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SUMMARY

Technical change is estimated within a frontier production func

tion allowing neutrally variable scale elasticity. To facilitate
an analysis of structural change an average function is also es

timated.

The results give little support for a hypothesis of neutral tech
nical progress but rather a pattern of technical progress due to

labour saving technical change increasing marginal productivity
of capital relative to labour. The'comparison between best

practice and average-practice estimates also reveals an increased
difference between best-practice and average practice techniques.

Numerical measures of the distance between best-practice and

average practice are computed. Moreover, Salteris measures of
bias and technical advance are also generalized and'computed.
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l . INTRODUCTION

The purpose of this paper is to put forward some results from
a research project in industria1 structure and structural change
(in the spi rit of Johansen [1972]) based on time series data from
Swedish dairy plants.

To bring out the structure of the industry both average, (AP), and

bets-practice, (BP), production functions are estimated. The use
of combined cross-section - time-series data allows investigating

technical change both for the AP and the BP functions. (In the

literature (as far as we know) no explicit attempt to estimate
technical change within a frontier function has been made (see
e.g. Aigner &Chu [1968], Carlsson [1972], Timmer [1971]). The

functional form chosen is the homothetic function, which permits
the study of scale economies. (The programming estimation
method of Aigner &Chu [1968] is generalized to handle this spe
cification. )

2. ESTIMATlON OF BEST PRACTICE FUNCTIONS

When estimating frontier functions three general approaches are

found in the literature (see Johansen [1972] chapter 8 for a cri

tica1 evaluation of some of the approaches): i) utilizing the
whole sample, but restricting the observed points in the output

input space to be on or below the frontier, ii) eliminating
"inefficient" observations and estimating an "average" frontier

function from the subset of efficient points, iii) a110wing
some observations to be above the frontier either bye1iminating

a certain percentage of the most efficient observations (fittinq
a "probabi1istic" frontier a la Timmer [1971]) or specify both

an efficiency distribution proper and pure random variation of
efficiency (see Meeusen & van den'Broeck [1976]).

We will here utilize approach i) and generalize the programming

method in Aigner &Chu [1968] to allow for neutra11y variable
returns to scale.
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The best-practtce production function is pre-specified to be a

homothetic function of the general form

( l )

where x = rate of output (single ware production), v = vector of

inputs, G(x) a monotonically increasing function, and g(v,t) ho

mogeneous of degree l in v.

As regards the generation of the actual data several schemes

can be envisaged. One hypothesis is that the production struc

ture is of the putty-clay type (Johansen [1972J) with simple

Leontief (limitational) ex post functions. To simulate the actual

performance of plants an efficiency term with respect to the uti
lization of the inputs distributed in the interval (0,1) can be

i nt roduced mu l t i pl i cat i ve ly on the r. h. s . of Eq. (l) . We wi 11
adopt this scheme and in addition assume that the plants are

operated on the lI efficient corners" of the isoquants. Ex post

the plant managers can only choose the rate of capacity utiliza

tion. With these assumptions cancern about "slack" in fulfilling

marginal conditions with respect to inputs is not relevant.

As regards the estimation procedure a key question is whether

a specific distribution of the efficiency terms is assumed or not.

If sufficient information is available to postulate a specific

distribution the natural procedure is to derive maximum likelihood

estimates as pointed out in Afriat [1972]. Without a specific

efficiency distribution there are several ways to formulate the

estimation problem as analyzed in Afriat [1972]. In this paper

we will follow this latter approach. (Specific efficiency distri

butions will be pursued in a forthcoming paper.)

A natural objective -- with the information available is that

the observations should be close to the frontier in some sense.

In order to keep the estimation problem as simple as possible it is

here chosen to minimize the simple sum of deviations from the

frontier with respect to input utilization after logarithmic trans-
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formation, subject to on or below frontier eonstraints.

As regards the form of the production function the following spe

eifieation is employed (below called the Zellner-Revankar, Z/R,

speeifieation, ef. Zellner-Revankar [1969]):

X
ae Sx =_ Y3t aJ.+YJ.t

Ae ·n v.
j J

(2)

Technieal ehange is aceounted for by specifying the possibility of

ehanges in the eonstant term, A and the kernel elastieities, a.
J

for labour, L, and capital ,K. With this speeifieation the esti-

mation problem turns out to be a standard linear programming

problem. The objeetive funetion to be maximized becomes:

T n
L L {S . x.(t) + a . ln x.(t) - ln A - y

3
t

t=O i=l ~ ~

The signs of the trends are preselected to the most probable signs.

