
Supplementary materials for this article are available online.Please go to http://tandfonline.com/r/JBES

Homothetic Efficiency: Theory and Applications

Jan HEUFER
Erasmus School of Economics and Tinbergen Institute, Erasmus University, 3000 DR Rotterdam, The Netherlands
(heufer@ese.eur.nl)

Per HJERTSTRAND
Research Institute of Industrial Economics, Box 5565, SE-102 15, Stockholm, Sweden (per.hjertstrand@ifn.se)

We provide a nonparametric revealed preference approach to demand analysis based on homothetic effi-
ciency. Homotheticity is widely assumed (often implicitly) because it is a convenient and often useful
restriction. However, this assumption is rarely tested, and data rarely satisfy testable conditions. To over-
come this, we provide a way to estimate homothetic efficiency of consumption choices. The method pro-
vides considerably higher discriminatory power against random behavior than the commonly used Afriat
efficiency. We use experimental and household survey data to illustrate how our approach is useful for
different empirical applications and can provide greater predictive success.
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1. INTRODUCTION

Homotheticity of consumer preferences is an important and
useful concept in both theoretical and empirical work. If a con-
sumer’s preferences are homothetic, we can deduce his entire
preference relation from a single indifference set. Furthermore,
testing data for homothetic utility maximization can provide
substantially stronger discriminatory power against the alterna-
tive hypothesis than testing for utility maximization alone.
Homotheticity has important implications in many different

fields. For example, it is important for the construction of
superlative index numbers (Diewert 1976). In particular, by
assuming homotheticity, superlative price indices are indepen-
dent of the consumer’s standard of living (i.e., utility level).
Thus, such indices are independent of the reference quantity
base and therefore representative for any welfare level. Sta-
tistical agencies construct consumer price indices (CPI) from
superlative price indices to provide measures of inflation in the
economy. Other fields in which homotheticity plays an impor-
tant role include the aggregation of consumer demand and the
existence of “community indifference curves,” the modeling
of separable preference structures and two-stage budgeting,
and it is also a common assumption in the international trade
literature.
This article provides measures of the homothetic efficiency of

a dataset using a revealed preference approach.We introduce the
homothetic efficiency index (HEI), which is a homothetic ana-
logue to the well-known Afriat efficiency index (AEI) and can
be interpreted as a measure of wasted income. The HEI general-
izes the index proposed by Heufer (2013) for the case with only
two goods. Just as the AEI, the HEI only reflects the least effi-
cient choice in a dataset. Therefore, to have a more detailed and
robust data analysis, we extend this measure by introducing the
more disaggregated homothetic efficiency vector (HEV), which
provides efficiency indices for each observed choice. We pro-
vide a strong theoretical justification for using the HEI and HEV

based on the concept of vector-rationalization recently intro-
duced by Halevy, Persitz, and Zrill (2015).
The revealed preference approach was originally developed

by Samuelson (1938), but the contributions of Varian (1982,
1983) were responsible for spurring its use and initiated a
substantial applied literature. Varian’s generalized axiom of
revealed preference (GARP) is widely used to test data for con-
sistency with utility maximization. Varian (1983) was the first to
provide tests for homotheticity and separability. Since then, con-
tributions analyzing revealed preference methods for separabil-
ity, such as Swofford andWhitney (1987, 1988, 1994) and Cher-
chye et al. (2015), and homotheticity, such as Knoblauch (1993),
Liu and Wong (2000), and Heufer (2013), have appeared. How-
ever, there remains considerable potential for revealed prefer-
ence techniques for conditions that extend beyond simple util-
ity maximization. Actual consumption data often violate cer-
tain conditions. For homotheticity, Alston et al. (1990) and Ser-
letis and Rangel-Ruiz (2005) found that Varian’s condition is
violated at every observation. This finding might explain why
tests for homotheticity seem to have grown less in popularity
than they could have: as opposed to tests for utility maximiza-
tion, there was no way to measure the extent of these violations.
Approaches that measure this extent should therefore be very
useful.
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As recently documented by Hands (2016), Paul Samuelson
often referred to models that used the assumption of homoth-
eticity or other, similarly strong assumptions as “Santa Claus
economics.” Throughout the present article, we adopt the inter-
pretation that homotheticity is indeed a very strong and possibly
unrealistic assumption but that it can sometimes provide a good
approximation of true preferences. For example, researchers
who need the assumption (e.g., for the construction of index
numbers) can use our techniques to measure how well a homo-
thetic utility function approximates reality and, if the approxi-
mation is close enough, use the result to justify it.
The contribution of Heufer (2013) is only applicable to two-

dimensional experimental data. Field and survey data such as
household expenditure panel data typically have more than two
goods. Testing typical expenditure data for consistency with
utility maximization can entail a problem: as price changes
between periods are usually small and income increases over
time, budgets are often completely contained in other budgets.
This can lead to very low test power. For example, Varian (1982)
reported that for the data he used, many budgets are contained
in the budget of the next period, which implies low test power;
see also Bronars (1987) for an analysis of the same data. For
household demand, where income changes are usually relatively
small, it is plausible to assume that demand is homothetic, and
therefore, it is reasonable to test for consistency with homoth-
etic utility maximization, which can lead to considerably higher
test power. As budgets do not have to intersect when demand is
assumed to increase proportionally, a test for homotheticity can
be useful even for Varian’s (1982) dataset with zero test power
for utility maximization.
Varian’s (1983) homothetic axiom of revealed preference

(HARP) can be easily tested with a set of price-quantity data.
It is a necessary and sufficient condition for consistency with
homothetic utility maximization and therefore characterizes the
hypothesis of homothetic preferences. However, it is a binary
test: the data either satisfy HARP or do not. When HARP is
violated, the measures introduced here show how close the data
come to being consistent with HARP. Both theHEI and theHEV
provide the minimal adjustments required to make a dataset
consistent with homothetic utility maximization. Our measures
allow us to go further than merely rejecting HARP by quantify-
ing and interpreting the extent of the inconsistency.
A related approach was proposed by Blundell, Browning, and

