

## The Industrial Institute for <br> III) Economic and Social Research

is an independent non-profit research institution, founded in 1939 by the Swedish Employers' Confederation and the Federation of Swedish Industries.

## Objectives

To carry out research into economic and social conditions of importance for industrial development in Sweden.

## Activities

The greater part of the Institute's work is devoted to long-term problems, especially to long-term changes in the structure of the Swedish economy particularly within manufacturing industry.

## Board

Curt Nicolin, chairman
Gösta Bystedt
Anders Carlberg
Torbjörn Ek
Per-Olof Eriksson
Lennart Johansson
Olof Ljunggren
Lars Nabseth
Sven H Salén
Hans Stahle
Peter Wallenberg
Sven Wallgren
Karl Erik Önnesjö
Gunnar Eliasson, director

## Address

Industriens Utredningsinstitut
Box 5501, S-114 85 Stockholm, Sweden
Tel. 08-783 8000

# THE INDUSTRIAL INSTITUTE FOR ECONOMIC <br> AND SOCIAL RESEARCH 

Fredrik Bergholm

## MOSES HANDBOOK

Distributor: Almqvist \& Wiksell International, Stockholm, Sweden
(c) The Industrial Institute for Economic and Social Research, Stockholm, Sweden

## FOREWORD

The Swedish Micro-to-Macro Model has been developed over more than a decade. The actual operation of the model requires a not insignificant input of "on site learning". The size of the model system will make this unavoidable also in the future. To make the model more accessible to outside researchers, however, we are currently preparing a series of technical publications.

The MOSES Handbook, written by Fredrik Bergholm, documents in detail the complex initialization of the micro-macro model economy. It is a manual that will allow anyone reasonably experienced with computer work to run the model. The MOSES Code, to be published shortly, documents the code and the program. It will allow the model user to identify exactly how economic processes are represented in the model.

Stockholm in January 1989
CONTENTS
Page
Part 1 How to Run the MOSES Model ..... 7
Part 2 The Initialization Process ..... 45

## Part 1

HOW TO RUN THE MOSES MODEL
CONTENTS
Page
Preface ..... 9
Section 1 Introduction ..... 11
Section 2 How to Run the Initialization and How to start the Model ..... 15
Appendix: "System commands" ..... 26
Section 3 How to Make New Initialization Ver- sions and New Experiment Versions (simulation variants) ..... 27
Section 4 How to Add New Model Variables ..... 32
Section 5 Description of the Function UPDATEMOSES ..... 34
Section 6 In Case of Trouble ... ..... 41
Section 7 Standard Print-Out of Result ..... 43
Literature ..... 44

## Preface

MOSES is short for "Model for Simulating the Economy of Sweden". Different versions of the model have been used within the institute for many years. A number of simulation experiments have been performed.* The whole model is written in the programming language APL. The size of the model can be measured by the required memory space when loading the APL-functions, and is currently approximately 550 kbytes. The current version of the model is installed on a DEC computer in Bergen, Norway. This has come about through cooperation with IøI (Bergen), the industrial institute for economic research in our neighbouring country. Previously the model has been installed in IBM computers in Stockholm and at other places. The model is currently being transformed onto PRIME APL to be run on the PRIME computer at the Stockholm School of Economics.**

Technical changes in the program code are being made in connection with this, e.g. speeding up the simulation and reducing required memory space during simulation.

[^0]For some time there has been a demand for a full documentation of the current version of the model. "The MOSES Manual" fulfills one part of this request. Anyone interested in a large-scale simulation model of this kind needs to get acquainted with the techniques involved in starting up (initializing) and running the model. Experiments have shown that the initialization procedure, which constructs an initial state of the model economy, is crucial for the behaviour of the model. Part 2 of the MOSES Manual has been devoted to describing this initialization process.***

This part of the MOSES Manual describes how to actually run the model. Previously, only a few persons knew how to handle the machinery. The intention behind Part 1 is that anyone - following the instructions - should be able to start up and run the model.

Part 1 of the manual is mainly a cookbook. The user can run the model without knowing what it is all about. To be able to carry out meaningful analytical experiments, however, one needs a rather deep understanding of the model and the initialization itself, which requires a considerable and timeconsuming effort on the part of the user.

