which overloads the line. Next, it buys back power in the real-time
market at a lower price. Producer u2 sells power at 13 $/MWh in both markets. There is also
another SPNE where producer u1 sets a high price 14 $/MWh in the day-ahead market and
producer u2 sells its full capacity. In this equilibrium producer u2 chooses a sufficiently low
price, 11 $/MWh, to ensure that producer u1 will not find it profitable to deviate and undercut.
This outcome does not congest the line, and there is no trading in the real-time market. The
third equilibrium is related to the high-price equilibrium4 that has been analyzed by von der
Fehr and Harbord (1993) in single-stage electricity markets without network constraints.

In Approach 2, we will consider the case where the real-time market uses optimal zonal
pricing. If the two nodes are in the same zone, this means that the real-time market will have
the same price for both producers. The seller (up-regulator) has incentives to use its market
power to increase its price, while the buyer (down-regulator) has incentives to decrease its price.
The system operator sets a real-time price that no producers makes loss in the real-time market.
If there is no such real-time price, then it will need to use a (socially) costly operation to make
sure that there is one zonal real-time price. In our model, the system operator will spill wind
to uphold this constraint, even if it makes production costs higher. Thus, the operator rejects
the down-regulation of producer u1, and instead orders a 40-MW spillage of wind production.

4In practice, the high-price equilibrium has been observed in the capacity market of New York State’s
electricity market, which is dominated by one supplier and where the demand variation is small, Schwenen
(2015).
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Table 2: Payoff tables of two-stage game in different real-time market designs

(a) Pay-as-bid

HH
HHHHu1

u2 11 $/MWh 13 $/MWh

10 $/MWh (-20,80) (180,200)
12 $/MWh (0,100) (180,200)
14 $/MWh (120,300) (120,300)

(b) Optimal zonal pricing

HH
HHHHu1

u2 11 $/MWh 13 $/MWh

10 $/MWh (-100,80) (100,200)
12 $/MWh (0,100) (100,200)
14 $/MWh (120,300) (120,300)

This will reduce the injection from node 1 and relieves the overloading in the transmission
line. Producer u2’s up-regulation bid is accepted at 40 MW. In the equilibrium, producer u2

makes the profit of 80 $/h in the real-time market. Producer u1 makes no profit. If the line
is overloaded after the zonal-clearing then producer u2 will gain 80 $/h from the real-time
market. Otherwise, they do not gain anything from the real-time market. Thus payoffs are as
in Table 2-(b).

From this payoff matrix, we can deduce that there are two SPNE (shown in bold fonts).
Both equilibria are related to the high-price equilibrium. This suggests that optimal zonal
pricing in the real-time market can mitigate the inc-dec game (an arbitrage strategy), but also
that the design does not seem to mitigate market power. We see that in the optimal zonal
pricing the system operator needs to use costly alternatives, such as to spill wind power, to
uphold the zonal price rule. But such outcomes will not be profitable for producers either, so
in equilibrium they will choose bids that avoid such outcomes.

In our mathematical model, which is introduced in the next section, we will consider ex-
amples with demand shocks. This makes the mathematical model more realistic. Another
advantage with this is that demand uncertainty will normally reduce the number of equilibria.
For electricity markets without transmission constraints, it is well-known that the high-price
equilibrium only exists for small demand shocks, see von der Fehr and Harbord (1993). This
is also true in our example. Consider the high-price equilibrium where producer u1 bids at 14
$/MWh and producer u2 makes a bid at 11 $/MWh. It only makes sense for producer u2 to
make a bid at 11 $/MWh, if the producer can be sure that this bid will never be price-setting.
If the bid would be price-setting with a positive probability, then it is strictly better to increase
the bid to 13 $/MWh. But in that case, producer u1 would find it profitable to undercut and
to play the inc-dec game, i.e. the high-price equilibrium falls apart. This explains why em-
pirical studies of electricity spot markets by Sioshansi and Oren (2007), Hortaçsu and Puller
(2008), Wolak (2007), and experimental results by Brandts et al. (2014), find that bidding is
inconsistent with the high-price equilibrium.

It is well-known that existence of pure-strategy equilibria can be problematic in price
games with capacity constraints, especially if demand is uncertain. Our setting is different
from von der Fehr and Harbord (1993), Blázquez de Paz (2018), and the classical Bertrand-
Edgeworth game in that bid prices are chosen from a discrete set in our model. This makes it
less profitable to undercut the competitor, and non-existence of pure-strategy equilibria is less
of an issue. This is explored in more detail by Holmberg et al. (2013).

In the illustrative example, we characterized SPNE in a simple two-node network without
any shocks. Next, we will consider more complicated networks with wind power shocks. In the
next section, we formulate the mathematical model of such a two-stage game.
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3. Mathematical Model

To find an equilibrium in a bidding game of a network with shocks is a large-scale and
complex problem. Solving this problem by exploring an entire continuous solution space is
normally not feasible, see Moiseeva and Hesamzadeh (2018). If one wants to explore all out-
comes of such a game, and have control of all equilibria, then one needs to reduce the solution
space by making the strategy set of bidders discrete as in Pereira et al. (2005), Barroso et al.
(2006), Bakirtzis et al. (2007) and Hesamzadeh and Biggar (2012). Similar to these studies, we
assume that each producer makes one bid per plant and chooses their bids from a discrete set
of permissible prices. This is also related to how electricity markets are designed in practice,
where a producer can make a finite number of bids per plant, see Anderson and Holmberg
(2018), Holmberg and Wolak (2018). In particular, the electricity market in Colombia is such
that a producer chooses one bid price per plant, see Wolak (2009). Moreover, similar to prac-
tice, see Holmberg et al. (2013), bid prices are chosen from a price grid, but in our model the
grid is more coarse than in practice.

System 
operator

(10d)-(10f)

(12)

Producer
u1

(14)

Producer
u1

(20)

Nash equilibrium in the real-time market

Subgame perfect Nash equilibrium in the two-stage game

Bidding of a 
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real-time market

Real-time 
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Price and 
dispatch

Market 
operator

(15d)-(15g)
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Bidding of a 
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Day-time 
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Price and 
dispatch

Nash equilibrium 

in the real-time 
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u2

Market 
operator

(15d)-(15g)

(18)

Bidding of a 

producer in the 

two-stage market

Day-time 
bids

Price and 
dispatch

Nash equilibrium 

in the real-time 

market

System 
operator

(10d)-(10f)

(12)

Producer
u2

Bidding of a 

producer in the 

real-time market

Real-time 
bids

Price and 
dispatch

Figure 2: Structure of two-stage game, the numbers in parenthesis represents the mathematical models of each
box.

In our model, each producer can choose a restricted number of prices which are related to
the marginal cost of the producer. Each producer has unique costs and also a unique set of
permissible prices. This means that there are no ties, and that we do not need a rationing rule.
The structure of the two-stage game is illustrated in Fig. 2.

Each box in Fig. 2 represents different layers which we use to derive our mathematical
model. First we start with formulating the economic dispatch model of each real-time pricing
approach. Then, we formulate the bidding game of the producers in the real-time market,
which constitutes the second stage of our two-stage game. Lastly, we add the first stage - the
bidding game in the day-ahead market.

We consider a decentralized day-ahead market, which are normally used in Europe. Hence,
retailers, wind-power owners, and large electricity consumers decide how much to buy/sell in
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the day-ahead market themselves. We assume that this volume is not perfectly predictable for
the producers in our model. This gives a net-demand shock in the day-ahead market for them.
The day-ahead prognosis of retailers etc. may not be correct, and this deviation gives another
shock in the real-time market. Producers are assumed to have symmetric information. Hence,
no producer makes a better, or worse, prognosis of net demand than any other producer in the
model.

In Approach 2, we add a zonal constraint, which makes sure that nodal real-time prices are
the same within a zone. It is not always feasible to maintain this constraint. Hence, we allow
the system operator to spill wind in the real-time market to make it possible for the system
operator to always find a feasible dispatch under the zonal constraint in our simulations.

3.1. Nomenclature

The main notation is presented below. Additional symbols are introduced throughout the
text.

Indices
u Producer, u = 1, ..., U
n Power system node, n = 1, ..., N
i Bidding strategy for real-time market, i = 1, ..., I
j Bidding strategy for day-ahead market, j = 1, ..., J
z Zone, z = 1, ..., Z
k Transmission line, k = 1, ...,K
l Inter-zonal line, l = 1, ..., L
m Index of SPNE found, m = 1, ...,M
ω Net demand scenario in day-ahead market, ω = 1, ...,Ω
s Net demand deviation scenario in real-time market, s = 1, ..., S
a Bidding action of producer, a = 0, ..., A
Parameters (upper-case letters)
Hk,n PTDF matrix,
H ′l,z Zonal PTDF matrix,

Cu Marginal cost of unit u,
Cupu Marginal up-regulation cost of unit u,
Cdnu Marginal down-regulation cost of unit u,
Gu Installed capacity of unit u,
Fk Capacity of transmission line k,
F̄l Capacity of inter-zonal line l,
Dn,ω Net demand at node n in scenario ω,
Ba Step size of bidding action a,
Bup
a Step size of up-regulation bidding action a,

Bdn
a Step size of down-regulation bidding action a,

W̄n,ω Wind production at node n,
∆Wn,s|ω Deviation in net demand at node n and scenario s|ω,

ξω Probability of scenario ω,
σs|ω Conditional probability of scenario s|ω,

Ψu,n Incidence matrix between u and n (1 if u ∈ n, 0 otherwise),

Ψ̂u,z Incidence matrix between u and z (1 if u ∈ z, 0 otherwise),
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Ψ̃n,z Incidence matrix between n and z (1 if n ∈ z, 0 otherwise),
Variables (lower-case letters)
tu,a Binary variable of day-ahead bidding decision of unit u,
tupu,ω,a, (tdnu,ω,a) Binary variable for up-regulation (down-regulation)

bidding decision of unit u,
ĉu Price bid of unit u,
ĉupu,ω, (ĉdnu,ω) Up-regulation (down-regulation) price bid of unit u in scenario ω,

gu,ω Production level of unit u in scenario ω,
gupu,s|ω, (g

dn
u,s|ω) Up (down) regulation provided by unit u in scenario s|ω,

vn,s|ω Wind spillage at node n in scenario s|ω,

ρn,s|ω Real-time market price at node n in scenario s|ω,

pn,ω Day-ahead market price at node n in scenario ω,
φu,s|ω Real-time profit of unit u in scenario s|ω,

πu,ω Day-ahead profit of unit u in scenario ω.

