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ABSTRACT 

We develop models for weakly separable utility maximization with incomplete adjustment.  By 

allowing for incomplete adjustment, these models account for the decision maker’s inability to 

instantaneously adjust to optimal allocations of demanded goods and assets. This is especially 

important when modelling preferences for durable goods and financial/monetary assets.  We 

propose computationally attractive nonparametric revealed preference procedures to test the 

models using observed data on prices and quantities. An empirical application shows that it is 

important to account for incomplete adjustment in consumer demand models of durable 

consumption goods. 

 
 Hjertstrand thank Torsten Söderbergs Stiftelse for financial support. Email: per.hjertstrand@ifn.se (P. 
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1. INTRODUCTION 

That decision makers cannot instantaneously adjust to their optimal equilibrium demand for 

goods and assets has been recognized ever since Böhm-Bawerk (1888). In an equilibrium growth 

model, Kydland and Prescott (1982) argue theoretically and establish empirically that incomplete 

adjustment plays a vital role when modelling the aggregate economy. Swofford and Whitney 

(1988), Fleissig and Swofford (1996), Jones et al. (2005), Elger et al. (2008) and Jha and 

Longjam (2006) are examples of studies showing that various microeconomic decisions 

including those on capital, monetary and financial assets, and consumer durables are 

characterized by incomplete adjustment. Koyck (1954) and Almon (1965) developed distributed 

lag models to allow for incomplete adjustment in regression analysis. In light of this literature, 

incomplete adjustment can arise because of a number of factors, such as habit persistence 

(formation), adjustment costs, information asymmetries, the formation of expectations, or a 

combination of reasons.  

Given the nature of durable goods and in keeping with the empirical evidence on durable 

goods in previous studies it seems natural to assume that it is primarily durable goods and 

services which provide a stream of utility over periods that may cause incomplete adjustment. 

However, this does not preclude nondurable goods and services to also cause incomplete 

adjustment. For example, consumers facing a price level shock may take more than one period to 

adjust their money balances.1 

In this paper, we propose models of weak separability and utility maximization that allow for 

incomplete adjustment. We show how these models can be implemented and tested empirically 

using consumer choice data. Allowing for incomplete adjustment in consumer demand models 

 
1 To simplify the following exposition, we will from now on simply refer to the goods causing incomplete 
adjustment as “durable goods” and those goods not causing incomplete adjustment as “nondurable goods”. 
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may have important implications in several fields of economics. For example, it is common by 

assumption to omit durable goods in empirical demand analysis, implying that consumption of 

nondurable goods and services in these models are independent of how much the consumer 

spends on durables. In an empirical application, we find that this may be an invalid assumption 

using detailed panel data over Spanish households.  

Utility maximization is a core concept in economics and an underlying assumption for all 

rational choice theory. Utility maximization is a necessary condition for weak separability, which 

is another key concept in economics. A group of goods is said to be weakly separable from all 

other goods if the quantities demanded of the other goods are independent of the marginal rates 

of substitution between any pair of goods in the separable group. This implies that the quantities 

demanded of the goods inside the separable block depend solely on the prices of the goods that 

form the block. In contrast, if a group of goods were not weakly separable, then it would be 

possible for the prices of all goods outside the block to enter into the demand functions for the 

group of goods being considered. 

Utility maximization and weak separability can be tested using either parametric consumer 

demand models or nonparametric revealed preference methods.2 As argued by Varian (1982, 

p.945) “[the parametric] procedure will be satisfactory only when the postulated parametric 

forms are good approximations to the ‘true’ demand functions. Since this hypothesis is not 

directly testable, it must be taken on faith.” Thus, given that some functional form must be 

imposed in the parametric approach, any test of weak separability (utility maximization) may be 

regarded as a joint test of the hypothesis of weak separability (utility maximization) and the 

hypothesis that correct functional form and error structures have been employed. 

 
2 Some examples of parametric demand models are the translog (Christensen et al. 1975), almost ideal demand 
model (Deaton and Muellbauer, 1980), or quadratic almost ideal demand model (Banks et al., 1993). 
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Instead, we implement our models of weak separability and utility maximization with 

incomplete adjustment using nonparametric revealed preference methods. These methods build 

upon the empirical revealed preference theory for utility maximization and weak separability 

proposed by Afriat (1967,1969) and Varian (1983). These methods do not require any ad hoc 

assumptions regarding functional form and there is no parameter estimation. Thus, the 

hypothesis of weak separability (utility maximization) is not confounded in any subsidiary 

hypothesis from estimation. The main drawback of these methods is that they are, contrary to the 

parametric approach, non-stochastic and are therefore not tests in the “statistical sense”. 

The nonparametric revealed preference approach offers a natural way of allowing for 

incomplete adjustment since it can be modelled as a constraint on a good or a constraint placed 

upon expenditures on a particular subset of goods (as we do here). Since the nature of the 

constraint need not be specified in the revealed preference approach, no particular adjustment 

process needs to be specified a priori. In contrast, although incomplete adjustment in parametric 

models allows for additional flexibility, it must rest on some kind of parametric assumption as to 

how incomplete adjustment enters the estimating equations.3 

Swofford and Whitney (1994) introduced a model of incomplete adjustment assuming that all 

goods causing incomplete adjustment (i.e., durables) exclusively form the weakly separable 

block of goods. Consequently, this assumption implies that all remaining goods (not causing 

incomplete adjustment, i.e., nondurables) exclusively form the nonseparable block of goods. 

However, this is a strong assumption since it does not allow to test for weak separability on 

hypothesized structures where durables and nondurables simultaneously enter the separable and 

nonseparable blocks of goods. In contrast, our models of incomplete adjustment relax this 

 
3 See e.g., Anderson and Blundell (1982) and Serletis (1991) for two early studies incorporating incomplete 
adjustment in parametric models. 
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assumption and does not place any restriction on how durables and nondurables enter the 

separable and nonseparable blocks.4 This allows to test for weak separability with incomplete 

adjustment on any hypothesized structure. 

Varian (1983) and Fleissig and Whitney (2003) proposed and implemented computationally 

efficient nonparametric revealed preference procedures for weak separability that are sufficient 

but not necessary.5 Cherchye, Demuynck, De Rock and Hjertstrand (2015) proposed and 

implemented a computationally efficient mixed integer linear programming procedure for weak 

separability that is both necessary and sufficient.  However, none of these procedures allow for 

incomplete adjustment.6 

Swofford and Whitney (1994) derived necessary and sufficient revealed preference 

restrictions for their restricted model of incomplete adjustment which come in the form of a set 

of nonlinear inequalities. They then propose a procedure to test for weak separability based on 

solving a nonlinear optimization problem where the nonlinear revealed preference restrictions act 

as constraints. There are 𝑛2 nonlinear constraints in this problem, where 𝑛 denotes the number of 

observations, implying that the number of nonlinear constraints grow quadratically with the 

number of observations. Hence, this can be a computationally difficult problem in practice even 

for data sets with rather few observations. Moreover, this nonlinear problem only gives locally 

optimal solutions of the minimal amount of incomplete adjustment required to rationalize the 

data (given that the problem has a feasible solution). However, since these may not be globally 

optimal there may exist other feasible solutions which produce lower levels of incomplete 

 
4 Our model nests Swofford and Whitney’s (1994) model as a special case. 
5 Thus, if for some hypothesized structure sufficiency fails, the structure cannot be ruled out as being weakly 
separable, as some other sufficient condition might still hold. 
6 Crawford (2010) give necessary and sufficient revealed preference conditions for habit formation, i.e., when lags 
of the demanded quantities enter as arguments in the utility function. Our framework is conceptually different 
from the habits model since it is based on a notion of disequilibrium. 
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adjustment. Hence, any solution to Swofford and Whitney’s (1994) nonlinear procedure gives an 

upper bound on the minimal amount of incomplete adjustment required to rationalize the data.  

We derive necessary and sufficient revealed preference restrictions for our model of 

incomplete adjustment. Using insights from Cherchye et al. (2015), we show how these 

restrictions can be reformulated as a set of linear inequalities, allowing the restrictions to act as 

linear constraints in an optimization program. Moreover, we show how the minimal amount of 

incomplete adjustment can be calculated by minimizing a quadratic objective function. 

Combining this objective function with the linear constraints implied by the revealed preference 

restrictions give a mixed integer quadratic programming (MIQP) problem which solves for the 

minimal amount of incomplete adjustment such that the data can be rationalized by weak 

separability and incomplete adjustment. The problem is mixed integer because some variables in 

the problem only take binary values. 

Compared to Cherchye et al.’s (2015) procedure with complete adjustment, our procedure is 

only marginally more computationally involved since it contains 𝑛 additional parameters and is 

based on solving a quadratic objective function as opposed to a linear objective in Cherchye et 

al. (2015). In fact, Cherchye et al.’s (2015) problem and our problem share the same 

computational complexity since both belong to the np-complete class of problems. 

Our procedure based on the solving a MIQP problem is computationally simpler to solve 

than Swofford and Whitney’s (1994) nonlinear problem since it consists of linear constraints, 

and as such, can be applied to larger data sets. From a theoretical point of view, the key 

motivation for adopting an integer programming approach is that this is a widely accepted and 

well-known approach to handle np-complete problems. 
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As previously mentioned, in our empirical application, we address the question of whether 

nondurable goods and services can be modelled independently from durable goods and services. 

This is a common assumption in consumer demand modelling, and made to simplify the analysis 

since a consumer derives utility from the flow of services that the durables provide over time, but 

is usually never tested prior to the analysis. Thus, modelling durables is inheritably difficult 

without including some form of adjustment process in the model. 

If expenditure on nondurables is independent of the amount consumed of durable goods and 

services, then it effectively imposes the restriction that nondurables are weakly separable from 

durables. Thus, the methods and models introduced in here allow us to test this restriction. For 

this purpose, we use the Encuesta Continua de Presupuestos Familiares (abbreviated ECPF) 

which is a panel survey data set ranging from 1985-1997 over disaggregated Spanish household 

expenditures on 25 durable and nondurable consumption goods and services (We use data on 

1,585 households). This data set is ideal for our purposes because it is the only consumer survey 

data set that has a panel structure containing exhaustive and complete information on household 

expenditures over more than four quarters. Since this allow us to apply our test for weak 

separability with incomplete adjustment on data from each individual household, we avoid 

making any assumption of a representative agent. Moreover, by modelling every household 

individually, we avoid making any preference homogeneity assumption between households, 

which means that we can effectively account for any form of heterogeneity between households 

(even any form of unobserved heterogeneity). Thus, using the models and methods introduced 

here enables us to optimally exploit the panel structure of the ECPF. 

