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1. Introduction*

In any but the smallest human organizations, no one person has all of the information relevant

to the organization's activities, nor can he directly contral all ofthose activities. This is so even in

organizations that are described as highly "centralized." It follows that individual members of

the organization - Ishall call them agents - have some freedom to choose their own actions. If, in

addition, there is some divergence among the agents' goals or objectives, then one can expect

some inefticiencies to arise in the organization's operations. The analysis of these inefficiencies,

and the possible remedies by means of organizational design, is the subject of this paper.

If the behavior of the agents is "rational" in the sense typically used byeconomists and

decision theorists, then the apprapriate formal model would appear to be the theory of games,

especially games of incomplete information, as developed in the past two decades. l This is the

methodology that Ishall use here, although some aspects of "bounded rationality" will be

touched on during the course of my exposition. Furthermore, the relationships among members of

an economic organization are typically long-lived, calling for an analysis of dynamie games.

Two special paradigmatic models have arisen in the game-theoretic analysis of organization.

In the tirst, which I have elsewhere called a partnership, the agents act tagether to produce a joint

outcome (output, profit). This outcome can be observed by the agents, but they cannot directly

observe each others' actions, nor do they completely share each others' information. In the most

* The views expressed here are those of the author, and not necessarily those of AT&T Bell L3hnratories or New
York University. This is a revision of lecture notes prepared for the Second International Workshop on Dynarnic
Sciences, IUI, Stockholm, June 5-16, 1989. In preparing the present version I benetited from comments by
Joseph A. Doucet, Richard H. Day, and Gunnar Eliasson. However, to satisfactorily answer Professor Eliasson 's
probing questions I shall have to do additional research.

1. See Harsanyi (1967,1968) and Myerson (1985). Complete references are gathered in the: bibliography at the end of
the paper, together with additional bibliographical notes.
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general - and realistic - case of this model, the outcome is also infiuenced by random variables

that are only panially observed, if at all. The incompleteness of observation leads to what the

statisticians call a "confounding" of the sources of variation of the outcomes, making it difficult

10 assign responsibility to the individual agents for the occurrence of unsatisfactory outcomes. It

is this confounding that leads to organizational inefficiency, if the goals of the agents are not

identical (and not identical with the goal of the organization).

The second special model is suggested by the hierarchical structure of many organizations. In

this model, there is a panicular agent, called the "principal," who performs no immediately

useful actions himself, but "supervises" the activities of the other agents, rewarding them

according to their individual outcomes (and other information), and retaining the residual (output

or profit) for himself. This is the so-called "principal-agent" model, the word "agent" here

denoting a member of the organization who is not the principal.

In fact, most organizations combine aspects of both the "pannership" and the "principal

agent' 'models. A hierarchy can be thought of as a cascade of principal-agent relationships, each

supervisor acting as a principal in relation to the persons he supervises, and as an agent in relation

to his own supervisor. On the other hand, in most cases the valued outcomes of organizational

activity depend on the joint actions of several agents, as in the partnership model, so that the

attribution of specific outcome variables to specific individuals (as required by the principal-agent

model) may not be strictly justified. Unfortunately, I am not aware of significant progress on

more comprehensive models of organization that combine these two submodels in a systematic

way. This is one of the main challenges that organization theorists face today.

In the present exposition, I shall start with the partnership model. In fact, I shall start with the

special case in which there is complete information and no uncertainty (Section 2). As in most of

the models Ishall discuss, the behavior of the agents is assumed to be a (Nash) equilibrium of the

corresponding game, i.e., a combination of actions (or strategies), one for each agent, such that no

agent can increase his own utility by unilaterally changing his own action. Even in this special

case, it is typically true that in the statie or one-period game the equilibria are inefficient.

Efficiency here is defined in the Pareto sense; a combination of actions is efficient if there is no

other combination that yields each agent at least as much utility, and yields at least one agent

strictly more. On the other hand, if the pannership situation is repeated, leading to a dynamie

game, then there will typically be many equilibria. Many of these dynamic equilibria may be

inefficient; for example, the repetition of the one-period equilibrium will be a dynamie

equilibrium. On the other hand, if the agents do not discount the future too heavily (are not too
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impatient), then there will typically be equilibria of the infinitely repeated game that are efficient.

In Section 4 lintroduce uncertainty and incomplete information into the partnership model.2

Equilibria of the one-period game are again typically inefficient, but in contrast with the certainty

case, in the repeated game one cannot guarantee the existence of efficient equilibria when the

agents' discount rates are sufficiently small. Indeed, equilibrium outcomes may be unijormly

bounded away from efficiency as the agents' discount rates approach zero.

I should point out here that the game played by the agents is not well-dcfined unless one

specifies a particular rule for sharing the outcome among the agents (partners) as a function of the

obseIVed outcome. The specification of the the sharing rule is thus one of the design problems for

the organization - or the organizer. From this perspective, the "uniform inefficiency" result

alluded to above is quite strong, since it holds uniformly in the choice of sharing rule as weIl as in

the agents' discount rate.

A special case of interest is the one in which the agents are neutral towards risk (Section 4.3).

Here, with uncertainty, if the agents are suitably "different" then it is possible to design sharing

rules such that an equilibrium of the corresponding game is efficient. These efficiency-inducing

sharing rules must, however, be tailored to the agents' particular utility functions, which limits

the practical implications of this result.

In Section 4.4 I explore the case in which the agents can change their actions rapidly. This is

done by embedding the problem in a continuous-time model. For the risk-neutral case one can

provide explicit calculations of the efficiency-inducing sharing rules, and show that the

corresponding outcomes converge (in a particular sense) as the time between actions converges to

zero. On the other hand, if the sharing rule divides the outcome among the partners in fixed

proportions (which is a natural method), then there is an inteIVal of time between actions

sufficiently small so that for all smaller inteIVals the players cannot attain an efficiency higher

than that of the corresponding (inefficient) static equilibrium.

In Section 5 I tum to the principal-agent model. The exposition here parallels that of the

partnership model, starting with the static case and moving to the repeated-game formulation. The

2. Because of limitations of space and time, Ishall discuss moral hazard but not adverse selection or strategic
misrepresentation of information. For an explanation of this distinction, see Section 4.
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latter, however, provides a contrast to the partnership. Here, as the players ' discount rate

approaches zero, one can find equilibria of the repeated game that approach efficiency in the limit.

Such approximately efficient equilibria can be characterized in some detail, depending on the

specific model, and have interesting behavioral interpretations. Again, embedding the problem in

a continuous-time mode! allows one to obtain sharper characterizations of the equilibrium

strategies.

In fact, these equilibria of the principal-agent game lead to optimization problems for the

agent that might be called problems of "survival. " This prompts me to devote a special section

(7) to the study of such problems, which also have an independent economic interest outside of

the field of organization theory.

Finally, it should be recognized that in realistic settings the organizational decision problems

are not strictly repeated. Typically, there are one or more state variables that evolve in response to

both organizational activities and exogenous random variables; for example, this is characteristic

of situations involving investment. Although a comprehensive theory is not yet available, I

illustrate this phenomenon in Sections 3 and 6, as weIl as in the section on economic survival. In

Section 3, I discuss a partnership model - with certainty - of the joint exploitation of a productive

asset as exemplified by "fishing wars." In Section 6, I sketch a principal-agent model of the

regulation of a public utility, in which the principal is the regulator, and the agent is the firm 's

manager who is engaging in risky research and development with the goal of reducing costs. In

both cases the methods used for the repeated-game case can be extended and adapted to construct

efficient - or approximately efficient - equilibria.

In this exposition, I shall not attempt any great level of generality. Instead, Ishall illustrate the

key ideas with a series of elementary mathematical examples, only sketching the directions in

which further analysis has been successful. The interested reader may consult the corresponding

references for treatments of greater depth and generality.

2. Simple Partnerships with Certainty

2.1 Introduction

In a simple partnership game, with certainty, the output of the partners is jointly determined

as a function of the individual inputs of the partners. This output is divided among the partnerS

according to some fixed rule. The utility to each partner in any one period is the difference

between his compensation (Le., his share of the output) and the cost (or disutility) of his input.
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If the situation is repeated, then the resulting game is called a supergame. In the supergame, a

strategy of a partner is a sequence of functions, one for each period, that determines his input in

each period as a function of the history of all inputs and outputs in all previous periods. His utility

for the supergame is the sum of his one-period utilities, typically discounted at some fixed

(exogenous) rate. (In a variation on this definition, one may prohibit the partners from ever

observing the inputs of the other players. This variation will be considered in Seetion 4 below.)

In the one-period game, a strategy for a partner is simply an input - a single nonnegative

number. The deseription of the game is completed by specifying the rule according to which the

output is shared among the partners. For example, the sharing rule might speeify that the output is

to be shared equally among the partners. A combination (veetor) of inputs is an equilibrium (or

noncooperative Nash equilibrium) if no individual partner can increase his utility by unilaterally

changing his input. A combination of inputs is efficient (Pareto optimal) if no other eombination

of inputs yields each partner at least as much utility, and yields at least one partner strictly greater

utility.

With natural assumptions about the output funetion and the individual eost functions, it is

intuitively plausible that an equilibrium eannot be efficient. For example, suppose that the

partners share the output equally. At an equilibrium, a small inerease in one partner's input will

result in an inerease is his eompensation that is approximately matehed by the eorresponding

increase in his individual eost. On the other hand, the small increase in his input will also increase

the compensation of every other partner, without eorresponding increases in their own eosts.

Thus, starting from an equilibrium, a small increase in each partner's input will make all the

partners better off.

In eeonomie jargon, each partner's input produces a pOSItIve "externality" for the other

partners, which he does not take into aecount in his own (equilibrium) behavior. Another way of

putting it is that each partner tries (up to a point) to be a free rider on the inputs of the other

partners. The result in equilibrium is that each partner' s input is smaller than it should be for

effieieney.