φ
(i),(j)
u,s|ω Real-time profit of unit u for day-ahead strategy j and real-time strategy i,

π
(j)
u,ω Day-ahead profit of unit u for day-ahead strategy j.

3.2. Economic dispatch model in each real-time market approach

The system operator collects up-regulation and down-regulation bids from all producers
and runs a bid-based economic dispatch to dispatch the regulation bids. In this section we
formulate the economic-dispatch problem of each real-time pricing approach considered in this
study.

3.2.1. Economic-dispatch model in Approach 1

Given regulation bids, ĉupu,ω and ĉdnu,ω, the day-ahead shock ω, and the day-ahead dispatch,
the economic dispatch in Approach 1 is formulated in (1).

Minimize
gup
u,s|ω ,g

dn
u,s|ω ,vn,s|ω

∑
s|ω

σs|ω
∑
u

(ĉupu,ωg
up
u,s|ω − ĉ

dn
u,ωg

dn
u,s|ω) (1a)

Subject to:∑
u

(gu,ω + gupu,s|ω − g
dn
u,s|ω) =

∑
n

(vn,s|ω +Dn,ω −∆Wn,s|ω) : (αs|ω), ∀s|ω (1b)

Fk −
∑
n

Hk,n(
∑
u

Ψu,n(gu,ω + gupu,s|ω − g
dn
u,s|ω)− vn,s|ω −Dn,ω + ∆Wn,s|ω) ≥ 0 :

(µk,s|ω), ∀k, s|ω (1c)

0 ≤ gupu,s|ω ≤ (Gu − gu,ω) : (κu,s|ω, βu,s|ω), ∀u, s|ω (1d)

0 ≤ gdnu,s|ω ≤ gu,ω : (ψu,s|ω, ϕu,s|ω), ∀u, s|ω (1e)

0 ≤ vn,s|ω ≤ W̄n,ω + ∆Wn,s|ω : (θn,s|ω, χn,s|ω), ∀n, s|ω (1f)

The optimization problem (1) is a linear program (LP). gu,ω is the given dispatch levels
in the day-ahead market. The production cost in the real-time market is minimized in (1a)
considering the energy balance constraint (1b), the transmission flow limits (1c), the capacity
limits in (1d) and (1e) and the wind-spillage limit (1f). In (1c), parameter Ψu,n is 1 if producer
u is located at node n, otherwise it is zero. The Lagrange multipliers related to each constraint
are given in parentheses.
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In Approach 1, the producers are paid with their bid price in the real-time market. So the
profit of producer u is formulated as in (2).

φu,s|ω = (ĉupu,ω − Cupu )gupu,s|ω + (Cdnu − ĉdnu,ω)gdnu,s|ω (2)

3.2.2. Economic-dispatch model in Approach 2

In Approach 2, we consider a zonal real-time market where all accepted regulation bids are
paid with the marginal zonal price. The system operator dispatches the regulation bids such
that nodal prices in each zone are equal to each other and such that no producer makes a loss.
A problem with this is that the economic dispatch is no longer a linear problem (LP)5. We need
the lower level problem to be linear, so that we can replace it by its KKT conditions. Inspired
by Ruiz et al. (2012), we deal with this by approximating the economic dispatch problem of the
real-time market by formulating it as a primal-minus-dual model6. Another advantage with
this approach is that we get access to the Lagrange variables (dual variables) of optimization
problem (1).

Due to the zonal pricing constraint in (3a), the zonal price may not be set by the marginal
producer but by a cheaper producer. This causes losses for the marginal producer. A market
design which may result in losses for some producers may incentivize them to leave the market.
To avoid this situation, we add constraint (3b) in the economic-dispatch problem in Approach
2. This is mathematically modeled by including constraint (3) to the economic-dispatch model.∑

z

Ψ̃n,zρ
′
z,s|ω = ρn,s|ω, ∀n, s|ω (3a)

φu,s|ω ≥ 0 ∀u, s|ω (3b)

Terms ρ′z,s|ω, ρn,s|ω and φu,s|ω represent the zonal real-time price, the nodal real-time price

and the profit in the real-time market, respectively. In (3a), parameter Ψ̃n,z is 1 if node n is
located at zone z, otherwise it is zero. The nodal real-time price is calculated as in (4).

ρn,s|ω = (αs|ω −
∑
k

Hk,nµk,s|ω)/σs|ω (4)

The profit of producer u in Approach 2 is formulated in (5). Here parameter Ψ̂u,z is 1 if
producer u is located at zone z, otherwise it is zero.

φu,s|ω = (
∑
z

Ψ̂u,zρ
′
z,s|ω − C

up
u )gupu,s|ω + (Cdnu −

∑
z

Ψ̂u,zρ
′
z,s|ω)gdnu,s|ω (5)

To formulate the primal-minus-dual model, we take LP problem (1) as our primal problem

5The economic dispatch problem is non-linear in Bjørndal and Jørnsten (2001) and Bjørndal et al. (2012),
who simulate optimal zonal pricing for day-ahead markets. In our setting, the economic dispatch problem of
the real-time market could be formulated as a MILP, but it is still not an LP.

6In Ruiz et al. (2012), the nonlinearity due to the market clearing price being multiplied by the dispatch
quantity in the profit function is tackled by applying a discrete approximation, whereby the problem is trans-
formed into a MILP model. In this study, we instead linearize the nonlinearity by using the stationary conditions
(6c) and (6d) and the complimentary slackness conditions for (1d) and (1e). This approach results in an LP
model. Similar approaches are for example used by Hesamzadeh and Biggar (2012) and Hesamzadeh and Biggar
(2013). The approximation error due to the linearization is small as long as the duality gap is small.
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and we derive the dual LP problem associated with the primal problem. Then we formulate
a new LP problem which minimizes the duality gap of the primal and dual problems subject
to both primal and dual constraints. Including the constraints (3) into the primal minus dual
model which gives us the economic dispatch model of Approach 2. This is set out in (6).

Minimize
Π

∑
s|ω

σs|ω
∑
u

(ĉupu,ωg
up
u,s|ω − ĉ

dn
u,ωg

dn
u,s|ω) +

∑
s|ω

(αs|ω(
∑
u

gu,ω −
∑
n

(Dn,ω−

∆Wn,s|ω)) +
∑
k

µk,s|ω(Fk −
∑
n

Hk,n(
∑
u

Ψu,ngu,ω −Dn,ω + ∆Wn,s|ω))+∑
u

(βu,s|ω(Gu − gu,ω) + ϕu,s|ωgu,ω) +
∑
n

χn,s|ω(Wn,ω + ∆Wn,s|ω)) (6a)

Subject to:

Constraints (1b)− (1f) : (λAs|ω, λ
B
k,s|ω, λ

C
u,s|ω, λ

D
u,s|ω, λ

E
u,s|ω, λ

F
u,s|ω, λ

G
n,s|ω, λ

H
n,s|ω) (6b)

− σs|ω ĉupu,ω + αs|ω −
∑
n

Ψu,n

∑
k

Hk,nµk,s|ω + κu,s|ω − βu,s|ω = 0 : (λIu,s|ω), ∀u, s|ω (6c)

σs|ω ĉ
dn
u,ω − αs|ω +

∑
n

Ψu,n

∑
k

Hk,nµk,s|ω + ψu,s|ω − ϕu,s|ω = 0 : (λJu,s|ω), ∀u, s|ω (6d)

− αs|ω +
∑
k

Hk,nµk,s|ω + θn,s|ω − χn,s|ω = 0 : (λKn,s|ω), ∀n, s|ω (6e)

µk,s|ω, κu,s|ω, βu,s|ω, ψu,s|ω, ϕu,s|ω, θn,s|ω, χn,s|ω ≥ 0 : (λNk,s|ω, λ
O
u,s|ω, λ

P
u,s|ω,

λQu,s|ω, λ
R
u,s|ω, λ

S
n,s|ω, λ

T
n,s|ω) (6f)∑

z

Ψ̂n,zρ
′
z,s|ω = (αs|ω −

∑
k

Hk,nµk,s|ω)/σs|ω : (λLn,s|ω),∀n, s|ω (6g)

φu,s|ω ≥ 0 : (λMu,s|ω), ∀u, s|ω (6h)

φu,s|ω = (βu,s|ω(Gu − gu,ω) + ϕu,s|ωgu,ω)/σs|ω + Cdnu gdnu,s|ω − ĉ
dn
u,ωg

dn
u,s|ω+

ĉupu,ωg
up
u,s|ω − C

up
u gupu,s|ω, ∀u, s|ω (6i)

The set of decision variables in (6) is Π = {gupu,s|ω, gdnu,s|ω, vn,s|ω, αs|ω, µk,s|ω, κu,s|ω, βu,s|ω,

ψu,s|ω, ϕu,s|ω, θn,s|ω, χn,s|ω, ρ′z,s|ω, φu,s|ω}. Constraint (6b) is from the primal problem of (1)

and constraints (6c)-(6f) are from the dual problem of (1). Additional constraints for zonal
real-time market in (3) is given in (6g) and (6h) in the context of optimization problem (6).
The profit function in (5) is reformulated using (6c) and (6d) and the complementary slackness
conditions for (1d)-(1e) in (6i). Optimization problem (6) is a LP model. The Lagrange
multipliers related to each constraint are given in parentheses.

Note that primal minus dual model (6a)-(6f) is a relaxation of (1). The gap due to the
relaxation is measured by the duality gap expression which is minimized in (6a). If the duality
gap is equal to zero, then the optimal solutions of (1) and (6a)-(6f) are equivalent. Otherwise,
the solution of (6a)-(6f) is as close as possible to that of (1), since the feasible region of (6a)-(6f)
is built around the optimal solution of (1), see Ruiz et al. (2012).