Crawford (2003). They suggested combining revealed prefer-
ence conditions with expansion paths that are nonparametri-
cally estimated using pooled household data. However, their
procedure differs from ours in some important respects. First,
while their procedure is designed for household panel data, our
approach lends itself to panel as well as experimental data.
Second, our methods can be meaningfully applied to datasets
with any number of observations and are therefore applicable to
each individual household in the panel. This allows us to avoid
any preference homogeneity assumptions across households
and, consequently, optimally exploits the structure of household
panel data.
Given the widespread assumption of homotheticity—which

is often not even explicitly discussed—it should be tested when-
ever possible, but it rarely is. Our contribution makes it easy
for researchers to determine how consistent their data are with

homotheticity. Our efficiency index allows us to separate the
cases in which the assumption is justified from those in which
it is not.
To illustrate and motivate the methods proposed in this arti-

cle, we apply them to two datasets. The first application is to a
panel of expenditures on nondurable consumption categories for
3,134 Spanish households. These survey data were previously
analyzed by Browning and Collado (2001), Crawford (2010),
and Cherchye et al. (2015) in different contexts. The second
application is to data from an experimental dictator game con-
ducted by Fisman, Kariv, and Markovits (2007). As a means of
analyzing the survey and experimental data, we implement an
idea proposed by Beatty and Crawford (2011) that combines
efficiency and power into a single measure, called predictive
success.
Our main results can be summarized as follows. (i) Effi-

ciency can be very high for HARP, thus providing motivation
for researchers who rely on the assumption of homothetic pref-
erences. (ii) For consumer choice data, HARP has considerably
higher discriminatory power against irrational behavior than
does GARP. (iii) Adjusting expenditures for homothetic effi-
ciency can have negligible effects on power. Thus, HARP can
have substantially higher power than GARP even when expen-
ditures are adjusted for efficiency. (iv) Based on the measure of
predictive success, homotheticity is a better model than utility
maximization alone for demand behavior of households in our
survey data application.
The remainder of the article is organized as follows.

Section 2 addresses utility maximization, while Section 3
addresses homothetic utility maximization; they are organized
in parallel. Section 2.1 recalls Afriat’s theorem on rationaliza-
tion by a utility function, while Section 3.1 defines homoth-
eticity and recalls Varian’s (1983) theorem on rationalization
by a homothetic utility function. Section 2.2 discusses effi-
ciency measures and the Afriat efficiency index, while Section
3.2 introduces the first new measure, the homothetic efficiency
index, and discusses its properties and implications. Section 2.3
discusses a more disaggregate efficiency measure, called the
Varian efficiency vector, while Section 3.3 introduces a corre-
sponding measure for homothetic efficiency, called the homo-
thetic efficiency vector. Section 3.4 introduces and discusses
a measure of misspecification that measures how much addi-
tional adjustment is necessary to make the data fit homothetic
utility maximization after accounting for violations of utility
maximization. Section 4 uses two datasets to apply the pro-
posed methods. Section 5 concludes. The Appendix contains all
proofs.

2. UTILITY MAXIMIZATION AND EFFICIENCY

2.1. Utility Maximization

We use the following notation: For all x, y ∈ R
L, x � y if xi ≥

yi for all i = 1, . . . ,L; x ≥ y if x � y and x �= y; and x > y
if xi > yi for all i = 1, . . . ,L. We denote R

L
+ = {x ∈ R

L : x �
(0, . . . , 0)} and R

L
++ = {x ∈ R

L : x > (0, . . . , 0)}. The com-
modity space is RL

+, and the price space is RL
++, where L ≥ 2

is the number of different commodities. A (competitive) bud-
get set is defined as Bi = B(pi) = {x ∈ R

L
+ : pixi ≤ 1}, where
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pi = (pi1, . . . , p
i
L)

′ ∈ R
L
++ is the price vector, and income is nor-

malized to 1. A demand function D : RL
++ × R++ → R

L
+ of

a consumer assigns to each budget set the commodity bundle
chosen by the consumer. Unless otherwise noted, we assume
that demand is exhaustive (i.e., pixi = 1). We also assume that
the only observables of the model are N ≥ 1 different budgets
and the corresponding demand of a consumer. The entire set of
observations on a consumer is denoted � = {(xi,pi)}Ni=1.
The bundle xi is directly revealed preferred to a bundle x,

written xi R0 x, if pixi ≥ pix; it is strictly directly revealed pre-
ferred to x, written xi P0 x, if pixi > pix; and it is revealed
preferred to x, written xi R x, if R is the transitive closure of
R0, that is, if there exists a sequence x j, . . ., xk, such that
xi R0 x j R0 . . . xk R0 x. The bundle xi is strictly revealed pre-
ferred to x, written xi P x, if xi R x j P0 xk R x for some j, k =
1, . . . ,N.

A set of observations � satisfies the generalized axiom of
revealed preference (GARP) if for all i, j = 1, . . . ,N, it holds
that [not˜xi P0 x j] whenever x j R xi. We say that a utility func-
tion u : RL

+ → R rationalizes a set of observations � if u(xi) ≥
u(y) whenever xi R0 y. Let U denote the set of all continuous,
non-satiated, monotonic, and concave utility functions. GARP
is easily testable and a necessary and sufficient condition for
utility maximization, as Theorem 1 (Afriat’s theorem) shows.

Theorem 1 (Afriat 1967; Diewert 1973; Varian 1982). The
following conditions are equivalent:

1. the set of observations � satisfies GARP;
2. there exist numbers Ui, λi > 0 such that Ui ≤ U j +

λ jp j(xi − x j ) for all i, j = 1, . . . ,N;
3. there exists a u ∈ U that rationalizes the set of

observations �.

2.2. The Afriat Efficiency Index

When a set of observations does not satisfy GARP, it is interest-
ing to obtain a measure of how severe the violation is. One of the
most popular measures of the severity of a violation is the Afriat
efficiency index (AEI) proposed by Afriat (1972), also called the
critical cost efficiency index (CCEI). Define, for some e ∈ [0, 1],
the relation R0(e) as xi R0(e) x if epixi ≥ pix, and let R(e) be
the transitive closure of R0(e); furthermore, define the relation
P0(e) as epixi > pix. With these concepts, we can define a new
version of GARP, called GARP(e).

Definition 1. A set of observations � satisfies GARP(e)
for some e ∈ (0, 1] if for all i, j = 1, . . . ,N, it holds that
[not˜xi P0(e) x j] whenever x j R(e) xi.

Definition 2. For a set of observations �, the Afriat effi-
ciency index (AEI) is the greatest number e such that � satisfies
GARP(e).

The AEI is a measure of wasted income: if a consumer has
an AEI of e < 1, then he could have obtained the same level of
utility by spending only a fraction of e of what he actually spent
to obtain this level. One way to compute it is to use a binary
search algorithm as described by Varian (1990).
For the rationalization results in both this section and the next,

we will make use of a concept called e-rationalization and, later,

v-rationalization. This concept has recently been introduced by
Halevy, Persitz, and Zrill (2015).

Definition 3. A utility function u ∈ U e-rationalizes a set of
observations � if u(xi) ≥ u(y) whenever xi R0(e) y.

For e close to 1, a utility function that e-rationalizes a set of
data still comes close to explaining the observed choices. It pro-
vides a good motivation and justification to compute and report
the AEI and our new homothetic efficiency index in the next
section.

Theorem 2. The following conditions are equivalent:

1. the set of observations � satisfies GARP(e);
2. there exist numbers Ui, λi > 0 such that Ui ≤ U j +

λ jp j(xi/e− x j ) for all i, j = 1, . . . ,N;
3. there exists a u ∈ U that e-rationalizes the set of observa-

tions �.