[^1]
## Section 1 Introduction

The model consists of two parts, the simulation model itself and the initialization procedure, which takes as input micro and macro databases and converts them into a form that fits the simulation model. There are micro and macro databases for two years, i.e. starting points for the simulation, namely 1976 or 1982. So, a simulation of the Swedish economy with the "micro-to-macro model" MOSES, is preceded by an initialization of a vast number of variables, and the simulation proper commences the first quarter 1983 or 1977 depending on the choice of starting point. "Initialization" means (mainly) that three kinds of variables are given values.
(1) Variables for $1982^{1}$ needed to start up the model.
(2) Variables needed to determine the future of certain variables which get their values irrespective of what happens during the simulation.
(3) Certain constants, some of which are parameters affecting for example the behaviour of firms.

The required memory space for a simulation with the model version installed in Bergen is approximately 1,000-1,400 kbytes.

Let us see how the initialization and simulation can be performed on the DEC20-computer in Norway.

[^2]We assume that you are sitting in front of a terminal equipped with a keyboard with APL-symbols. To be able to run the model one needs some elementary knowledge of APL. On the following pages we will therefore try to give a mini-lesson in APL. For more detailed information, see the APL reference manual.
1.1 The Concept Workspace and System Com-

An APL workspace consists of functions and variables. The user enters functions and variables in the workspace and can save them for future usage.

A system command in the APL language starts with a right-hand bracket. One needs system commands to handle APL workspaces. The most frequently used system commands are:
) LOAD workspace name
) CLEAR
) SAV迟

The , LOAD-command loads a previously saved workspace into the computer memory. Thus all functions and variables are instantaneously transferred to computer memory. In APL there is in general no program reading variables from a database into computer memory. Instead one makes a / LOAD-command.

Example:
) LOAD PROV

The workspace PROV is loaded into the computer memory. If you wish to look at a variable in the workspace, just write the name of the variable. If you want to add a variable just write for example:
$\mathbf{a}^{\leftarrow} 10$.

You have then added a new variable a which has the value 10.

If you want to save the extended workspace with new or changed variables (for example) simply write:
) SAVE

If you just want to erase computer memory and start all over again write:
) CLEAR

The ) CLEAR-command erases the workspace which is in the memory at that particular moment. The workspace in the library is of course unchanged. Note that the ) SAVE-command destroys the old version of the workspace in the library.

Example:

We want to look at the workspace containing the MOSES model. This workspace lies in the library and is called MOSES.

Perform:
(1) ) LOAD MOSES
(2) we look at some variables or functions
(3) ) CLEAR

A function is a program in APL. How to write and read functions is not described here; see instead the APL reference manual. To run an old experiment you don't have to be able to write functions, but if you wish to make new experiments this is necessary!

The most common system commands can be found in the appendix to the next section. A full description can be found in an APL-manual.

Information about the "login procedure", e.g. how to get in touch with the computer for instance in Bergen, Norway, or at the Stockholm School of Economics, can be received from authorized persons at IUI.

## Section 2 How to Run the Initialization and How to Start the Model

## 2.1 <br> Overview

We assume that you have logged in and that you have access to:

1) the APL-language
2) workspaces containing the micro-to-macro model, which are:
```
MOSES (= the model itself)
,INIT (= the initialization procedure)
,MACR82 (= macro database, for 1982)
            or MACRO (= macro database, for 1976)
,SI82 (= micro database, for 1982)
    or sI76 (= micro database, for 1976)
,VLISTS (= variable names, initialized variables)
,FUNCTI, ISTART,
MSTART (= miscellaneous workspaces in connection
with initialization etc).
One can check that all workspaces needed are in the
(IUI) library by using the system command:
```

) LIB
Then all saved workspaces are listed.
It might also be a good idea to perform the
) MAXCORE-command in the beginning. This command is
described in an appendix to this section, and
extends maximum available space in the computer
memory. It is not possible to use more than 352 p
(pages).
To start the model enter:

| ) LOAD INIT | (step 1) |
| :--- | :--- |
| START NR1 | (step 2) |
| LOAD MOSES | (step 3) |
| UPDATEMOSES NR2 | (step 4) |
| RONEXP N | (step 5) |
| SAVE | (step 6) |

Step $1+2=$ initialization of the model, which means that start-up variables for 1982 (1976) are given values etc.