The economic dispatch problems in the real-time market in Approach 1 and Approach 2
are formulated as LPs in (1) and (6), respectively. The Lagrange multipliers related to each
constraint are given in parentheses. To keep our model derivations concise, we will illustrate
them in general matrix form as in (7).
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Minimize
x

CTx (7a)

Subject to:

Ax+Bxg +Dg +E = 0 : (λ) (7b)

Fx+Gxg +Hg + I ≥ 0 : (µ) (7c)

Here vector x represents all decision variables in (1) or (6). Matrices A, B, D, E, F , G, H
and I are the coefficient matrices. Term CT is the transpose of vector C. Vector g represents
the day-ahead dispatch decisions which are given parameters in (7). It is shown separately for
facilitating further derivation of our two-stage game model.

3.3. Bidding game in the real-time market

We want to solve for a SPNE in the two-stage game. Thus whatever happened in the first-
stage, producers will be sequentially rational and play a Nash equilibrium in the second stage.
It is most straightforward to solve for a SPNE backwards, so we start with the last stage, the
real-time market.

3.3.1. Single producer’s bidding problem in the real-time market

Each producer submits its up-regulation and down-regulation bids to the real-time market
given the dispatch results in the day-ahead market. Moreover, we solve for a Nash equilibrium
in the real-time market, so each producer chooses a bid that is a best response to the bids of
its rivals in the real-time market. This is illustrated in the purple box in Fig. 2. The strategic
bidding decision of producer u in the real-time market is formulated as a two-stage stochastic
bilevel optimization problem in (8).

Maximize
ĉupu,ω ,ĉdnu,ω ,t

up
u,ω,a,tdnu,ω,a

Es|ω[φu,s|ω] (8a)

Subject to:

ĉupu,ω =
∑
a

Bup
a t

up
u,ω,aC

up
u , ĉdnu,ω =

∑
a

Bdn
a tdnu,ω,aC

dn
u (8b)

tupu,ω,a, t
dn
u,ω,a ∈ {0, 1} (8c)∑

a

tupu,ω,a = 1,
∑
a

tdnu,ω,a = 1 (8d)

where{x} ∈
{

argMinimize
x

CTx (8e)

Subject to:

Ax+Bxg +Dg +E = 0 : (λ) (8f)

Fx+Gxg +Hg + I ≥ 0 : (µ)

}
(8g)

Objective function (8a) maximizes the expected profit in the real-time market. The up-
regulation and the down-regulation price bids are modeled using binary variables tupu,ω,a and
tdnu,ω,a in (8b). Here parameters Bup

a and Bdn
a represent the mark-up and mark-down options in

bidding action a, respectively. Constraint (8d) ensures that only one bidding action is selected.
Optimization problem (8e)-(8g) formulates the economic dispatch problem in the real-time
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market. The Lagrange multipliers related to constraints (8f)-(8g) are given in parentheses.
Optimization problem (8) is a bilevel optimization problem. The most straightforward way to
solve a bilevel optimization problem is to replace the inner optimization problem by its Karush-
Kuhn-Tucker (KKT) conditions. This approach transforms the bilevel optimization problem
into a single level optimization problem. Since (8e)-(8g) is LP, the KKT conditions are both
necessary and sufficient for a best response, which is shown by Gabriel et al. (2012). The
bilinear complementary slackness conditions7 are replaced by the strong duality conditions.
This replacement enables us to reduce the number of the constraints and the bilinear terms.
This is explained in further detail in Appendix A. The stationary, dual feasibility and strong
duality conditions of (8e)-(8g) are presented in (10g), (10h) and (10i), respectively.

The stationary, dual feasibility and strong duality conditions related to the economic dis-
patch problems in Approach 1 and Approach 2 are explicitly presented in Appendix B. Bidding
decisions ĉupu,ω and ĉdnu,ω are defined using binary variables tupu,ω,a and tdnu,ω,a in (8b). After re-

placing (8e)-(8g) with its KKT conditions, we face bilinear terms xtupu,ω,a and xtdnu,ω,a in the
resulting single-level optimization problem. These bilinear terms consist of the binary vari-
ables related to the bidding decisions, tupu,ω,a and tupu,ω,a, and the continuous variables, x, from
the KKT conditions of the economic dispatch problem. The detailed list of bilinear terms and
their locations are illustrated in Table 3.

Table 3: Bilinear terms linearized in (10) in each real-time pricing approach

Approach 1 Approach 2

tupu,ω,ag
up
u,s|ω in (2) and (B.1e) in (6i) and (B.2n)

tdnu,ω,ag
dn
u,s|ω in (2) and (B.1e) in (6i) and (B.2n)

tupu,ω,aλMu,s|ω - in (B.2a)

tdnu,ω,aλ
M
u,s|ω - in (B.2b)

tupu,ω,aλIu,s|ω - in (B.2n)

tdnu,ω,aλ
J
u,s|ω - in (B.2n)

These bilinear terms are linearized using the McCormick reformulation, see Gupte et al.
(2013). The McCormick reformulation is a technique for linearizing the bilinear terms which
consists of the product of a binary and a continuous variable. To explain the method, assume
that we want to linearize tupu,ω,ag

up
u,s|ω, one of the bilinear terms in Table 3. We first replace

the bilinear term with a new variable τu,a,s|ω = tupu,ω,ag
up
u,s|ω and then add the following linear

constraints.

gupu,s|ω +Gu(tupu,ω,a − 1) ≤ τu,a,s|ω ≤ g
up
u,s|ω (9a)

0 ≤ τu,a,s|ω ≤ Gutupu,ω,a (9b)

We used the nodal pricing regime as a benchmark in our study. We model it as a zonal
system with one node per zone so the profit function of the benchmark model is (5).

Now we can formulate the MILP model of each producer’s bidding problem in the real-time
market as in (10).

7The complementary slackness conditions are given by the product of inequality constraints and their related
Lagrange multipliers should be equal to zero. This is bilinear due to the product of two continuous variables.
The number of bilinear terms increases with the number of the inequality constraints.

14



Maximize
Θ

Es|ω[φu,s|ω] (10a)

Subject to:

ĉupu,ω =
∑
a

Bup
a t

up
u,ω,aC

up
u , ĉdnu,ω =

∑
a

Bdn
a tdnu,ω,aC

dn
u (10b)

tupu,ω,a, t
dn
u,ω,a ∈ {0, 1} (10c)∑

a

tupu,ω,a = 1,
∑
a

tdnu,ω,a = 1 (10d)

Ax+Bxg +Dg +E = 0 (10e)

Fx+Gxg +Hg + I ≥ 0 (10f)

−C + λ(AT +BTgT ) + µ(F T +GTgT ) = 0 (10g)

µ ≥ 0 (10h)

−CTx− (λ(ET +DTgT ) + µ(IT +HTgT )) = 0 (10i)

Linearization of bilinear terms in Table 3 as in (9) (10j)

The set of decision variables in (10) is Θ ={ĉupu,ω, ĉdnu,ω, t
up
u,ω,a, tdnu,ω,a, φu,s|ω, x, λ, µ}.

3.3.2. Nash equilibrium in the real-time market

The red box in Fig. 2 illustrates the Nash equilibrium in the real-time market. The Nash
equilibrium in the real-time market given the day-ahead dispatch decisions is found by solving
all producers’ bidding problems in the real-time market simultaneously. Since price bids ĉupu,ω

and ĉdnu,ω are chosen from a discrete set, each producer’s alternative strategies {ĉup,(1)
u,ω , ĉ

dn,(1)
u,ω ,

ĉ
up,(2)
u,ω , ĉ

dn,(2)
u,ω ,...,ĉ

up,(I)
u,ω , ĉ

dn,(I)
u,ω } can be formed by different combinations of binary variables tupu,ω,a

and tdnu,ω,a. The real-time profit of each producer in these alternative strategies can be calculated
by MILP model (10) while holding its rivals’ strategies fixed. Hence, we can reformulate MILP
model (10) of each producer as a set of Mixed-Integer Linear Constraints (MILC) by replacing

objective function (10a) by constraint (11). In (11), Es|ω[φu,s|ω] and Es|ω[φ
(i)
u,s|ω] represent the

real-time profit of producer u in the Nash equilibrium strategy and in alternative strategy i,
respectively.

Es|ω[φu,s|ω] ≥ Es|ω[φ
(i)
u,s|ω], ∀i (11)

The Nash equilibrium in the real-time market is found by solving all the MILCs of all
producers simultaneously8. This is formulated as a feasibility problem in (12).

RTNEω =
{

Find Θ ∪Θ(i), ∀u (12a)

Such that

Constraints (10b)− (10j), ∀u (12b)

Constraints (10b)(i) − (10j)(i) ∀u, i (12c)

Es|ω[φu,s|ω] ≥ Es|ω[φ
(i)
u,s|ω], ∀u, i

}
(12d)

8It might seem that an alternative way of solving this is to take the KKT conditions of each producer’s
bidding problem (10) and to solve them together. However, in our model, optimization problem (10) is MILP.
Hence the KKT conditions of (10) are not necessary and sufficient. That’s why we cannot use this method to
model the Nash equilibrium in the real-time market.
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Here Θ is the set of decision variables related to the bidding problem of producer u for
the Nash equilibrium strategy and Θ(i) is the set of decision variables related to producer u in
alternative strategy i given the strategies of its rivals. Constraints (12b) and (12c) are written
for the Nash equilibrium strategy and for the alternative strategy i, respectively. Constraint
(12d) ensures for all producers that the real-time profit in the Nash equilibrium strategy is
greater or equal than the one in all alternative strategies. A feasible solution of (12) is the
Nash equilibrium in the real-time market, RTNEω.

3.4. Bidding game in the day-ahead market

In the day-ahead market, the producers choose their day-ahead bids from a discrete set
of permissible prices. Similar to the real-time market, each producer has a unique set of
permissible price bids. We consider cases where the market operator has set the flow limits
between the zones for the day-ahead dispatch at a level which ensures security of the power
system.