Theorem 2 is a special case of Theorem 3. We therefore only
provide a proof of Theorem 3 in the Appendix. In the inequali-
ties of Theorem 2, the only change relative to the inequalities in
Theorem 1 is the addition of e, which relaxes the constraints. In
that sense, we can also interpret the AEI as an adjustment to the
data that is necessary to make the data fit the utility maximiza-
tion model.
Reporting the AEI has become standard in empirical stud-

ies, particularly experimental studies. See, for example, Sippel
(1997), Mattei (2000), Harbaugh, Krause, and Berry (2001),
Andreoni and Miller (2002), Février and Visser (2004), Choi
et al. (2007b), Fisman, Kariv, and Markovits (2007), Dickinson
(2009), and Camille et al. (2011). A common alternative to the
AEI is the Houtman–Maks-Index (Houtman and Maks 1985),
which is based on the maximal subset of a set of choices con-
sistent with GARP; for a computationally feasible approach to
compute this index, see Heufer and Hjertstrand (2015). Fleissig
and Whitney (2005) showed how to statistically test violations
of the Afriat inequalities. Echenique, Lee, and Shum (2011)
provided a new measure based on a money pump argument,
and Dean and Martin (2015) provided a new measure based
on the minimum cost of breaking all cycles or money pumps.
Apesteguia and Ballester (2015) provided a measure based on
welfare loss.

2.3. The Varian Efficiency Vector

The AEI does not provide information about which observed
choices are causing the violation of GARP. To obtain such infor-
mation, we first consider a generalization of GARP(e):

Definition 4. A set of observations � satisfies GARP(v)
for some v ∈ (0, 1]N if for all i, j = 1, . . . ,N, it holds that
[not xi P0(vi) x j] whenever x j R(v j ) xi.

Such a vector v can be a more disaggregated measure of
efficiency. Varian (1993) defined one such measure, the viola-
tion index v̄ = (v1, . . . , vN ) with v̄i = min{ j: x j R xi} pix j. If the
data satisfy GARP, then v̄i = 1 for all i. Otherwise, v̄i < 1 for
some i, and this provides information regarding which xi are
problematic.
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Proposition 1 (Varian 1993). A set of observations� satisfies
GARP(v̄).

Varian (1993) also noted that the vector v̄ does not, in gen-
eral, give the minimum perturbation of budgets required. He
provides an improved violation index that is computed by an
iterative algorithm. See also Cox (1997) for a discussion of the
improved violation index. The “exact” efficiency indices can be
computed from the inequalities (1) and (2) below by using a
simple mixed integer programming problem. To formulate this
procedure, we initially make use of the fact that GARP(v) is
equivalent to the following inequalities:

V i ≥ V j whenever vipixi ≥ pix j, and (1)

V i > V j whenever vipixi > pix j. (2)

See Cherchye et al. (2015) for a similar approach in the con-
text of testing for weak separability of the utility function. The
inequalities in Equations (1) and (2) are equivalent to the exis-
tence of numbers V i and Xi j such that, for all observations
i, j = 1, . . . ,N,

V i −V j < Xi j, (c.i)

(Xi j − 1) ≤ V i −V j, (c.ii)

vipixi − pix j < Xi jAi, (c.iii)

(Xi j − 1)Aj ≤ p jxi − v jp jx j, (c.iv)

0 ≤ V i < 1, (c.v)

Xi j ∈ {0, 1}, (c.vi)

where Ai > pixi is a fixed number. We suggest calculating the
efficiency indices v by solving the following mixed integer lin-
ear programming problem (MILP; this type of approach was
introduced to the revealed preference literature by Cherchye
et al. 2008) with respect to V i, Xi j and vi:

min
N∑
i=1

(1 − vi) subject to (c.i)–(c.vi) and v ∈ (0, 1]N . (3)

Since any solution to an MILP problem is a global solution,
this problem is guaranteed to find a global optimum (in the L1-
norm) in the efficiency indices v. We can now formally define a
vector efficiency index.

Definition 5. For a set of observations �, a Varian efficiency
vector (VEV) is a vector ṽ such that � satisfies GARP(ṽ) and
there does not exist v′ ≥ ṽ such that � satisfies GARP(v′).

When v is computed using the above MILP-approach, it will
be a VEV.
The next definition generalizes e-rationalization introduced

in Definition 3.

Definition 6. A utility function u ∈ U v-rationalizes a set of
observations � if u(xi) ≥ u(y) whenever xi R0(hi) y.

Theorem 3. The following conditions are equivalent:

1. the set of observations � satisfies GARP(v);
2. there exist numbers Ui, λi > 0 such that Ui ≤ U j +

λ jp j(xi/v j − x j ) for all i, j = 1, . . . ,N;

3. there exists a u ∈ U that v-rationalizes the set of observa-
tions �.

Theorem 3 follows from Theorem 1 in Halevy, Persitz, and
Zrill (2015). As their theorem does not contain our condition
2 (it can be constructed from the details of their proof), we
include a brief proof of our Theorem 3 in the Appendix. Note
that the change to the inequalities in Theorem 3 compared to
the inequalities in Theorem 2 consists in replacing the blanket
adjustment e with an individual adjustment per observation.

3. HOMOTHETIC EFFICIENCY

3.1. Homothetic Utility Maximization

Homotheticity is a restriction on preferences. We say that a util-
ity function is homothetic if it is a positive monotonic trans-
formation of a linearly homogeneous utility function; that is, if
u(x) > u(y), then u(αx) > u(αy) for all α > 0. Varian (1983)
provided the following axiom, which he shows is equivalent to
homothetic rationalization (Theorem 4).

Definition 7 (Varian 1983). A set of observations � sat-
isfies the homothetic axiom of revealed preference (HARP)
if for all distinct choices of indices i, j, . . . , �, it holds that
(pix j )(p jxk ) · · · (p�xi) ≥ 1.

Theorem 4 (Varian 1983). The following conditions are
equivalent:

1. the set of observations � satisfies HARP;
2. there exist numbersUi such thatUi ≤ U jp jxi for all i, j =

1, . . . ,N;
3. there exists a homothetic u ∈ U that rationalizes the set of

observations �.

We can always assume that a homothetic utility function u
is homogeneous of degree 1 such that u(αx) = αu(x). Thus, a
homothetic utility maximizer who consumes xi at pi will con-
sume αxi if prices remain constant but his income is multi-
plied by α. Recall that we normalized prices such that income
at the observed consumption is always 1 (i.e., pixi = 1), which
implies that α can be interpreted as income. As Varian (1983)
explained, “the Ui’s can be interpreted as utility levels and the
λi’s can be interpreted as marginal utilities of income at the vari-
ous levels of observed consumption.” Together, this implies that
a homothetic utility maximizer’s marginal utility of income at
xi is ∂u(αxi)/∂α = Ui, in which caseUi is equal to λi.
Setting Ui = λi in the inequalities in condition 2 of

Theorem 1 gives usUi ≤ U j +U jp j(xi − x j ), and with pixi =
1, we obtain Ui ≤ U jp jxi, which are the inequalities in condi-
tion 2 of Theorem 4. This relationship has already been iden-
tified by Diewert (1973) and was explored in greater detail by
Varian (1983).