Example 2.1. Suppose there are two partners, and denote partner i's input by aj. The

eorresponding output is

(2.1)

and i'Sshare of the output is S j (y), where for every y,
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(2.2)

Here a l and az must be nonnegative, and R is a positive eonstant. Denote i's individual eost by

Qi(ai), then i's utility is

In particular suppose that

=1..
2 '

(2.3)

(2.4)

in which ease

Ui = (2.5)

A one-period equilibrium is characterized by the first-order conditions:

R
--2qa·=O2 l'

so that the equilibrium inputs and utilities are

R
4q ,

i = 1,2,

*Uj = 3R z
l6q .

(2.6)

To charaeterize the efficient input combinations, first note that if the utility pair (u l , U z) is

feasible, then so is any pair (Ul' U2) with
,

Ul=Ul+S,

,
Uz = Uz - s.

Henee (a l , a z) is effieient if and only if it maximizes
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+ S 2 (y) - Q2 (a 2 )

= R(a 1 +a 2) - q at - q q~ .

i = 1,2 ,

This uniquely detennines the efficient inputs (a 1 , a2 ),

~ R
ai = 2:q ,

as weIl as the sum of the utilities,

~ ~ R 2

U 1 + U2 = 2q .

(2.7)

(2.8)

The various efficient utility pairs (u 1, U2) are now detennined by varying the sharing ru1e. In

particular, the family of sharing ru1es

(2.9)

y
S2(Y) = "2 - s,

yields all the efficient utility pairs by varying the parameter s, provided the partners use the inputs

al and a2.

Comparing (2.6) with (2.7) and (2.8), we see that the efficient inputs are twice as large as the

equilibrium inputs, and that the efficient sum of utilities is 4/3 times the equilibrium sum of

utilities. Of course not every efficient utility pair is Pareto-superior to the equilibrium; see Fig. 1,

where the efficiency frontier is the line with slope - 1.

2.2 The Repeated Game

Suppose now that the situation of the one-period game is repeated infinitely often. As

described above, a partner's strategy determines his input in each period as a function of the

previous history of inputs and outputs. A partner's utility for the supergame is the sum of his

discounted one-period utilities.

Extending the notions of equilibrium and cfficiency to the supergame in the obvious way, one

can show that the supergame typically has many equilibria, some ofwhich may be efficient.



- 8 -

For example, consider a particular equilibrium of the one-period game, and define the

stubborn strategy of a partner to be the one in which he plays his one-period-equilibrium input in

every period, no matter what the previous history is. It is easy to see that the strategy combination

in which each partner plays his stubborn strategy is an equilibrium of the supergame; I shaU call

this the stubborn equilibrium. (To each equilibrium of the one-period game, there will

correspond a stubbom equilibrium of the supergame.) If the one-period equilibrium is inefficient,

then so is the stubborn equilibrium.

To construct efficient equilibria, I shaU now consider so-caUed trigger strategies. Having

singled out, as before, some (inefficient) one-period equilibrium, let us also single out some

efficient input combination that makes every partner better off; cau this the "target input"

combination, and cau the corresponding output the "target output." A trigger strategy for a

partner is defined as follows: the partner uses his own target input until the first period, if ever, in

which some partner does not use his corresponding target input; thereafter he uses his stubborn

strategy.

In order for the combination of trigger strategies to form an equilibrium, it must be that case

that, for each partner, the one-period gain he gets from deviating (optimaUy) from the target input

combination is less than the subsequent loss due to everyone switching to their respective

stubbom strategies. However, as the partner's discount rate approaches zero, the ratio of his one

period gain to his subsequent loss also approaches zero. Thus, for sufficiently low discount rates

the trigger-strategy combination will be an equilibrium of the supergame.

Example 2.2. Extending Example 2.1, let aj! and Uj! denote i's input and utility, respectively, in

period t (t =1,2, ... , and ini); then i's supergame utility is

00

Uj = L (1-0)ot-1 Ujt ,

t=l
(2.10)

where O, the discount jaetor, is between O and 1. (The discount rate is defined as (1- 0)/O.)

Note that both partners have the same discount factor.

Let aj and aj be defined as in Example 2.1 (efficient and equilibrium inputs). Let the target

utilities be (cf. (2.8))

so that the total efficient utility is divided equally. Define i's trigger strategy by:



- 9 -

2) if for same j and t, a jr ;t: aj, then a is = ai for all s > t.

Consider partner l's optimal deviation from the trigger-strategy pair; without loss of generality,

we can take this to occur in period 1. If 1 deviates in period l, then 2 will use ai from period 2

on, and so l should use aj from period 2 on. Therefore l 's optimal deviation in period 1 is his

optimal one-period input given that 2 uses az; it is easy to verify that this is aj, and that l 's

corresponding one-period utility is

, 5R Z
A

Ull = -- > UI .
16q

('The fact that aj is optimal against az is special to this example.) Hence if 1 deviates optimally

in period 1 his supergame utility will be

(1-Ö)Ull + L. (1-Ö)Ör - I uj
r=Z

= (1- Ö) Ull + Ö Uj .

On the other hand, if he stays with his target input, al, then his supergame utility will be

i: (1-Ö)Ör - 1 UI = uI .
r=l

(2.11)

(2.12)

Since ul > uj, (2.12) will exceed (2.11) when Ö is sufficiently elose to 1. Hence for Ö

sufficiently elose to 1, it will not be optimal for 1 to deviate from the trigger-strategy pair, and so

the latter is an equilibrium of the supergame.

Nate that the above argument is quite general, since it used only the fact that ul > uj. Since

the one-period equilibrium is in general inefficient, it will be possible to find an efficient pair of

one-period utilities (UI' uz) that is Pareto-superior to the equilibrium (Ui > uD, and any such

pair can be sustained in a supergame equilibrium for Ösufficientiy elose to l.

In fact, using other methods, it can be shown that the set of equilibria of the supergame is

quite large. Define the utility outcome of a game to be the vector of the players ' utilities (one for

each player). A utility outcome isjeasible if it is yielded by same combination of strategies, and

it is individually rationaI if it gives each player at least as much utility as he could "guarantee"

for himself. One can show that, under fairly general conditions, as the partners' discount factor

approaches l, the set of equilibrium utility outcomes of the supergame approaches the set of
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feasible and individually rational utility outcomes of the one-period game. (This result is tme for

a large class of repeated games; see Fudenberg and Maskin (1986) and the references cited there.

There is a corresponding result for the limit case in which each player's supergame utility is the

long-mn average of his one-period utilities; this is sometimes called the "Folk Theorem" for

repeated games.)

3. A Partnership Game with Investment: 'The Dynamie Inefficiency of Capitalism'

As noted in the Introduction, for most "realistic" models oflong-term relationships the one

period game is not strictly repeated; rather there are one or more state variables that evolve

through time as a function of the players' actions and possibly exogenous factors. In this section I

shall illustrate this phenomenon with a model of the joint exploitation of a productive and

producible asset.3

The phrase "tragedy of the common" evokes an image of an overgrazed pasture used in

common by many husbandmen. By extension, it refers to a situation in which a productive asset

is exploited jointly by several economic agents whose "noncooperative" behavior results in an

overexploitation of the asset, Le., an exploitation that is not efficient. Other than grazing,

examples of this situation included fishing, forestry, and hunting. A novel example, and the one

that first attracted the attention of J. Benhabib and myself, was studied by Lancaster (1973), who

viewed the assets of a modem capitalist firm as being jointly exploited by the firm 's owners and

its unionized workers. For various reasons, the owners and the workers cannot or do not bind

themselves to long-term cooperative behavior, leading to what Lancaster called "the dynamic

inefficiency of capitalism.' ,

Following the direction suggested by the work of Lancaster, Levhari and Mirman (1980), and

others, Benhabib and I analyzed a fairly general model of the joint exploitation of a productive

asset as a dynamic, noncooperative game. Here the state variable is the stock of the productive

asset, which changes through time as a result of its own productivity and the actions of the

players. Our goal was to understand the variety of equilibria of this game, and in parricular to

understand the conditions under which there are equilibria that are efficient.

3. This section is based on Benhabib and Radner (1988).
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In the continuous-time model that we study, the (positive) stock at date t, Y(t), evolves

according to the differential equation,

y' (t) = 11 [Y(t)] - C 1 (t) - C2 (t) ,

where (for the case of two players), c 1(t) and c2 (t) are the rates of consumption of the asset by

players l and 2, respectively. The "pmduction function," 11, is assumed to be concave, and to

take the value zem at both zero and some positive stock leve1. The strategy of each player

determines his consumption rate at each time as a function of the previous history of the process,

possibly with some delay. We assume that each player's utility for the game is equal to his total

discounted consumption over the duration of the game. The game ends when the stock becomes

zero, if ever. The linearity of a player's utility in his consumption is the main special assumption

of the mode1. We also assume that each player's rate of consumption is nonnegative and

bounded.

At an efficient equilibrium the weighted sum of the players ' total utility is maximized. Since

the instantaneous utilities of the players are linear in consumption, this is equivalent to

maximizing the discounted sum of the total consumption of the players. We show that the

efficient consumption policy of the two players is to consume nothing until a certam level of the

stock is reached. After that the total consumption of the players is equal to the output of the

stock, so that the stock level is stationary. We call a consumption policy of this type a "frugal"

policy. By contrast, if a player follows a "prodigal" consumption policy he always consumes at

the upper bound of his consumption rate.