3.4.1. Single producer’s bidding problem in the day-ahead market

We solve for a SPNE. Thus, producer u submits an optimal bid to the day-ahead market
given the day-ahead bids of its rivals and considering the resulting Nash equilibrium in the
real-time market. This is illustrated in the blue box in Fig. 2 and formulated in (13).

Maximize
Λ

Eω[(
∑
z

Ψ̂u,zpz,ω − Cu)gu,ω + Es|ω[φu,s|ω]] (13a)

Subject to:

ĉu =
∑
a

Batu,aCu, ∀u (13b)

tu,a ∈ {0, 1} (13c)∑
a

tu,ω,a = 1 (13d)

RTNEω ∀ω (13e)

where{pu,ω, gu,ω} ∈
{

argMinimize
gu,ω

∑
u,ω

ξω(ĉugu,ω) (13f)

Subject to:∑
u

gu,ω =
∑
n

Dn,ω : (δω) ∀ω (13g)

F̄l −
∑
z

H ′l,z(
∑
u

Ψ̂u,zgu,ω −
∑
n

Ψ̃n,zDn,ω) ≥ 0 : (γl,ω) ∀l, ω (13h)

0 ≤ gu,ω ≤ Gu : (ηu,ω, νu,ω) ∀u, ω
}

(13i)

The set of decision variables in (13) is Λ ={ĉu, tu,a,}∪Θ ∪ Θ(i). Objective function (13a)
maximizes the total expected profit in the day-ahead and the real-time markets. Equation (13b)
models the price bids that producer u submitted to the day-ahead market. Constraint (13d)
ensures that only one bidding action is selected. Optimization problem (13f)-(13i) formulates
the economic dispatch problem in the day-ahead market. The total stated production cost is
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minimized in (13f) (by the market operator) considering the energy balance constraint (13g),
the inter-zonal transmission limits (13h) and generation limits (13i). The Lagrange multipliers
related to each constraint are given in parentheses. We transform bilevel optimization problem
(13) to a single-level optimization problem by replacing inner optimization problem (13f)-(13i)
by its KKT conditions. Since problem (13f)-(13i) is a linear program, its KKT conditions are
necessary and sufficient.

The profit in the day-ahead market is formulated as πu,ω = (
∑

z Ψ̂u,zpz,ω − Cu)gu,ω.
Here pz,ω is the zonal price in the day-ahead market which can be calculated as pz,ω =
δω −

∑
lH
′
l,zγl,ω. The day-ahead profit can be reformulated in (14) using the stationary condi-

tion (shown in (16h)) and the complementary slackness conditions for (13i).

πu,ω = νu,ωGu + (ĉu − Cu)gu,ω, ∀u, ω (14)

After replacing (13f)-(13i) by its KKT conditions, two types of bilinear terms appear in the
resulting model. The first type consists of the product of the binary variable from day-ahead
bidding decision and the day-ahead dispatch (tu,agu,ω). These bilinear terms are linearized
using the McCormick reformulation. The second type consists of continuous variables from
the KKT conditions of real-time market models and the day-ahead dispatch quantity, xg, λg
and µg. The detailed list of the bilinear terms and their locations are presented in Table 4. It
follows from the lemma below that also the second type of bilinear terms can be linearized by
the McCormick reformulation.

Table 4: Bilinear terms linearized in (16) in each real-time pricing approach

Bilinear term Approach 1 Approach 2

αs|ω
∑

u gu,ω in (B.1e) in (B.2n)

µk,s|ω
∑

nHk,n
∑

u:n gu,ω in (B.1e) in (B.2n)

βu,s|ωgu,ω in (B.1e) in (6i) and (B.2n)

ϕu,s|ωgu,ω in (B.1e) in (6i) and (B.2n)

λMu,s|ωgu,ω - in (B.2h) and (B.2j)

λAs|ω
∑

u gu,ω - in (B.2n)

λBk,s|ω
∑

nHk,n
∑

u:n gu,ω - in (B.2n)

λDu,s|ωgu,ω - in (B.2n)

λFu,s|ωgu,ω - in (B.2n)

Lemma 1
Day-ahead dispatch quantity gu,ω is a discrete variable.

Proof. Since the following three conditions are satisfied in day-ahead economic dispatch model
(13f)-(13i): (i) the net-demand at each node in each scenario is fixed and given, (ii) the capaci-
ties of each unit and each inter-zonal line are given and (iii) the price bids are flat and they are
chosen from a unique and finite set of discrete values, the corresponding dispatch interactions
are also chosen from a finite set of discrete values9.

9This lemma means that the day-ahead economic dispatch model is originally a discretely-constrained LP
model.The LP model we assumed for deriving the KKT conditions is the relaxation of the discretely-constrained
LP model with zero duality gap.
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We mathematically model gu,ω as discrete variable by introducing binary variable yu,ω,r in
(15).

gu,ω =
∑
r

Eu,ω,ryu,ω,r, ∀u, ω,
∑
r

yu,ω,r ≤ 1, ∀u, ω and yu,ω,r ∈ {0, 1}, ∀u, ω, r (15)

In (15), Eu,ω,r is a parameter which is the day-ahead dispatch of producer u in bid combi-
nation r. Let’s assume we have U producers in the day-ahead market and each producer has A
bid alternatives, then we have AU bid combinations. Here we define index r as r = 1, ..., AU .
Parameter Eu,ω,r is calculated by solving (13f)-(13i) for all AU bid combinations. Each bid com-
bination is independent from each other, therefore this calculation can be done using parallel
computing.

Now, we can formulate the MILP model of each producer’s bidding problem in two-stage
markets as in (16).

Maximize
Γ

Eω[(
∑
z

Ψ̂u,zpz,ω − Cu)gu,ω + Es|ω[φu,s|ω]] (16a)

Subject to:

ĉu =
∑
a

Batu,aCu, ∀u (16b)

tu,a ∈ {0, 1} (16c)∑
a

tu,a = 1 (16d)∑
u

gu,ω =
∑
n

Dn,ω, ∀ω (16e)

F̄l −
∑
z

H ′l,z(
∑
u

Ψ̂u,zgu,ω −
∑
n

Ψ̃n,zDn,ω) ≥ 0, ∀l, ω (16f)

0 ≤ gu,ω ≤ Gu, ∀u, ω (16g)

− ξω ĉu + δω −
∑
z

Ψ̂u,z

∑
l

H ′l,zγl + ηu,ω − νu,ω = 0, ∀u, ω (16h)

γl,ω, ηu,ω, νu,ω ≥ 0 (16i)

−
∑
u

ξω ĉugu,ω − (δω
∑
n

−Dn,ω +
∑
l

γl,ω(F̄l −
∑
z

H ′l,z(
∑
n

−Ψn,zDn,ω))+∑
u

νu,ωGu = 0, ∀ω (16j)

gu,ω =
∑
r

Eu,ω,ryu,ω,r, ∀u, ω (16k)∑
r

yu,ω,r ≤ 1, ∀u, ω (16l)

Linearization of bilinear terms in Table 4 as in (9) (16m)

RTNEω, ∀ω (16n)

The set of decision variables in (16) is Γ ={gu,ω, δω, γl,ω, ηu,ω, νu,ω, pz,ω, yu,ω,r}∪Λ.
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3.4.2. Subgame Perfect NE in the two-stage game

The SPNE is found by solving MILP model (16) of all producers simultaneously as illus-
trated in the green box in Fig. 2. Analogous to the modeling of the Nash equilibrium in
the real-time market, we reformulate MILP model (16) of each producer as a set of MILC
by replacing objective function (16a) by constraint (17). In (17), Eω[πu,ω + Es|ω[φu,s|ω]] and

Eω[π
(j)
u,ω + Es|ω[φ

(i),(j)
u,s|ω ]] represent the total expected profit of producer u in the SPNE and in

alternative strategies i and j, respectively.

Eω[πu,ω + Es|ω[φu,s|ω]] ≥ Eω[π(j)
u,ω + Es|ω[φ

(i),(j)
u,s|ω ]] ∀u, i, j (17)

Solving the MILCs of all producers simultaneously gives us the SPNE of the two-stage
game. This is formulated by feasibility problem (18).

Find Γ ∪ Γ(j) (18a)

Such that

Constraints (16b)− (16n) (18b)

Constraints (16b)(j) − (16n)(j), ∀j (18c)

Eω[πu,ω + Es|ω[φu,s|ω]] ≥ Eω[π(j)
u,ω + Es|ω[φ

(i),(j)
u,s|ω ]] ∀u, i, j (18d)

Our benchmark model is the nodal pricing model. Mathematically, the only difference
to the zonal day-ahead model is that constraint (16f) is replaced by the constraint (Fk −∑

nHk,n(
∑

u Ψu,ngu,ω −Dn,ω) ≥ 0).

4. Tackling Multiple SPNE

The number of producers and the number of strategies available for each producer influences
the existence and the number of SPNE. In case of multiple SPNE, the market outcomes may
differ between different SPNE, which would complicate the market analysis. This study uses
two methodologies to tackle the multiple SPNE.

4.1. Methodology 1: Finding all SPNE

To find all SPNE, we develop an iterative procedure. Once a SPNE is found, an integer cut
is included in MILC model (18) and the new resulting MILC model (MILC model (18) and the
integer cut of the previous SPNE) is solved for a new SPNE. The function of the integer cut
is to exclude the previous SPNE (values of binary variables) from the feasibility region. This
process continues until the resulting MILC model has no feasible solution.