3.2. The Homothetic Efficiency Index

The challenge is now to define an appropriate measure of homo-
thetic efficiency that corresponds to the AEI and allows the
same or a similar interpretation. A straightforward idea would
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be to multiply the right-hand side in the condition for HARP in
Definition 7 by some e ∈ (0, 1], but this is problematic.

Suppose that we have a set � = {(xi,pi)}2i=1, with
p1x2 = 8/5 and p2x1 = 2/5, such that HARP is violated.
As (8/5)(2/5) = 16/25, we might want to simply multi-
ply the right-hand side of HARP by 16/25 and call this the
homothetic efficiency. However, suppose that the same con-
sumer faces the same two budgets again (observed as p3 and
p4) and repeats the choices (observed as x3 and x4). Then,
(p1x2)(p2x3)(p3x4)(p4x1) = 256/625, and homothetic effi-
ciency would be reduced, even though the lower bound of
wasted income did not increase. Repeating this ad infinitum,
the efficiency would drop to zero, even though the consumer
clearly enjoys a good amount of utility. Thus, we need to
account for the number of choices that go into the left-hand
side of HARP. We therefore suggest using the following axiom,
called HARP(e), which takes into account the number of scalars
that are multiplied.

Definition 8. A set of observations � satisfies HARP(e) for
some e ∈ (0, 1] if for all distinct choices of indices i, j, k, . . . , �,
it holds that (

pix j

e

) (
p jxk

e

)
· · ·

(
p�xi

e

)
≥ 1.

Theorem 5 confirms that this definition is a good analog for
GARP(e).

As an illustration, consider the situation in Figure 1(a), which
shows two observations. The dashed line shows the boundary
of the shifted budget B1 that contains x2. The intersection of
the dashed line and the ray through the origin and x1, shown
as λx1, gives the demand on the shifted budget if preferences
are homothetic. Here, λ is equal to p1x2. Clearly, if the dashed
budget were observed and λx1 were chosen, it would be revealed
preferred to x2. However, as λx1 is in the interior of budget B2,
x2 is strictly revealed preferred to λx1; thus, HARP is violated.
Figure 1(b) shows that if x1 is scaled upward by a factor

equal to λ/e, we find that while x2 is still strictly revealed
preferred to it—x2 P0 (λx1/e)—it is not strictly revealed pre-
ferred at efficiency level e—[not˜x2 P0(e) (λx1/e)]. This is the
smallest e for which ex2 is not strictly revealed preferred to
λx1/e and is indeed the smallest e for which HARP(e) is
satisfied.
Given HARP(e), we propose the following definition, which

is analogous to that of the AEI:

Definition 9. For a set of observations �, the homothetic effi-
ciency index (HEI) is the greatest e ∈ (0, 1] such that� satisfies
HARP(e).

Figure 1. (a) and (b) An illustration of HARP(e) and the homothetic efficiency index (HEI). The example uses x1 = (2, 4), p1 = (1/10, 1/5),
x2 = (8, 4), and p2 = (1/10, 1/20). The greatest e for which HARP(e) is satisfied is 4/5. (c) The choices x1 and x2 violate GARP. If x1 is replaced
by x′1, the AEI will decrease. (d) The choices x1 and x2 violate HARP but not GARP. If x1 is replaced by x′1, the HEI will decrease.
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Note that the HEI cannot increase as the number of observa-
tions increases; it can only decrease as more observations are
added. This is because the HEI is the minimum over all simple
cycles in the data (such as going from xi to itself in the defini-
tion of HARP(e)). The cycle that determined the old minimum
remains in the data as more observations are added. The HEI can
be computed with the same algorithm used for calculating the
AEI (simply exchange GARP(e) for HARP(e) in the algorithm)
and can be reported as a summary statistic.
Analogous to Theorem 2, the following theorem shows

that HARP(e) is necessary and sufficient for homothetic e-
rationalization. It serves as our main justification for the defi-
nition of the HEI.

Theorem 5. For any e ∈ (0, 1] the following conditions are
equivalent:

1. the set of observations � satisfies HARP(e);
2. there exist numbers Ui such that Ui ≤ U jp jxi/e for i, j =

1, . . . ,N;
3. there exists a homothetic u ∈ U that e-rationalizes the set of

observations �.

Theorem 5 is a special case of Theorem 6. We therefore only
provide a proof of Theorem 6 in the Appendix. Theorem 5 also
shows why we can still interpret the HEI as a measure of wasted
income, just as the AEI. Suppose that a homothetic utility func-
tion u e-rationalizes �, but u(y) > u(xi) despite that xi R y. This
contradiction of the ranking of bundles by uwith R disappears if
we assume that the consumer wasted a fraction e of his income
because, by e-rationalization, we must have xi R(e) y.

We again observe that the addition of e to the inequalities in
Theorem 5 provides a less stringent version of the inequalities
in Theorem 4. Thus, as we can interpret the AEI as an adjust-
ment to the data that is necessary to make them fit the utility
maximization model, we can interpret the HEI as an adjustment
necessary to make them fit the homothetic utility maximization
model.
Beyond the findings in Theorem 5, it is interesting to consider

other properties of the HEI. Jerison and Jerison (2012) listed
six desirable properties for measures of inconsistency. Let us
define 1 − AEI (1 − HEI) as the measures of inconsistency
with (homothetic) utility maximization corresponding to the
respective efficiency measures. Both these measures satisfy
all six properties: both are (a) “well defined for any demand
set;” are (b) zero when GARP (HARP) is satisfied and positive
otherwise; (c) “increase (or at least do not decrease) when
inconsistency seems clearly to increase;” are (d) a “continuous
function of prices and quantities demanded;” are (e) “indepen-
dent of commodity units;” and are (f) “unaffected by changes in
prices and incomes that leave all budget sets and consumption
choices unchanged.”
Jerison and Jerison (2012) noted that these conditions hold

for the AEI. It can be relatively easily verified that the condi-
tions also hold for the HEI. Property (a) holds because e can be
set to be arbitrarily close to zero for HARP(e), and (b) holds
because the HEI is equal to 1 if HARP is satisfied and less than
1 otherwise. Definition 8 demonstrates that (d) holds because
the value of the greatest e for which the inequalities hold must
change continuously in changes of the values of the pix j,
p jxk, . . .. Properties (e) and (f) are automatically satisfied given

our normalization in Section 2.1, but it can be easily verified
that they also hold for a nonnormalized version.
For property (c), Jerison and Jerison (2012) provided a figure,

the relevant part of which is reproduced in Figure 1(c). They
state that an inconsistency measure should increase when x1 is
replaced by x′1, which is the case for both the measures based
on the AEI and the HEI. In addition, Figure 1(d) illustrates that
this is still the case for the HEI when one of the budgets and the
choices are scaled up such that the GARP violation is resolved
and only the HARP violation remains.