Step $3+4$ = update the MOSES model code to its latest version

Step $5=$ run the model

Step $6=$ save the result

NR1, NR2 and $N$ are chosen numbers.
$\mathrm{N}=$ number of years to simulate (run the model)
NR1 = number of initialization version
NR2 = number of experiment version

For a definition of "initialization version" and "experimemt version", see the following pages.

This 6 -step procedure to run the model will be explained in more detail below.

In what follows, we will write system commands and function calls (for example the function START) in boldface letters, whereas parameters to the functions (for example NR1, NR2, $N$ above) or workspace names (for example INIT) will be written in ordinary letters. Note that there must be at least one blank between a function call and a parameter!

```
2.1.1 "Initialization Version"
Definition:
```

Instead of changing the original ${ }^{1}$ initialization
version, one puts all changes in a separate func-
tion. A new initialization version is made by using
the original initialization program (workspace
INIT) and by making a function ISTARTXX where all
changes are defined. Xx is the number of the in-
itialization version. ISTARTXX should be put into
workspace ISTART before anything else is done.
Example:

Make a function ISTART4 where all changes are defined. Put it into workspace ISTART by using the system commands LOAD and SAVE. Then perform:

```
) LOAD INIT (step 1)
    START 4 (step 2)
```

Thus, initialization version 4 has been run, and
the result is saved (automatically) in workspace
R4.
How to make new initialization versions is de-
scribed in Section 3. If you just wish to repeat an
old experiment just check that the proper
ISTARTXX-function is stored in the ISTART-work-
space.

The reason for this somewhat cumbersome way of labelling the experiments is that it is extremely difficult to keep track of changes in a program (in this case the initialization program START), if one were allowed to make small modifications all the time. If one works in the fashion outlined above,

[^3]the original initialization code is unchanged, and all modifications thereafter are defined by small modules called istartxx. To be more specific, the original initialization program is unchanged before a new initialization. During the initialization, the initialization program is updated ${ }^{1}$ with the changes defined in an ISTARTXX-module. For more details see Section 3 .