Constraint (19) formulates the integer cut in iteration m. Vector h consists of all binary
variables h = [tu,a, t

up
u,ω,a, tdnu,ω,a]. Vector h̄(m−1) represents the values of binary variables in h

in iteration m− 1. ∑
r:h̄(m−1)=1

hr −
∑

r̃:h̄(m−1)=0

hr̃ ≤|r| − 1 (19)

Note that integer cut (19) removes the previous SPNE, but it does not remove any other
possible solution from the feasibility region.
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4.2. Methodology 2: Representative SPNE approach

Large-scale examples require long computation times to solve MILC model (18), and it
might not be practical to find all SPNE. Another way of tackling multiple-SPNE situation is
to find a set of representative SPNE where we use a tolerance to control the size of the set
of SPNE. To do this, we build a SPNE band, see Fig. 3. We find a lower bound of the best
production-cost SPNE10 and an upper bound of the worst production-cost SPNE. To find the
upper bound of the SPNE band, we apply two changes in MILC model (18): (i) Objective
function (20a) is added to MILC model (18) and (ii) the integrality constraints on binary
variables are relaxed. After applying these changes, the resulting model is a relaxed MILP
model and it is set out in (20).

Maximize
Γ∪Γ(j)

∑
ω

ξω
∑
u

ĉugu,ω +
∑
s|ω

σs|ω
∑
u

(ĉupgupu,s|ω − ĉ
dngdnu,s|ω) (20a)

Subject to (20b)

Constraints (18b)− (18d) (20c)

Note that the integrality constraints on binary variables, tu,a, t
up
u,ω,a, tdnu,ω,a ∈ {0, 1}, in (18b)

and (18c) are relaxed as tu,a, t
up
u,ω,a, tdnu,ω,a ∈ [0, 1]. The objective value of maximization model

(20) gives us the upper bound of the SPNE band. If maximization model (20) is changed to a
minimization model, the new model’s objective value gives the lower bound of the SPNE band.

Subinterval-1 Subinterval-2 Subinterval-QSubinterval-q... ...

LB
R1 R2 Rq-1 Rq RQ-1 UB

Figure 3: SPNE band, LB: Lower bound of the best-production-cost SPNE, UB: Upper bound of the worst-
production-cost SPNE, Rq: Upper bound of subinterval-q.

After finding the upper and the lower bound of the SPNE band, the interval in between
is divided into subintervals with a predefined tolerance (ε). The number of subintervals is
determined by log1+ε = UB

LB . The upper bound of each subinterval is calculated as Rq =
(1+ε)Rq−1. A representative SPNE is searched in each subinterval. We model the subintervals
by constraint (21). Constraint (21) ensures that the total production cost in the found SPNE
in subinterval q is between the lower and upper limits of subinterval q (Rq−1, Rq).

Rq−1 ≤
∑
ω

ξω
∑
u

ĉugu,ω +
∑
s|ω

σs|ω
∑
u

(ĉupgupu,s|ω − ĉ
dngdnu,s|ω) ≤ Rq (21)

We include constraint (21) to MILC model (18) and the resulting MILC model is solved
in each subinterval. The resulting MILC model related to subinterval q becomes infeasible, if
there is no SPNE in subinterval q.

There might not be a SPNE in every subinterval. Thus, to speed up the computation
process, we design a pre-feasibility-check method that identifies some of those subintervals

10In our paper the best production-cost SPNE is the SPNE with the minimum production cost. The worst
production-cost SPNE is the SPNE where the production cost is maximum. Accordingly, all SPNE are located
between best- and worst-SPNE.
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before solving the model in (18). The pre-feasibility-check method is based on two properties
of the duality: (i) The dual of a nonconvex problem is always a convex problem, as shown by
Boyd and Vandenberghe (2004), and (ii) if a problem is infeasible, the dual of this problem
is unbounded, see Boyd and Vandenberghe (2004). To use these properties, we formulate a
nonconvex problem by applying the following two changes: (a) Objective function (22a) is
added to MILC model (18) and (b) The bidding decisions of the producers are modeled as
continuous variables. The resulting bilinear optimization problem is set out in (22).

Maximize
Γ̂

∑
ω

ξω
∑
u

ĉugu,ω +
∑
s|ω

σs|ω
∑
u

(ĉupgupu,s|ω − ĉ
dngdnu,s|ω) (22a)

Subject to (22b)

cu ≤ ĉu ≤ cu, ∀u (22c)

cupu ≤ ĉupu,ω ≤ cupu , ∀u, ω (22d)

cdnu ≤ ĉdnu,ω ≤ cdnu , ∀u, ω (22e)

Constraints (10e)− (10i) (22f)

Constraints (10e)(i),(j) − (10i)(i),(j), ∀i, j (22g)

Es|ω[φu,s|ω] ≥ Es|ω[φ
(i)
u,s|ω] ∀u, i (22h)

Constraints (16e)− (16l) (22i)

Constraints (16e)(j) − (16l)(j), ∀j (22j)

Eω[πu,ω + Es|ω[φu,s|ω]] ≥ Eω[π(j)
u,ω + Es|ω[φ

(i),(j)
u,s|ω ]] ∀u, i, j (22k)

Rq−1 ≤
∑
ω

ξω
∑
u

ĉugu,ω +
∑
s|ω

σs|ω
∑
u

(ĉupgupu,s|ω − ĉ
dngdnu,s|ω) ≤ Rq (22l)

The set of decision variables in (22) is Γ̂ = {Γ ∪ Γ(i)\{tu,a, tupu,ω,a, tdnu,ω,a, t
(j)
u,a, t

up,(i),(j)
u,ω,a ,

t
dn,(i),(j)
u,ω,a }. Here parameters cu, cupu , cdnu and cu, cupu , cdnu are the upper and lower limits of
ĉu, ĉupu,ω, cdnu,ω. The BLP model in (22) is a relaxation of MILC model (18) therefore if BLP
model (22) in subinterval q is infeasible, MILC model (18) is also infeasible in subinterval q of
the SPNE band. This means that there is no SPNE in subinterval q. Here we use the property
(i) of duality described above and take the dual of BLP model (22). The dual program is a LP
model and it is easier to solve compared to BLP model (22). We solve the dual problem in each
subinterval. We may face two cases: (i) if the dual problem has a finite solution, there might
be a SPNE in this subinterval or (ii) if the dual problem is unbounded, there is no SPNE in
this subinterval. Note that due to the nonconvexity of the BLP problem, in some subintervals
we may have a finite dual solution, even though there is no SPNE. However if the dual problem
is unbounded in a subinterval, then it is guaranteed that there is no SPNE in this subinterval.

Using this method, we identify the subintervals which have no SPNE, omit those subinter-
vals, and then we search for the SPNE in the remaining subintervals. The pre-feasibility-check
method improves the computational tractability for finding the set of representative SPNE.

5. Illustrative Example

This section demonstrates the producers’ bidding behaviors under different zonal pricing
approaches on the 6-node example system which was used by Chao and Peck (1998). We
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consider one delivery hour. Fig. 4 shows the single line diagram of the 6-node example system.
We introduce two zones. Zone 1 aggregates nodes 1, 2 and 3. Zone 2 aggregates nodes 4, 5 and
6. The 6-node example system has 3 competing producers u1, u2 and u3 which are located at
nodes 1, 2 and 4, respectively. The data related to the producers is presented in Table 5. The
variation in marginal cost for up- and down-regulation of a unit corresponds to a switching
cost. The switching cost is due to the fact that in the real-time market, a unit has to change its
production in a relatively short notice, see Morales et al. (2014). To have a congested network
and to observe an inc-dec game, the transmission capacity of the lines between nodes 1-2, 2-5
and 1-6 are set to 35 MW, 70 MW and 65 MW, respectively. The transmission capacity of the
other lines is set to 100 MW. For the day-ahead market, the flow limit between zones 1 and 2
is set to 110 MW in order to have different day-ahead prices in different zones. The consumers
located at nodes 2, 5 and 6 have fixed demand of 120 MW, 100 MW and 60 MW, respectively.

3

2 5

61

u1

4
u3w1

w2u2

Zone 1 Zone 2

Figure 4: Single line diagram of the 6-node example system, u1,u2, u3: Conventional producers, W1, W2: Wind
farms.

Two wind farms are connected to nodes 3 and 6. Two wind-generation scenarios are con-
sidered: Wn,ω1 =30 MW and Wn,ω2 =37.5 MW. In real-time, the deviation from the net
demand (∆Wn,s|ω) is modeled with 2 scenarios. Scenario s1 represents the positive imbal-
ance scenario (∆Wn,s1|ω = 0.2Wn,ω), scenario s2 represents the negative imbalance scenario
(∆Wn,s2|ω = −0.2Wn,ω). The probabilities for the scenarios are equal. We assume that each
producer has 3 bidding actions for day-ahead price bids with 0%, 10% mark-up and 10% mark-
down. In real-time, the permissible up-regulation and down-regulation bids have 0%, 10%,
20% mark-up and 0%, 10%, 20% mark-down, respectively.

Table 5: Unit data for the 6-node system

Unit C Cup Cdn Gu
($/MWh) ($/MWh) ($/MWh) (MW)

u1 11.5 23 7.5 150
u2 10.5 21 6.5 250
u3 13 25 8.5 150

Table 6 summarizes the five approaches that we simulate. In addition to Approaches 1 (UK)
and 2 (Optimal zonal), we also simulate a benchmark approach (BA) and two approaches with
truthful bidding: WAL and WALZ. BA has nodal pricing both in the day-ahead and real-time
market, and considers strategic bidders. WAL (Walrasian) considers the same nodal system,
but with naive truthful bidders. WALZ also consider truthful bidders, but for the market
design A2.

In SPNE, all producers submit their equilibrium bids (ĉu) to the day-ahead market. A short
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Table 6: Simulated approaches

Approach Explanation

Approach 1 (A1) Zonal day-ahead and pay-as-bid in real-time

Approach 2 (A2) Zonal day-ahead and optimal zonal in real-time

Benchmark approach (BA) Nodal day-ahead and nodal in real-time

Walrasian (WAL) Naive competitive bidding in BA

Walrasian zonal (WALZ) Naive competitive bidding in A2

time before the delivery hour, units u1, u2 and u3 consider the day-ahead dispatch (including
the wind-power output) and submit their regulation bids to the real-time market. We use
methodology 1 to tackle multiple SPNE in this example system. Some SPNE are essentially
the same, i.e. the payment, cost and output is the same for each producer. For example, the
bid price of a rejected equilibrium bid does not matter much as long as all accepted equilibrium
bids are the same. In Table 7, we report each distinct SPNE for each market design. We found
one distinct SPNE for Approach 1 and the benchmark approach. In Approach 2, we found two
SPNE (A2-1 and A2-2) with different dispatches, production costs and payments. Multiplicity
of equilibria was not a major issue in this study. We believe that the shocks in our model
has reduced this problem. Multiplicity of equilibria was more of a problem in a related study,
Sarfati et al. (2019), where we did not consider shocks.