3.3. The Homothetic Efficiency Vector

Similar to the case of the AEI, the HEI is only a lower bound on
homothetic efficiency. A homothetic efficiency vector that pro-
vides information about how much each budget has to be per-
turbed to achieve a meaningful kind of consistency while keep-
ing the perturbations minimal would be informative and useful
for applied work.We suggest the following straightforward gen-
eralization of HARP(e).

Definition 10. A set of observations � satisfies HARP(h) for
some h = (h1, . . . , hN ) ∈ (0, 1]N if for all i, j = 1, . . . ,N, it
holds that (

pix j

hi

)(
p jxk

h j

)
· · ·

(
p�xi

h�

)
≥ 1. (4)

Analogous to Theorem 3, the following theorem shows
that HARP(h) is necessary and sufficient for homothetic v-
rationalization, or h-rationalization as we call it here.

Theorem 6. For any h = (h1, . . . , hN ) ∈ (0, 1]N , the follow-
ing conditions are equivalent:

1. the set of observations � satisfies HARP(h);
2. there exist numbersUi such that for i, j = 1, . . . ,N

Ui ≤ U jp jxi/h j; (5)

3. there exists a homothetic u ∈ U that h-rationalizes the set
of observations �.

The proof of Theorem 6 can be found in the Appendix. Given
HARP(h), we propose the following definition, which is analo-
gous to that of the VEV:

Definition 11. For a set of observations �, a homothetic effi-
ciency vector (HEV) is a vector h such that� satisfies HARP(h)
and there does not exist a h′ ≥ h such that� satisfies HARP(h′).

The problem with computing a vector h with maximal values
is that “breaking cycles” is not as easy as in the standard case in
Varian (1993). It is not feasible to consider breaking “homothet-
ically revealed preference cycles.” This would amount to solv-
ing the NP-hard problem of finding a simple shortest path in
a weighted complete graph (i.e., a path that visits each vertex
at most once, except for the first vertex if the path is a cycle).
The complexity of this endeavor quickly approaches a level that
makes computation infeasible. However, it is possible to com-
pute a first-order approximation of the HEV in polynomial time.
To see how, we define κi = log(hi) for all i = 1, . . . ,N and note
that a first-order Taylor expansion of log(hi) about point 1 yields
log(hi) � −(1 − hi), such that
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Heufer and Hjertstrand: Homothetic Efficiency: Theory and Applications 7

argmax
N∑
i=1

κi = argmax
N∑
i=1

log(hi) � argmax
N∑
i=1

−(1 − hi)

= argmin
N∑
i=1

(1 − hi). (6)

The left-hand side of the inequalities in Equation (5) is positive,
implying that they can be equivalently rewritten as follows (by
log-linearization):

κ j + ui − u j ≤ log(p jxi), (7)

for all i, j = 1, . . . ,N, where ui = log(Ui) and κ j = log(h j ).
Consider the following linear program (solved with respect to
κi ∈ (−∞, 0] and ui ∈ (−∞,∞) for all i = 1, . . . ,N):

max
N∑
i=1

κi subject to Equation (7), (8)

and define the optimal solutions from this problem as κ̂i for all
i = 1, . . . ,N. Given the Taylor approximation in Equation (6),
the set of numbers ĥi = exp(κ̂i) is a first-order approximation to
the HEV (in the L1-norm).
Since

∑N
i=1 log(hi) is a monotonic log-transformation of∏N

i=1 hi, the linear problem in Equation (8) is equivalent to
solving

max
N∏
i=1

hi subject to Equation (5). (9)

This shows that the problem in Equation (8) does not compute
the set of indices closest to the unit vector in a “true” norm.
However, solving the problem in Equation (8) has several advan-
tages over, for example, computing the HEV in the Minkowski
norm, which would amount to solving the following problem:
min (

∑N
i=1(1 − hi)ϕ )1/ϕ subject to Equation (5) for some ϕ ≥ 1

(the L1-norm corresponds to setting ϕ = 1). First, it is a compu-
tationally tractable procedure for large datasets since it can be
solved with elementary linear programming techniques, that is,
in polynomial time (which is not the case for any optimization
problem based on, e.g. the Minkowski norm).
Second, because the Taylor approximation is taken about

point 1, a strong theoretical justification for using the first-order
approximation is that it should perform very well when the
“true” HEV is close to the unit vector. The empirical applica-
tions in Section 4 show that homothetic efficiency is indeed
close to the unit vector in many cases. Thus, we expect the linear
problem in Equation (8) to provide a good approximation of the
HEV. Third, rephrasing a potentially intractable problem based
on a first-order approximation is a commonly used procedure to
find maximal elements in constrained optimization problems.

3.4. Missoptimization and Misspecification

As argued above, efficiency measures can be interpreted as the
minimal adjustment necessary to make the data fit a particu-
lar model. As homotheticity imposes stronger restrictions on
demand than utility maximization, adjustment by the HEI and

HEV already accounts for any deviation from utility maximiza-
tion. Indeed, let eA be the AEI and eH the HEI, and wemust have
eH ≤ eA, and therefore, the data will always satisfy GARP(eH ).

To learn something about the additional requirement imposed
by homotheticity, it would be useful to have a measure that only
takes into account the additional inefficiency due to the assump-
tion of homotheticity, that is, a measure that controls for the
inefficiency already contained in the data due to the violation of
GARP. That would provide us with measures of missoptimiza-
tion and new measures of misspecification, which tells us how
well the data fit the specific assumption of homotheticity after
accounting for missoptimization.
Using the results of Theorem 2, the AEI can be computed by

setting up a linear program to maximize e subject to the exis-
tence of numbers Ui, λi > 0 such that Ui ≤ U j + λ jp j(xi/e−
x j ). Analogously, the HEI can be computed by setting up a lin-
ear program to maximize e subject to the existence of numbers
Ui such thatUi ≤ U jp jxi/e. Recall that we obtain the latter set
of inequalities in the same way as the AEI by setting Ui = λi

and using the normalization pixi = 1.
As we know by the AEI that there exist numbers Ui, λi >

0 such that Ui ≤ U j + λ jp j(xi/eA − x j ), we suggest using
these adjusted inequalities and imposing the homotheticity
restrictions Ui = λi on them. Thus, we obtain Ui ≤ U j +
U jp jxi/eA −U jp jx j, and with the normalization pixi = 1, this
reduces to Ui ≤ U jp jxi/eA. We can then proceed to add a sec-
ond index in the same way as we added the original homoth-
etic efficiency index, that is, we can maximize ẽH subject to the
existence of numbersUi such thatUi ≤ (U jp jxi)/(ẽHeA). This
is equivalent to finding the greatest ẽH such that HARP(ẽHeA)
is satisfied.
It is easy to see that this procedure will set ẽH = eH/eA

(i.e., the original HEI divided by the original AEI). Thus ẽH

is the additional adjustment required to make data that have
already been adjusted to fit the utility maximization model also
fit the homothetic utility maximization model. We can then
interpret 1 − eH/eA as a measure of misspecification (or addi-
tional inefficiency). Interestingly, 1 − eH/eA can be written as
(eA − eH )/eA, that is, the difference between the AEI and the
HEI normalized by the AEI. The same concept can be applied
to the vector efficiencies.