The equilibria of this dynamic game that correspond to the repeated static equilibria are those

in which each player uses a strategy in which his action at any date is independent of the current

stock of the asset; we might call these "extreme equilibria." In these equilibria, the players run

down the stock of the asset as fast as possible ("prodigal" consumption). By analogy with the

terminology of repeated-game theory, we define a trigger strategy equilibrium to be a Nash

equilibrium in which the players threaten to reven to an extreme equilibrium whenever a player is

caught deviating from the target efficient path. The effectiveness of such rhrr:1ts depends, of

course, on the "detection technology," Le., on how much extra utility the dClil!;ng player can

gain before his deviation is detected by the other palyers. In the model II(' i \, cfficient

trigger-strategy equilibria may exist from some staning states but not others. \ I, 'i L precisely,

there is a stock level, say y', such that a trigger-strategy equilibrium exists from .slarting stocks

greater than or equal to y', but not from those strictly less than y'. (This statement is meant to

include the cases in which y' is zem or infinite.)
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Under some circumstances, there may exist a new kind of equilibriurn, which we caU a

switching equilibrium. We show that, in our model, whenever y' is positive (and finite), there is

an open interval J with upper endpoint y' such that, from any starting stock in I there is an

equilibrium of the dynamic game with the following structure: the players follow an inefficient

but growing path until the stock reaches the level y', and then follow a trigger strategy (efficient)

after that.

An important feature of our analysis is an explicit modelling of delayed information. In our

treatrnent of trigger-strategy and switching equilibria we assume that each player can observe the

state of the systern (the stock of the asset) with a fixed delay, Le., at time teach player can

observe the history of the state variable up through time (t-t), where the delay t is a fixed,

positive parameter of the model. The larger the delay, the more a player can benefit from a

"defection" from a prescribed path before his defection is detected and the other player can

respond. In previous discrete-time models, this delay has been implicitly equated to the length of

the period between decision times. The use of a continuous-time model makes it convenient for

us to vary the delay, 't, as an independent parameter, and we consider this to be an irnportant

contribution of our analysis.4

In fact, we show that, roughly speaking, for any fixed discount rate, (1) efficiency can be

sustained by trigger-strategy equilibria from any positive initial stock, provided that the delay is

sufficiently small, but (2) efficiency cannot be so sustained from any positive initial stock,

provided that the delay is sufficiently large. A corresponding result holds for a fixed positive

delay, as one varies the discount rate.

4. Simple Partnerships with Moral Hazard

4.1 Introduction

In the present section lintroduce three new features into the model of a simple partnership

that was described in Section 2:

4. For an analysis of information processing as a source of de1ay, see Radner (1989).
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l. The joint output is influenced by exogenous random factors (the environment), as weIl as

by the partners' inputs.

2. The partners cannot observe the random environmental factors.

3. The partners cannot observe each others' inputs.

A consequence of these new features is that, by observing the output alone, the partners cannot

infer with certainty the cause of any departure from some "target" output. This situation is

sometimes described as one of moral hazard.

In a more realistic model, features 2 and 3 above would be relaxed to aIlow for imperfect

observation of the environment and the actions of other partners. In particular, if different partners

had different information about the environment, then phenomena such as adverse selection, self

selection, misrepresentation, etc., might arise. For simplicity, however, Ishall restrict my

attention to the case of moral hazard.

If one assumes that the objective of each partner is to maximize his own expected utility, then

the introduction of the above features does not essentiallyalter the analysis of the one-period

game. On the other hand, the nature of the repeated game is changed in a fundamental way, as we

shall see below.

Example 4.1. Modify Example 2.1 so that the outcome is a random variable, say Y, whose

probability distribution depends on a 1 and az. In particular, suppose that Y can take on on!y two

possible values, y 1 and Yo, with

(4.1)

and a 1 and az are nonnegative. (Think of a i as i's "effort.") Without loss of generality, we

may take Yl = 1, Yo = O, and a = 1.

Let s iy denote partner i's compensation if the outcome is y;

SIl + SZl = l ,

(4.2)

s 10 + szo = O .

Partner i's utility is assumed to be linear in compensation and quadratic in effort:

U i = S iy - qar .
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Hence his expected utility is, by (4.1)

u j = S j 1 (a 1 +a 2) + S W(1- a 1 - a2) - q ar

= (Sil -SiO)(al +a2) - q ar - Sio '

(provided that al +a 2 S; 1). For example, if S j 1 = ~ and s iD = O, then

1 2
Uj = - (al+a2) - qai .

2

(4.3)

(4.4)

Notice the fonnal similarity between (4.4) above and (2.5) in Example 2.1, the latter with R =1.

It follows that the analysis of efficiency and equilibrium in this example is the same as in

Example 2.1.

With the introduction of uncertainty, one should take account of the attitudes of the players

towards risk. In Example 4.1 the partners are represented as neutral towards risk, but of course

this is not the general case. The special implications of the assumption of risk-neutrality will be

explored in Sections 4.3 and 4.4.

4.2 Optimal Sharing Rules with Risk.Neutrality

In Section 2.1 I argued heuristically that, in the certainty case, an equilibrium cannot be

efficient. That argument was based on the assumption that the partners shared the output equally.

In fact, one can show that under quite general conditions (with certainty) there is no sharing rule

for which a corresponding equilibrium is efficient.

With the introduction of uncertainty, the situation is changed. Following Williams and

Radner (1988), in this section I shall sketch an argument to show that, if the number of possible

outputs is at least 3, and if the partners are neutral towards risk, then - generically in the data of

the game - there exists a sharing rule for which the corresponding equilibrium of the one-period

game is efficient.

Basically, what is required is that the partners be sufficiently different in the effects that their

actions have on the distribution of output. On the other hand, if the partnership is symmetric with

respect to pennutations of the partners, then an efficiency-inducing sharing rule will typically not

exist. (Generically, the partnership will not be symmetric.)

I begin by describing the Williams-Radner model, which is a generalization of Example 4. (,

There are m > l partners. The i th partner chooses his input aj from some closed and bounded

subinterval A j of the real line. His choice is his own private infonnation. Let a == (a 1 , ... , am)
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denote an input profile, and let a-i denote the (m - I)-tuple (a l, ... , ai-l ' a i+ l' ... , am)'

Once the partners have chosen their inputs, one of severallevels of output results. This output

is publicly observable. Let Y denote the range of output levels of the partnership. Except where

otherwise noted, the reader should assume that Q is some finite set of real numbers with n ~ 2

elements,

y = {Yl < Y2 < .,' < Yn} .

The partners' inputs determine a probability distribution over Y. For the input profile a, let

F(', a) denote the cumulative distribution that is determined by a, and let f(', a) denote the

corresponding density function. These functions are common knowledge, and each is a e l

functionofthe inputs, For simplicity, letFi(y, a) == ~F (y, a) andfi(Y, a) == :f (y, a),
uai uai

The i th partner' s utility u i consists of whatever share s i (y) he receives of the observed output

y, minus the disutility Q i (a i) of his contribution of the input a i:

By assumption, Qi(') is a el function of the i th partner's contribution. Let qi(') == dQj/dai(·).

We assume that q i ( ,) is strictly positive.

Since utility is transferable, an input profile ais Pareto optimal if and only if it maximizes the

difference between the expected total output and the total disutility of the input contributions:

il E ar~ax {E(Yla) - ,~ QJa,)} .

m
We assume that there exists a solution to this maximization problem in the interior of II Ai.

i= l

Efficiency therefore requires each partner to make a positive input contribution.

Our concern is the existence of a sharing rule s l ('), ... , S m ('), that satisfies the budget

constraint

m

L Si(Y) = y, all y E Y ,
i=l

and that also makes the efficient profile ainto a Nash equilibrium,

(4.6)
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The problem of devising a sharing role with these propenies is the partnership problem. The

following tirst order conditions are necessary: if ais efficient, then for each partner the marginal

expected total output must equal the marginal disutility of his contribution at a,
n
L Yj!i(Yj, a) = qj(aj) forall 1 s; i s; m.

j= l

(4.7)

On the other hand, if a is a Nash equilibrium, then each partner's marginal expected

compensation must equal the marginal disutility of his contribution at a,
n
L Si(Yj)!j(Yj, a) = qj(aj) for all 1 S; i S; m .
j=l

(4.8)

The problem of devising a sharing rule that satisties the tirst order condition (4.8) and the budget

constraint (4.6) is the first order problem.

Our approach is to solve the tirst order problem and then to determine whether or not this

solution also solves the pannership problem. The main result is that the tirst order problem is

solvable for ageneric choice of F ( .) and Q l (. ), ... , Q m ( .) when F ( " a) detines a probability

distribution over at least three output leveis. Efficiency plays a relatively minor role in the proof;

we actually prove the stronger result that in a generic problem with at least three output leveis, the

budget constraint and the tirst order conditions for a Nash equilibrium are solvable at ageneric

input profile. (In other words, for a generic input profile, there will be a sharing rule for which

the input profile is an equilibrium.)

To get an idea of the proof, suppose that there are n possible output levels y j' The

"unknowns" in equations (4.6) and (4.8) are the mn numbers Sj(Yj)' Thus we can regard (4.8)

and (4.6) as a system of m +n linear equations in the mn variables (s j (y j)h :s; j :s; m, l :s; j:S; n whose

coefficients are determined by the efficient profile a. The left-hand sides of the tirst m equations

(from (4.8)) are the marginal expected payments to the partners, and the last n equations (from

(4.6) form the budget constraint. Efficiency is used in the analysis of the n ~ 3 case only to

determine the values of these coefficients; the argument could be carried out using coefficients

determined by a generic input profile. The main task of the proof is to show that, generically in

the data of the problem, these equations have full rank, provided n ;;:: 3. On the other hand, it is

not difficult to show that, if n = 2, or if the equations are symmetric in the partners, then no

solution is possible.
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It is easy to construct linear examples in which every sharing rule that satisfies both the

budget constraint and the first order conditions for a Nash equilibrium aIso solves the parmership

problem. More generally, Williams and Radner derive conditions on the output function under

which at least one solution to the first order pr?blem aIso solves the parmership problem. For

simplicity, they derive these conditions only when thcre are two parmers and three levels of

output. The conditions are awkward, and at present they have no economic interpretation.

"Reasonable" examples exist, however, that satisfy them (see Section 4.4).