Table 7: The SPNE for each approach, A1: Approach 1, A2: Approach 2, BA: Benchmark, approach, A2-1:
First SPNE in Approach 2

u1 u2 u3

ĉu
(ĉupu,ω,ĉdnu,ω)

ĉu
(ĉupu,ω,ĉdnu,ω)

ĉu
(ĉupu,ω,ĉdnu,ω)

ω1 ω2 ω1 ω2 ω1 ω2

A1 10.35 (23,6) (23,6) 11.55 (25.2,5.2) (25.2,5.2) 14.3 (30,8.5) (30,8.5)

A2-1 12.65 (27.6,6) (27.6,6) 11.55 (25.2,5.2) (25.2,5.2) 14.3 (30,6.8) (30,6.8)

A2-2 11.5 (23,6) (23,6) 10.5 (25.2,5.2) (25.2,5.2) 14.3 (30,6.8) (30,6.8)

BA 11.5 (27.6,6) (27.6,6) 11.55 (25.2,5.2) (25.2,5.2) 14.3 (30,6.8) (30,6.8)

Table 7 shows that in Approach 1, producer u1 chooses a day-ahead bid which is lower than
its marginal cost, which is consistent with an inc-dec strategy, see Harvey and Hogan (2000a).
Table 8 presents further results that are consistent with the inc-dec game. It shows that the
day-ahead dispatches in Approach 1 overload the intra-zonal line, line 1-2, by 32.1 MW in
scenario ω1 and by 34.6 MW in scenario ω2. Here node 1 is the export-constrained node and
node 2 is the import-constrained node. To relieve this overloading, the system operator accepts
u1’s down-regulation bid and u2’s up-regulation bid in every scenario. Accordingly, producer
u1 buys back power and producer u2 sells power in the real-time market. The counter-traded
volume in each scenario is reported in Table 8.

Table 9 shows that producer u1 increases its total expected profit by at least nine times in
Approach 1 as compared to the benchmark approach (nodal pricing) due to the inc-dec game.

Table 10 shows that the inc-dec game, in Approach 1, increases the total profit of the
producers by 47.7% as compared to the benchmark approach. Approach 2 is designed to
reduce the inc-dec game by setting the price in the day-ahead and real-time markets in a
similar way, which reduces arbitrage opportunities. Indeed, we observe that in Approach 2,
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Table 8: Overloaded volume in line 1-2 and the counter-traded volume in the real-time market for Approach 1

Scenario Overloaded volume Scenario Counter-traded
ω in Line 1-2 (MW) s|ω volume (MWh)

ω1 32.1
s1|ω1 49.4
s2|ω1 48.6

ω2 34.6
s1|ω2 52.3
s2|ω2 51.2

Table 9: The profit of each producer for each real-time pricing approach, A1: Approach 1, A2: Approach 2,
BA: Benchmark approach, A2-1: First SPNE in Approach 2

Expected profit ($/h) Expected profit ($/h) Expected profit ($/h)
(in the day-ahead market) (in the real-time market) (Total)

u1 u2 u3 u1 u2 u3 u1 u2 u3

A1 7.5 48.6 21.1 85.7 240 0 93.2 288.5 21.1

A2-1 0 206.1 21.1 0 29.2 15.4 0 235.3 36.5

A2-2 0 0 21.1 0 0.8 15.4 0 0.8 36.5

BA 0 234.2 0 10.1 28.1 0.4 10.1 262.3 0.4

the day-ahead dispatches do not overload any line in the network, when the producers bid
their strategic day-ahead bids (A2) or their marginal costs (WALZ) to the day-ahead market.
This causes a significant decrease in the profit of u1 in Approach 2 compared to its profit
in Approach 1. Similarly, we see in Table 10 that total profit for Approach 2 is similar to
the benchmark approach for SPNE in A2-1. For SPNE in A2-2, Approach 2 could even have
significantly lower total profit compared to nodal pricing.

Table 10: The production costs, the total profit of all producers and the switching cost for each real-time pricing
approach, DAM: Day-ahead market, RTM: Real-time market, WAL: Naive competitive bidding in BA, WALZ:
Naive competitive bidding in A2

Production cost Energy-only Switching cost Total production Total profit of
in the DAM production cost in the RTM cost all producers

($/h) in the RTM ($/h) ($/h) ($/h) ($/h)

WAL 2246.9 107.1 104 2354 1.3

WALZ 2271.9 85.6 100.9 2357.5 6.3

A1 2421.9 771.3 828.4 3193.2 402.9

A2-1 2271.9 85.6 100.9 2357.5 271.8

A2-2 2271.9 99.1 107.7 2371 37.4

BA 2332.2 91.4 98 2423.6 272.7

Strategic bidding can also lead to inefficiences, e.g. higher (true) production costs. Table
10 presents the production cost in the day-ahead and real-time markets for each approach. The
production cost in the day-ahead market is the production cost corresponding to the day-ahead
dispatch. The real-time production cost is an extra cost due to real-time deviations from the
day-ahead dispatch. We divide the real-time cost into two parts: 1) an energy-only cost due
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to the extra energy that is produced in real-time and 2) a ramping or switching cost (SWC)11.
The benchmark approach with nodal pricing has roughly the same total production cost as

Approach 2, both for A2-1 and A2-1. In its turn, Approach 2 has a much lower total production
cost than Approach 1. One reason for this is that the switching cost is about 8 times higher in
Approach 1. The inc-dec game is very pronounced for Approach 1. This drastically increases
the traded real-time volume and therefore also the switching costs.

Inefficiences are less problematic for A2 and BA. Strategic bidding in the benchmark ap-
proach increases the toal production cost by 3% compared to the case WAL. Depending on
equilibrium selection, strategic bidding in Approach 2 increases the total production cost by
0-0.6% compared to the case WALZ. The latter inefficiences seem small, given that mark-ups
are significant. One reason for the small inefficiences is that in our model, with inelastic de-
mand, mark-ups only lead to inefficiences when they change the merit order. Another reason is
that we assume the Colombian bidding format with one bid price per plant. It is known from
the previous literature, Holmberg and Wolak (2018) and Anderson and Holmberg (2018), that
markets can be fully efficient under those two circumstances, even if producers exercise market
power.

In this example system, each producer has 3x3=9 (3 up-regulation, 3 down-regulation)
strategies for each scenario ω. We consider 2 wind-production scenarios in the day-ahead
market, so each producer has 9x9=81 possible strategies when deciding on the real-time bid.
Each producer also has three possible strategies for its day-ahead bid. Thus, in the two-stage
game, each producer has 81x3=243 possible strategies. Since we have 3 producers in the
example system, the total number of bid combinations is 14,348,907. If we iterate over each
of these combinations and each solution takes hypothetically 1 second, the computation of the
SPNE will take approximately 166 days. However our MILC model can compute the SPNE in
moderate time.

6. IEEE 24-node example system

An original version of the IEEE 24-node example system is presented by Grigg et al. (1999).
In this section, we modify this example somewhat and use it to compare the zonal pricing
designs and demonstrate our proposed model on a larger system. We consider three zones.
Zone 1 aggregates nodes 15-23. Zone 2 aggregates nodes 11-14 and 24. Zone 3 aggregates
nodes 1-10. The data related to the producers is presented in Table 11.

The transmission capacity of the lines between nodes 1-2, 3-24, 14-16 and 21-22 are set to
200 MW, 220 MW, 220 MW and 425 MW, respectively. For the day-ahead market, the system
operator sets the flow limits between zones 1 and 2 to 400 MW and between zones 2 and 3 to
820 MW.

Five wind farms are connected to nodes 8, 11, 12, 16 and 23. One wind-generation scenario
(Wn,ω1=171 MW) is considered in the day-ahead market. The deviation from the net demand
(∆Wn,s|ω) is modeled with 11 scenarios. The coefficient (Υs) for each scenario is shown in Table
12. The deviation from the net demand in each scenario is calculated by ∆Wn,s|ω1

= ΥsWn,ω1 .
Scenarios s1, s2, s3, s4, and s5 represent the positive-imbalance scenarios, scenario s6 represents

11We define switching cost as the dispatch in the real-time market times the difference between the marginal
regulation costs and the marginal cost. Mathematically, we can express it as SWC =

∑
ω,s σs|ω(

∑
u((Cup

u −
Cu)gupu,s|ω + (Cu − Cdn

u )gdnu,s|ω)).
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Table 11: Unit data for IEEE 24-node system

Unit node C Cup Cdn Gu
($/MWh) ($/MWh) ($/MWh) (MW)

u1 1 19 27.1 11 500

u2 2 15.5 23.5 11.5 400

u3 13 14.5 22.5 9.5 450

u4 21 13 20.5 7 1100

u5 22 13.5 21.5 8.5 1100

Table 12: The net demand deviation scenarios, Υs: Coefficient, ∆Wn,s|ω1
= ΥsWn,ω1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Υs 0.18 0.15 0.12 0.09 0.06 0 -0.06 -0.09 -0.12 -0.15 -0.18

the no-imbalance scenario and scenarios s7, s8, s9, s10, and s11 represent the negative-imbalance
scenarios. We assume that each producer has 3 bidding actions for day-ahead price bids: 0%,
10% mark-up and 10% mark-down. For up- and down-regulation bids in the real-time market,
we allow for 0%, 10%, 20% mark-up and 0%, 10%, 20% mark-down, respectively.