Definition 12. The misspecification index (MSI) is the nor-
malized difference between the AEI eA and the HEI eH :

MSI = eA − eH

eA
.

The MSI based on vector efficiency (MSIV) is the average nor-
malized difference between individual entries of the VEV v =
(v1, . . . , vN ) and the HEV h = (h1, . . . , hN ):

MSIV = 1

N

N∑
i=1

vi − hi
vi

.

Similar to the AEI and HEI, there is no natural acceptable
value for the misspecification index. Perhaps Varian’s (1993)
possibly tongue-in-cheek suggestion of using an AEI of 0.95
as the critical value—“for sentimental reasons”—is not a bad
idea, and analogously, we suggest using an MSI and MSIV of
0.05 as a focal point. In any case, the measures will provide the
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researcher with information about the (relative) performance of
different models. We will report results for both theMSI and the
MSIV for the two different datasets we analyze in Section 4.

4. APPLICATIONS

Our aim with this empirical exercise is to show that homo-
thetic efficiency can be high for consumer choice data and
that data that are adjusted by the HEV or HEI can have much
higher discriminatory power against random behavior than data
adjusted by the VEV or AEI. This is particularly true for the
survey dataset we analyze in Section 4.1. However, our results
from the experimental data in Section 4.2 are less unequivocal.
While homothetic utility maximization is a good approximation
for some subjects, others exhibit choices that are arguably too
far removed from homotheticity to apply the model of homoth-
etic utility maximization. This demonstrates the importance of
testing for homotheticity and computing homothetic efficiency
before estimating homothetic utility functions.

4.1. Survey Data: Household Expenditures

We illustrate our methods using data from the Spanish Con-
tinuous Family Expenditure Survey (Encuesta Continua de
Presupuestos Familiares, abbreviated ECPF). These data were
obtained from Crawford (2010) and come from a quarterly bud-
get survey, over the period 1985–1997, that interviews Span-
ish households about their consumption expenditures for up to
a maximum of eight consecutive quarters. See also Browning
and Collado (2001) for a detailed discussion of the data. We use
a subsample of couples with and without children, where the
husband is employed full-time and the wife is out of the labor
force. We focus exclusively on consumption expenditures on
nondurable consumption categories. Overall, we use data con-
taining 21,866 observations on 3134 households.
We begin the analysis by calculating the AEI, HEI, VEV,

and HEV for each household. The HEV is computed by solv-
ing the linear problem in Equation (8). To facilitate comparison
with the VEV, we calculated the VEV by slightly modifying
the problem in Equation (3). This corresponds to how the HEV
is computed and is achieved by first log-linearizing the con-
straints (c.i)–(c.vi) and then maximizing

∑N
i=1 ṽi, where ṽi =

log(vi). We also computed the VEV in the L1-norm by solving
the problem in Equation (3). Interestingly, we obtained practi-
cally identical solutions, which suggests that log-linearization
provides a very good approximation (see the discussion in
Section 3.3).

The results are presented in Table 1, where each row reports
the mean, minimum, the first, second (median) and third quar-
tiles and the maximum calculated across all households. The
entries for the VEV and HEV in the third and fourth rows are
averages across all households. For example, to obtain the entry
“min,” we first computed min{v1, . . . , vN} and min{h1, . . . , hN}
for each household and then calculated the mean of these values
over all households.
As can be seen, homothetic efficiency is very close to util-

ity maximization efficiency. For example, the mean across all
observations and households of the HEV is 0.9960 (compared
to the 1.0000 for the VEV). The same table also reports the mis-
specification measures MSI andMSIV described in Section 3.4.
Evidently, the additional adjustment necessary to make the data
fit the homothetic model is very limited, which is unsurprising
given the very high levels of homothetic efficiency. Based on the
measures reported in Table 1, we can conclude that homothetic
utility maximization performs very well.
The next consideration is test power. The standard approach

to calculating the power of revealed preference tests is based
on Bronars (1987). We follow Bronars’ approach and generate
many random choice sets that are uniformly distributed on the
budget sets and compute the fraction of sets that either violate
GARP or HARP, which we refer to as the power of GARP and
HARP, respectively.
To analyze the loss in power for expenditure-adjusted data,

we employ the following three-step procedure: (i) we compute
the efficiency index using the observed data; then, (ii) we gen-
erate random datasets using Bronars’ approach; and, finally,
(iii) we calculate the fraction of sets violating GARP or HARP,
where expenditures are adjusted for efficiency. More precisely,
we deflate expenditures by the efficiency index computed in the
first step when testing whether the randomly generated datasets
satisfy GARP or HARP. Repeating the three-step procedure for
all four efficiency indices AEI, VEV, HEI, and HEV allows us
to compare the loss in discriminatory power across the indices
and to analyze the potential loss in power from adjusting expen-
ditures by efficiency.
Table 2 reports the power of GARP and HARP depending

on how expenditures are adjusted. As discussed in the introduc-
tion, allowing for deviations from 100% efficiency often leads
to a loss in power, which may render the analysis practically
meaningless. As seen from Table 2, this concern is clearly war-
ranted for utility maximization alone. Indeed, the first, third, and
fifth rows show that utility maximization alone barely has any
power against uniformly random behavior (the power for the
average household is less than 9%) This means that GARP is

Table 1. Efficiency and misspecification measures (ECPF)

Measure Mean Min First quartile Median Third quartile Max

AEI 0.9998 0.9698 1.0000 1.0000 1.0000 1.0000
HEI 0.9917 0.9518 0.9890 0.9936 0.9965 1.0000
VEV 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
HEV 0.9960 0.9865 0.9936 0.9978 0.9996 1.0000
MSI 0.0081 0.0000 0.0034 0.0062 0.0107 0.0482
MSIV 0.0040 0.0000 0.0019 0.0033 0.0053 0.0243
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Table 2. Power for GARP and HARP (ECPF)