[^4]```
2.1.2 "Experiment Version"
Definition:
```

Instead of changing the original ${ }^{1}$ model one puts changes of the model, for experiment purposes, in a separate function. A new experiment version is made by using the original model program (workspace MOSES) and by making a function MSTARTXX, where all changes connected with the specific experiment are defined. $X x$ is the number of the experiment version. Put MSTARTXX into workspace MSTART before anything else is done.

Example: (We extend the example given above on the previous page)

Make a function MSTART8 where experiment-specific changes are defined. Put it into workspace MSTART.

Then perform:

| ) LOAD INIT | (step 1) |
| :--- | :--- |
| START 4 | (step 2) |
| ILOAD MOSES | (step 3) |
| UPDATEMOSES 8 | (step 4) |

How to make new experiment versions is described in Section 3. If you just wish to repeat an old experiment, simply check that the proper MSTARTXX function is stored in the MSTART workspace.

Note that each experiment is uniquely determined by the lines in an MSTART function, provided that the same input data are used. Note also that the above procedure means that one can use a certain set of indata and make a large number of different experi-

[^5]ments with these. Step 2 yields output from initialization (= input to the model). By varying the parameter to UPDATEMOSES (in this example 8) one can achieve different experiments with the same indata to the model.

One point ought to be clarified in this context. The word "experiment" in our concept "experiment version" means that we are experimenting with the model itself, for example introducing a certain micro or macro behaviour. One can also make experiments by varying input to the model by using different "initialization versions". Some parameters produced by the initialization procedure affect the micro behaviour of firms. So it is equally natural to keep the MSTARTXX function constant and vary the ISTARTXX functions. The difference between an ISTARTKX function and an MSTARTKX function is that the former can't change lines in the model.

| 2.2 | Comments | on | the | 6-step | Procedure |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Start and Run the Model |  |  |  |  |  |
| Step 1 | The ini <br> into com | ial ute | ati mem | progr | am is loa | ed |
| Step 2 | "START XX" starts the initialization. |  |  |  |  |  |
|  | ISTARTXX should be stored beforehand in |  |  |  |  |  |
|  | workspace ISTART. The result from the |  |  |  |  |  |
|  | initialization is stored in workspace |  |  |  |  |  |
|  | RXX. $X X=$ number of initialization |  |  |  |  |  |
|  | version. Step 2 takes about 5 minutes. |  |  |  |  |  |
|  | The monitor prompter resumes the original position when this step is ready. |  |  |  |  |  |
| Step 3 | The model itself is loaded. |  |  |  |  |  |
| Step 4 | "UPDATEMOSES $X X$ " updates the model from the 1976 version to the 1982 version and makes experiment-specific changes in the |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | model code. MSTARTXX should have been stored beforehand in workspace MSTART. |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | $\mathbf{X X}=$ number of experiment version. The |  |  |  |  |  |
|  | monitor prompter resumes the original |  |  |  |  |  |
|  | position when this step is ready. |  |  |  |  |  |
| Step 5 | The model is run for $N$ years. This takes about 10 minutes per simulated year. The monitor prompter resumes the original position when the run is over. |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Step 6 | The simulation result is saved. |  |  |  |  |  |

During step 2 the program asks whether one wants to see the input-output matrix or not (described in Part 2 of the handbook). Answer, yes or no.

During step 4 a question comes up, where the user should give the name of the workspace from which the result of the initialization should be fetched. The name is R1 if you used initialization version 1, R2 if you used initialization version 2 , etc.

IMPORTANT NOTE: If you already, (for example, some days before) have made the initialization (steps $1+2$ ) you can start with step 3 at once. This might be a convenient way to work.

The simulation result is not stored automatically. The user has to make the ) SAVE command himself (step 6). The name of the simulation result is SXXVYY, where $X X=$ number of experiment version, and $Y Y=$ number of initialization version. $S$ stands for simulation result and $V$ for version. We conclude by giving two examples of a MOSES run.

Example 1:
) LOAD INIT
START 1
) LOAD MOSES
OPDATEMOSES 7
RONEXP 10
) SAVE

Initialization version 1 and experiment version 7 are made. The model is run for 10 years. The result from the initialization is stored in workspace R1. The result from the model simulation is stored in workspace S7V1.

Example 2:
) LOAD MOSES
dPDATEMOSES 7
RUNEXP 10
SAVE

The initialization is already made. The user is asked for the name of the workspace where the result from the initialization is stored (for example R1 if initialization version 1 is used). The result from the simulation is stored in a workspace called s7V1.

## IMPORTANT:

If one wants to look at the contents of a workspace, one makes the ) LOAD command. There is one exception, though.

To be able to look at the result of the initialization, RXX, after having performed steps 1 and 2 in the 6-step procedure, one has to use the ) COPY command.

Thus: ) COPY R1 must be done to look at workspace R1, instead of ) LOAD R1. (If you try to do the LOAD command instead, a lot of nonsense will be printed out, for technical reasons.)

A complete list of variables coming out from initialization can be found in Part 2 of the MOSES Handbook.

### 2.3 Batch-Job

So far we have assumed that the user of the model makes the commands (the 6-step procedure to start and run the model) actually sitting in front of the computer terminal, doing so-called time-sharing. This is by no means necessary.

The same commands can be written in a so-called "command file" beforehand. To perform a run on the computer in this way is called a batch-job. It is very convenient because the program can be run during low-cost time (for example) during the night, without anybody at the computer terminal. The terminal need not even be switched on.

On the DEC20 computer (in Bergen) a batch-job is done in this way:

A "command file" is made (using the editor on the DEC20). In the command file prov.CTL we have:
monitor prompter APLSF

* TTY
* ) MAXCORE 352
* ) LOAD INIT
* START 4
* yes
* ) LOAD MOSES
* UPDATEMOSES 8
* R4
* RUNEXP 10
* ) SAVE
* ) MONITOR

The file could have any name, but the extension must always be CTL. In this example we called the
file "prov.CTL". A DEC20 monitor command (the command APLSF) ${ }^{1}$ should start with a monitor prompter (a helix-shaped symbol) in a command file. An APL system command should start with an asterisk. More information about batch-jobs can be found in "DEC-SYSTEM Batch Reference Manual".

The batch-job is ordered by using the DEC20 command:
submit prov.CTL

One could add extra instructions to the operator, by writing remarks after "slashes", according to syntax (see the Batch Ref. Manual).

We found the following extra instructions useful in practical work:
submit prov.CTL/after:24:00:00/TIME:03:00:00/
restart:YES/PAGE:300

The result from a batch-run is stored on a file called "prov.log". This file contains the output which would have been typed on the screen if the job had been done as time-sharing.

A disadvantage with batch-jobs is that if anything (no matter how trifling) goes wrong during the model run, nothing can be done about it. The program is simply interrupted. The batch-job has to be connected and repeated.

[^6]```
APPENDIX
"System commands"
) LOAD workspace name
Loads the workspace into computer memory.
) CLEAR
Clears the computer memory
) MAXCORE 352
If one has too little space in the computer memory,
one has to ask for more space. The command above
gives the user maximum available space. One can
choose any number between 6 and 352 (pages). 1 page
\approx 1/2 Kwords.
) WSID
This is a question. The computer answers by telling
the user the name of the workspace which is in the
computer memory right now.
) WS name
Changes the name of workspace to the name written
after WS.
) SAVE
Saves the workspace under current workspace name.
) FNS
Lists all functions in the current workspace.
) VARS
Lists all variables in the current workspace.
) COPY workspace name
A copy of the workspace is added to the workspace
one is working with.
```