(This is unnecessary from a LP-technical point of view.) Note that

although the objective function is linear in all the unknown para

meters, the specification yields satisfactory flexibility as re

gards technical change.

The reader should observe that this is a deterministic calculation

of the frontier. Its calculated parameters cannot be given a tra

ditional stochastic interpretation.

Concerning the constraints of the LP-model, the expression within

the brackets in (3) constitutes (T+l)·n constraints securing the

observed input points to be on or below the frontier:

- (a + Y t) . ln K (t) < O·2 2 i =, i=1 , ... ,n; t=O, ... , T. (4)
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In addition, we have the homogeneity constraint

La. (O) = l.
j J

(5)

Since there are only two trends in the kerne1 function Eq. (5)

imp1ies the restriction:

t l, ... , T (6)

In addition, we want the kernel elasticities including trends to

be restricted to the interva1 (O, l):

a -, . T > O
l 1

a +, ·T<l
2 2 =

Final1y we have the restrictions

(Note that 1n A is not restricted to non negative values.)

3. THE ESTIMATION OF THE AVERAGE FUNCTION

(7)

(8)

(9)

With the assumptions adopted in this paper some care must be

taken concerning the interpretation of an average function. If

serves here on1y the function of giving an Ilaveragell picture of

the ex post re1ationship between inputs and outputs across plants

operating with different fixed input coefficients and capqcity

1ev~ls. The average function is specified to have the same func

tional form as the best-practice function shown in Eq. (2). (Note

that the scale function is assumed to be unchanged over time.)

This facilitates an analysis of structural change, but it must be

noted that such an AP-~pecification must on1y be interpreted as'

convenient approximation to the actual relationship generated by

adding new capacity according to the estimated BP-function.
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As regards the estimation procedure we now start out with the

assumption that deviations from the average function are simu

lated by introducing a random variable N(O,a), rep1acing the

efficiency term in the BP-function. Maximum likelihood estimates

are then obtained by using the adapted non-linear Box &Cox

[1964] method outlined in F~rsund [1974]. The essence of the

method is to estimate the parameters on the r.h.s. of Eq. (2)

af ter logarithmic transformation by OlS for trial va1ues of a

and 0 until a maximum of the likelihood function in question

is reached.

4. THE DATA

In the empirica1 part of this study we have uti1ized primary

data for 28 individua1 dairy plants during the period 1964-73.

We have received all data from SMR (Svenska mejeriernas riks

förening), a central service organization for the dairies in

Sweden.

The milk production process can be divided into two stages:

general milk processing, and packaging. The data refer to the

first important stage in the mi1k production process, name1y

general milk processing. It includes the reception from cans or

tanks of all milk, its storage and processing including pasteur

izing and separation. Normally this stage defines the capacity

of the plant. It is often treated as a separate unit by dairy

engineers when discussing e.g. economies of scale and other
aspects of costs.

Milk is regarded as ahomogeneous product which is a very realistic

assumption (in a very literal sense; milk is homogenized). Thus

output is measured in tons of mil~ delivered to the plant each

year. The amount of milk received is equal to the amount produced.

There is no measurable waste of milk at this stage. According to

SMR any difference is due to measurement errors. (Differences

were of the magnitude of kilos.)
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The labour input variable is defined as the hours worked by produc

tion workers including technical staff usually consisting of one

engineer.

Capital data of buildings and machines are of the user-cost type,

including depreciation based on current replacement east, cost of

maintenance and rate of interest. They have been centrally ac

counted for by S~1R according to the same principles for all plants
and after regularly capital inventory and revaluations of engineers

from SMR. Nate that this capital measure is proportional to the

replacement value of capital , which can serve as a measure of the

volume of capital, (see Johansen &S~rsveen [1967]). As regards
the central question of capacity utilization we have investigated

a measure based on the monthly maximum amount of milk received

compared with the yearly average. This ratio is fairly stable for

each plant over time, and the differences between plants are not

very great. In consequence we have not corrected for capacity uti

lization. The increasing output over time for most of the plants

supports the assumption.