Expenditures
Axiom adjusted Mean Min First quartile Median Third quartile Max

GARP No 0.0886 0.0000 0.0000 0.0300 0.1600 0.6700
HARP No 0.9997 0.9800 1.0000 1.0000 1.0000 1.0000
GARP AEI 0.0854 0.0000 0.0000 0.0200 0.1600 0.6400
HARP HEI 0.6329 0.0000 0.3600 0.7300 0.9300 1.0000
GARP VEV 0.0872 0.0000 0.0000 0.0300 0.1600 0.6400
HARP HEV 0.9748 0.2100 0.9700 0.9900 1.0000 1.0000

essentially unable to reject random consumption behavior. In
contrast, the second, fourth, and sixth rows show that HARP
has substantially more power against uniformly random behav-
ior. Although there is a loss in power for HARP for some house-
holds when expenditures are adjusted by the HEV, 50% of the
households nevertheless have a power of at least 73%. Notably,
the sixth row shows that the loss in power for HARP is negli-
gible when adjusting expenditures by the HEV. More precisely,
adjusting income by the HEV has little effect on power, which
rather forcefully addresses the concern that adjusting expendi-
tures by efficiency in revealed preference testing renders the
analysis meaningless.
The main conclusions that can be drawn from our results

thus far are as follows, (i) The consumption choices of the
households are very close to satisfying homothetic preferences
(i.e., the households have high homothetic efficiency, and the
misspecification is low), and (ii) homotheticity can have much
higher discriminatory power against random behavior than util-
ity maximization alone. In fact, the vast majority of house-
holds have very high power against random behavior even when
expenditures are adjusted by homothetic efficiency.
However, this is a sequential analysis and, as such, fails

to give any indication of the trade-off between efficiency and
power. Beatty and Crawford (2011) and Heufer (2012) sug-
gested combining efficiency and power into a single measure
based on the idea of predictive success originally advanced by
Selten (1991) (see also Heufer (2008) for an early application
of the trade-off approach to compare two different efficiency
indices). Beatty and Crawford’s (2011) measure is computed as
the difference between the pass rate and one minus the power.
The outcome of this measure is a value between negative one
and one. Negative values would suggest that the model fails to
describe the preferences of the household: the model does not
pass the revealed preference axiom and provides low discrimi-
natory power against random behavior. In contrast, a high and
positive predictive success indicates a potentially useful model:
it passes the revealed preference axiom and has high power
against random behavior.
Following Beatty and Crawford (2011) and Heufer (2012),

we can use the predictive success to find the optimal level of
efficiency across the households as follows. For a given effi-
ciency level e, first calculate HARP(e), which gives the pass
rate (either zero or one). Second, calculate the power using
HARP(e). Doing so for an arbitrarily fine grid gives the predic-
tive success at each efficiency level. The optimal efficiency level
is the one that produces the highest predictive success. Figure 2

presents the results from this analysis. Figure 2(a) shows the
average predictive success across all households for each effi-
ciency level in the grid. As seen from this plot, GARP obtains
a maximal predictive success very close to zero at an efficiency
level of one. One interpretation of this is that the theory of utility
maximization performs about as well as a theory that explains
consumer demand as purely random behavior. The results for
HARP are quite different. We find that the maximal average
predictive success across households is 0.22 obtained at an effi-
ciency level of 0.995. Thus, according to these results, homo-
thetic utility maximization provides a considerably better fit to
the data than utility maximization alone at an efficiency level
only slightly below one. The results for the median of the pre-
dictive success across all households shown in Figure 2(b) are
even more favorable to homothetic utility maximization. In this
case, the predictive success is essentially zero for GARP at all
efficiency levels but close to 0.3 at an efficiency level of 0.99 for
HARP.

4.2. Experimental Data: Preferences for Giving

Fisman, Kariv, and Markovits (2007, FKM) analyzed data
obtained in a laboratory experiment. They employed the same
setup as Andreoni and Miller (2002, AM), that is, a generalized
dictator game in which one subject (the dictator) allocates token
endowments between himself and an anonymous other subject
with different transfer rates. The payoffs of the dictator and the
beneficiary are interpreted as two distinct goods and the trans-
fer rates are interpreted as the price ratio. In both papers, the
authors estimate CES utility functions, and thus, they implic-
itly maintain the hypothesis that choices are homothetic. Testing
how “close” the choices are to homotheticity is therefore impor-
tant and should be conducted at least as a pretest to screen out
particularly inefficient choices.
Heufer (2013) computed a simple two-dimensional version of

homothetic efficiency for both the FKM and the AM data. We
only focus on the FKM data here, as they contain 50 choices
per subject as opposed to 8 in the AM data. Note that subjects
were not required to spend their entire endowment, and a few
subjects occasionally chose bundles somewhat below the bud-
get line. One subject made several choices far below the budget
line, leading to an AEI and HEI of approximately 0.1, which
caused convergence problems for the computation of the VEV.
We therefore decided to exclude that subject from the analysis.
The results for our measures are presented in Table 3.
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Figure 2. Measure of predictive success across all households for each efficiency level in the grid (ECPF).

Regarding the first two rows, we find that the AEI is notice-
ably higher than the HEI for most subjects. However, as dis-
cussed above, the AEI and HEI are summary statistics and may
be uninformative in describing the entire distribution of the
indices. The third and fourth rows of Table 3, which provide
the results for the VEV and HEV, offer a different picture. These
results suggest that homothetic efficiency is close to utility max-
imization. In particular, the HEV displays the same pattern as
the VEV. They are both characterized by one or a few observa-
tions with lower values, while the remaining values in the vector
are very close to one.
Table 3 also reports the misspecification measures. If we

accept the value of 0.05 suggested in Section 3.4 as the thresh-
old, we find that based on the MSI, slightly less than half of
all subjects fit the homothetic utility maximization model well.
Again, the picture given by the vector-based MSIV is different;
it suggests that more than 75% of all subjects fit the homothetic
utility maximization model well.
Table 4 reports the power of GARP and HARP. The results,

in particular for GARP, are very different from the results for
the ECPF data in Table 2. For the experimental data, the test
power for most subjects is very high, while for the house-
hold survey data, the test power for GARP is low enough
to prevent a meaningful test for utility maximization. As the
subjects made choices on 50 budgets, this finding is perhaps
unsurprising. Thus, imposing additional restrictions on utility,
such as homotheticity, may not be essential for an informative
analysis.
With little to no difference in test power between GARP and

HARP, and the fact that homothetic efficiency can never be
higher than Afriat efficiency, we cannot expect the predictive
success of the homothetic model to be superior. Figure 3(a)
shows that for the average subject, the predictive success of

the homothetic utility maximization model is lower for all effi-
ciency levels below one. Figure 3(b) shows that up until an effi-
ciency level of 0.86, the median predictive success is slightly
higher for HARP, but it drops to zero at a level of 0.89, while
the predictive success of GARP is 1 for levels between 0.87
and 0.95, after which it drops to zero. This drop to zero occurs
because less than half of subjects have an HEI greater than 0.89,
or an AEI greater than 0.96.
The conclusions we can draw from the analysis of the exper-

imental data are not as unambiguous as those from the house-
hold survey data. Approximately, 50%–75%of the subjects have
rather high homothetic efficiency levels and low misspecifica-
tion values. For these subjects, the measures we have introduced
indicate no problems with estimating a homothetic utility func-
tion. However, this also means that assuming homothetic prefer-
ences and estimating CES utility functions may be problematic
for the remaining subjects. Imposing homotheticity on the data
to have a model with higher test power seems unnecessary for
this dataset, and from the perspective of predictive success, the
model of utility maximization alone performs slightly better.
We can think of at least two potential reasons for the differ-

ences between the survey and experimental data. First, social
preferences are likely to be more context specific (see, e.g.,
Eckel and Grossman 1996), and different wealth levels can be
considered a context. Our findings are in line with the results
reported by Heufer (2013), who found that many subjects in
Fisman, Kariv, and Markovits (2007) deviate substantially from
homotheticity. This deviation is more pronounced than in the
experiment by Choi et al. (2007a), which uses a similar method-
ology but is about risk aversion.
Second, Fisman, Kariv, and Markovits (2007) selected nor-

malized prices that vary substantially—they were between 1/50
and 1/100. This resulted in stark differences in the wealth levels