We find that none of the households satisfy weak separability with complete adjustment, 

while only about 8% of the households satisfy weak separability with incomplete adjustment.  
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This indicates that the assumption that nondurables are weakly separable from durables is 

questionable. Hence, this suggests that models of consumption behavior should contain 

nondurables as well as durable goods and services and that these categories should be modelled 

in common since consumption on durables affect optimal expenditure on nondurables. 

The paper is organized as follows. The next section introduces our theoretical models of 

weak separability and utility maximization with incomplete adjustment. In a parametric example, 

we also illustrate the effects of incomplete adjustment on expenditure and optimal choices. 

Section 3 derives nonparametric revealed preference restrictions for our models and discusses 

implementation issues and the computational complexity of the models. Using a parametric 

example, we also show the ability of our procedures to detect habit formation. Section 4 contains 

our empirical application and Section 5 concludes. 

We include an online appendix, where we first recall the standard weak separability model 

with complete adjustment (Appendix A). Then, we provide a proof of our main theoretical result 

(Appendix B), show that our models are empirically refutable (Appendix C), and provide a 

generalization of our results to homothetic weak separability and homothetic utility 

maximization (Appendix D). Appendix E provides an additional application of our models and 

methods, where we derive economically valid monetary aggregates using data on financial and 

monetary assets, leisure and consumption expenditures from Hjertstrand et al. (2016). 

2. INCOMPLETE ADJUSTMENT 

2.1 Weak Separability with Incomplete Adjustment 
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Suppose that there are 𝑘 goods and assets split into two mutually exclusive blocks.7 Let 𝒙 and 𝒎 

denote column vectors of the quantity data of the first and second blocks.  Let 𝒑 denote a row 

vector of the prices for the 𝒙-goods and 𝒓 denote a row vector of the prices for the 𝒎-goods.  

We assume each block may contain durable and nondurable goods and that the durable goods 

may be subject to incomplete adjustment. That is, we refer to the goods the decision maker (DM) 

may fail to fully adjust as durable goods.  Let 𝒙𝑫 and 𝒙𝑵𝑫 denote the durable and nondurable 

goods in 𝒙.  Let 𝒑𝑫 and 𝒑𝑵𝑫 be the prices of 𝒙𝑫 and 𝒙𝑵𝑫. Analogously, let 𝒎𝑫 and 𝒎𝑵𝑫 denote 

the durable and nondurable goods in 𝒎, and let 𝒓𝑫 and 𝒓𝑵𝑫 be the prices of 𝒎𝑫 and 𝒎𝑵𝑫. 

Suppose there are 𝑛 observations on the prices and quantities. The ith observation on the 

prices and quantities is denoted 𝒑𝒊 = (𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ),  𝒓𝒊 = (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ),  𝒙𝒊 = (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ) and 𝒎𝒊 =

(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ) for 𝑖 = 1, … , 𝑛. The DM’s utility function, 𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫), is 

weakly separable in the 𝒎 goods if there exists a function 𝑈 and a sub-utility function 𝑉 so 𝑢 can 

be written as 𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) = 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)). This specification allows for 

durable and nondurable goods in both the weakly separable block, 𝒎, and in other goods, 𝒙.  

Weak separability with incomplete adjustment requires that at each observation the DM 

solves an overall utility maximization problem and a sub-utility maximization problem involving 

a sub-set of the goods. Thus, the DM solves the overall utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫,𝒎𝑫,𝒎𝑵𝑫}

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)),                                                                                 (1) 

subject to the two budget constraints which are defined in (2) and (3). The first constraint is the 

standard budget constraint restricting total outlay for all goods:  

𝒑𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌𝑖 ,                                                                           (2) 

 
7 For compactness, we refer to all goods and assets simply as “goods”, and the two types of goods as nondurable 
and durable goods, respectively. 
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where 𝑌𝑖 is total expenditure on all goods. The second restriction imposes a constraint on 

expenditure for all durable goods: 

𝒑𝐷
𝑖 𝒙𝑫 + 𝒓𝐷

𝑖 𝒎𝑫 ≤ 𝑌𝐷
𝑖 ,                                                                                                                     (3) 

where 𝑌𝐷
𝑖  denotes total expenditure on the durable goods (𝒙𝑫, 𝒎𝑫). 

The sub-utility maximization problem solved by the DM is given by:  

             𝑚𝑎𝑥
                   {𝒎𝑫,𝒎𝑵𝑫}

𝑉(𝒎𝑫, 𝒎𝑵𝑫),                                                                                                                  (4) 

subject to the two budget constraints defined in (5) and (6). The first constraint puts a restriction 

on total outlay for all separable goods (𝒎): 

𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝐸𝑖 ,                                                                                                               (5) 

where 𝐸𝑖 is total expenditure on the separable goods. The second restriction imposes a constraint 

on expenditure for all durable goods in the separable block: 

𝒓𝐷
𝑖 𝒎𝑫 ≤ 𝐸𝐷

𝑖 ,                                                                                                                                     (6) 

where 𝐸𝐷
𝑖  denotes total expenditure on the durable goods (𝒎𝑫). 

The DM’s Lagrangian based on (1)-(3) is: 

𝐿𝑈 = 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)) + 𝜏𝑖[𝑌𝑖 − 𝒑𝐷
𝑖 𝒙𝑫 − 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫]   

+Ω𝑖[𝑌𝐷
𝑖 − 𝒑𝐷

𝑖 𝒙𝑫 − 𝒓𝐷
𝑖 𝒎𝑫]                                          

= 𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)) + 𝜏𝑖[𝑌𝑖 − 𝒑𝐷
𝑖 𝒙𝑫 − 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫]                 

+𝜏𝑖 (
Ω𝑖

𝜏𝑖
) [𝑌𝐷

𝑖 − 𝒑𝐷
𝑖 𝒙𝑫 − 𝒓𝐷

𝑖 𝒎𝑫]                                                                                                 (7) 

where 𝜏𝑖 = 𝜕𝑈/𝜕𝑌𝑖 and Ω𝑖 = 𝜕𝑈/𝜕𝑌𝐷
𝑖  are the Lagrange multipliers. If Ω𝑖 is negative then 

expenditure on the durable goods is greater than desired and if Ω𝑖 is positive, expenditure on the 

durable goods is less than desired. 
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Thus, Ω𝑖 may be viewed as a measure of the deviation from the optimal level of expenditure 

on durables. However, this number is not invariant to monotonic transformations and may 

therefore be difficult to interpret. But normalizing Ω𝑖 with respect to marginal utility of total 

expenditure for all goods, 𝜏𝑖, give a number that is easier to interpret. This normalized number 

Ω𝑖/𝜏𝑖 represents the increment of overall utility from spending an additional dollar on the 

durable goods 𝒙𝑫 and 𝒎𝑫 relative to the marginal utility of total expenditure for all goods. Since 

Ω𝑖/𝜏𝑖 is a ratio of marginal utilities, it is ordinal by construction and invariant to any monotonic 

transformation. Hence, we interpret Ω𝑖/𝜏𝑖 as overall amount of incomplete adjustment, and 

define: 

IA𝑈
𝑖 =

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝐷
𝑖

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝑌𝑖
=

Ω𝑖

𝜏𝑖
,                                                                        (8) 

for all observations 𝑖 = 1, … , 𝑛.  

Using this definition, the first-order conditions of the Lagrangian, 𝐿𝑈, in (7) are: 

𝜕𝑈

𝜕𝒙𝑵𝑫
𝒊

= 𝜏𝑖𝒑𝑁𝐷
𝑖 ,                                                                                                                                (9) 

𝜕𝑈

𝜕𝒙𝑫
𝒊

= 𝜏𝑖 (1 +
Ω𝑖

𝜏𝑖
) 𝒑𝐷

𝑖 = 𝜏𝑖(1 + IA𝑈
𝑖 )𝒑𝐷

𝑖 ,                                                                             (10) 

𝜕𝑈

𝜕𝒎𝑵𝑫
𝒊

=
𝜕𝑈

𝜕𝑉

𝜕𝑉

𝜕𝒎𝑵𝑫
𝒊

  = 𝜏𝑖𝒓𝑁𝐷
𝑖 ,                                                                                                  (11) 

𝜕𝑈

𝜕𝒎𝑫
𝒊

=
𝜕𝑈

𝜕𝑉

𝜕𝑉

𝜕𝒎𝑫
𝒊

  = 𝜏𝑖 (1 +
Ω𝑖

𝜏𝑖
) 𝒓𝐷

𝑖  = 𝜏𝑖  (1 + IA𝑈
𝑖 )𝒓𝐷

𝑖 ,                                                  (12) 

The Lagrangian of the sub-utility maximization problem in (4)-(6) is: 

𝐿𝑉 = 𝑉(𝒎𝑫, 𝒎𝑵𝑫) + 𝜇𝑖[𝐸𝑖 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫] + Θ𝑖[𝐸𝐷
𝑖 − 𝒓𝐷

𝑖 𝒎𝑫]                                     

= 𝑉(𝒎𝑫, 𝒎𝑵𝑫) + 𝜇𝑖[𝐸𝑖 − 𝒓𝐷
𝑖 𝒎𝑫 − 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫] + 𝜇𝑖 (
Θ𝑖

𝜇𝑖
) [𝐸𝐷

𝑖 − 𝒓𝐷
𝑖 𝒎𝑫],                      (13) 
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where 𝜇𝑖 = 𝜕𝑉/𝜕𝐸𝑖 and Θ𝑖 = 𝜕𝑉/𝜕𝐸𝐷
𝑖  are Lagrange multipliers.  Thus, Θ/𝜇 represents the 

increment of sub-group utility from spending an additional dollar on the durable goods in the 

sub-group relative to the marginal utility of total expenditure of the goods in the sub-group. 

Hence, we interpret Θ/𝜇 as the amount of incomplete adjustment for the sub-group, and define: 

IA𝑉
𝑖 =

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝐷
𝑖

𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝐸𝑖
=

Θ𝑖

𝜇𝑖
,                                                                                             (14) 

for all observations 𝑖 = 1, … , 𝑛.  