We also prove a paradoxicaI result that concems the nature of the solutions to the first order

conditions when the output function satisfies stochastic dominance with respect to each partner's

input. (For each partner, given the inputs of the other partners, stochastic dominance holds if the

observation of a higher level of output allows one to infer, in a probabilistic sense, that the

selected partner contributed agreater level of input; e.g., see Whitt (1980).) When stochastic

dominance holds, one might expect that a partner's payment should increase with the output; as

Alchian and Demsetz (1972, p. 778) suggested in their anaIysis of the internal structure of filTIls, a

partner may have an incentive to "sabotage" the organization if his reward and the output are

inversely related. In fact, the opposite is true: when stochastic dominance holds, for any sharing

rule that satisfies the first order conditions, some (at least two) of the partners' payments must be

nonincreasing over some subsets of the range of outputs leveIs. Thus moral hazard can be

overcome in some problems in which stochastic dominance holds, but only if some partners do

not always benefit when the joint output increases.

This paradox may explain why these results seem surpnsrng, and why they have been

overlooked in the literature on partnership. One can show that the Nash equilibria ofpartnerships

are typically inefficient when the budget is baIanced, provided that (i) each partner's payment

increases with the output; (ii) for each state of arandom environment, the output is an increasing

ftrnction of each partner's input. This second assumption implies that the output function satisfies

stochastic dominance.

Bach of the above results can be extended to the case where the set of output levels is a

subintervaI of the real line. Thus it is possible to solve the partnership problem in our model, not

because of any special assumption about the range of output leveIs, but because the joint output is

uncertain.

This section focused on the case in which the partners are risk neutral. It can be shown that,

in a generic problem with risk aversion, the partnership problem is unsolvable.
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4.3 The Repeated Game

I have aIluded above to the fact that the introduction of moral hazard into the partnership

situation changes the repeated game in a fundamental way. The trigger strategies described in

Section 2.2 can no longer be completely effective (even with discount factors close to l), because

departures from the target output can be caused by random variations in the environment as weil

as by deviations of the partners' inputs from their target values.

However, the partners are not completely powerless to monitor each others' inputs, since they

will have statistical evidence from the sequence of observed outputs. For example, suppose that,

over time, the random environmental factors are independent and identically distributed. It

foilows that, if each partner uses his target input in each period, then the sequence of outputs will

be independent and identically distributed as weil; call this the target distribution of the outputs.

Each partner could now use a statistical procedure to test whether the other partners are adhering

to their target inputs, in a manner analogous to the statistical qUality controI of a production

process. A "failure" of the test would trigger a reversion by all of the partners to their respective

stubbom strategies.

Notice, however, that a procedure that had any chance of detecting deviations from target

inputs would also produce a "false alarm" from time to time. In other words, even if the partners

always used their target inputs, there would be a positive relative frequency of test failures, so

that the reversion to stubbom strategies would eventually be triggered, with probability one. The

inefficiency caused by this could be mitigated, but not entirely eliminated, by making the

reversions to stubbom strategies last only a finite length of time (so-called "relenting"

strategies).5 In this case, there would be an infinite sequence of "phases" of two types, one in

which the partners used their target inputs, and one in which they used their stubborn strategies.

Of course, this does not settle the question whether, as the players ' discount factor approaches

1, efficiency can be approached by equilibria of the supergame. The conditions for this to be true

are somewhat complicated, and I shall not attempt to describe them precisely here. Roughly

speaking, what is required is that, for every pair of partners, the probability distributions of

5. Note that relenting strategies could also have been used in the case of certainty, but would not have produced any
further increase in efficiency.
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outcomes corresponding to different pairs of deviations from the target inputs should be linearly

independent.6

4.4 A Continuous-Time Moder

In this section I summarize the results of a study by Radner and Rustichini (1988) of a

partnership model with uncertainty, in a framework that allows the analysis of the effect of

varying the reaction time of the partners, including the limiting case of instantaneous adjustment.

The one-period outputs are normally distributed random variables, with means and variances

depending on the inputs of the partners. The sequence of outputs is a stochastic process of Wiener

type, which can be thought of as the discretization of a diffusion-type process. As the reaction

time tends to zero this process tends to the solution of a stochastic differential equation. The

sample paths are (almost surely) continuous. It may be objected that in real-world parmerships

the reaction time and the flow of information are always, for practical purposes, different from

zero; so "real" partners can not adjust instantaneously all the time. In fact, the same objection

may be raised against any model of a dynamic game in continuous time. But since a universal

10wer bound on the reaction time would certainly be arti fici al, the question arises whether the

properties of the set of equilibria and of the strategies approach some limit when the reaction time

becomes arbitrarily small. A related nontrivial question is the existence of equilibria. In other

words, the analysis of a continuous-time model may be considered as a way of testing the

robustness of the results for a discrete time (finite reaction) model; the study of the limit situation

should clarify which properties of a discrete time model depend critically on the fixed delay in the

reaction of the players when that delay is "small."

The first question we analyze is the characterization of efficient sharing rules, Le., sharing

rules that have the efficient outcome as a (Nash) equilibrium. This question was first examined in

Williams and Radner (1987), where the generic existence of efficient sharing rules was

demonstrated in a class of parmership models (see Section 4.3). Like Williams and Radner, we

assume that the partners are risk-neutral. For our model, we provide a complete characterization

of the partnerships for which the design of efficient sharing rules is possible, and a

characterization of such rules. This characterization has a particularly simple f0l'111ulation in the

6. See Fudenberg. Levine, and Maskin (1989). I should mention here that their analysis makes u,-: of a more general
class of supergame strategies than those described in the preceding paragraph.
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case where the outcome is a random variable with a normal distribution. Simply stated, the

condition requires that at least two of the partners are different enough, in the sense that the

variance and the mean of the outcome vary differently as the efforts of these two partners vary. It

is interesting to note that the preferences of the players (in our case, the cost or disutility of the

input) plays no role. We then present a general procedure to design such sharing rules. From this

very construction, it will be apparent that the set of possible sharing rules is very large.

We then examine the problem of the existence of a limit for the optimization problem of each

partner. The existence of such a limit is important from the point of view of the robustness of the

equilibrium, as the repeated game becomes (in the limit) a continuous-time game. In fact the

existence of such a limit is a necessary condition for the concept of equilibrium to be weIl

defined. We prove that it is always possible to construct sharing rules that are both efficient and

stable (with respect to this limit process). Indeed, very simple sharing rules can be formed, even

with quadratic functions.

Lastly, we discuss the performance of fixed-proportion sharing rules, as the reaction time

tends to zero. We examine the case oftwo identical partners, with the sharing rule given by equal

splitting of the outcome, and examine upper bounds on the efficiency of symmetric equilibria.

The main result is that, when the reaction time becomes shorter than a fixed positive quantity the

only equilibrium of the repeated game is the equilibrium of the one-period game. A similar

question has already been examined, with similar conclusions, in the paper of Abreu et al. (1987),

for the not necessarily symmetric case. However, in their model the outcome is a stochastic

process of Poisson type (rather than of Wiener type, as in our case), and the action space of the

partners consists of two points. The mode! of the present paper and the one in Abreu et al. thus

cover together all processes in continuous time for which: (1) increments over nonoverlapping

time intervals are independent, (2) sample paths have at most discontinuities of the first kind, and

(3) for any fixed time t, the sample paths are continuous in probability at t. (Such processes are

caIled Levy processes; see Ito (1985) for an analysis of such processes and a proof of the fact that

Levy processes are compositions of constant processes, Wiener processes and Poisson processes.)

s. Principal-Agent Games

5.1 Introduction

I tum now to the principal-agent mode!, which is suggested by the hierarchical or supervisory

relationships that are common in organizations. From a formal point of view, we may consider
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the principal-agent mode1 as a special case of the partnership model, in which one of the partners,

called the "principal," effectively takes no action (fonnally, the outcome is independent of his

action); the other partners are called the "agents." In fact, most of the literature deals with the

case of only one "agent," which is the case Ishall discuss here? Also, most analyses assume that

it is the principal who chooses the compensation function (sharing rule), subject to some

constraints; this choice becomes the strategy of the principal. This is the approach Ishall follow

in the present section.

To surnmarize, we shall be considering the following situation. The "enterprise" comprises

the principal and the agent. The output of the enterprise depends on the agent's action and on a

stochastic environrnent, but the principal cannot fully monitor the agent's information and action,

nor can he fullymonitor the environrnent. The principal can monitor the outcome, however, and

in the sirnplest form of the principal-agent model - the one we shall study here - this is the only

thing he can monitor. Thus in this simplest case the principal can make the agent's compensation

depend at most on the outcome. More generally, the compensation can depend on anything else

that the principal can observe, e.g., some incomplete infonnation about the agent's infonnation,

action, or environrnent.

Table l lists some principal-agent relationships that can be more or less accurately represented

by the general principal-agent model. The insurer-insured relationship is the one that gave rise to

the term "moral hazard." The action of the insured (agent) is the care he takes to prevent an

accident (say to propeny), and the outcome is the occurrence or nonoccurrence of the accident.

The compensation that the principal (insurer) pays to the agent is negative (the premium) if the

accident does not occur, and is typically positive (the claim minus the premium) if the accident

does occur. If the preventive care is costly to the agent, then the fact that he has insurance may

lead him to lower his level of care, and this is the phenomenon called moral hazard. In this

relationship, the insured party is the agent, since he is the actor whose actions (care) are

unobserved, and the insurer is the principal, who compensates the insured according to the

outcome.

7. This is clearly a limitation from the point of view of organization theory. See Radner (1987) and Groves (1973) for
a more general discussion.
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Although much of the literature on the principal-agent model refers to market or regulatory

relationships, my concern here will be primarily with principal-agent relationships within

organizations. such as those listed above the dotted line in Table 1.