The system commands might differ somewhat on different computers. The commands mentioned above are used on DEC20 in Bergen, Norway.

```
Section 3 How to Make New Initialization Versions
                                    and New Experiment Versions (simulation
    variants)
3.1 New Initialization Versions
Do:
) LOAD ISTART (step 1)
This loads the workspace ISTART, where all previous
initialization versions are stored (ISTART1,
ISTART2 ...).
Make a function
ISTARTXX (step 2)
XX = number of initialization version.
How to make a function is described in the APL
reference manual.
Save the extended workspace ISTART.
) SAVE (step 3)
ISTART1 and ISTART2 on the next page show the
pattern to be followed when making an ISTARTXX
function.
Comment lines in the APL language start with a very
particular symbol, the so-called cap-null symbol.
It appears frequently in the initialization code
(see for example Section 5) and looks like an A
which is smaller and more smooth than an ordinary
A. For typographical reasons we write this symbol
as a boldface A in the examples below.
```

Example 1:
$\nabla \quad$ ISTART1
[1] A TEST1
[2] A FREDRIK B
[3] SYNTH $\triangle$ FIRMS $\leftarrow 81618 \quad 8$
[4] $\mathbb{A}$
$\nabla$

Example 2:
$\nabla \quad$ ISTART2
[1] A TEST
[2] A JANUARI 1982
[3] A EREDRIK B
[4] A
[5] SYNTH $\mathrm{EFIRMS} \leftarrow \begin{array}{lllll}8 & 16 & 18 & 8\end{array}$
[6] 'MARKETS $\triangle D A T A ' ~ M O D S U B S T T^{\prime} G A M M A \leftarrow \omega G A M M A \leftarrow 0.5^{\circ}$
[7] 'MARKETS $\triangle D A T A ' ~ M O D D E L ⿷ ~ ' K S I * ' ~$
[8] 'MARKETS $\triangle D A T A ' M O D A D D ~ ' N I T E R \leftarrow \omega K S I \leftarrow 0.3 "$ $\nabla$

Note: If you by mistake put in an extra blank somewhere between the "-signs, you could fail to make the proper changes.

GAMMA, KSI and NITER are three parameters in the MOSES model. MARKETSADATA is the name of a subfunction in the initialization procedure (a subfunction to the function START). To be able to make changes in the initialization one has to get well acquainted with the initialization program, which is described in Part 2. Many parameters which guide firm behaviour are given their values in the subfunction MARKETSADATA which is easy to read. One can without difficulty change such parameters according to the pattern above. The examples above are explained in detail on the following pages.

## ISTART1:

No changes in the initialization program are made. The line "SYNTH $\triangle$ FIRMS $\leftarrow 81618$ 8" is compulsory in any ISTARTXX function. This line means that there will be 8 synthetic ${ }^{1}$ firms in sector 1 , 16 synthetic firms in sector 2,18 in sector 3 and 8 in sector 4 . Thus, this line tells how many synthetic firms will be created during the initialization procedure.

## ISTART2:

The APL functions MODDEL, MODADD and MODSUBST are used to change lines in the initialization program. The changes will take place when the ISTARTXX function is called, and this happens in the very beginning of the initialization.

Thus: Line 6 , example 2 , means that we will change a line in the subfunction MARKETSADATA (see Appendix $C$, Part 2). The text before MODSUBSTS (all textstrings should stand between '-symbols) tells the name of the function where the changes are to be made. The text after MODSUBST tells what line is to be changed and defines the new line. The beginning of the old line stands before the "omega symbol" (w) and the new line after this symbol. MODSUBST deletes the old line beginning with "GAMMA" and inserts the new line: GAMMA 0.5 . MODADD works like MODSUBST, with one exception; MODADD does not delete the old line. The new line is put immediately after the old line. Line 7 means that we will delete any line in the subfunction MARRETSADATA beginning with KSI*.