The first-order conditions of the Lagrangian, 𝐿𝑉, in (13) are: 

𝜕𝑉

𝜕𝒎𝑵𝑫
𝒊  

= 𝜇𝑖𝒓𝑁𝐷
𝑖 ,                                                                                                                           (15) 

𝜕𝑉

𝜕𝒎𝑫
𝒊  

= 𝜇𝑖 (1 +
Θ𝑖

𝜇𝑖
) 𝒓𝐷

𝑖 = 𝜇𝑖(1 + IA𝑉
𝑖 )𝒓𝐷

𝑖 .                                                                           (16) 

The first-order condition (12) of 𝐿𝑈 give the prices of the durable goods in the separable 

block, 𝒓𝑫, at which the optimal quantities, 𝒎𝑫 are demanded in terms of the overall utility 

maximization problem. Analogously, (16) gives a set of equivalent conditions in terms of the 

sub-utility maximization problem. These prices, denoted by (1 + IA𝑈
𝑖 )𝒓𝐷

𝑖  in (12) and 

(1 + IA𝑉
𝑖 )𝒓𝐷

𝑖  in (16) are “virtual prices” of the constrained goods 𝒎𝑫, and give the prices at 

which the bundle 𝒎𝑫 is demanded in equilibrium. Clearly, these virtual prices must be the same, 

implying that (1 + IA𝑈
𝑖 )𝒓𝐷

𝑖 = (1 + IA𝑉
𝑖 )𝒓𝐷

𝑖 . Thus, IA𝑈
𝑖 = IA𝑉

𝑖 , and we define the virtual prices as 

�̃�𝐷
𝑖 = (1 + IA𝑈

𝑖 )𝒓𝐷
𝑖 = (1 + IA𝑉

𝑖 )𝒓𝐷
𝑖 = (1 + IA𝑖)𝒓𝐷

𝑖 , where IA𝑖 = IA𝑈
𝑖 = IA𝑉

𝑖 . 

Analogously, the virtual prices for the durable goods in the non-separable block, �̃�𝐷
𝑖 =

(1 + IA𝑈
𝑖 )𝒑𝐷

𝑖 = (1 + IA𝑖)𝒑𝐷
𝑖  in the first-order condition (10) of 𝐿𝑈, give the prices, �̃�𝐷

𝑖 , at which 

the optimal bundle 𝒙𝑫 is demanded in equilibrium. 
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We close this section with some remarks. First, given the virtual prices �̃�𝐷
𝑖  and �̃�𝐷

𝑖  and if we 

consider the first-order conditions (9)-(12) and (15)-(16), by substituting (15) into (11), and (16) 

into (12) we have: 

𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))

𝜕𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )
=

𝜏𝑖

𝜇𝑖
.                                                                                            (17) 

Second, our model of incomplete adjustment defined by the overall utility and sub-utility 

maximization problems in (1)-(3) and (4)-(6) is identical to a model that solves the following 

overall utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫,𝒎𝑫,𝒎𝑵𝑫}

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 

�̃�𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + �̃�𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ �̃�𝑖 ,                                                                        (18) 

and the following sub-utility maximization problem 

𝑚𝑎𝑥
{𝒎𝑫,𝒎𝑵𝑫}

𝑉(𝒎𝑫, 𝒎𝑵𝑫)    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 

�̃�𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ �̃�𝑖.                                                                                                             (19)  

This model is simply the standard weakly separable utility maximization model with the usual 

prices on the durable goods replaced by the virtual prices, and where total outlay for all goods 

and the goods in the sub-group are restricted by the “virtual expenditures” �̃�𝑖 = �̃�𝐷
𝑖 𝒙𝑫

𝒊 +

𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 + �̃�𝐷
𝑖 𝒎𝑫

𝒊 + 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝒊  and �̃�𝑖 = 𝒓𝑁𝐷
𝑖 𝒎𝑵𝑫

𝑖 + �̃�𝐷
𝑖 𝒎𝑫

𝑖 . 

Third, the first-order conditions allow us to define and classify weak separability with 

complete or incomplete adjustment: We say that the 𝒎-goods are weakly separable with 

complete adjustment if the first-order conditions (9)-(12) and (15)-(16) hold with IA𝑖 = 0 for all 

𝑖 = 1, … , 𝑛. In this case, they reduce to the first-order conditions from the standard weakly 
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separable utility maximization model.8 The 𝒎-goods are said to be weakly separable with 

incomplete adjustment if the first-order conditions hold with IA𝑖 ≠ 0 for some 𝑖 = 1, … , 𝑛  

(IA𝑖 > −1).  The 𝒎-goods are not weakly separable if the first-order conditions fail to hold for 

any value IA𝑖 > −1. 

Fourth, incomplete adjustment has a clear interpretation in terms of the relative difference 

between virtual and observed expenditure on the durables. Recall that 𝑌𝐷
𝑖 = 𝒑𝐷

𝑖 𝒙𝐷
𝑖 + 𝒓𝐷

𝑖 𝒎𝐷
𝑖  

denotes observed expenditure on the durables at observation 𝑖 = 1, … , 𝑛 and let �̃�𝐷
𝑖 = �̃�𝐷

𝑖 𝒙𝑫
𝒊 +

�̃�𝐷
𝑖 𝒎𝐷

𝑖 = (1 + IA𝑖)𝒑𝐷
𝑖 𝒙𝐷

𝑖 + (1 + IA𝑖)𝒓𝐷
𝑖 𝒎𝐷

𝑖 = (1 + IA𝑖)(𝒑𝐷
𝑖 𝒙𝐷

𝑖 + 𝒓𝐷
𝑖 𝒎𝐷

𝑖 ) = (1 + IA𝑖)𝑌𝐷
𝑖  

denote the virtual expenditure on the durable goods. At observation 𝑖 = 1, … , 𝑛, we have 

�̃�𝐷
𝑖 − 𝑌𝐷

𝑖

𝑌𝐷
𝑖

=
(1 + IA𝑖)𝑌𝐷

𝑖 − 𝑌𝐷
𝑖

𝑌𝐷
𝑖

= IA𝑖 .                                                                                         (20) 

Thus, the number 100 × IA𝑖 gives the required percentage adjustment of expenditure on the 

durable goods in order for the optimal bundle of durable goods to be demanded in equilibrium. 

Finally, we note that our model nests Swofford and Whitney’s (1994) model of incomplete 

adjustment when there are neither any durable goods in 𝒙 nor any nondurable goods in 𝒎, i.e., 

𝒙𝑫 = 𝒎𝑵𝑫 = ∅.9 Conversely, if there are neither any nondurable goods in 𝒙 nor any durable 

goods in 𝒎, i.e., 𝒙𝑵𝑫 = 𝒎𝑫 = ∅, then by interchanging the prices and quantities of the durable 

 
8 Thus, for the standard weakly separable utility maximization model (i.e., with complete adjustment), the first-

order conditions (16), (10) and (12) becomes: 𝜕𝑉(𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝒎𝑫
𝒊 = 𝜇𝑖𝒓𝐷

𝑖 , 𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝒙𝑫
𝒊 =

𝜏𝑖𝒑𝐷
𝑖  and 𝜕𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫))/𝜕𝒎𝑫

𝒊 = 𝜏𝑖𝒓𝐷
𝑖  (Varian, 1983, p.105). Note that we obtain the same first-order 

conditions when there are only nondurable goods in 𝒙 and 𝒎, i.e., 𝒙𝑫 = 𝒎𝑫 = ∅. 
9 As discussed in the Introduction, Swofford and Whitney’s (1994) model may be rather restrictive in empirical 
work. Indeed, the application in online appendix E, where we derive economically valid monetary aggregates 
contain several relevant hypothesized structures where durables and nondurables are both part of the separable 
and nonseparable blocks of goods. 
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goods with the prices and quantities of the nondurable goods, the testable condition becomes that 

of Swofford and Whitney (1994).10 

2.2 Utility maximization with incomplete adjustment 

In this section, we generalize our results and introduce a model of utility maximization with 

incomplete adjustment. Suppose that the durable goods, 𝒙𝑫 and 𝒎𝑫, are chosen with incomplete 

adjustment according to the standard utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫,𝒎𝑫,𝒎𝑵𝑫}

𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                             

𝒑𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + 𝒓𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ 𝑌𝑖                                                                          (21) 

𝒑𝐷
𝑖 𝒙𝑫 + 𝒓𝐷

𝑖 𝒎𝑫 ≤ 𝑌𝐷
𝑖 .                                                                                                                   (22) 

The restrictions (21)-(22) have the same interpretations as the restrictions (2)-(3) in the weak 

separability model. Analogous to that model, we define the amount of incomplete adjustment as: 

IA𝑖 =
𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌𝐷

𝑖

𝜕𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)/𝜕𝑌𝑖
=

Ω𝑖

𝜏𝑖
,                                                                                         

for all 𝑖 = 1, … , 𝑛.  

The first-order conditions can be used to show that this model is equivalent to the standard 

utility maximization problem: 

𝑚𝑎𝑥
{𝒙𝑫,𝒙𝑵𝑫,𝒎𝑫,𝒎𝑵𝑫}

𝑢(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                             

�̃�𝐷
𝑖 𝒙𝑫 + 𝒑𝑁𝐷

𝑖 𝒙𝑵𝑫 + �̃�𝐷
𝑖 𝒎𝑫 + 𝒓𝑁𝐷

𝑖 𝒎𝑵𝑫 ≤ �̃�𝑖 ,                                                                        (23) 

where �̃�𝐷
𝑖  and �̃�𝐷

𝑖  are the virtual prices and �̃�𝑖 is virtual expenditure.  