Table 3. Efficiency and misspecification measures (FKM)

Measure Mean Min First quartile Median Third quartile Max

AEI 0.8971 0.2717 0.8721 0.9566 0.9823 0.9972
HEI 0.8279 0.2534 0.7810 0.8809 0.9553 0.9874
VEV 0.9887 0.8820 0.9892 0.9980 0.9998 1.0000
HEV 0.9617 0.7814 0.9525 0.9773 0.9878 0.9982
MSI 0.0848 0.0032 0.0288 0.0564 0.1062 0.4312
MSIV 0.0279 0.0028 0.0112 0.0206 0.0373 0.1198
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Table 4. Power for GARP and HARP (FKM)

Expenditures
Axiom adjusted Mean Min First quartile Median Third quartile Max

GARP No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARP No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GARP AEI 0.9659 0.4500 1.0000 1.0000 1.0000 1.0000
HARP HEI 0.9847 0.4700 1.0000 1.0000 1.0000 1.0000
GARP VEV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HARP HEV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Figure 3. Measure of predictive success across all subjects for each efficiency level in the grid (FKM).

between budgets. However, prices and expenditures varied very
little in the survey data, which is natural given that prices for
everyday goods and income levels do not typically change sub-
stantially. It is plausible for such data that after a small increase
in income, a household will not drastically reallocate relative
expenditures.

5. CONCLUSION

Consumer choice data often violate homothetic utility max-
imization. In such cases, it would be interesting to know how
closely the data approach homothetic utility maximization. For
this purpose, we introduced a nonparametric approach to esti-
mating homothetic efficiency of demand data by generalizing
Heufer’s (2013) method. We introduced the homothetic effi-
ciency index (HEI) and the homothetic efficiency vector (HEV),
which are analogous to the Afriat efficiency index (AEI) and
Varian’s improved violation index or Varian efficiency vector
(VEV). Aswith theAEI, theHEI can be interpreted as ameasure
of wasted income. As a nonparametric approach, our method
does not rely on any specific form of a utility function.
Both the HEI and the HEV can be used to adjust data by

deflating expenditures to reconstruct bounds on preferred
and worse sets. This is motivated by a concept called e- and
h-rationalization, which was recently introduced by Halevy,
Persitz, and Zrill (2015): for efficiency close to 100%, there
still exists a utility function that adequately explains the data as
the result of homothetic utility maximization with only minor
deviation.
We applied the method to two datasets. The application

demonstrates how a dataset that has very low power against
the alternative hypothesis of random behavior can still be use-
ful when testing for the stronger condition of homothetic utility

maximization. Using the measure of predictive success applied
to household survey data, we find that homothetic utility maxi-
mization can be considerably more successful in explaining the
demand behavior for efficiency levels close to one. However,
this is not the case for all types of datasets. For data from a lab-
oratory experiment that already had high test power, the model
of utility maximization alone performs slightly better from the
perspective of predictive success.
The approach can also be translated to production analy-

sis. Hanoch and Rothschild (1972) and Varian (1984) already
described nonparametric ways to test production for homoth-
eticity. As homotheticity of production is assumed in many
applications, a nonparametric test that provides a measure of
homothetic efficiency independent of a specific production
function should at the very least be a useful screening device
and robustness check before parameters of a homothetic pro-
duction function are estimated.
We expect that our results will help to analyze experimental,

survey, and field data. It will be worthwhile to test the assump-
tion of homotheticity before estimating homothetic utility func-
tions, to quantify the extent of the violation of homotheticity,
and to obtain high test power against the alternative hypothesis
of random behavior.

APPENDIX A: PROOFS

Proof of Theorem 3. The equivalence of (1) and (3) is part of
Theorem 1 by Halevy, Persitz, and Zrill (2015). The inequalities of
condition (2) can be constructed from the details of their proof. In
particular, they showed that GARP(v) implies the existence of a func-
tion f (x) = mini{ f i + λizi(x)} with λi > 0 and f (xi) ≥ f i. They then
defined zi(x) = pix/vi − pixi if x �= xi and zi(x) = 0 otherwise and
show that with this zi(x), f (x) v-rationalizes �. By the definition of f ,
we then have f (x) ≤ f i + λipi(x/vi − xi) for all i. With zi(xi) = 0 we
have f (xi) ≤ f i, and together with f (xi) ≥ f i this implies f (xi) = f i.
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With f i = Ui, this function can be constructed using the numbers from
our condition 2, and as it rationalizes �, condition (2) implies (3). Fur-
thermore, if the function exists, the numbers in the inequalities can be
taken from the function. As GARP(v) ensures the existence of the func-
tion, condition (1) implies (2), which completes the proof. �
Proof of Theorem 6.

(1) ⇒ (2): The proof follows Varian (1983) with some adjustments.
Parts of it are necessary for the next step, which is why a brief
version is included here. Assume HARP(h) holds. Define

Ui = min
{ j,k,...,m,i}

{(
p jxk

h j

) (
pkx�

hk

)
· · ·

(
pmxi

hm

)}
. (A.1)

Let

Ui =
(
p jxk

h j

)(
pkx�

hk

)
· · ·

(
pmxi

hm

)

U j =
(
pnxo

hn

)(
poxq

ho

)
· · ·

(
prx j

hr

)
.

Then

Ui =
(
p jxk

h j

) (
pkx�

hk

)
· · ·

(
pmxi

hm

)

≤
(
pnxo

hn

)(
poxq

ho

)
· · ·

(
prx j

hr

) (
p jxi

h j

)

= U jp jxi/hj.

(2) ⇒ (3): Define U (x) = min j{U jp jx/hj} with the U j defined as
in the previous step of the proof. It can be easily verified that
U ∈ U and that U is homothetic; what remains to be shown is
that U e-rationalizes �. By the definition of the Ui, it follows
that U (xi) = Uipixi/hi, and with pixi = 1 we obtain U (xi) =
Ui/hi and with hi ≤ 1 we obtainUi ≤ U (xi). Suppose xi R0(hi) y.
Then hipixi ≥ pix and with pixi = 1 we obtain hi ≥ pix. By def-
inition of U (x), U (x) ≤ Uipix/hi, and with hi ≥ pix we obtain
U (x) ≤ Ui. It follows that U (x) ≤ Ui ≤ U (xi) and thus U (x)
rationalizes �.

(3) ⇒ (1): This part follows from Varian (1983) with minor obvious
adjustments.

�

SUPPLEMENTARY MATERIALS

A zip file containing all necessary Matlab codes to replicate
the empirical applications is available online.
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