[^7]```
3.1.1 Summing Up
Syntax:
'function name' MODSUBST 'old line w new line'
'function name' MODADD 'old line w new line'
'function name' MODDEL 'line'
```

Don't take too many letters! This may cause over-
flow during execution. Error: Workspace full. Don't
take too few letters! Ambiguous commands might be
misunderstood and applied to the wrong lines. Any
line (in the function at which you are looking)
with the same string of letters (in the beginning
or in the middle of the line) might be affected by
the MODSUBST, MODDEL or MODADD command. 1

```
3.2 New Experiment Versions
Do:
) LOAD MSTART (step 1)
This loads the workspace MSTART, where all previous
experiment versions are stored (MSTART1, MSTART2,
...). Make a function
MSTARTXX (step 2)
) SAVE (step 3)
```

On the next page you can see an example of an
MSTART function. MODSUBST, MODDEL and MODADD are
used in the same way as was done above, in connec-
tion with new initialization versions.

[^8]An example of a MSTART function:
$\nabla$ MSTART1
[13] A
[14] A EXPERIMENT
[15] A **********************
[16] 'INVFIN' MODSUBST 'QDIV\& $\mathrm{Q}^{2}$ QDIV\&0.6.QTAX'
[17] A
$\nabla$

Note: A is a symbol starting comment lines, for typographical reasons written as a boldface A.

In a subfunction, called INVFIN, in the MOSES workspace one line is altered.

The new line
QDIV $+0.6 \cdot$ QTAX
means that each firm will, in this particular experiment, pay dividends to the household sector amounting to 60 percent of the corporate tax.

The changes in the MOSES program take place when the function UPDATEMOSES is called. An MSTART function is, namely, called on a line in the function UPDATEMOSES.

If you wish to check that the changes in the MOSES program have been performed correctly, list the functions you are interested in (in the example above the function INVFIN) after the call of the function UPDATEMOSES (step 4 in the 6-step procedure presented in Section 2). How to read (list) functions is described in the APL reference manual.

## Section 4 How to Add New Model Variables

Say that you have a new variable $I$ which you wish to give as input to the model. The variable I is to be given a value in the initialization procedure.

It is not enough just to add this variable to the initialization program in an ISTARTXX function, for example with a "MODADD line".

You must also add the name of the variable to a variable list in workspace VLISTS before making the initialization. All output variables from initialization should be listed in this workspace. If this is not done, the variable $I$ will be deleted during the initialization procedure, since it is not mentioned among the output variables in a variable list in workspace VLISTS. Thus, this system forces the user to mention all new output variables from initialization.

There are 6 variable lists in workspace VLISTS, and the user can extend 5 of them, namely:


- 33 -

Note: We assumed above that $I$ was an exogenous variable, and that was why variabelgrupp 1 was used. The division of variables into 6 groups is purely for book-keeping purposes. If you put a new variable in the wrong group, nothing will happen, but the book-keeping will be messed up.

Note: The text string between the '-signs in step (2) must begin with a blank!

## Section 5 Description of the Function UPDATEMOSES

UPDATEMOSES is the function doing changes in the model (workspace MOSES) itself, and is step 4 in the 6-step procedure presented in Section 2 .

The function is documented below, with the APL code itself. It should be noted that this documents all permanent changes in the model program since 1978.1

In UPDATEMOSES four functions are called:

1) PREPAREARUN Fixes headlines etc. for printing out simulation results)
2) PERMANENTACHANGES ${ }^{2}$ (Permanent changes in the model program since 1978)
3) MOSESAVARIANTS ${ }^{2}$ (Larger permanent changes in the model program since 1978 )
4) MSTARTXX (The experiment version function)

Note: The MSTART function should never be used for permanent changes of the model.

The model program is updated in this fashion, so as to make it possible to repeat old experiments from 1978 and onwards. Another reason for this updating procedure is to ensure that the changes are clearly defined, and can be checked by anyone wishing to convince himself that the changes have been properly made.

[^9]
## Description of opdatemoses