2.3 Parametric example 

 
10 In one special case, our model does not have any testable implications. Suppose that there are only durable 
goods in 𝒙 and 𝒎. As such, the first-order conditions (9)-(12) and (15)-(16) implies that it is not possible to 
separately identify the degree of incomplete adjustment, IA, from the Lagrange multipliers. Hence, in this case, the 
model with incomplete adjustment is observationally equivalent to a model with complete adjustment. 
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In this section, we illustrate the results in Section 2.1 and 2.2 by showing the effects of 

incomplete adjustment in a parametric example. Suppose there are only nondurable goods in the 

𝒙- block, 𝒙 = 𝒙𝑵𝑫 = (𝑥1, 𝑥2), and only durable goods in the 𝒎- block, 𝒎 = 𝒎𝑫 = (𝑚1, 𝑚2).11 

The prices for the two 𝒙-goods are denoted 𝒑 = 𝒑𝑵𝑫 = (𝑝1, 𝑝2) and the prices for the two 𝒎-

goods are denoted 𝒓 = 𝒓𝑫 = (𝑟1, 𝑟2). Suppose that the utility function is: 

𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑵𝑫, 𝒎𝑫) = 𝑥1𝑚1𝑚2 + √𝑥2𝑚1𝑚2.                                                                         

This utility function is weakly separable in the (durable) 𝒎-goods since it can be written as: 

𝑢(𝒙, 𝒎) = 𝑢(𝒙𝑵𝑫, 𝒎𝑫) = 𝑈(𝒙𝑵𝑫, 𝑉(𝒎𝑫)) = 𝑥1𝑉(𝒎𝑫) + √𝑥2𝑉(𝒎𝑫),                                 

where 𝑉(𝒎𝑫) = 𝑚1𝑚2. Solving the sub-utility maximization problem in (4)-(6) gives the 

conditional demands, �̃�1 = 𝐸/𝑟1 and �̃�2 = 𝐸/𝑟2  The reduced form is obtained by plugging in 

these solutions: 

𝑈 (𝒙𝑵𝑫, �̃�(𝒓𝑫, 𝐸)) = 𝑥1�̃�(𝒓𝑫, 𝐸) + √𝑥2�̃�(𝒓𝑫, 𝐸) = 𝑥1

(𝐸)2

4𝑟1𝑟2
+ √𝑥2

(𝐸)2

4𝑟1𝑟2
,                            

where �̃�(𝒓𝑫, 𝐸) = �̃�1�̃�2 = (𝐸)2/4𝑟1𝑟2 is the indirect sub-utility function corresponding to the 

sub-utility function 𝑉(𝒎𝑫). Solving the reduced form problem gives the optimal (unconditional) 

demand functions (�̅�1, �̅�2) and the optimal allocation of sub-expenditure �̅�: 

�̅�1 =
4𝑝2(𝑌)3(3 + IA) − 8𝑝2(𝑌)3 − (𝑝1)2𝑟1𝑟2(3 + IA)2

4𝑝1𝑝2(𝑌)2(3 + IA)
,                                                           

�̅�2 = (3 + IA)2
(𝑝1)2𝑟1𝑟2

4(𝑝2)2(𝑌)2
,                                                                                                                 

�̅� =
2𝑌

3 +  IA
.                                                                                                                                             

 
11 Thus, this setup corresponds to Swofford and Whitney’s (1994) model of incomplete adjustment. 
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Figure 1: Optimal demands and expenditures as functions of incomplete adjustment in the 

parametric example. with p1 =15, p2 =0.5, r1 =5, r2 =20, and Y =500. Filled points are optimal 

demands and expenditures with complete adjustment. 

 

 

Plugging in the optimal allocation of sub-expenditure into the conditional demand functions 

(�̃�1, �̃�2) gives the optimal (unconditional) sub-utility demand functions, �̅�1 = 𝑌/(3 + IA)𝑟1 

and �̅�2 = 𝑌/(3 + IA)𝑟2. 

The upper graph in Figure 1 plots the optimal demands (�̅�1, �̅�2, �̅�1, �̅�2) for different values 

of percentage incomplete adjustment, defined as % IA = 100 × IA. We see that the demands 

vary quite considerably even for small amounts of incomplete adjustment (filled points 

correspond to optimal demands with complete adjustment, % IA = 0). The lower plot in Figure 1  
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shows total expenditure (𝑌) and sub-expenditure for the separable 𝒎-goods (𝐸) for different 

values of % IA. When the amount of incomplete adjustment is negative, expenditure on the  

durable goods (𝐸) is greater than desired and increases for lower values of %IA. When the 

amount of incomplete adjustment is positive, expenditure on the durable goods is less than 

desired and will eventually approach zero in the limit as IA → ∞. Again, there are large 

differences in the optimal allocations.  

3. TEST-PROCEDURES 

In this section, we propose computationally efficient non-parametric revealed preference 

procedures to implement the models outlined in previous sections.   

3.1 Testing for weak separability with incomplete adjustment 

3.1.1 Rationalizability and revealed preference characterization 

By the maximization problems (18) and (19), we know that the weak separability model with 

incomplete adjustment is equivalent to the standard weakly separable utility maximization model 

with complete adjustment where observed expenditures and prices on durables are replaced by 

the virtual expenditures and prices. Varian (1983) and Cherchye et al. (2015) give a complete 

revealed preference characterization of the weakly separable utility maximization model.12 Thus, 

we can directly apply these results to provide an analogous characterization of the weak 

separability model with incomplete adjustment (by replacing observed expenditures and prices 

with virtual expenditures and prices). The following definition of rationalizability with 

incomplete adjustment is a straightforward adaptation of Varian’s notion of rationalizability for 

the standard weak separability model: 

 
12 Online appendix A recalls Varian’s (1983) and Cherchye et al.’s (2015) revealed preference characterization of 
the (standard) weak separability model with complete adjustment. 
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Definition 1. A data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 can be 

rationalized by a weakly separable utility function and incomplete adjustment if  

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝑉(𝒎𝑫, 𝒎𝑵𝑫)) ≤ 𝑈 (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 , 𝑉(𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )),                                       

for all (𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) ∈ ℝ+
𝒌  such that 𝒑𝑵𝑫

𝒊 𝒙𝑵𝑫 + �̃�𝑫
𝒊 𝒙𝑫 + 𝒓𝑵𝑫

𝒊 𝒎𝑵𝑫 + �̃�𝑫
𝒊 𝒎𝑫 ≤ 𝒑𝑵𝑫

𝒊 𝒙𝑵𝑫
𝒊 +

�̃�𝑫
𝒊 𝒙𝑫

𝒊 + 𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫

𝒊 + �̃�𝑫
𝒊 𝒎𝑫

𝒊 , where �̃�𝑫
𝒊 = (1 + IA𝑖)𝒑𝐷

𝑖  and �̃�𝑫
𝒊 = (1 + IA𝑖)𝒓𝐷

𝑖  for all 𝑖 = 1, … , 𝑛. 

This definition states that since the DM has chosen the observed bundle (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 , 𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ) 

to any other affordable bundle (𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) at prices (�̃�𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 , �̃�𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ), the utility she 

enjoys from consuming (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 , 𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ) must be weakly higher than the utility she would 

enjoy from consuming any other affordable bundle (𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫). Thus, the notion of 

rationalizability with incomplete adjustment is equivalent to saying that every observed bundle 

(𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 , 𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ) is the optimal solution to the maximization problem (1)-(6). 

Varian (1983) and Cherchye et al. (2015) derived necessary and sufficient revealed 

preference conditions for when a data set 𝔻 can be rationalized by the weak separability model. 

By directly applying these results, we obtain the following necessary and sufficient revealed 

preference conditions for when 𝔻 can be rationalized by the weak separability model with 

incomplete adjustment.13  

Theorem 1. Consider the data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

.  

Statements (a)-(c) are equivalent: 

(a) 𝔻 can be rationalized by a weakly separable utility function and incomplete adjustment. 

(b) There exist numbers 𝑉𝑖, 𝑈𝑖, 𝜇𝑖 > 0, 𝜏𝑖 > 0 and IA𝑖 > −1 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑉𝑗 ≤ 𝑉𝑖 + 𝜇𝑖𝒓𝑁𝐷
𝑖 (𝒎𝑵𝑫

𝒋
− 𝒎𝑵𝑫

𝒊 ) + 𝜇𝑖(1 + IA𝑖)𝒓𝐷
𝑖 (𝒎𝑫

𝒋
− 𝒎𝑫

𝒊 ),                                      (24)                                                                                                                  

 
13 A proof of Theorem 1 is given in online appendix B. 
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𝑈𝑗 ≤ 𝑈𝑖 + 𝜏𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒋
− 𝒙𝑵𝑫

𝒊 ) + 𝜏𝑖(1 + IA𝑖)𝒑𝐷
𝑖 (𝒙𝑫

𝒋
− 𝒙𝑫

𝒊 ) +
𝜏𝑖

𝜇𝑖
(𝑉𝑗 − 𝑉𝑖).               (25) 

     (c) There exist numbers 𝑉𝑖, 𝑊𝑖, 𝜇𝑖 > 0 and IA𝑖 > −1 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑉𝑗 ≤ 𝑉𝑖 + 𝜇𝑖𝒓𝑁𝐷
𝑖 (𝒎𝑵𝑫

𝒋
− 𝒎𝑵𝑫

𝒊 ) + 𝜇𝑖(1 + IA𝑖)𝒓𝐷
𝑖 (𝒎𝑫

𝒋
− 𝒎𝑫

𝒊 ),                                      (26)                                                                                                                  

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + 𝜇𝑖(1 + IA𝑖)𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) ≥ 0                                     

 𝑡ℎ𝑒𝑛   𝑊𝑖 ≥ 𝑊𝑗 ,                                                                                                                          (27) 

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + 𝜇𝑖(1 + IA𝑖)𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) > 0                                     

𝑡ℎ𝑒𝑛   𝑊𝑖 > 𝑊𝑗 .                                                                                                                           (28) 

This theorem exhausts the empirical content of the weak separability model with incomplete 

adjustment, and is a straightforward adaptation of the necessary and sufficient revealed 

preference conditions for the standard weak separability model.  

Statements (b) and (c) are testable conditions that can be implemented to test whether the 

data 𝔻 can be rationalized with incomplete adjustment. Varian (1983, p.105) provides a simple 

intuition for the inequalities in statement (b) using concavity arguments. However, the 

inequalities (25) in statement (b) are not very attractive from a computational perspective since 

they contain the non-linear term 𝜏𝑖(𝑉𝑗 − 𝑉𝑖)/μ𝑖; we return to this issue in Section 3.1.3. 

Demuynck and Hjertstrand (2019, p.197-198) gives a simple intuition for statement (c) based on 

quasi-concave arguments and contrast it to Varian’s intuition of the inequalities in statement (b). 

However, as currently stated, the inequalities (27) and (28) in statement (c) are also non-linear 

because of the term 𝜇𝑖(1 + IA𝑖). The inequalities can be linearized by defining the scalars: 

Ψ𝑖 = 𝜇𝑖(1 + IA𝑖),                                                                                                                         (29) 

in which case the amount of incomplete adjustment can be expressed as: 
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IA𝑖 =
Ψ𝑖

𝜇𝑖
− 1.                                                                                                                              (30) 

Substituting this into (27) and (28), we obtain the inequalities:  

𝑉𝑗 ≤ 𝑉𝑖 + 𝜇𝑖𝒓𝑁𝐷
𝑖 (𝒎𝑵𝑫

𝒋
− 𝒎𝑵𝑫

𝒊 ) + Ψ𝑖𝒓𝐷
𝑖 (𝒎𝑫

𝒋
− 𝒎𝑫

𝒊 ),                                                      (31)                                                                                                                  

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) ≥ 0   𝑡ℎ𝑒𝑛   𝑊𝑖 ≥ 𝑊𝑗 ,          (32) 

𝑖𝑓 𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) > 0   𝑡ℎ𝑒𝑛   𝑊𝑖 > 𝑊𝑗 .          (33) 

These inequalities are linear and therefore considerably easier to implement in empirical 

applications. Thus, we will base our revealed preference procedure on the linear inequalities 

(31)-(33). 