In this section Ishall use a simple example of a one-period principal-agent mode1 to illustrate

how moral hazard can lead to inefficiency. Suppose that the (stochastic) outcome of the enterprise

is either "success" or "failure," and that the probability of success depends on the agent's

action. In the case of success. the principal earns one unit of money (say one million dollars), but

in the case of failure, he earns nothing. The principal will compensate the agent according to the

outcome, giving him a compensation of w l for a successful outcome and a compensation of Wo

for a failure. (In principle, a compensation may be negative, although institutiona1 constraints

might rule that out.) The principal'S utility is assurned to equal the difference between the

outcome and the compensation he pays the agent. (Thus the principal is neutral towards risk.) The

agent's utility is assumed to depend both on his action and on his compensation. (Re may be

neutral towards risk or averse to it.)

Table 1. Examp1es of Principal-Agent Relationships

board of directors chief executive officer
manager subordinate
foreman worker

client
customer
regulator
insurer

lawyer
supplier
public utility
insured

Ishall represent this situation as a two-move game. The principal moves first, announcing a

pair of compensations. (wo. w l). to which he is committed. The agent moves second, choosing

his action. The outcome is then obselVed by both players, and the agent is compensated

accordingly. In this game the principal' s strategy is the same as his move, namely the

compensation-pair; but the agent's strategy is a decision-rule that determines his action

corresponding to each alternative compensation-pair that the principal could announce.

An equilibrium8 of the game is a pair of strategies, one for the principal and one for the agent.

8. The game-theorist will recognize that I have added the condition of subgame-perfection.
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such that

1. Given the announced compensation-pair, the agent chooses his action so as to maximize his

own expected utility.

2. Given the optimizing behavior of the agent described in item 1, the principal chooses a

compensation-pair that maximizes his own expected utility.

In the formu1ation of a principal-agent model one typically adds one or both of the following

constraints on the compensation-pair that the principal may announce:

1. The compensation-pair must enab1e the agent to attain (ex ante) an "acceptable" expected

utility.

2. The individual compensations are bounded below by some exogenously given bound.

The first constraint can be intetpreted as requiring that the principal must offer the agent an

expected utility at least as large as what the agent could obtain in other employment. The second

constraint recognizes that the agent's wealth is finite, and so the agent cannot pay the principal

arbitrarily large amounts ofmoney (negative compensations).

A strategy-pair is defined to be efficient if no other strategy-pair yields one of the players more

expected utility and yields the other no less. The main proposition of this section is, with one

interesting exception, that under" realistic" conditions, an equilibrium is not efficient. Precise

mathematical statements of the model and the proposition are given at the end of this section. I

shall try to make the proposition plausible here with an informal argument.

Suppose that the agent is averse to risk. First, Ishall argue that in an efficient strategy-pair

the agent's compensation must be independent of the outcome, that is, Wo must equal wl'

Suppose, to the contrary, that the two compensations were different (wo :I: wd, and let iV be the

expected compensation corresponding to the agent's action. Since the agent is averse to risk, he

would be better off if he used the same action but received a compensation equal to iV regardless

of the outcome. The principal, on the other hand, would be no worse off in this new situation,

since he is neutral towards risk. Indeed, if one wanted to make both players strictly better off, the

principal could pay the agent a constant compensation that is slightly less than iV.

On the other hand, a strategy-pair in which the agent's compensation does not depend on the

outcome typically cannot be an equilibrium, unless by a coincidence the action that the agent

most prefers in itself is also part of an efficient strategy-pair. For example, if increasing the
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probability of success requires more "effort" by the agent, and the agent prefers less effort to

more, then if the compensatian is independent of the outcome the agent will have no incentive to

exert any effort at all! Thus in an equilibrium the agent typically must get alarger compensatian

for success than for failure. The incentive requirements for equilibrium, therefore, are

incompatible with the conditions for efficiency.

An exception to the proposition occurs if the agent is neutral towards risk and is sufficiently

wealthy. In this case, an efficient equilibrium is obtained if the principal sells the agent a

"franchise" to the enterprise, that is, the agent pays the principal a fixed fee, and then keeps the

entire outcome. (H is easy to see that this is equivalent to making the compensation for failure

negative, and to making the compensatian for success one unit higher than the compensation for

failure.)

Are there any remedies for the inefficiency of equilibrium in the principal-agent relationship?

One possible remedy is for the principal to expend resources to monitor the agent's action (and,

more generally, his information and environment). Whether this will improve net efficiency will

depend, of course, on the cost of monitoring. The prevalence of de facto decentralization in large

organizations suggests that accurate monitoring of agents' actions is too costly to be efficient, or

even praeticable.

Another remedy for inefficiency of equilibrium may be available if the principal-agent

relationship is a long-term one. This topic is discussed in the next subsection.

Example 5.1. I start with a formal model of the example of the principal-agent game discussed

in this section. The notation is chosen, as far as possible, to indicate how this example is related

to the model of Section 4. The action of the agent is a nonnegative real number, a, and the

resulting output is

y =G(a, X) ,

where X is a random variable. In this example, X is distributed uniformly on the unit interval, and

G(a, X) = {l,
0,

ifa:?:X,

if a<X.

We may interpret Yas success or failure, X as the difficulty of the agent's task, and a as his effort.

From the specification of G,

Prob(Y = 1) = min (a, 1) .
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The agent has no information about X (other than its distribution) when he chooses his action.

The agent's compensation depends on the output Yaccording to

S(Y) = {wo, if Y = O,
wI' ifY=l.

The agent's resulting utility is

U l = P[S(Y)] - Q(a) ,

where P and Q are differentiable and strictly increasing functions, P is strictly concave, and Q is

strictly convex. Hence we may assume a ::;; 1. Notice that I have assumed that the agent is averse

to risk. Without loss of generality I make the convention that

P(O) = Q(O) = O .

The principal receives what is left of the output after compensating the agent. Assume that

his utility is equal to what he receives, that is,

U o = y - S(Y) .

(Thus the principal is neutral toward risk.)

In this game, the principal moves tirst, choosing a compensation function S, and then the

agent moves, ehoosing an action a after leaming what S is. Conditional on the agent's action, the

resulting expected utility to the principal is

and to the agent is

VI = aP(wl) + (l-a)P(wo) - Q(a) .

(5.1)

(5.2)

The principal's strategy is the compensation function S, and the agent's strategy is a mapping a

from compensation functions to actions:

a = a(S) .

An equilibrium of the game is a pair of strategies, (S* , a*), such that:

(1) S* maximizes Vo given a*.

(2) a*(S*)maximizesVI givenS*.
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In addition, Ishall require that in an equilibrium, for every S (not just S*), a* (S) maximizes the

agent's expected utility given S. (Thus I require that equilibria be perfect, in this two-move game

such equilibria are also called Stackelberg.) Ishall write a * = a* (S*).

Typically, it is realistic to impose two constraints on the compensations. The first constraint

is that the principal may not impose arbitrarily large penalties on the agent; in other words, the

compensations are constrained so that the agent's disutility is bounded from below. The second

constraint expresses the condition that the agent is free to refuse to enter into the relationship (Le.,

to play the game). For this, Wo and wl must be such as to enable the agent to achieve some

minimum expected utility. For the purposes of this chapter, it is sufficient to impose a constraint

of the first type; the addition of the second constraint would slightly complicate the exposition;

however, it would not change the results in any essential way. To express the first constraint, we

can assume that the compensations are bounded from below (and that the function P is finite

everywhere); without loss of generality I assume that they are nonnegative:

Space limitations do not pennit a complete analysis of this game. We can verify easily from

(5.2) that ifwo = Wl = W, then the agent will have no incentive to work, that is, a* (w, w) = O.

In addition, we see from (5.2) that if

Q' (O) ~ PO) ,

then a * (wo, Wl) = Ofor all Wo and w l between Oand l; in this case the on!y equilibrium has

S* = (O, O) and a* = O. On the other hand, if

Q' (O) < P(l) ,

then the equilibrium is characterized by

O = Wo < wi < l ,

a* > O;

(5.3)

(5.4)

also, a*(O, wl) is strictly increasing in Wl whenever a*(O, WI) is strictly between O and l.

This is the case Ishall discuss from now on.

A pair (.5, a) is efficient (pareto optimal) if no other pair (S, a) yields each player as much

expected utility and at least one player strictly more. From the concavity of the function P, it

follows that, for the same level of effon, the agent prefers the compensation function (iV, iV) to
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the compensation function (wo' W l ), where

w = awl + (l-a)wo ,

whereas the principal is indifferent between the two (recall that the agent is risk-averse and the

principal is risk-neutral). Hence, if [(wo, wd, a] is efficient, then Wo = Wl. Together with

(5.4) this shows that an equilibrium is not efficient.

There are, of course, many efficient pairs [(w, w), a]; we can show that for O < a< l, they

are characterized by the condition p' (w) = Q' (a).

5.2 Repeated Games

In this subsection, I examine some ways that the two players can exploit a long-term

principal-agent relationship to escape, at least partially, from the inefficiency of short-term

equilibria. The long-term relationship will be modeled as a situation in which the one-period

situation is repeated over and over again. These repetitions give the principal an opportunity to

observe the results of the agent's actions over a number of periods, and to use same statistical test

to infer whether or not the agent was choosing the appropriate action. The repetitions also

provide the principal with opportunities to "punish" the agent for apparent departures from the

appropriate action. Finally, the fact that the agent's compensation in any one period can be made

to depend on the outcomes in a number of previous periods (e.g., on the average over a number of

periods) provides the principal with an indirect means of insuring the agent, at least partially,

against random fluctuations in the outcomes that are not due to fluctuations in the agent's actions.

Thus, the repetitions provide an opportunity to reduce the agent's risk without reducing his

incentive to perform weIl.

The same beneficiaI results could be obtained, of course, if the agent had some means of self

insurance, for example, through access to a capital market or because his wealth was substantiaL

However, in many interesting cases (such as the owner-manager relationship), the random

fluctuations in outcome are too large compared to the agent's wealth or borrowing power to make

such self-insurance practical. With such cases in mind, Ishall confine my attention to

nonnegative compensation functions.