5. THE EMPIRICAL RESULTS

The estimates of the parameters of the frontier and average produe

tian function are shown in Table l and the figures below. As the

table reveals the trends in the marginal elasticities are impor

tant. In best-practice the trend in A is zero but becomes nega

tive in average practice. Optimal scale obtains a considerably

higher value in average practice than in best practice. The out

put of the largest plant has been in the interva1 111 000 - 141 000

tons in the period 1964-73, except 1965 when it was 77 000, while

the average output has increased from 29 000 to 39 000 tons. Taking

our results at face value there are gains to be riped by increasing

the average size of plants, but the gains are exaggerated by the

average function.
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Table 1. Estimates of the best-practice and the average practice

production function. Combined time-series cross-section
analysis. Estimates of the parameter~ of the production

function

B Y3t (a1-Y1t) (a2+Y2t)
xae x = Ae L . K

(t = O in 1964, t 9 in 1973)

Labour Trend L Capital
Constant Trend A e1asticity y .102 elasticity Optimal
term y .10 2 a1-Y1t l a2 + Y

2
t ~.105 scaleexln A 3

=Y .10 2
1964 1973 2 1964 1973 tonnes

Best
52 122prac- -8.17 O .70 .41 3.14 .30 .59 .13 l .7

tice

Ave-
rage -3.14 -6.83 .69 .37 3.62 .31 .63 .69 .40 76 610prac-
tice

The shape of the production functions and their deve10pment through
time are shown in Fig. 1. Cutting the production functions with a

vertica1 plane through the origin a10ng a factor ray one obtains
the c1assica1 textbook S~shaped graph of the frontier and average
production function.

When assessing the somewhat surprlslng resu1t above one shou1d
note the possibi1ities of systematic biases with the two estima

tion methods. Fig. l shows that the BP-function lies below the
AP-function for smalllevels of output (no observations are, in

fact, in this range). The BP-function is placed as close to the

observations as possible, observing the on or above restrictions,

including the observations of the smallest plants. The AP-func
tion cuts through the observations ~f the middle range plants

and lifts over the smallest while the BP-function has to be more
curved in order to obey the restrictions when minimizing the sum
of deviations. If engineering information could be obtained it
might well turn out that it is a misspecification to allow the
smallest plants to be on the frontier.
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The characteristics of technical advance can also be illustrated

in the input coefficient space (cf. Salter [1960] chapter 3) by

the development of the technically optimal scale curve which we

will call the efficiency frontier in the case of the best practice

function. See Figure 2. The efficiency frontier is the locus of

all points where the elasticity of scale equals one, (see Frisch
[1965] chapter 8), i.e., it is a technical relationship between

inputs per unit of output for production units of optimal scale.

Thus the efficiency frontier represents the optimal scale of the

frontier production function. (In Johansen [1972] p.2l the ef

ficiency frontier is referred to as the technique relation.) In

the input coefficient space the frontier or ex ante production
function defines the feasible set of production possibilities

while the technique relation defines the efficiency frontier to

wards the origin of this set. (This consideration has been elab

orated in detail in F~rsund [1971].)

In Figure 2 the labour saving bias of technical progress is re

flected in the change of the optimal scale curve and the efficiency

frontier. Changes of mi1k reception from cans to tanks and self

cleaning separators together with one storey buildings are elements

of this process of technical advance, and examples of labour saving

techniques.

In average practice ihe trend in A gets a negative sign. In spite

of this Figures l and 2 show that the average production function

shifts upwards and that the 'optimal. sca1e curve moves rapidly to

wards the ordinate axis and the origin, even though the optimal

scale function is constant.

Note also that in spite of a higher optimal scale in the average

function the efficiency frontiers are strictly closer to the

origin and the axis than the corresponding optimal sca1e curves.

A comparison between Figures and 2 illustrates two different

aspects of technica1 progress; on the one hand the development
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Figure l. The change in the frontier and average production

function through time.
Combined time-series cross-section analysis. The pro
duction function cut with a vertical plane through the

origin along a ray, (~Lo, ~Ko), LO = 15 000 and KO =
200 000
a Qx y 3t o al-YIt a 2+y2t

x e I-J = Ae (llL • (llK
o

)

The factor ratio corresponds to OA in Figure 2.
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O
0.2 0.4 0.6 0.8 l .O l .2 1.4 l .6 1.8 2.0 lJ
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Figure 2. The changes in the efficiency frontier and the average

optimal scale curve thro~gh time
Combined time-series cross-section analysis. Estimates
of the production function

with the efficiency frontier and optimal sca1e curve

Y3 t (eS )0,-1Ae . --- = ll-a

The observed input coefficients for the years 1964 (dots)
and 1973 (crosses) are p1otted.
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of the efficiency frontier and the optimal scale curve, on the
other hand the development of the production function surface for
a given factor ratio. While the most scale efficient plants are
close to the efficiency frontiers, the best-practice production
function reveals the most technically efficient plants which com
prise both small and large plants, i .e., also scale inefficient
plants. (These efficiency aspects will be treated in a separate

paper. Se also F~rsund and Hjalmarsson [1974].)