3.1.2 The mixed-integer quadratic programming problem 

In this section, we construct a practical test of the inequalities (31)-(33). This test is based on 

solving a mixed integer quadratic programming problem. In constructing such a procedure there 

are two issues that need to be addressed. First, note that (31) consists of a set of weak inequalities 

which are linear in the unknowns 𝜇𝑖 and Ψ𝑖. Since there is one inequality for each pair of 

observations 𝑖, 𝑗 = 1, … , 𝑛, there are in total 𝑛2 inequalities in (31). Similarly, the inequalities 

(32) and (33) are linear in the unknowns 𝜇𝑖 and Ψ𝑖, and also consists of one inequality for each 

pair of observations. Thus, there are in total 𝑛2 inequalities each of (32) and (33). However, 

these inequalities are logical statements and are therefore not practically operational since we 

need to capture the logical relation between the right- and left-hand sides of them. One of the 

main contributions of Cherchye et al. (2015) was to show that these logical statements can be 

expressed as a set of linear inequalities that can be solved in straightforward manner using 

numerical optimization packages in mathematical and statistical software. Specifically, Cherchye 
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et al. (2015) showed that (32) and (33) are equivalent to the existence of binary numbers 𝑋𝑖𝑗 ∈

{0,1} for all 𝑖, 𝑗 = 1, … , 𝑛 such that the following (linear) inequalities hold:14 

𝑊𝑖 − 𝑊𝑗 − 𝑋𝑖𝑗 ≤ −𝜀,                                                                                                               (c. 1) 

(𝑋𝑖𝑗 − 1) ≤ 𝑊𝑖 − 𝑊𝑗 ,                                                                                                              (c. 2) 

𝜇𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒊 − 𝒙𝑵𝑫
𝒋

) + Ψ𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗) − 𝑋𝑖𝑗𝐴𝑖 ≤ −𝜀,                            (c. 3) 

(𝑋𝑖𝑗 − 1)𝐴𝑗 ≤ 𝜇 𝑗𝒑𝑁𝐷
𝑗

(𝒙𝑵𝑫
𝒊 − 𝒙𝑵𝑫

𝒋
) + Ψ𝑗𝒑𝐷

𝑗
(𝒙𝑫

𝒊 − 𝒙𝑫
𝒋

) + (𝑉𝑖 − 𝑉𝑗),                          (c. 4) 

0 ≤ 𝑉𝑖 ≤ 1,                                                                                                                                   (c. 5) 

0 ≤ 𝑊𝑖 ≤ 1 − 𝜀,                                                                                                                          (c. 6)   

𝜀 ≤ μ𝑖 ≤ 1,                                                                                                                                    (c. 7) 

𝜀 ≤ Ψ𝑖 ≤ 1,                                                                                                                                   (c. 8)                                                                                                       

Conditions (c.1) and (c.2) reproduce the right-hand side of inequalities (32) and (33), while 

(c.3) and (c.4) reproduce the left-hand sides of the inequalities. The binary variables 𝑋𝑖𝑗capture 

the logical relationship in (32) and (33) and equal one if and only if 𝑊𝑖 ≥ 𝑊𝑗. Moreover, 𝜀 is a 

small positive number and 𝐴𝑖 is a fixed number larger than 𝒑𝑁𝐷
𝑖 𝒙𝑵𝑫

𝒊 + 𝒑𝐷
𝑖 𝒙𝑫

𝒊 + 1. Importantly, 

notice that (c.1)-(c.4) are weak inequalities and linear in the unknowns which allow for them to 

act as linear constraints in optimization programs (which is precisely the role they serve here). 

Note that there is one inequality for each pair of observations in (c.1)-(c.4), making a total of 𝑛2 

inequalities for each set of inequalities and 4𝑛2 inequalities in total for (c.1)-(c.4). Finally, notice 

that the sign restrictions (c.5)-(c.8) are just harmless normalizations since the inequalities (32) 

and (33) are homogeneous of degree zero in the unknowns. 

 
14 Actually, Cherchye et al.’s (2015) showed the equivalence between (32) and (33) and (c.1)-(c.8) in the special 

case Ψ𝑖 = 𝜇𝑖. However, the extension to cover the case Ψ𝑖 ≠ 𝜇𝑖  is trivial and we therefore omit a proof.  
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The second issue to be addressed concerns how to compute the incomplete adjustment. 

Recall from (29) that Ψ𝑖 = 𝜇𝑖(1 + IA𝑖), which by solving for IA𝑖 gives (30), i.e., IA𝑖 = Ψ𝑖/𝜇𝑖 −

1. Thus, the amount of incomplete adjustment is minimized whenever Ψ𝑖 and 𝜇𝑖 are as close as 

possible to each other.15 One approach to find the total minimal amount of incomplete 

adjustment is therefore to minimize the sum of squared deviations between Ψ𝑖 and 𝜇𝑖. This is an 

optimization problem in the quadratic norm and bounded below by zero. Combining this 

objective function with the linear constraints given by (31) and (c.1)-(c.8) gives us the following 

optimization problem with respect to the variables {𝑉𝑖, 𝑊𝑖 , 𝜇𝑖, Ψ𝑖 , 𝑋𝑖𝑗  }
𝑖,𝑗=1,…,𝑛

: 

OP: 

Ξ = min ∑(Ψ𝑖 − 𝜇𝑖)
2

𝑛

𝑖=1

              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 (31) 𝑎𝑛𝑑 (c. 1) − (c. 8). 

This optimization problem finds the minimal total amount of incomplete adjustment such that the 

𝒎-goods are weakly separable from all other goods. Notice that OP solves a quadratic objective 

function subject to linear constraints where some variables (𝑋𝑖𝑗) only takes binary values. Thus, 

OP is a so-called mixed integer (binary) quadratic programming (MIQP) problem.  

Suppose that there exists a feasible solution to OP and let {Ψ̂𝑖, �̂�𝑖}
𝑖=1,…,𝑛

 be the optimal 

solutions from OP. If Ψ̂𝑖 = �̂�𝑖 for all 𝑖 = 1, … , 𝑛 such that Ξ̂ = ∑ (Ψ̂𝑖 − �̂�𝑖)
2𝑛

𝑖=1 = 0, then IÂ𝑖 =

Ψ̂𝑖/�̂�𝑖 − 1 = 0 for all 𝑖 = 1, … , 𝑛, in which case we say that the 𝒎-goods are weakly separable 

with complete adjustment. But if Ψ̂𝑖 ≠ �̂�𝑖 such that Ξ̂ > 0 then IÂ𝑖 ≠ 0 for at least one 𝑖 and we 

say that the 𝒎-goods are weakly separable with incomplete adjustment. On the other hand, if no 

feasible solution to OP exists, then the 𝒎-goods are not weakly separable. 

 
15 In particular, IA𝑖 = 0 if and only if Ψ𝑖 = 𝜇𝑖. 
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3.1.3 Practical implementation and computational complexity 

Solving the MIQP problem OP gives a deterministic procedure as it does not attach any 

stochastic elements to the data.16 As such, OP gives a binary response to whether or not the data 

can be rationalized by a weakly separable utility function with incomplete adjustment. This 

binary response has a one-to-one mapping with the feasibility of the problem OP since a data set 

can be rationalized by weak separability with incomplete adjustment if and only if there exists a 

feasible solution to OP. Of course, this hinges on that the inequalities (31) and (c.1)-(c.8) are 

empirically refutable, i.e., that we can rule out the possibility that there always exist numbers 

{𝑉𝑖, 𝑊𝑖 , 𝜇𝑖, Ψ𝑖 , 𝑋𝑖𝑗  }
𝑖,𝑗=1,…,𝑛

 such that (31) and (c.1)-(c.8) holds for any choice of data. In online 

appendix C we verify theoretically that the inequalities (31) and (c.1)-(c.8) are refutable by 

constructing a data set which violates a necessary condition for (31) and (c.1)-(c.8). 

Next, some words on practical implementation. OP is a mixed integer quadratic 

programming (MIQP) problem, which formally amounts to optimizing a quadratic function over 

points in a polyhedral set where some of the components are restricted to be integral. This class 

of problems has received considerable attention in the mathematical programming and 

operations research literatures, and has, for example, been used in applications to portfolio 

optimization, machine learning and quantile regression modelling.17 There exist algorithms 

designed to solve MIQP problems such as branch-and-bound, branch-and-cut and outer 

approximation (Naik, 2018). For our empirical application in Section 4, we use the function 

 
16 As discussed in the introduction, the procedures outlined in this paper builds on a large literature on revealed 

preference tests that are intrinsically deterministic; See Demuynck and Hjertstrand (2019) for a recent overview of 
this literature. 
17 See e.g., Bienstock (1996) for an early study on MIQP problems. See Chen and Lee (2018) for a recent application 
of MIQP problems to GMM estimation of instrumental variable quantile regression models in econometrics. 
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cplexmiqp from the commercial state-of-the-art solver CPLEX to solve the problem OP.18 

CPLEX uses a branch-and-bound type algorithm and has been shown to be one of the most 

efficient solvers for MIQP problems that is publicly available (Rimmi et al., 2017; Bliek 2014). 

Finally, some words on the computational complexity of the problem OP. The worst-case 

computational complexity in MIQP problems grows exponentially with the number of binary 

decision variables. It is well-known that such MIQP problems belong to the class of np-hard 

problems.19  

Cherchye et al. (2015) showed that the problem of verifying whether a data set is 

rationalizable by a weakly separable utility function with complete adjustment is an np-complete 

problem. Since weak separability with complete adjustment is a special case of the model with 

incomplete adjustment and every instance of the restricted problem is an instance of the more 

general problem with incomplete adjustment with the 𝑛 extra parameters {Ψ𝑖 }
𝑖=1,…,𝑛

 set equal to 

{𝜇𝑖 }
𝑖=1,…,𝑛

, verifying whether a data set is rationalizable by a weakly separable utility function 

with incomplete adjustment is also an np-complete problem. This means it is highly unlikely that 

the problem of verifying whether a data set is rationalizable by a weakly separable utility 

 
18 In particular, we used IBM ILOG CPLEX optimization studio 12.10 in Matlab. Of course, the codes to replicate all 
empirical results are available upon request from the authors.  
19 The theory of computational complexity classifies decision problems according to the time it takes to come to an 

answer “yes” or “no” for a specific instance of a given decision problem (in our case the question of whether or not 
the data is rationalizable by weak separability/utility maximization and incomplete adjustment). The two most 
important classes of decision problems are called p (polynomial) and np (nondeterministic polynomial). The class p 
contains all decision problems that are solvable in polynomial time, while the class np contains all problems that 
might be difficult to solve (i.e., it might take exponential time to find a solution), but are easy to verify (i.e., in 
polynomial time). A decision problem which is at least as difficult to solve as any problem in the class np is called 
np-hard. A decision problem is np-complete if it is both np-hard and in np. np-complete problems are among the 
most difficult problems in the class np, and all known solution methods applicable to np-complete problems suffer 
from exponential worst-time complexity. See e.g., Garey and Johnson (1979) and Papadimitriou (1994) for 
textbook treatments on the theory of computational complexity. 
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function and incomplete adjustment can be achieved by means of an efficient algorithm, e.g., 

linear programming. 