The decision rule that the principal uses to adjust the agent's compensation in any one period

in the light ofprevious observations constitutes the principal's (many-period) stratpf;V. Likewise,

the agent will have a (many-period) strategy for adjusting his actions in thc light of the past

history of the process. In principle, the players ' strategy spaces are very large and contain very
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complex strategies. For this reason, I shall devote most of my attention to equilibria that are

sustained with relatively simple strategies.

It may be helpful to have a stylized example in mind; Ishall call this the "owner-manager"

story. In the story, the owner is the principal and the manager is the agent. The owner of an

enterprise wants to put it in the hands of a manager. In each of a number of successive periods

(month, quarter, year) the profit of the enterprise will depend both on the actions of the manager

and on the environment in which the enterprise is operating. The owner cannot directly monitor

the manager's actions, nor can the owner costlessly observe all of the relevant aspects of the

environment. The owner and the manager will have to agree on how the manager is to be

compensated, and the owner wants to pick a compensation mechanism that will motivate the

manager to provide a good return on the owner's investment, net of the payments to the manager.

Ishall consider two kinds oflong-term relationship. In the tirst, the principal "punishes" the

agent by replacing him with another agent. Ishall call this the replacement mode/. In this model,

there may be an infinite sequence of agents, either because an agent has a maximum potential

tenure, or because the players use strategies that imply that, with probability one, each agent will

eventually be replaced. In the second type of long-term relationship, which Ishall call the

nonrep1acement model, a single agent is associated with the principal forever. The players

"punish" each other by changing their actions in response to the publiely available information,

just as the partners do in the equilibria of Section 4.2. Ishall discuss the replacement model tirst.

It is perhaps intuitively plausible that it makes a great difference whether or not the principal

can commit himself in advance to a particular compensation strategy.9 Ishall tirst discuss the case

in which, in the context of the replacement model, the principal can so commit himself. One can

show that, with simple strategies, the principal can induce the agent to behave in away that yields

both players discounted expected utilities that are elose to one-period efficiency, provided that the

players' discount factors are elose to 1, and the agent's potential tenure is long. An important

step in the analysis is the derivation of a lower bound on the expected tenure of the agent, as a

function of the agem's discount factor, his maximum potential tenure, and minimal information

about his one-period utility function.

9. Since the agent's actions cannot be observed by anyone else, there is no credible way in which the arrent C.1n
commit himself in advance to a particular strategy.



- 29-

Here is an infonnal description of one elass of such simple strategies for the principal, which I

call "bankruptcy strategies:" In this description, as in the remainder of the subsection, Ishall use

the language of the owner-manager story. The owner pays the manager a fixed compensation

(wage) w per period until the end of the first period T in which the total of the gross returns in

periods l through T fall below T(r +w) by an amount at least s (where w, r, and s are parameters

of the owner's strategy). At the end of such a period T, the manager is replaced and the owner

engages another one under the same regime. This can be interpreted as requiring the manager to

produce a "paper" gross return of (r+w) each period (a net return of r), and also allowing any

surplus to be added to a (paper) "cash reserve" and requiring any deficit to be subtracted. The

manager starts with a positive "cash reserve" equal to s and is replaced by a new manager the

first time the cash reserve falls to zero.

Since the cash reserve is only an accounting fiction, the bankruptcy strategy is really only a

scoring fonnula for evaluating the manager's long-term perfonnanee, together with a criterion

(based on the manager's score) for ending his tenure.

One can show that, if the players ' discount rate is sufficiently elose to 1, and if the manager's

potential tenure is sufficiently long, then the parameters of the bankruptcy strategy can be chosen

so that the manager's correspondingly optimal strategy yields a stochastic process of outcomes

for which the pair of expected discounted utilities is elose to one-period efficiency. (See Radner,

1986b, for the analysis and the statement of appropriate assumptions.)

I tum now to a brief discussion of another elass of simple strategies for the owner, which will

also playaroie in the noncommitrnent, nonreplacement case. I eall these review strategies; in

these strategies, the owner periodically reviews the manager's perfonnance, and replaces the

manager if his cumulative perfonnance since the last review is unsatisfaetory in a sense to be

defined.

A review strategy for the owner has three parameters e, r, and s, where:

l. eis the number of periods covered by each review, and

2. the manager is replaced immediately after any review for which the total return during

the eperiods preceding the review does not exceed er -s.

Thus the first review occurs at the end of period e, and the manager is replaced if

Se =R 1 + ... +ReS;er-s;
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otherwise the manager continues in office until the end of period 2.f, at which time he is replaced

if

Su - Se = Re+l + ... + Ru $; .fr-s,

and so on. The manager's total tenure, say T, will be some random multiple of.f, that is,

T =N.f .

Ishall call the periods from [(n - 1).f+ 1] to n.f the n th review phase; thus .f is the length of each

review phase and N is the number of review phases in the manager's tenure.

Assume that during his tenure the manager receives from the owner a fixed payment per

period. Consider a period t that is in the n th review phase, and take the "state of the system" at

the end of period t to be the pair

then with this state space the manager faces a standard finite-state dynamic programming

problem. We may therefore, without loss of generality, suppose that the manager uses a strategy

that is "stationary" in the sense that:

1. in each period, action depends only on the state of the system at the end of the previous

period;

2. in periods 1, .f + 1, 2.f + 1, and so on, action is the same and independent of the history

of the process.

In other words, the beginning of each review phase is a point of renewal of the process.

One can prove (see Radner, 1986b) results for review strategies that are similar to those for

bankruptcy strategies.

Up to this point I have assumed that the owner (principal) could precommit to a particular

strategy, even though the manager (agent) could not. In fact, such precommitments are the

exception rather than the rule in owner-manager relations, although precommitment, in the form

of contracts, can be found in other principal-agent relationships (e.g., customer-supplier and

client-broker).

For the strategies that have been considered in previous sections, there are many situations in

which the owner might be tempted to change strategy in mid-course. For example, in the case of

the bankruptcy strategy, if the manager has accumulated an unusually large cash reserve, he can



- 31 -

be expected to ..coast" for many periods while the cash reseIVe falls to a lower level (but one that

is still "safe" from the manager's point of view). Similarly, if the manager is near the end of the

maximum potential tenure, and has a relatively safe cash reseIVe, he will have an incentive to

coast. In both of these situations the owner would be tempted to replace the manager

immediately with a new one. Analogous situations arise under the review strategies. The

manager would be expected to move away from the actions that produce the highest retums if the

reseIVe were sufficiently high or sufficiently low. In both cases the probability of passing review

would be very little affected by the manager's choice of actions during the remainder of the

review period, and so the manager would have an incentive to choose actions that gave him

higher one-period utility.

On the other side of the balance, there may be costs to the owner of replacing a manager, costs

that have not been taken into account in the previous discussion. First, the owner may find it

more difficult to find replacements for the manager's position if it is known that the owner has

depaned in mid-course from a previously announced strategy, or in other words has "reneged"

on a promise or understanding. Second, there may be replacement costs that are incurred whether

or not the replacement conforms 10 the announced strategy, due to a breaking-in period for the

new manager, replacements of subordinates, interruptions of established routines, and so on.

These costs would give the owner an incentive to avoid replacement as a deterrent even in the

announced strategy and to find some other means of inducing good behavior by the manager.

These considerations lead one to consider a model in which the manager is never replaced, but

the consequence of poor performance is a temporary reversion to a "noncooperative" or

., adversarial" phase in which the manager receives a less satisfactory compensation than under

the normal "cooperative" phase. To the extent that the noncooperative phases are also less

favorable for the owner, the owner will be deterred from ending the cooperative phases

prematurely. One can show that the review strategies described above can be transformed into

self-en/orcing agreements by prescribing the noncooperative phases to be equilibria of the one

period game that are inferior to the cooperative phases (in expected value) for both the owner and

the manager. Furthermore, one can do this in such a way as to sustain supergame equilibria that

are approximately efficient, as in the case of the replacement model. (For the detaiIs of this

construction under various conditions, see Radner, 1981, 1985, 1986b.)

In the nonreplacement model, the owner and the manager are bound to each other "forever."

A more general model would incorporate explicitly thc costs to the owner and manager of the

owner replacing the manager and of the manager quitting. The analysis would show how the
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structure of self-enforcing agreements (supergame equilibria) would depend on those costs and on

the other parameters of the model. I am not aware of any such general formal analysis.

5.3 A Continuous-Time Model

In more specialized models of repeated principal-agent games one can obtain sharper

characterizations of supergame equilibria. This is the case in a particular continuous-time version

of the "replacement model" of the the previous subsection. In this model (see Dutta and Radner,

1987):

1. The cumulative gross return is a controlled diffusion process, as in the continuous-time

version of the repeated partnership game of Section 4.4.

2. At each instant of time, the manager's action (control) can take on one of finitely many

values. To each action is associated a drift and variability of the diffusion process. lO The

manager's strategy must satisfy certain measurability conditions as a function of the

previous histories.

3. The owner uses a continuous-time analogue of a bankruptcy strategy, corresponding in an

obvious way to the discrete-time bankruptcy strategies described in the previous

subsection. During his tenure, the manager receives a wage rate that is constant. This wage

rate (per unit time) is a parameter of the owner's bankruptcy strategy. As before, the other

parameters are the initial stock and the (constant) target rate of return.

4. The manager's supergame utility is the expected integral of his discounted instantaneous

utility over his tenure (the latter is a random variable.) His instantaneous utility is a

function of his wage rate and his current action. Of the several actions, some have a higher

instantaneous utility for him, but also have a smaller drift. It is this feature that creates the

conflict between him and the owner.

5. The owner's expected utility is the expected discounted integral of his net return, Le., his

"instantaneous" gross return minus the wage rate. Il

10. The continuous-time diffusion process corresponds, roughly speaking, to the limit case of the model of Section 4.4
in which the time between successive actions is "infinitesimal." However, in the present modeL only the manager
controIs the drift and the variabiIity of the diffusion.

Il. Strictly speaking, since the time-derivative of a diffusion process is almost-everywhere nonexistent, the
"instantaneous" gross return is not well-defined. Nevertheless. the theory of stochastic integration provides a basiS
for defining the cumulated gross return. with or without discounting.
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6. The two players have the same discount rate.