```
| UPIIATEAMOSES NUM
    ATHIS FUNCTION IIOES
    A(1): PREPARES HEAILINES ETC. FOR PRINT-OUT FROM MOSES-RUN
    A(2): MAKES CHANGES IN THE MOSES PROGRAM FROM 1978
    A
PREPAREARUN
    PERMANENTACHANGES
    MOSES\triangleVARIANTS
    gEXPERIMENT-MOIULES IN WORKSPACE MSTART.
    a THEY ARE CALLEI MSTARTXX WHERE XX IS THE NUMBER IN
    aTHE CALL 'UPDATEMOSES XX
    A
        GGIVE the NAME OF THE WORKSPACE WITH START-
        'VALUES FROM INITIALIZATION (FOR EXAMPLE R1 ETC.) :
        INITWORKSPACE&D
        E')COPY ',INITWORKSPACE
    aTHIS LINE FETCHES INIIATA FROM INITIALIZATION..,
        PREPARE2
        E')COPY MSTART MSTART',INUM
        E'MSTART',INUM
        aLINE ABOVE MEANS THAT MSTARTXX IS EXECUTEI,
        A
        A IF YOU WANT MARKET TIME-SERIES RESULTS TO EE PRINTEI OUT
        A IUURING SIMULATION REMOVE COMMENT ON NEXT LINE...
        a TRACEI
        A
        ATRACE1 PRINTS OUT TIME-SERIES RESULTS...
    A
    \nabla
```

```
- PERMANENTACHANGES
    a 'PERMANENT' CHANGES IN mOSES
    MARKETACONFRONT' MOLIALIL 'PT\omegaQPURCHGFQPURCHGXPT[I10]x(1\div(QWG\divWGASR
    EF ))}\div10\mp@subsup{0}{}{\circ
    A
    ค
    'INVFIN' MOISUEST 'K1BOOK+K1BOOKWK1EOOK&K1HOOK-QLEPREOOKKOTQREVIN
    HOROOK XK1FOOK &-GINV+K1FOOK
    A FOOK-VALUE SHOULII NOT EE UPIIATEII WITH INFLATION
    A
    A CHANGES TO VECTOR-FORMAT ON MAX/MIN/OPT-STO MALIE PERM.
    A CORRESPONIING FOR MAX/MIN/OPT-IMSTO IN FN.'INIIAPURCHASHARES
    A
    A
    'PLANQREVISE' MOLISUBST 'QIMQFOTWA QIMQ-LINE MOVEII ABOVE IMSTO.
    'PLANQREVISE' MOLAIII 'QQFQQUQIMQ&OT((QIO)[MARKET;JMULT7 QPLANQSAV
    E) +(OPTIMSTO-IMSTO) \div4XTMIMSTO
    A
    EXOAQIIWG& '.
    RTHE Z-SECTOR IS OBSOLETE ANII ISN'T ANY LONGER USEEI,
    aTHE FOLLOWING LINES IEELETE OR CHANGE LINES SO THAT
    ATHIS SECTOR IS IGNOREII.
        'LAGOURAMARKET' MOLIIEL 'ZLABOUR'
        'MARKET\triangleCONFRONT' MOLISUEST 'PT+Q\omegaPT+QPRELPIIOM,(QPIOM[INIXI+QIIPIN)
    ,1'
        'HOUSEHOLIIAINIT' MOLISUBST 'INMONEYGINMONEYHH&QTRANS+QINPAY+QTIIIV+
    (SUM2 LXQW\div4)+(LGXQWG\div4)+(QINTH+NH+, XRIH\timesWH\div4)
    'HOUSEHOLIIAINIT' MOIISUEST 'QTWSF(LGWQTWS+(LGXQWG\div4),SUM2 LXQW\div4'
        -HOUSEHOLIIAINIT' MOIISUEST 'QTI&QTIIIWQTI+QTIIV+QTRANS+((+/QTWS)-QW
    TAX)+QINTH'
        'LUUPIIATE' MOLISUBST 'LF+WLFFLU+LG+SUM2 L'
        'QAEXO' MOIIIEL 'TXVAZ&'
        'LAEOURAUPLIATE' MOISUBST 'RUHRU+Q\omegaRU+RU+QCHRUF(LU\divLU+LG+SUM2 L)-R
    U
        ' IOMESTICARESULT' MOLILEL 'QPZ+'
        'FINALQPQSQM' MOLIIEL 'QMZF'
        'FINALQPQSQM' MONIEL 'QCHKZ&'
```

[2] ค
[3]