However, despite this (though not surprising) result, the MIQP problem OP is considerably 

computationally easier to solve than Swofford and Whitney’s (1994) implementation of the 

nonlinear inequalities in statement (b) of Theorem 1, which required solving a complex non-

linear optimization problem with non-linear constraints. More precisely, the optimand in any 

such nonlinear problem may be badly behaved with saddle points and local optima. This presents 

an additional problem since local optima may not be globally optimal (unless some additional 

concavity assumptions are true). Generally, finding a global optimum requires a fine grid search 

over the set of initial values. Even a very fine grid search cannot exclude that weak separability 

is rejected while the assumption effectively holds. From a theoretical point of view, the core 

motivation for adopting an integer programming approach like the one proposed here is that this 

is a widely accepted and well-known approach to handle np-complete problems. 

3.2 Testing for utility maximization with incomplete adjustment 

In this section we present an analogous test-procedure for utility maximization with incomplete 

adjustment. We also illustrate how well the procedure can detect habit formation in a parametric 

example. 

3.2.1 A quadratic programming problem 

A data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

 can be rationalized by a 

utility function and incomplete adjustment if  

𝑈(𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) ≤ 𝑈(𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 , 𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 ),                                       

for all (𝒙𝑫, 𝒙𝑵𝑫, 𝒎𝑫, 𝒎𝑵𝑫) ∈ ℝ+
𝒌  such that 𝒑𝑵𝑫

𝒊 𝒙𝑵𝑫 + �̃�𝑫
𝒊 𝒙𝑫 + 𝒓𝑵𝑫

𝒊 𝒎𝑵𝑫 + �̃�𝑫
𝒊 𝒎𝑫 ≤ 𝒑𝑵𝑫

𝒊 𝒙𝑵𝑫
𝒊 +

�̃�𝑫
𝒊 𝒙𝑫

𝒊 + 𝒓𝑵𝑫
𝒊 𝒎𝑵𝑫

𝒊 + �̃�𝑫
𝒊 𝒎𝑫

𝒊 , where �̃�𝑫
𝒊 = (1 + IA𝑖)𝒑𝐷

𝑖  and �̃�𝑫
𝒊 = (1 + IA𝑖)𝒓𝐷

𝑖  for all 𝑖 = 1, … , 𝑛 
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Theorem 2 states the non-parametric revealed preference characterization for utility 

maximization with incomplete adjustment. 

Theorem 2. A data set 𝔻 = {(𝒑𝑫
𝒊 , 𝒑𝑵𝑫

𝒊 ), (𝒓𝑫
𝒊 , 𝒓𝑵𝑫

𝒊 ); (𝒙𝑫
𝒊 , 𝒙𝑵𝑫

𝒊 ), (𝒎𝑫
𝒊 , 𝒎𝑵𝑫

𝒊 )}
𝑖=1,…,𝑛

  can be 

rationalized by a utility function and incomplete adjustment if and only if there exist numbers 𝑈𝑖, 

𝜏𝑖 > 0 and IA𝑖 > −1 such that (for all 𝑖, 𝑗 = 1, … , 𝑛): 

𝑈𝑗 ≤ 𝑈𝑖 + 𝜏𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒋
− 𝒙𝑵𝑫

𝒊 ) + 𝜏𝑖(1 + IA𝑖)𝒑𝐷
𝑖 (𝒙𝑫

𝒋
− 𝒙𝑫

𝒊 ) + 𝜏𝑖𝒓𝑁𝐷
𝑖 (𝒎𝑵𝑫

𝒋
− 𝒎𝑵𝑫

𝒊 ) +

𝜏𝑖(1 + IA𝑖)𝒓𝐷
𝑖 (𝒎𝑫

𝒋
− 𝒎𝑫

𝒊 ).                                                                                                        (34)   

By defining the scalar Ω𝑖 = 𝜏𝑖(1 + IA𝑖) > 0, we can express the amounts of incomplete 

adjustment as: 

IA𝑖 =  
Ω𝑖

𝜏𝑖
− 1.                                                                                                                                (35) 

This gives the following linearized condition: 

𝑈𝑗 ≤ 𝑈𝑖 + 𝜏𝑖𝒑𝑁𝐷
𝑖 (𝒙𝑵𝑫

𝒋
− 𝒙𝑵𝑫

𝒊 ) + Ω𝑖𝒑𝐷
𝑖 (𝒙𝑫

𝒋
− 𝒙𝑫

𝒊 ) + 𝜏𝑖𝒓𝑁𝐷
𝑖 (𝒎𝑵𝑫

𝒋
− 𝒎𝑵𝑫

𝒊 ) +

Ω𝑖𝒓𝐷
𝑖 (𝒎𝑫

𝒋
− 𝒎𝑫

𝒊 ).                                                                                                                         (36)   

Note that the inequalities (36) reduce to the well-known Afriat inequalities whenever Ω𝑖 = 𝜏𝑖 

holds for all 𝑖 = 1, … , 𝑛. We follow the same approach as for the weak separability procedure to 

find the total minimal amount of incomplete adjustment by minimizing the sum of squared 

deviations between Ω𝑖 and 𝜏𝑖. Thus, combining this objective function with the linear constraints 

given by (36) gives us the following quadratic optimization problem with respect to the variables 

{𝑈𝑖, 𝜏𝑖 , Ω𝑖}
𝑖,𝑗=1,…,𝑛

: 

OPU: 

Θ = min ∑(Ω𝑖 − 𝜇𝑖)
2

𝑛

𝑖=1

              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 (36).                                     



28 
 

This optimization problem finds the minimal total amount of incomplete adjustment such that 

the data can be rationalized by a utility function and incomplete adjustment. Notice that OPU 

solves a quadratic objective function subject to linear constraints which makes the problem a 

quadratic programming (QP) problem. 

3.2.2 Habit formation and incomplete adjustment 

Pollak (1970) introduced models of consumer behavior based on habit formation. Consider the 

following simple model:20 

𝑈(𝒙𝒊) = ∑ 𝑎𝑗

𝑘

𝑗=1

𝑙𝑜𝑔(𝑥𝑗
𝑖 − 𝑏𝑗

𝑖),                                                                                                     (37) 

where 𝑏𝑗
𝑖 = 𝛽𝑗𝑥𝑗

𝑖−1 with 0 ≤ 𝛽𝑗 < 1 for all goods 𝑗 = 1, … , 𝑘. The parameter 𝛽𝑗 governs the 

“degree” of habit formation and is called the “habit formation coefficient” by Pollak (1970). This 

model reduces to a standard Cobb-Douglas utility function whenever 𝛽𝑗 = 0 for all 𝑗 = 1, … , 𝑘. 

Maximizing the utility function (37) with respect to the budget constraint 𝒑𝒊𝒙 ≤ 𝑌𝑖 for every 

𝑖 = 1, … , 𝑛  yield the demand functions: 

ℎ𝑗(𝒑𝒊, 𝑌𝑖) =
𝑎𝑗

𝑝𝑗
𝑖

𝑌𝑖 + 𝛽𝑗𝑥𝑗
𝑖−1 −

𝑎𝑗

𝑝𝑗
𝑖

∑ 𝑝𝑗
𝑖

𝑘

𝑗=1

𝛽𝑗𝑥𝑗
𝑖−1,                                                                    (38) 

for all goods 𝑗 = 1, … , 𝑘. These are short-run demand functions which are locally linear in 

income. Since the 𝑏’s in (37) are linear in past consumption and since current consumption 

depends linearly on the 𝑏’s, present consumption of each good is a linear function of past 

consumption of all goods. These assumptions of habit formation imply that consumption in the 

previous period influences current preference and demand, but that consumption in the more  

 

 
20 For brevity, we write 𝒙 to denote all goods (nondurables as well as durables).   
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Figure 2: Amount of incomplete adjustment for the habit formation model 

 

distant past only affects present consumption through indirect effects. Moreover, since the 𝛽’s 

are positive, there is a positive relation between past and current consumption of each good.21 

We take prices and expenditure for the 18 goods and assets in the application to quarterly 

financial and monetary data (𝑛 = 47) presented in online appendix E. Using these prices and 

expenditures, we generate consumption data from the demand functions (38) at each node in an 

equally-spaced grid for 𝛽𝑗 ∈ [0,0.9] with increments 0.01. The 𝑎-parameters are set to the mean 

budget shares for the goods and assets in the financial and monetary data. Moreover, we use the 

initial condition 𝑥𝑗
0 = 10 for all 𝑗 = 1, … , 𝑘 and employ the same classification of durables and  

nondurables as in the Table G in online appendix E.22 For each data set of generated 

consumption data and prices (which only differ by the choice of 𝛽j), we solve the problem OPU 

 
21 Negative correlation can be allowed for by instead imposing ⌈𝛽𝑗⌉ < 1. 
22 Thus, we set 𝛽𝑗 = 0 for all nondurables. 
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and calculate the aggregated percentage root mean squared incomplete adjustment, RMSE%IA, 

from (41). 

Figure 2 plots the RMSE%IA against the habit formation coefficient 𝛽𝑗. As expected, we see 

that the amount of incomplete adjustment increases as the degree of habit formation increases. 

Notably, the calculated amount of incomplete adjustment is zero up to 𝛽𝑗 = 0.64.  

4. APPLICATION 

In this section, we show how our models and methods provide additional insights in the analysis 

of consumer choice data previously not possible with tests unable to allow for incomplete 

adjustment. 