The first result of this analysis is that the manager's optimal policy is of the "switch-point"

type: for example, if there are two actions then there is a critical stock, called the switch-point,

such that the manager uses the higher-drifi action when current stock is below the switch-point,

and the lower-drift action (preferred by him) when the current stock is above the switch-point.

The switch-point can be calculated explicitly as the solution of a transcendental equation. In

certain "extreme" cases, the switch-point may be zero or infinite.

As the manager's discount rate approaches zero, his (optimal) switch-point increases without

bound, but in the limit there is no optimal policy (Le., under the expected long-mn average

objective). One can also characterize the dependence of the switch-point on the other parameters

of the bankruptcy policy.

With this information, one can characterize in some detail the bankruptcy policy that is

optimal for the owner, given the manager's reservation utility, Le., the lowest expected utility that

will induce him to take the job.

Finally, one can calculate how fast the players' respective (equilibrium) expected utilities

approach efficiency as their discount rate approaches zero.

6. ARegulated Firm with Investment in Research and Development

A study by P. B. Linhart, F. W. Sinden, and myself provides an application of the ideas of

principal-agent theory to the development of regulatory policy. The policy in question is the so

called "price-cap" method of regulation, which has recently been adopted in the U.K. and the

U.S., replacing the rate-of-return method in the regulation of telecommunications.12 From a

formal point of view, this study extends the analysis of' 'bankmptcy strategies" (Section 5.2) to a

non-stationary principal-agent model.

We consider the problem faced by the regulator of a monopoly firrn who wants to provide

incentives for the firm to effect cost reductions - and hence price reductions - through

12. This smdy is reported in more detail in Linhart et al. (1987). The latter paper is itself based upon research done at
AT&T Bell Laboratories several years earlier as part of the process of developing the price-cap method; see, for
example, Linhart and Radner (1983).
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technological change and other means. For reasons explained elsewhere, we seek an alternative

to conventional rate-of-return regulation. We model the manager of the firm as facing constraints

imposed by the shareholders and other providers of capital, by the customers, and by the

regulator. The regulator' s ultimate objective is a secular real decrease in the firm' s prices.

However, the manager's private utility may not be maximized by activities that are maximally

cost-reducing. Moreover, the regulator cannot directly observe all of the manager's actions, the

outcomes of which are also influenced by random exogenous events. Hence a problem of moral

hazard arises.

We propose a regulatory policy in which the regulator directly requires the firm to lower its

real prices at (or faster than) some prescribed target annual rate. We suppose that the manager is

replaced when he can no longer simultaneously repay the cost of capital, lower the prices at the

rate prescribed by the regulator, and satisfy the market demand at those prices. Whenever a

manager is replaced, the regulator reverts to conventional rate-of-return regulation for a period

sufficient to enable the firm to build up a new cash reserve.

The resulting situation leads naturally to a model of a sequential principal-agent relationship,

in which the regulator is the principal and the manager is the agent This is not a repeated game,

however, because both the firm's prices and its productivity are changing through time,

endogenously and stochastically. Using new techniques for the analysis of this nonstationary

process, we (l) derive a lower bound on the expected length of tenure of a manager, and (2) show

that if the manager does not discount future utility very much, then the realized long-mn rate of

price decrease will be correspondingly close to the target rate.

The model takes account of the following fundamental characteristics, among others, of the

regulatory situation:

1. The regulator and the firm 's manager have different information. In particular, the

manager has more information about the possibilities for productivity improvement than

regulators. In fact one of the manager's options is to invest in research in order to obtain

more of this information. In principle, the regulator could also obtain more information

at some cost, but matching the manager's information seldom appears to be part of the

regulator's strategy. In the present model the regulator does not even try to elicit

information about the firm's costs, hence misrepresentation is not a problem.

2. The regulator and the firm 's manager to some extent have different goals. The regulator

may strive to provide incentives strong enough to overcome the difference, but in general
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we would not expect an equilibrium outcome to meet the regulator's goals entirely.

3. The seIVice is deemed essential, so that its continued availability must be assumed in

spite of possible mismanagement and/or bankroptcy.

4. To be acceptable in the real world, aregulatory mechanism must not differ too radically

from those that already exist. The strategies we discuss resemble conventional

regulation in that periods of regulatory inaction alternate with periods of action that are

intended to be corrective.

The essence of the regulator's problem is that he cannot directly obseIVe the manager's

actions, nor can he obseIVe the exogenous random events that also affect productivity. He can,

however, obseIVe the consequences of those actions and events, namely the realized profits of the

firrn, and whether or not demand is met. (He may also, with additional effon, be able to obseIVe

productivity changes, but we do not in our model rely on this possibility.)

Suppose that the regulator provisionally fixes a sequence of prices that deeline in real terms at

a fixed "target rate" (which must be suitably chosen). If this sequence of prices is beyond the

firm's controi, then it has, essentially, the desirable incentive propeny of a lump-sum payment.

Suppose further that the regulator requires the firm to meet demand at the given prices, as long as

it is feasible to do so, and that the shareholders and directors require the manager to pay out the

cost of capital at a given rate, again as long as this is feasible. These two requirements can be met

as long as the firm 's cash reseIVe is positive. However, through bad luck or bad management, the

cash reseIVe can become negative. This event we call a crisis; when a crisis occurs, the manager

is fired and replaced. The regulator must now provide some way for the firm to get back on its

feet. Thus time is divided inta alternating segments: incentive phases and recovery phases.

In the context of a panicular formal model of a single-product firm, we have shown that,

under this elass of regulatory strategies, the management of the regulated firm will have an

incentive to engage in productivity improvement. Furthermore, if the managcment's behavior is

optimal from its own point of view, then the incentive phases will be long- rE'lative to the recovery

phases, and the resulting long-ron average rate of actual price dccrcase will be elose to the

regulator's target rate of price decrease, provided the management does not discount its own

future benefits too strongly.

Thus, under suitable conditions, this c1ass of regulatory strategics induces approximately

efficient behavior on the pan of the manager, without placing a large informationai burden on the
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regulators and their staff, and in particular without requiring the regulators to monitor the firm 's

rate of return.

Several features of our approach should be emphasized. Pirst, as mentioned above, we model

the firm's manager as the active decision-maker in the firm, optimizing his own utility subject to

constraints imposed by shareholders, customers, and regulators.

Second, we portray the regulators as seeking a mechanism that is easy to administer and that

gives "satisfactory" results. In this case, "satisfactory" means achieving a target rate of price

reduction, perllaps only approximately. Thus the regulator does not seek an "optimal"

mechanism in any precise sense.

Third, we propose aregulatory mechanism that does away with explicit rate-of-return

regulation. We are interested in alternatives to rate-of-return regulation because (1) we are

concerned about the weakness of its incentive properties, and (2) its informational requirements

are heavy. Rate-of-return regulation is also difficult to administer if some of the firm's activities

are regulated and others are not, as in the case of telecommunications today; see Linhart and

Radner (1983).

Fourth, from a technical point of view, our model requires an analysis that goes substantially

beyond currently available results for repeated principal-agent games. The reason for this is that

both the firm's productivity and its prices are changing from period to period, and these changes

are both endogenous and stochastic. Thus our modelleads to a sequential - but not repeated 

principal-agent relationship, with endogenous state variables, namely the current prices and

productivity.

7. Survival

7.1 Introduction

When responding to the "bankruptcy policies" described in Sections 5.2, 5.3, and 6, the

agent is faced with a problem of survival. Similar problems arise in the context of economic

development and in the situation of an indebted investor (see Majumdar and Radner, 1990). From

a formal point of view, these problems have in common the features that (l) the :l~E'nt controis

(imperfectly) a stochastic process of gross returns, (2) the agent must pay or consulllc at a fixed_

rate out of his gross returns, (3) the resulting net return (which may be positive or negative) is

cumulated in a stock of capital or cash reserve, and (4) the agent starts with an exogenously
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determined stock, and "fails" or is "ruined' , if the stock falls to or below some prescribed level,

say zero.

Closed-form characterizations of optimal policies for such problems of survival under

uncertainty are difficult to obtain without making fairly detailed assumptions. One example was

sketched in Section 5.3. Another case is described in the present section,13 also using a

continuous-time diffusion model, which allows for a fairly general model of a stochastic linear

technology of "investment," but pays for this generality by assuming that the agent does not

discount the future, Le., his objective is to maximize the expected long-run average of his utility. I

shall say that the agent survives (forever) if he is never ruined, Le., if the stock never falls to zero.

If the agent has available a strategy that enables him to survive with positive probability, then the

above objective reduces to the objective of maximizing that probability, which is the case on

which Ishall concentrate.

We consider the situation in which, at each instant of time, the agent can reallocate his total

capital stock among a set of alternative investment opportunities. Each investment opportunity is

a diffusion process, characterized by the drift and variability of its rate of return (this will be made

more precise below). In the case in which the probability of survival is positive we are able to

characterize the optimal policy of the agent in a relatively simple fashion. A striking feature of

this optimal policy is that when the agent's capital is below a criticallevel he uses investments

that are "inefficient" in the mean-variance sense, namely, there are other investments that have

the same mean but a lower variance. Another interpretation is that the agent exhibits "risk

loving" or "risk-averse" behavior according as his capital is belowar above some criticalleve1.

7.2 A Diffusion Process with Positive Probability of Survival

We start with a discrete-time model and then describe the corresponding diffusion model that

arises in the limit as the time between successive returns and payouts approaches zero, Le., as the

investment retums and the payouts (consumption) occur in continuous time.

13. The material of this section is adapted from Majumdar and Radner (1989). In order to give a precise description of
the optimal po1icies, this section is somewhat more mathematical than the previous ones. It also provides the reader
with a heuristic derivation of the continuous-time controlled diffusion model as a limit of discrete-time modeIs.
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In the discrete-time mode!, let h denote the length of time between dates, starting at date O.