Table 13: The SPNE search in the subintervals, A1: Approach 1, A2: Approach 2, BA: Benchmark approach,
SI: Subinterval, LB: Lower bound, UB: Upper bound, No SPNE: No SPNE is found in this subinterval, SPNE:
SPNE is found in this subinterval

LB of SIq UB of SIq A1 A2 BA

SI1 25389.7 27928.7 No SPNE* No SPNE* No SPNE*

SI2 27928.7 30721.6 No SPNE No SPNE No SPNE

SI3 30721.6 33793.7 No SPNE SPNE SPNE

SI4 33793.7 37173.1 SPNE No SPNE No SPNE

SI5 37173.1 40890.4 No SPNE No SPNE No SPNE*

SI6 40890.4 44979.5 No SPNE* No SPNE* No SPNE*

SI7-SI11 44979.5 71617 No SPNE* No SPNE* No SPNE*

We apply methodology 2 to tackle multiple SPNE. The lower and upper bound of the SPNE
band is calculated as 25389.7 $/h and 71617 $/h for all four approaches. The tolerance is set
to 10% and the SPNE band is split into 11 subintervals. Then we run the pre-feasibility-check
method in all subintervals. Table 13 shows that, according to the pre-feasibility check, there
are no SPNE in the subintervals marked by *. These subintervals are omitted and no SPNE
is searched. In Approach 1 and Approach 2, we search a representative SPNE in subintervals
between SI2-SI5. For Approach 1, we find a representative SPNE in SI4, but not in SI2, SI3,
SI5 and SI6. For Approach 2 and the benchmark approach, a representative SPNE in SI3 is
found.

Table 14 shows that in Approach 1, u5 chooses a day-ahead bid which is lower than its
marginal cost and becomes the cheapest producer in the market. We observe in Table 15 that
the day-ahead dispatches in Approach 1 overload the intra-zonal line between nodes 21 and

*The pre-feasibility check reports that there is no SPNE in this subinterval.
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Table 14: The representative SPNE in each approach, A1: Approach 1, A2: Approach 2, BA: Benchmark
approach, ĉu: Day-ahead price bid ($/MWh), (ĉupu,ω1

, ĉdnu,ω1
): Up- and down-regulation price bid ($/MWh,

$/MWh)

u1 u2 u3 u4 u5

A1
ĉu 20.9 17.05 15.95 14.3 12.15

(ĉupu,ω1 , ĉ
dn
u,ω1

) (27.1,11) (25.85,11.5) (27,9.5) (24.6,7) (21.5,6.8)

A2
ĉu 20.9 17.05 15.95 14.3 14.85

(ĉupu,ω1 , ĉ
dn
u,ω1

) (32.52,9.9) (23.5,9.2) (22.5,7.6) (22.55,5.6) (25.8,6.8)

BA
ĉu 20.9 17.05 15.95 14.3 14.85

(ĉupu,ω1 , ĉ
dn
u,ω1

) (32.52,9.9) (28.2,9.2) (27,8.55) (24.6,6.3) (25.8,6.8)

22 by 233.5 MW. To relieve this overloading, the volumes reported in Table 15 are counter-
traded in the real-time market. In Approach 1, producers u4 and u5 provide the necessary
up-regulation (u4) and down-regulation (u5) for counter-trading. In contrast, we observe that
no transmission line is overloaded when the producers bid their strategic day-ahead bids (A2)
or their marginal costs (WALZ) to the day-ahead market in Approach 2.

Table 15: The counter-traded volume in the real-time market for Approach 1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Counter-traded
127.6 166.6 205.5 244.4 283.4 361.3 353.6 349.8 346.8 342.2 338.4

volume (MWh)

Table 16: The profit of each producer in each real-time pricing approaches; πu ($/h): Profit in the day-ahead
market, Φu ($/h): Expected profit in the real-time market, ∆u ($/h): Total profit in both markets

Approach 1 Approach 2 Benchmark approach

πu Φu ∆u πu Φu ∆u πu Φu ∆u

u1 43.7 0 43.7 43.7 18.5 62.2 0 15 15
u2 2160 0 2160 2160 83.2 2243.2 470.1 322.8 792.9
u3 2880 0 2880 2880 0 2880 1192.9 0 1192.9
u4 22.1 1481.2 1503.3 2035 0 2035 2054.6 0 2054.6
u5 880 614.2 1494.2 23 199.6 222.6 184.5 58.1 242.6

The inc-dec game is mainly profitable for export-constrained producers. Table 16 shows
that u5 (located at the export-constrained node) increases its total profit by at least five times
in Approach 1, compared to the benchmark approach. But the inc-dec game reduces the total
profit of u4 (located at the import-constrained node) by 24.6% in Approach 1 compared to
the benchmark approach. The total profit of producers is lower in Approach 2 in comparison
to Approach 1. The benchmark approach has significantly lower profits compared to both A1
and A2.

Table 17 illustrates that Approach 2 has the lowest total production cost and Approach 1
has the highest total production cost among the zonal market designs. Employing Approach 2
in the real-time market reduces the total production cost by 13.5% as compared to Approach
1. Again this can be partly explained by that the switching cost is much higher in Approach
1, because of the inc-dec game. We observe that the total production cost in Approach 2 and

27



in WALZ are roughly the same.

Table 17: The production costs, the total profit of all producers and the switching cost for real-time pricing
approach, DAM: Day-ahead market, RTM: Real-time market, WAL: Naive competitive bidding in BA, WALZ:
Naive competitive bidding in A2

Production cost Energy-only Switching cost Total production Total profit of
in the DAM production cost in the RTM cost all producers

($/h) in the RTM ($/h) ($/h) ($/h) ($/h)

WAL 27371.6 579.3 569.6 27950.9 1123.4

WALZ 27691.6 467.6 559.7 28159.2 3975.0

A1 28233 4335.2 4515.8 32568.2 8081.2

A2 27691.5 472.8 601.5 28164.3 7443.0

BA 27371.6 579.3 569.6 27950.9 4298.1

7. Conclusion

This paper applies a two-stage game to study imperfect competition and arbitrage strategies
of producers in zonally-priced electricity markets with a day-ahead and a real-time market. The
two-stage game is mathematically formulated as a two-stage stochastic EPEC and it is recast
into a two-stage stochastic MILC model which can be solved by the commercial solvers. The
multiple-SPNE issue is tackled by two methodologies. In the first methodology, we find all
SPNE using an iterative procedure. This methodology is relevant in small networks where
the computation of a SPNE is possible in short time. In methodology 2, we build a SPNE
band which consists of all SPNE. Then the SPNE band is divided into several subintervals and
a representative SPNE is found in each subinterval. This methodology is relevant for larger
networks. The proposed MILC model and the methodologies to tackle the multiple-SPNE issue
are applied to the 6-node and IEEE 24-node example systems.

Our numerical results illustrate that the inc-dec game can lead to large production inef-
ficiencies and large profits for producers in zonal electricity markets in comparison to nodal
pricing. However, our results also illustrate how the inc-dec game can be mitigated, at least in
our examples.

We believe that the inc-dec game can be mitigated by making the real-time market design
more similar to the day-ahead zonal design, which should reduce arbitrage opportunities. This
can for example be done by minimizing real-time price differences within each zone. This may
not always be feasible in practice, but in the cases that we simulate, we are able to reduce
price differences all the way down to zero. In the networks that we simulate, we do this by
simply constraining real-time price differences to be zero within each zone. This corresponds
to optimal zonal pricing. All else equal (including identical bids), such a constraint leads to an
inefficient dispatch. But if the inc-dec problem is severe, then overall inefficiency can improve
if bidding behaviour changes and becomes less problematic.

We simulate both the 6-node and 24-node networks for a zonal day-ahead market and pay-
as-bid in real time. The inc-dec game is severe in both networks. In both cases the inc-dec
game is mitigated, and overall efficiency significantly improved, after introducing optimal-zonal
pricing in the real-time market.
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Appendix A. The details of replacement of complementary slackness conditions
by strong duality conditions

Let’s consider the bidding problem of a producer in the real-time pricing approach in
Approach 1. It is modeled in bilevel optimization problem (A.1).

Maximize
ĉupu,ω ,ĉdnu,ω ,t

up
u,ω,a,tdnu,ω,a

Es|ω[φu,s|ω] =
∑
s|ω

(ĉupu,ω − Cupu )gupu,s|ω + (Cdnu − ĉdnu,ω)gdnu,s|ω (A.1a)

Subject to:

ĉupu,ω =
∑
a

Bup
a t

up
u,ω,aC

up
u , ĉdnu,ω =

∑
a

Bdn
a tdnu,ω,aC

dn
u (A.1b)

tupu,ω,a, t
dn
u,ω,a ∈ {0, 1} (A.1c)∑

a

tupu,ω,a = 1,
∑
a

tdnu,ω,a = 1 (A.1d)

where{gupu,s|ω, g
dn
u,s|ω, vn,s|ω} ∈

{
argMinimize

gup
u,s|ω ,g

dn
u,s|ω ,vn,s|ω

∑
s|ω,u

σs|ω(ĉupu,ωg
up
u,s|ω − ĉ

dn
u,ωg

dn
u,s|ω) (A.1e)

Subject to:∑
u

(gu,ω + gupu,s|ω − g
dn
u,s|ω) =

∑
n

(vn,s|ω +Dn,ω −∆Wn,s|ω) : (αs|ω) ∀s|ω (A.1f)

Fk −
∑
n

Hk,n(
∑
u

Ψu,n(gu,ω + gupu,s|ω − g
dn
u,s|ω)− vn,s|ω −Dn,ω + ∆Wn,s|ω) ≥ 0 :

(µk,s|ω), ∀k, s|ω (A.1g)

0 ≤ gupu,s|ω ≤ (Gu − gu,ω) : (κu,s|ω, βu,s|ω) ∀u, s|ω (A.1h)

0 ≤ gdnu,s|ω ≤ gu,ω : (ψu,s|ω, ϕu,s|ω) ∀u, s|ω (A.1i)

0 ≤ vn,s|ω ≤ W̄n,ω + ∆Wn,s|ω : (θn,s|ω, χn,s|ω)

}
(A.1j)

The inner optimization problem is in (A.1e)-(A.1j). The complementary slackness condi-
tions of (A.1e)-(A.1j) is set out in (A.2).