It is common in empirical demand analysis to assume that nondurable goods and services are 

weakly separable from durable goods and services. This is done for tractability as it allows the 

researcher to model nondurables in demand systems without reference to durables which may 

otherwise be problematic since a consumer does not derive utility directly from spending on 

durables, but rather from the flow of services they provide over time. In this application, we test 

this often-maintained hypothesis with the following hypothesized structure: 

𝑈(“Durables“, 𝑉(“Nondurables“)). 

4.1 Data and setup 

To test if nondurables are weakly separable from durables, we use the Encuesta Continua de 

Presupuestos Familiares (ECPF), which is a Spanish panel survey data set ranging from 1985-

1997 over disaggregated household expenditures on durable and nondurable consumption goods 

and services.23 This is a unique data set for three reasons. First, households report very detailed  

 
23 These data were obtained from Crawford (2010) and have previously been used in revealed preference 
applications. For example, Cherchye et al. (2015) used the ECPF to test if households’ utility functions are weakly 
separable in food categories. 
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and complete information on income and expenditures of a large number of disaggregated 

categories on nondurable, durable and services (25 in total). Second, the structure of the ECPF is 

more convenient than the most widely used consumer surveys because these do not share the 

panel structure of the ECPF.24 Third, ECPF collects data quarterly.  To our knowledge, the ECPF 

is the only large panel data set that gives information on household expenditures over more than 

four quarters providing information on expenditures for between five and eight quarters per 

household (Browning and Collado, 2001).   

It is the panel structure of ECPF that makes these data ideal for our purposes. Since we can 

apply our test for weak separability with incomplete adjustment on data from each individual 

household, we avoid making any assumption of a representative agent, and also avoid making 

any preference homogeneity assumption between households. Thus, our procedure for weak 

separability effectively accounts for any form of heterogeneity between households (even any 

form of latent or unobserved heterogeneity), and we are therefore able to optimally exploit the 

panel structure of the ECPF. This is a clear advantage over standard parametric analysis, since 

any such analysis has to be conditional on some pooling and heterogeneity assumptions. 

In order to ensure that our test have the highest power possible, we exclude households with 

less than 𝑛 = 8 observations which give us in total data on 1,585 households. Hence, we run our 

test for weak separability with incomplete adjustment 1,585 times, i.e., we solve the MIQP 

problem OP once for each household. 

The data in ECPF consists of 25 goods and services and are specified in more detail in Table 

1. Table 2 contain descriptive statistics of the prices, budget shares and total expenditure for the  

 
24 For example, the UK Family Expenditure Survey (FES) has independent waves, and in the American Consumer 
Expenditure Survey (CEX), even though households are interviewed in four consecutive quarters, the information 
on income is only recorded in the 1st and 4th interview (Collado, 2001). 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Collado%2C+M+Dolores
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Table 1: Goods in ECPF data and classification according to COICOP. 

Durable goods COICOP 
  
Durables at home (e.g., furniture and appliances) Durable 
Small durables at home Durable 
Durable medicines (e.g., spectacles, crutches and wheelchairs) Durable 
Cars Durable 
Durables at home (e.g., tv and music) Durable 
Small durables (e.g., books, toys and CDs) Durable 
Personal small durables (e.g., hair-dryer, shavers, lighters and suitcases) Durable 
  
Nondurable and semidurable goods  
  
Food and non-alcoholic drinks at home Nondurable 
Alcohol Nondurable 
Restaurants and bars Nondurable 
Tobacco Nondurable 
Nondurables at home (e.g., cleaning products) Nondurable 
Nondurable medicines Nondurable 
Petrol Nondurable 
Personal nondurables (e.g., toothpaste and soap)    Nondurable 
Clothing and footwear Nondurable 
Energy at home (e.g., heating by electricity) Nondurable 
  
Services  
  
Services at home (e.g., heating not electricity, water and furniture repair) Nondurable 
Personal services Nondurable 
House rent (includes imputed rent) Nondurable 
Transportation Nondurable 
Travelling Nondurable 
Leisure (e.g., cinema, theatre and clubs for sports) Nondurable 
Education Durable 
Medical services Durable 

 

data in Table 1. We begin by classifying all goods and services as durables, nondurables and 

semidurables, and services using UN’s “classification of individual consumption according to 

purpose” (COICOP).  See the last column in Table 1 for the classification of each good.25 

Following standard practice, we classify education and medical expenditures as durables goods  

 

 
25 See https://unstats.un.org/unsd/classifications/Econ/Download/In%20Text/CPCprov_english.pdf.  
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Table 2: Descriptive statistics of prices, budget shares and total expenditure for all durables, 

semidurables, nondurables and services in the ECPF data. 

 Prices  Budget shares 
 Mean Min Max s.d  Mean Min Max s.d 
Durables at home 0.96 0.79 1.12 0.09  0.02 0 0.73 0.06 
Small durables at home 0.98 0.83 1.19 0.1  0.01 0 0.52 0.03 
Durable medicines 1.00 0.87 1.15 0.08  0.00 0 0.38 0.01 
Cars 1.02 0.81 1.29 0.12  0.03 0 0.87 0.09 
Durables at home 1.01 0.95 1.08 0.03  0.01 0 0.47 0.02 
Small durables 0.96 0.74 1.18 0.13  0.02 0 0.58 0.03 
Personal small durables  0.98 0.79 1.20 0.11  0.01 0 0.45 0.02 
Food & non-alcoholics at home 0.98 0.79 1.17 0.10  0.26 0 0.91 0.11 
Alcohol 0.95 0.65 1.26 0.16  0.01 0 0.20 0.02 
Restaurants and bars 0.93 0.63 1.24 0.18  0.08 0 0.72 0.08 
Tobacco 0.98 0.67 1.63 0.25  0.02 0 0.37 0.02 
Non-durables at home 0.97 0.86 1.12 0.07  0.02 0 0.19 0.02 
Non-durable medicines 0.98 0.88 1.09 0.05  0.01 0 0.34 0.02 
Petrol 0.96 0.76 1.26 0.15  0.04 0 0.40 0.04 
Personal non-durables    0.97 0.81 1.18 0.11  0.01 0 0.27 0.02 
Clothing and footwear 0.95 0.72 1.14 0.11  0.1 0 0.71 0.09 
Energy at home 0.96 0.74 1.22 0.14  0.03 0 0.52 0.02 
Services at home 0.92 0.59 1.29 0.20  <0.00 0 0.41 0.02 
Personal services 0.92 0.62 1.27 0.19  0.01 0 0.66 0.02 
House rent 0.96 0.68 1.28 0.16  0.19 0 0.85 0.11 
Transportation 0.91 0.54 1.25 0.21  0.06 0 0.94 0.07 
Travelling 0.95 0.60 1.35 0.18  0.01 0 0.54 0.03 
Leisure 0.95 0.69 1.19 0.14  0.02 0 0.53 0.03 
Education 0.96 0.67 1.39 0.20  0.03 0 0.62 0.04 
Medical services 0.89 0.51 1.27 0.22  0.01 0 0.78 0.04 
          
 Mean Min Max s.d  
Total expenditure 695215.17 93598.50 9220404.19 427890.56  
          

 

because they increase the stock of human capital and can therefore be “consumed” over a long 

time-span.26  

 
26 The reason for why these services should be regarded as durables is elaborated by the ILO, which in their 
consumer price index manual writes: “For some analytical purposes, it may be appropriate to treat certain kind of 
services such as education and health, as the service equivalent to durable goods. Expenditures on such services 
can be viewed as investments that augment the stock of human capital. Another characteristic that education and 
health services share with durable goods is that they are often so expensive that their purchase has to be financed 
by borrowing or by running down other assets” (ILO consumer price index manual, 2004, chapter 3.25). 
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Recall from (20) that IA𝑖 = (�̃�𝐷
𝑖 − 𝑌𝐷

𝑖 )/𝑌𝐷
𝑖 , where 𝑌𝐷

𝑖  and �̃�𝐷
𝑖  are the observed and virtual 

expenditure on the durables in observation 𝑖 = 1, … , 𝑛, respectively. Thus, the number % IA𝑖 =

100 × IA𝑖 can be interpreted as the required percentage adjustment of expenditure on the durable 

goods in order for the optimal bundle of durable goods to be demanded in equilibrium. We report 

the results using the three following summary statistics based on % IA𝑖:  

The mean percentage incomplete adjustment: 

% IA̅̅̅ =  
1

𝑛
∑ % IA𝑖 .

𝑛

𝑖=1

                                                                                                                   (39) 

The maximal absolute percentage incomplete adjustment: 

Max|%IA| = 𝑚𝑎𝑥𝑖=1,…,𝑛{|% IA𝑖|}.                                                                                             (40) 

The root mean squared percentage incomplete adjustment: 

RMSE%IA = √∑(% IA𝑖)2

𝑛

𝑖=1

.                                                                                                       (41) 

4.2 Results 

In Table 3 we present results of the fraction of households satisfying utility maximization with 

and without complete adjustment. We find that data from 1,444 households (91%) can be 

rationalized with complete adjustment, and a further 140 households (9%) can be rationalized 

with incomplete adjustment. Hence, the data on one household fail the rationalizability 

conditions. 

The top panel in Figure 3 presents histograms of the various summary statistics (39)-(41) 

over the 140 households satisfying utility maximization with incomplete adjustment. We see that 

there is some heterogeneity between households. While some most households can be  
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Table 3: Summary statistics of pass rates 

Total number of households: 1,585 
  
# households satisfying utility maximization with complete adjustment: 1,444 (91%) 
  
# households satisfying utility maximization with incomplete adjustment: 140 (9%) 
  
# households satisfying weak separability with complete adjustment: 0 (0%) 
  
# households satisfying weak separability with incomplete adjustment: 125 (8%) 

 

rationalized by similar amounts of incomplete adjustment, there are a few households that 

require a considerably higher amount to be rationalized. 

The left panel in Table 4, denoted, “Utility maximization“, provides summary statistics given 

by (39)-(41) over the 140 households that satisfy utility maximization with incomplete 

adjustment. These results confirm the findings from Figure 3 and show that there is some 

heterogeneity between households, but that a large majority of households can be rationalized 

with similar amounts of incomplete adjustment. 

Next, we consider the results from the weak separability tests. The last two rows in Table 3 

present results of the fraction of households satisfying weak separability. None of the households 

satisfy weak separability with complete adjustment and only 125 households or 8% satisfy weak 

separability with incomplete adjustment. The lower panel in Figure 3 presents histograms of the 

various summary statistics (39)-(41) over the 125 households satisfying weak separability with  
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Figure 3: Histograms of the summary statistics (39)-(41) satisfying utility maximization (140 

households) and weak separability (125 households) with incomplete adjustment

 

incomplete adjustment. The results are similar to the results for utility maximization with 

incomplete adjustment in the top panel: Many households can be rationalized with similar 

amounts of incomplete adjustment, but there are some households that require considerably 

larger amounts of incomplete adjustment to be rationalized. However, compared to the utility 

maximization model, there is less heterogeneity among households in terms of minimal required 

incomplete adjustment. 