Let t be an integral multiple of h, say nh, and let Y(t) denote the agent's capital at date t; then the

agent' s capital at date (t +h) is

Y(t+h) = eR
'+ l [Y(t) - ch] , (7.1)

where c is a positive constant, and {R n} is a sequence of independent and identically distributed

Gaussian random variables, each with mean mh and variance vh. The parameter m is the drift and

v is the variability.

The sequence {Y(nh) } is a Markov chain, and we are interested in the probability that Y(nh)

never becomes zero or negative, given Y(O) = y > O. We shall be ab1e to provide an explicit

expression for this probability in the limiting case in which h tends to zero, and the process

{Y(nh)} tends to a diffusion process (see, e.g. Karlin and Taylor, 1981). To this end it will be

more convenient to deal with the process

ZU) == In YU) .

More precisely, we define Tto be the first t such that YU) S; 0, and

ZU) = {ln_Y~),' t < T ,
t~ T.

If the agent survives, then T = +00 and Z(t) is always finite.

(7.2)

(7.2')

Since the process is Markovian, it suffices to consider the conditional distribution of Z(h)

given Z(O) = z == In y. (Note that, since y > 0, z is well-defined.)

For a given y, the smaller h the smaller is the probability that Y(h) S 0, Le., that Z(h) = -00.

In the following heuristic argument we shall suppose that h is so small relative to y that the

probability that Y(h) S Ois "negligible."

From (7.1) and (7.2),

Z(h) = R + In (y -ch)

=R + ln(e Z -ch)

=R + z + ln(l-hce- Z
) •

Hence
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Z(h) - z = R + ln(1-hC) (7.3)

(7.4)

It will be useful to have expressions for the conditionai mean and variance of [Z(h)-z],

given Z(O) = z. (In what fol1ows. all expectations are to be understood as conditional on

Z(O) = z.) Expanding ln(1-hC) in powers of h. we get from (7.3),

h 2 C 2
Z(h) - z = R - hC - -2- + O(h 3) .

Hence

E[Z(h)-z] = (m-C)h + O(h 2) , (7.6)

Var [Z(h)-z] = vh. (7.7)

E[Z(h)-z]2 = vh + O(h2) , (7.8)

E[Z(h)-z]3 = (E[Z(h)-z])3 + 3E[Z(h)-z] Var [Z(h)-z] = O(h 2) . (7.9)

Define. for y ~ O.

U(y) == Prob (Survival I Y(O) =y) •

V(z) == U(e Z
) ,

where U(O) = V( -00) = O. Because the process is Markovian.

V(z) = EV[Z(h)] • (7.10)

where. as before. the expectation is conditional on Z(O) (~O). Now assume Z(O) = z > O.

Supposing Vis sufficiently smooth, we expand V[Z(h)] in a Taylor's series:

V[Z(h)] = V(,) + V'(')[Z(h)-,] + [~] V"(,)[Z(h)_,]2 + O([Z(h)_,]3). (7.11)

Taking the expectation ofboth sides of (7.11), we have from (7.6)-(7.9),

EV[Z(h)] = V(,) + V'(,)(m-C)h + [;] V"(,)vh + O(h2) , (7.12)

and so from (7.10),
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V(z) = V(z) + V'(z)(m-C)h + [~] V"(z)vh + OCh') ,

O = V'(z)(m-C) + [~] V"(z)v + [~] OCh') .

Letting h tend to zero in (7.13) we get the differential equation

(m-ce-')V'(z) + [;] V"(z) = O.

(7.13)

(7.14)

The remainder of this subsection is devoted to the case in which the agent has no choice of

investment, Le., m and vare fixed in time, and strictly positive. (The reader may skip to

Section 7.3 without loss of continuity.) The general solution for y' of the differential equation

(7.14) is:

where

(7.15)

2m
a=-,

v
b =~- ,

v
(7.16)

and H is an arbitrary positive constant whose particular value will be determined by the boundary

conditions in the problem.

Before solving for y, we list (without proof) some properties of Y'. First, one can show that

y' (z) > O .

Second, y' (z) is decreasing if and only if

or

(7.17)

(7.18)

Third,

y >
c
m

(7.19)

lim y'(z) = lim y'(z) =O.
Z -7 -00 Z -7 +00

(7.20)

In summary, y' (z) is strictly positive, and increases monotonicaily from O as z increases from

-00 to ln(clm), and then decreases monotonically towards zero as z increases beyond ln(clm). It
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follows that

V"(z);"O a ZSln[~].

We tum now to the studYof the function U. Recall that

U(y) = V(ln y) .

Clearly U(O) =O, and by an independent argument, one can show that

lim U(y) = 1 .
y-7O<>

(7.21)

This is the boundary condition that will detennine H. It is now straightforward to show that

U( ) 1 O<>J a-I -xdxy =-- X e ,
r(a) b/y

where

O<>

JXa- I e-xdx == r(a) .
o

Equation (7.22) can also be written as

(7.22)

(7.23)

The integral in the right-hand side of (7.23) is of course the incomplete gamma function. Thus

(7.23) - or (7.22) - completely solves the problem of determining the probability of survival,

starting from an initial capital y.

7.3 The Optimal Investment Policy when the Probability of Survival is Positive

We shall now derive the agent's optimal investrnent policy when at each instant of time the

agent can choose from a set of alternative investrnents, each of which is characterized by a pair

(m, v) as in Section 7.2. Recall that for each (m, v), the rate of return for the corresponding

investrnent is a Brownian motion with drift m and variability parameter v. The agent's objective

is to maximize the probability of survival.

For mathematical simplicity, we shall analyze in detail the case in which the set of alternative

pairs (m, v) is a compact convex set with smooth boundary. This willlead to an optimal policy
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that is continuous in the capital. From the analysis of this case the nature of the optimal policy

for more general cases will be clear, although a rigorous treatrnent contains some difficulties

because the optimal policy may be discominuous.

Let A denote the set of alternative pairs (m, v) available to the agent at any instant of time,

and assume that A is compact and strictly convex, with a smooth boundary. Define

v' == min {v I (m, v) E A} ,

v" == max {v I (m, v) E A},

and assume that

o < v' < v" .

For any v in the closed interval [v' , v"] define

j(v) = max {m I (m, v) E A} .

(If we plot v on the horizontal axis, and m on the vertical axis, then the graph of j is the upper

boundary of the set A; see Figure 2.) It follows that j is strictly concave and differentiable on

(v', v"), and that

lim, J' (v) = + 00 ,

v-tv

lim J' (v) = - 00 • (7.24)
"v-tv

Let v* denote the (unique) point in [v', v"] at whichjattains its maximum, Le.,

j(v*) = max {f(v) I v' S; v S; v"} ;

it follows from (7.24) that

v' < v* < v" .

Our last assumption is that there is some investrnent in A that is favorable:

j(v*) > O.

To simplify the exposition, we make the stronger assumption that all of the investrnents in the

graph ofj are favorable:

j(v) > O on [v', v"] .
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We now describe the optimal investrnent policy. As in Section 7.2, as long as the capital Y(t)

is strictly positive, let Z(t) == In Y(t). If the current state is Z(t) = z, then the optimal current

investrnent is

v = ~(z) ,

m = j[~(z)] ,

where ~(z) is the unique solution v of the equation

j(v) - vi' (v) = ce- z •

We shall show that ~ is strictly decreasing and that

(7.25)

lim
z --+ -00

~(z) "= v

lim ~(z) = Vo ,
Z -4 +00

where [f(vo), vo] maximizes the ratio (m/v) in the set A (see Figure 2).

These properties of the optimal policy have an interesting interpretation. Recall thatjreaches

a maximum at v*, which is between Vo and v". The part of the graph ofjbetween v* and v" is

"inefficient" in the usual treatrnent of mean-variance portfolio analysis, since from any of those

points one can reduce the variance without decreasing the mean. Nevertheless, when the agent's

capital is sufficiently low, his optimal choice of (m, v) will be in this "inefficient" part of the

boundary of A. Rather than call such choices ' 'incfficient,' , we shall say that for the

corresponding values of z the agent exhibits "risk-Ioving" behavior.

The critical value of z, call it z*, below which the agent exhibits "risk-Ioving" behavior is

easily calculated. Observe that v* and z* must satisfy (7.25); also, sincejattains its maximum at

v*,f' (v*) = O. Hence

j(v*) + ce-z·

Let

then

Compare this with (7.21).

m* == j(v*) ,

*y =

* •y = eZ
;

c
m*
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For a praof of these results, the reader is referred to Majumdar and Radner (1989). In brief, at

every instant of time the function V must satisfy the differential equation (7.14); in addition, the

optimal choices of the instantaneous drift and variability must satisfya continuous-time analogue

of the Optimality Equation for dynamie pragramming. One can also extend the analysis in a

straightfOlward way to the case in which the set of investment opportunities is not convex, and

possibly contains points with negative drift and/or zera variability.

The reader is also referred to the above paper for a discussion of the case in which, for any

policy of the agent, the probability of survival is zera. In this case, the agent may be supposed to

want to maximize the expected time to failure. Again, for a fixed drift and variability, one can

obtain an explicit expression for the objective function. However, in the general c~se in which the

agent has a choice among alternative investment opportunities, no explicit solution appears to be

available at the present time.

8. Concluding Remarks

The models of dynamic games sketched here hardly constitute a theory of economic

organizations. For such a theory, the partnership and principal-agent models will have to be

merged and subsumed in a richer and more comprehensive model capable of depicting the

interactions among many persons. This is particular1y true if one's ambition is to develop a

theory of the internal workings of today' s large industrial enterprises, many of which have tens 

or even hundreds - of thousands of employees. In addition, it will prabably be necessary to take

account of the costs of communication and information pracessing, as weIl as other aspects of

"bounded rationality... 14 Nevertheless, the insights revealed by these relatively primitive

analyses of moral hazard and free riding in long-term relationships will probably prave to be

durable.
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