µk,s|ω
(
Fk −

∑
n

Hk,n(
∑
u

Ψu,n(gu,ω + gupu,s|ω − g
dn
u,s|ω)− vn,s|ω−

Dn,ω + ∆Wn,s|ω)
)

= 0, ∀k, s|ω (A.2a)

κu,s|ωg
up
u,s|ω = 0, ∀u, s|ω (A.2b)

βu,s|ω(Gu − gu,ω − gupu,s|ω) = 0, ∀u, s|ω (A.2c)

ψu,s|ωg
dn
u,s|ω = 0, ∀u, s|ω (A.2d)

ϕu,s|ω(gu,ω − gdnu,s|ω) = 0, ∀u, s|ω (A.2e)

θn,s|ωvn,s|ω = 0, ∀n, s|ω (A.2f)

χn,s|ω(W̄n,ω + ∆Wn,s|ω − vn,s|ω) = 0, ∀n, s|ω (A.2g)

We can prove that the strong duality condition in (B.1e) is the exact reformulation of the
complementary slackness conditions in (A.2) using the following steps below:

Step 1 Multiply both sides of stationary conditions (B.1a), (B.1b) and (B.1c) by gupu,s|ω, gdnu,s|ω
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and vn,s|ω, respectively. Sum the left-hand sides and obtain an equality which has a
right-hand side value zero.

Step 2 Sum the both sides of all equalities in (A.2) and obtain an equality which has a right-
hand side value zero.

Step 3 Subtract left-hand side of the equality obtained in Step 1 from the equality obtained
in Step 2.

Step 4 From (A.1f), replace
∑

n:u(gupu,s|ω − g
dn
u,s|ω)− vn,s|ω by Dn,ω −∆Wn,s|ω −

∑
n:u gu,ω. The

resulting equality is exactly the same as (B.1e).

Given the day-ahead decisions, Table A.18 shows the bilinear terms and the number of
constraints in two cases: (a) The KKT condition with complementary slackness conditions and
(b) the KKT conditions with strong duality condition.

Table A.18: The bilinear terms and the number of constraints in Case (a) (KKT conditions with complemen-
tary slackness conditions) and in Case (b) (KKT conditions with strong duality condition), K: Number of
transmission lines, U : Number of producers, N : Number of nodes, ΩxS: Number of imbalance scenarios.

Location Bilinear terms #constraints #bilinear
terms

Case (a)

(A.1a)
ĉupu,ωg

up
u,s|ω -*

S

ĉdnu,ωg
dn
u,s|ω S

(A.2a)
µk,s|ω

∑
nHk,n(

∑
u Ψu,ng

up
u,s|ω)

KxΩxS 3xKxΩxSµk,s|ω
∑

nHk,n(
∑

u Ψu,ng
dn
u,s|ω)

µk,s|ω
∑

nHk,nvn,s|ω
(A.2b) κu,s|ωg

up
u,s|ω UxΩxS UxΩxS

(A.2c) βu,s|ωg
up
u,s|ω UxΩxS UxΩxS

(A.2d) ψu,s|ωg
dn
u,s|ω UxΩxS UxΩxS

(A.2e) ϕu,s|ωg
dn
u,s|ω UxΩxS UxΩxS

(A.2f) θn,s|ωvn,s|ω NxΩxS NxΩxS

(A.2g) χn,s|ωvn,s|ω NxΩxS NxΩxS

Case (b)
(A.1a)

ĉupu,ωg
up
u,s|ω -*

S

ĉdnu,ωg
dn
u,s|ω S

(B.1e)
ĉupu,ωg

up
u,s|ω ΩxS

UxΩxS

ĉdnu,ωg
dn
u,s|ω UxΩxS

It can be seen from Table A.18 that replacing the complementary slackness conditions by
the strong duality conditions reduces the total number of constraints from (K+4U+2N)xΩxS
to ΩxS. Moreover the number of bilinear terms reduces from (3K + 4U + 2N)xΩxS+2S to
2UxΩxS+2S.

*Note that (A.1a) is the objective function of (A.1). Hence, it is not counted as a constraint.
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Appendix B. The KKT conditions of (1) and (6)

Appendix B.1. The KKT conditions of (1)

The KKT conditions of (1) consists of the primal feasibility conditions, the stationary con-
ditions, the dual feasibility conditions and the strong duality conditions. The primal feasibility
conditions are illustrated in (1b)-(1f). The stationary conditions, the dual feasibility condi-
tions and the strong duality conditions are illustrated in (B.1a)-(B.1c), (B.1d) and (B.1e),
respectively.

− σs|ω ĉupu,ω + αs|ω −
∑
n

Ψu,n

∑
k

Hk,nµk,s|ω + κu,s|ω − βu,s|ω = 0, ∀u, s|ω (B.1a)

σs|ω ĉ
dn
u,ω − αs|ω +

∑
n

Ψu,n

∑
k

Hk,nµk,s|ω + ψu,s|ω − ϕu,s|ω = 0, ∀u, s|ω (B.1b)

− αs|ω +
∑
k

Hk,nµk,s|ω + θn,s|ω − χn,s|ω = 0, ∀n, s|ω (B.1c)

µk,s|ω, κu,s|ω, βu,s|ω, ψu,s|ω, ϕu,s|ω, θn,s|ω, χn,s|ω ≥ 0 (B.1d)∑
u

σs|ω(−ĉupu,ωg
up
u,s|ω + ĉdnu,ωg

dn
u,s|ω)− (αs|ω(

∑
u

gu,ω −
∑
n

(Dn,ω −∆Wn,s|ω))+∑
k

µk,s|ω(Fk −
∑
n

Hk,n(
∑
u

Ψu,ngu,ω −Dn,ω + ∆Wn,s|ω)) +
∑
u

(ϕu,s|ωgu,ω+

βu,s|ω(Gu − gu,ω)) +
∑
n

χn,s|ω(Wn,ω + ∆Wn,s|ω)) = 0, ∀s|ω (B.1e)

Appendix B.2. The KKT conditions of (6)

The KKT conditions of (6) consists of the primal feasibility conditions, the stationary con-
ditions, the dual feasibility conditions and the strong duality conditions. The primal feasibility
conditions are illustrated in (6b)-(6i). The stationary conditions, the dual feasibility condi-
tions and the strong duality conditions are illustrated in (B.2a)-(B.2l), (B.2m) and (B.2n),
respectively.

− σs|ω ĉupu,ω + λAs −
∑
n

Ψu,n

∑
k

Hk,nλ
B
k,s + λCu,s|ω − λ

D
u,s|ω + λMu,s|ω ĉ

up
u,ω−

Cupu λMu,s|ω = 0, ∀u, s|ω (B.2a)

σs|ω ĉ
dn
u,ω − λAs +

∑
n

Ψu,n

∑
k

Hk,nλ
B
k,s + λEu,s|ω − λ

F
u,s|ω − λ

M
u,s|ω ĉ

dn
u,ω+

Cdnu λMu,s|ω = 0, ∀u, s|ω (B.2b)

− λAs +
∑
k

Hk,nλ
B
k,s + λGn,s|ω − λ

H
n,s|ω = 0, ∀n, s|ω (B.2c)∑

u

(λIu,s|ω − λ
J
u,s|ω)−

∑
n

(∆Wn,s|ω + λKn,s|ω + λLn,s|ω/σs|ω) = 0, ∀s (B.2d)∑
n

Hk,n(∆Wn,s|ω −Dn,ω + λKn,s|ω + λLn,s|ω/σs|ω +
∑
u

Ψu,n(gu,ω − λIu,s|ω + λJu,s|ω))

− Fk + λNk,s|ω = 0, ∀k, s|ω (B.2e)

λIu,s|ω + λOu,s|ω = 0, ∀u, s|ω (B.2f)
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gu,ω −Gu − λIu,s|ω + λMu,s|ω(Gu − gu,ω)/σs|ω + λPu,s|ω = 0, ∀u, s|ω (B.2g)

λJu,s|ω + λQu,s|ω = 0, ∀u, s|ω (B.2h)

− gu,ω − λJu,s|ω + λMu,s|ωgu,ω/σs|ω + λRu,s|ω = 0, ∀u, s|ω (B.2i)

λKu,s|ω + λSu,s|ω = 0, ∀n, s|ω (B.2j)

− (Wn,ω + ∆Wn,ω, s)− λKn,s|ω + λTn,s|ω = 0, ∀n, s|ω (B.2k)∑
n

−Ψ̃n,zλ
L
n,s|ω = 0, ∀z, s|ω (B.2l)
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H
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M
u,s|ω, λ

N
k,s|ω, λ

O
u,s|ω, λ

P
u,s|ω, λ

Q
u,s|ω,

λRu,s|ω, λ
S
n,s|ω, λ

T
n,s|ω ≥ 0 (B.2m)∑

u

σs|ω(−ĉupu,ωg
up
u,s|ω + ĉdnu,ωg

dn
u,s|ω)− (αs|ω(

∑
u

gu,ω −
∑
n

(Dn,ω −∆Wn,s|ω))+∑
k

µk,s|ω(Fk −
∑
n

Hk,n(
∑
u

Ψu,ngu,ω −Dn,ω + ∆Wn,s|ω)) +
∑
u

(ϕu,s|ωgu,ω+

βu,s|ω(Gu − gu,ω)) +
∑
n

χn,s|ω(Wn,ω + ∆Wn,s|ω))− (λAs (
∑
u

gu,ω−∑
n

(Dn,ω −∆Wn,s|ω)) +
∑
k

λBk,s|ω(Fk −
∑
n

Hk,n(
∑
u

Ψu,ngu,ω −Dn,ω+

∆Wn,s|ω)) +
∑
u

(λDu,s|ω(Gu − gu,ω) + λFu,s|ωgu,ω − σs|ω ĉ
up
u,ωλ

I
u,s|ω+

σs|ω ĉ
dn
u,ωλ

J
u,s|ω) +

∑
n

λHn,s|ω(Wn,ω + ∆Wn,s|ω)) = 0, ∀s|ω (B.2n)
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