Measured along rays through the origin the distance between the
efficiency frontier and the optimal scale curve has increased

for all relevant factor ratios. Figure l also indicates that
the distance between best-practice and average practice has in

creased during the period.

A numerical measure of the distance between best-practice and
average practice can be obtained in several ways. (F~rsund and

Hjalmarsson [1974].) One measure utilized here is obtained by
comparing the observed average output with the output obtained
on the frontier function for the observed average amount of in
puts. This measure can be regarded as a measure of structural
efficiency and is denoted by S* and calculated according to the

formula

-o
s* = ~

x*
where XO is observed average production and x* is

obtained as the solution of xae Bx = Aon\fl LV~.)\aj_
j n ~J

In the same way the distance between the average plant and the
average function, S, can be obtained.

A measure, S, which measures the distance between the frontier and

average function can now be obtained by dividing S* with S.
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The numerical values of all three meaiu~es are presented in Table 2.

Table 2. The numerical values of S, S*, S

Year S S* S

1964 0.60 0.61 l .01

1965 0.55 0.59 1.08
1966 0.53 0.54 l .01

1967 0.50 0.51 l .01

1968 0.54 0.51 0.95

1969 0.49 0.49 l .01

1970 0.47 0.46 0.97

1971 0.46 0.47 1.03

1972 0.42 0.47 1. 12

1973 0.43 0.45 1.04

A clearly decreasing trend in the values of structural efficiency

can be observed. One positive reason for this is a rapid techno

logical progress which has increased the dispersion of the struc~

ture and the distance between the best practice and average prac

tice techniques. All plants in th~ sample have survived the en
tire period. During the same time a lot of dairies have been

closed down in Sweden. Thus the development of structural ef

ficiency for all plants might have been another than for the set
utilized here.

In order to improve the understanding of the technical change as

measured in Figures l and 2 we will follow SalterIs [1960] sug

gestions. He introduces three measures describing technical ad
vance:

i) Rate of technical advance measured by the relative change in
total unit cost for constant input prices;
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ii) Labour- or capital saving bias measured by relative change

in the optimal (cost minimizing) factor proportion for eon
stant input prices;

iii) Relative ch ange in the elasticity of substitution.

It might be of interest to note that the two first measures have

direct connections with the overall- technical-, and price ef

ficiency measures introduced by Farrell [1957].

When working with non-homogeneous production functions it is
natural to replace the unit isoquants in Farrell IS and Salteris

analysis with the efficiency frontiers or scale curves shown in

Figure 2. (See F~rsund [1974], F~rsund and Hjalmarsson [1974J
for interpretations of the Farre11 measures in a setting of in

homogeneous functions.) Let P in Figure 2 be the point of refer
ence on the efficiency frontier for the base period. QI is the

point on the efficiency frontier for a later period where the mar

ginal rate of substitution is the same. A measure analogous to

the Salter measure i) above, assuming eost minimization·, is then

the relative change in unit cost from P to QI, i.e., the unit

eost reduction possible when ehoosing techniques from two differ

ent ex ante functions for constant factor prices and rea1izing

optimal scale. (In our case the optimal scale output is constant

for the BP- and AP-functions.) This change is equal to OR/OP in

Figure 2 which is also the Farrell overall efficiency measure for

a production unit with observed input coefficients given by P rel

ative to the next periods effieieney frontier.

The Farrell overall measure, and correspondingly the Salter tech

nieal advance measure, can be split multiplicatively into teehni

cal efficiency, OQ/OP, and price effieiency, OR/OQ. In our eon

text this splitting shows the relative reduction in unit cost due

to the movement along a factor ray and the movement along the next

period efficiency frontier generated by biased technical change.