The right panel in Table 4, denoted “Weak separability“, provides the summary statistics 

given by (39)-(41) over the 125 households that satisfy weak separability with incomplete 

adjustment, and confirm our findings from Figure 3.  

Finally, we perform some robustness analysis by calculating the power against uniformly 

random behavior. This alternative hypothesis of rational behavior as a measure of power in 

revealed preference tests was proposed by Bronars (1987), based on Becker (1962). Bronars’  
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Table 4: Summary statistics over households satisfying utility maximization (140 households) 

and weak separability (125 households) with incomplete adjustment 

 Utility maximization  Weak separability 

Statistic % IA̅̅̅ Max|%IA| RMSE%IA  % IA̅̅̅ Max|%IA| RMSE%IA 

        

Mean 3.92 36.77 40.67  0.86 19.95 22.50 
        
Min -0.50 0.09 0.12  -33.80 <0.00 <0.00 
        
Q1 9.95e-04 3.26 4.43  -0.53 2.24 2.24 
        
Median 0.07 6.35 8.31  0.10 7.23 7.23 
        
Q3  0.40 17.59 22.24  1.00 19.01 20.26 
        
Max 230.86 1.88e+03 1.88e+03  80.56 416.88 474.96 
        
Std. dev. 21.70 171.42 172.15  8.85 44.62 51.23 

Note: Q1: First quartile, Q3: Third quartile and Std. dev.: standard deviation.  

 

procedure consists of first generating uniformly distributed budget shares on the 𝑘 − 1 unit 

simplex, and then solve for the uniformly random quantities corresponding to the observed prices 

and expenditure.27 This is done many times, and for every simulation, we test if the simulated 

quantity data and observed price data pass the tests for weakly separable utility maximization 

with incomplete adjustment. As a benchmark, we also apply tests for utility maximization 

(GARP; See Varian 1982) and weak separability with complete adjustment (the procedure 

proposed by Cherchye et al. 2015). The power for all models lies in the unit interval, i.e., 0 ≤

power ≤ 1. 

To get a sense of how well these models perform in relation to each other, we also calculate 

the predictive success (PS) for all the models proposed by Beatty and Crawford (2011), based on 

an idea of Selten (1991).  PS combines the pass rate of a model with the discriminatory power 

 
27 At every observation, the uniformly random budgets shares are generated as 𝑘 random variables from the 
Dirichlet distribution with parameters set to (1, … ,1). 
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against uniformly random behavior. PS is calculated as the difference between the pass rate (0 or 

1) and (1 − power) or PS = Pass Rate − (1 − power).  By construction, −1 ≤ PS ≤ 1 and 

negative values indicates that the model inadequately describes the data.  If the model provides a 

poor fit of the representative consumer behavior (pass rate 0) while at the same time the power is 

low (i.e., the model is difficult to reject empirically), then PS = -1. Conversely, a high and 

positive PS-value indicates a successful model or the model is able to explain the observed 

behavior (pass rate equals 1) and the power is high. One interpretation of a predictive success 

close to zero is that the theory in question performs about as well as random behavior. 

Table 5 present summary statistics over all 1,585 households. The power of the utility 

maximization models with complete and incomplete adjustment is essentially zero for a large 

majority of the households. Since the utility maximization model with complete adjustment is 

nested within the incomplete adjustment-model, the power of the latter is by definition as least as 

high as the power of the latter.28 The low power of the tests for utility maximization may not be 

that surprising in light of that inflation in Spain was high over the sample period (1985-1997). 

With growing nominal expenditures over time there will be limited budget hyperplane 

intersections, in which case the tests are not able to detect violations. We find support of this 

explanation from the descriptive statistics in Table 2. While there are large differences in total  

expenditure as measured by the standard deviation, there seem to be small differences in prices 

of the goods and services, implying that there may be limited budget hyperplane intersections.29 

Consider next the weak separability models with complete and incomplete adjustment. For 

all households, the power of the model with complete adjustment equals 1. However, as already  

 
28 In other words, a violation of utility maximization with incomplete adjustment implies that utility maximization 
with complete adjustment is also violated, but the opposite is not necessarily true. 
29 Measurement errors may also be a factor when explaining the growing level of expenditure over the sample 
period. 



39 
 

Table 5: Power and predictive success 

 Utility maximization  Weak separability 
      
Statistic       Power           PS  Power PS 
      
Mean <0.00 (0.02) -0.91 (-0.07)  0.20 (1) -0.72 (0) 
      
Min 0 (0) -1 (-1)  0.20 (1) -0.80 (0) 
      
Q1 0 (0) -1 (0)  0.20 (1) -0.80 (0) 
      
Median 0 (0.01) -1 (<0.00)  0.20 (1) -0.80 (0) 
      
Q3 0 (0.03) -1 (0.03)  0.21 (1) -0.79 (0) 
      
Max <0.00 (0.15) <0.00 (0.15)  0.21 (1) 0.21 (0) 
      
Std. dev. <0.00 (0.02) 0.28 (0.28)  <0.00 (0) 0.27 (0) 

Note: The numbers inside parenthesis refer to the power and PS for GARP (utility maximization) and Cherchye’s et 
al.’s (2015) procedure (weak separability). The number of Monte Carlo simulations in the power and PS 
calculations is set to 500. 

 

noted from Table 3, not a single household is consistent with this model, which implies that the 

predictive success equals zero for every household. The power for the weak separability model  

with incomplete adjustment equals about 20% for almost every household.30 However, since the 

pass rate equals one for only 125 households (See Table 3), the predictive success is close to −1 

for the large majority of households, i.e., those failing the rationalizability conditions (92%). In 

contrast, the predictive success for households that pass the rationalizability conditions is the 

highest among all models considered, and for these households it seems reasonable to say that 

the model explains observed consumer behavior fairly well. However, since this only accounts 

for 8% of the total number of households, the model is considerably less successful in explaining 

observed consumer behavior on the aggregate level. 

 
30 We draw the same Dirichlet numbers in the power calculations for every household. Since prices for goods does 
not differ much between households, this explains why all households essentially have the same power. 
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The results in Tables 3, 4 and 5 strongly indicate that the commonly made assumption that 

nondurables are weakly separable from durables is questionable.  Put differently, our panel data 

results suggest that nondurable and durable goods and services should be modelled in common in 

empirical demand and consumption analysis. 

4.3 Monetary and real sector aggregates for the U.S. 

We also applied our models and methods to U.S. data on consumption, monetary and financial 

assets. A detailed description of the data and results are contained in online appendix E. In this 

section, we only briefly discuss the data and summarize the results. 

We use aggregated U.S. data on three categories of consumptions goods and leisure and 15 

categories of monetary and financial goods, ranging from 2000Q1 to 2011Q3, that was 

previously analyzed in Hjertstrand et al. (2016). This sample period covers a little more than the 

first decade of the twenty-first century, which was characterized by large economic turmoil. 

While the early part of the sample period was part of what is called the Great Moderation, this 

came to an end with the start of the Great recession which lasted from December 2007 until June 

2009 and also contained a financial crisis with bankruptcies of several large banks. This was 

followed by a period of slow economic recovery. The Fed’s response to the crisis and the 

recession was unprecedented. It aggressively pursued expansionary policies using both 

conventional and unconventional tools, which are not representative of the Fed’s monetary 

policies in the long run. So, while the standard caution about extending results beyond the 

sample period apply, in this instance it should be emphasized and the results summarized next 

should be viewed with precaution keeping the nature of the sample period in mind. 

All of the monetary and real sector aggregates identified in Hjertstrand et al. (2016) including 

(i) M1; (ii) a modern analog to what Friedman and Schwartz (1963) called money; (iii) the old 
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FED aggregate L; and (iv) four real sector goods were also found by the procedure set forth in 

this paper to be weakly separable from all other goods and thus to form valid economic 

aggregates. In contrast to Hjertstrand et al. (2016), by allowing for incomplete adjustment, our 

procedure also finds that one additional real sector aggregate is weakly separable from leisure 

and all monetary and financial assets. All other hypothesized structures that were rejected in 

Hjertstrand et al. (2016), including M2, M3 and MZero, are still rejected by our more flexible 

procedure.  

5. CONCLUSIONS 

This paper has introduced models and procedures to test if observed consumer choice data on 

goods and assets can be rationalized by weakly separable utility maximization. A novel feature 

of our methods is that they allow for incomplete adjustment which means that expenditure on a 

subset of goods might not adjust completely within one period, and thus be suboptimal. 

Incomplete adjustment might arise because of various dynamic effects such as habit persistence 

(formation), adjustment costs, information asymmetries, the formation of expectations, or a 

combination of reasons. The standard weak separability model (with complete adjustment) 

appears as a special case. Overall, allowing for incomplete adjustment grants researchers more 

degrees of freedom to detect permissible categories of goods and assets.  

Weak separability is a core assumption in, for examples, aggregation theory, index number 

theory and demand system analysis but is usually implicitly assumed rather than explicitly tested. 

A key benefit for future research is that the procedures put forward in this paper are 

computationally feasible which facilitates simultaneous analysis of consumer choice data using 

parametric and nonparametric models, performing simulation studies, conducting extensive 

robustness analysis etc. 
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We provide a generalization of our results to test if demand data can be rationalized by utility 

maximization with incomplete adjustment. We can also think of several other generalizations of 

our results that might be relevant for future research. In online appendix D, we give one such 

generalization to homothetic weak separability and homothetic utility maximization with 

incomplete adjustment. It seems well-established that homotheticity is a strong and possibly 

unrealistic assumption but can nevertheless be a convenient assumption in empirical consumer 

analysis. Incomplete adjustment adds additional flexibility to these models which may make 

them empirically tractable under parsimonious specifications. Other generalizations along the 

same lines would include imposing quasilinearity instead of homotheticity on the utility 

functions or allowing for measurement errors in the data in combination with incomplete 

adjustment. 

Our methods can be used to answer several empirical questions. For example, it is common 

in empirical consumer demand analyses to (implicitly) assume that nondurable goods and 

services are weakly separable from durable goods and services (rather than explicitly testing it). 

Using detailed panel data over households, we find that this may be an invalid assumption.  
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