The efficiency frontiers or scale eurves used here are given by
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where ~1 = L/x and ~Z = K/x. The marginal rate of substitution
M~S, for this function is equal to the MRS for the production func

tian and equal to

-d~ aZ,t _ 1,t

d~l,t - a2,t

~2 t
-'-
~l,t

( 11 )

Salteris measure of bias is, in general:

(12 )

when keeping factor prices constant, or equivalently, keeping the

MRS constant. We then get:

(13 )

a /a
1,t Z,t

Since the elasticity of substitution is constant and equal to l

the relative change in the factor ratio (the MRS being constant)

is equal to the relative change in the MRS for a constant factor

ratio, b = ~2/~1:

MRS a Va__t_=~.b ~.b
MRS t +1 aZ,t a Z,t+l

a la1,t 2,t (14 )

Nate that the bias measure is here independent of the price- or

factor ratio chasen.
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The Salter teehnieal advanee measure, ehoosing the Laspeyre version
for eonvenienee, beeomes:

T ( dX/dKt)V rdX / dK ) ~l l a( ~ + ~. ~ +~ t _ , t+ .~
l,t+l 2,t+l \dX/~Lt l,t 2,t\dX/dL t -~ al,t+l

(15)

utilizing that MRS t = MRS t +1 and that the kernel funetion is homo
geneous of degree l. We find it more eonvenient here to start out

from a given faetor ratio, b = ~2/~1' rather than a priee ratio.
(This is, of eourse, equivalent.) From (10) we then have

-a -y t ( \l-a
~ = b 2,t 1\-1 e 3 ~
l,t l-a)

where b is the ehosen faetor ratio. Remembering (13) yields

(16 )

-a2 +1 -l -Y3(t+l) (es )1-a
E.: (D .b) ,t A e .-
l,t+l = 21 l-a

Inserting (16) and (17) in (15) introdueing a
1
,t

a2+Y2t yie1ds

(17 )

T
-y -y -a -y (t+1)

e 3 b 2 D 2 2
21

al-Ylt
al -yl (t+1) (18 )

The relative unit eost reduetion due to a movement a10ng a faetor

ray (Farrel1 teehniea1 effieieney) is

-y -y
(~l,t+l/~l,t)b=const. = e 3 b 2

The priee- or a110eative effieieney measure must then be

-a -y (t+l) al -y1t
D 22.

21 al -YI (t+1)

(19)

(20)
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We see the close connection between the relative unit cost re

duction due to the bias and the Salter bias measure with our
functionar specification. The "pure movement" measure, DQ/OP, is

here independent of time, but depends on the chosen factor ratio
(relative factor prices) and the trend parameters, while the bias

gain measure, OR/00, is independent of the factor ratio (relative
factor prices), but depends on time and the bias trend parameter.

The various measures corresponding to the estimates reported in

Table l are set out be1ow.

Table 3. Charaeterization of teehnical change by the movements
of the effieiency frontiers and optimal scale eurves:

Salter measures and Farrell-inspired splitting-up
Faetor ratio b = 13.33 corresponding to DA in Figure 2

Type Of measure

Teehnieal advanee:

AP

1964-65 1972-73

BP

1964-65 1972-73

Overall relative ehange
in unit eost on optimal
seale

Proportionate unit
cost change '

Sias unit eost ehange

Labour saving bias:

Relative change in
eapital-labour ratio

.9719

.9749

.9970

l .1786

.9722

.9749

.9972

1•1658

.9198

.9219

.9977

l .1565

.9200

.9219

.9980

1. 1365

a Note that since we operate with constant scale functions the
measures in Table 3 are independent of the output level chosen.

The sp1itting-up of the total reduetion in unit cost reveals that

although the yearly optimal increase of the capital-1abour ratio
is about 17 %for the AP- and 15 %for the BP-funetion this change

yields minimal eost reduetions, .3 to .2 %. It;s the displaeement

12
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of the frontier towards the orlg1n as measured a1nng a factor ray

(Farre11 technical efficiency of the past techno10gy relative to

the present) that results in significant reductions in unit costs;

about 3 %for the AP- and 8 %for the BP-function. The AP-func
tion has a somewhat stronger labour saving bias and a markedly

slower displacement of the optimal scale curve towards the origin

than the BP-function.

One possible economic explanation of this sustained difference

is that the total capacity of the sector has been increasing, at

a yearly average of 3.34 %only, implying an investment growth

rate too small to update average sector performance in pace with

best-practice performance.

Another explanation might be that technica1 progress is over

estimated by the frontier fu~ction durinq the la~t years of the
period because we have assumed constant trends during the whole

period. (The development of the marginal elasticities must be

broken sooner or later as the values are restricted to the inter

val (0,1). During the who1e period five plants is on the frontier,
two year O, one year l, one year 4 and one year 8. Thus in the

last year no plant is on the frontier and the slacks show that the
distance to the nearest plant is relatively large. On the other

hand the next last year one plant is on the frontier.
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