```
[31] 'FINALQPQSQM' MONIEL 'QIIVZ+'
[32] 'INVFIN' MOLISUEST 'QCTAXt(SUWQCTAXt(SUM2 QTAX)'
[33] 'Y\triangleCOUNTRY\triangleTOTAL' MOMDEL 'CTACHKZ*
    [33] 'YACOUNTRY\triangleTOTAL' MONDEL 'CTACH
[35]
[36]
[37] A
[38]
    -INIIRECTATAXES' MOLSUEST 'QVATAX+QQVATAX+(TXVAZXQPURCHG+QSPLMKT
    IN;]+, XNH),0
    `YAINIUSTRYATOTAL' MONSUEST 'LTOT-WLTOITLG+SUM2 L'
VARIANTSHVARIANTS,' PERMANENT CHANGES 1980-81
```

$\nabla$ PREPAREARUN
LOEFPNRTNUM
IATUM
IISCR\& ${ }^{\circ}$ **** EXPERIMENT •, TNUM
IIPW+120
$\because$ MAXCORE 352'
AMAXIMUM CORE IN COMPUTER-MEMORY.,.
$\nabla$
$\checkmark$ PREPARE?
A THIS LINE GIVES THE WORKSPACE A NEW NAME,
A FOR EXAMPLE SJV?
[2]
[3]
[4]
[5]
*) WSIII E', (TNUM), 'V', 1 $\downarrow$ INITWORKGPACE
IISCR + IISCR, ' ISTART $=\cdot, 1 \downarrow$ INITWORKSPACE
IISCR-IISCR, * *****.
$\nabla$
$\nabla$ [IATUM; TS
TStDTS
TIMESTAMP\& (TWO TS[1]), '-',(TWO TS[2]),'-',(TWO TS[3]),' ', (TWO TS [4]), ':', (TWO TS[5])
$\nabla$
$\nabla$ RESULT T TWO NUMEER
TO REPRESENT ANY NUMEER WITH TWO INTEGER PLACES.
A FRACTIONAL PART IS ROUNIIEII, EIGGER THAN 99 GETS TRUNCATEI,
A FRACTIONAL PART IS ROUNIIEI, EIGGER THAN
A ANI SMALLER THAN 10 GETS LEAIING ZEROES.
A
ALWAYS ' (NUMEER $\because 0$ ) ^( $0=\rho p$ NUMEER)'
RESULT $\operatorname{ta}^{-24^{\prime} 00^{\prime}, \mp L 0.5+\text { NUMBER }}$
$\nabla$ NEGAIMSTO
[1] a ALLOWS INPUT-GOOIS INVENTORIES TO HAVE LEVELS BELOW ZERO
POSITIVEANETAWORTH
a FROM 81-02-02 A COMEINATION WITH 'NULLIFYONEGANW'
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
VARIANTS G VARIANTS, NEG-IMSTO
A
a TO MAKE SURE BORROWING NO NOT EXCEEI ASSETS,
a ANI TO, THOUGH IN QUITE A CRUIIE WAY, AIIJUST
a NEW-EORROWING TO THE NEET/EQUITY-RATIO

- STEP 1: QAEW S REIICHEW ( $=.15$ ) $\times \mathrm{EW}$
A 2: QAEW REIUCEI IF $0.1 \div(\mathrm{NW} / \mathrm{A}) \leq 0.3$
A $3: Q \Delta B W=0$ IF $0.1 \geq(N W / A)$
a 4 : FIRMS ARE NULLIFIEII THE 6'TH QUARTER WITH NW: 0
'INVFIN' MOLIALII 'QIIESCHEWF (OWQLIESCHEW[THOTHRELICHEWXEW[THO + (QLIESCH
EW: RE[ICHEWXEW)/ / FW ].
INVFIN' MOLIALI ' QLESCHK 2t (RWWQLESCHBWt (BWACHECK ((EW+QLIESCHEW) $\div($
$K 1+(K 2+Q H E S C H K 2)+K 3))) X Q L E S C H E W$
A
INVFINAAIIJUSTMENTS' MOLIALII 'a NW IS WBALItBALI+(NWく0)
    - INVFINAAIIJUSTMENTS' MOIIAIII 'EAIIGREALLYABAII+EAII=6'
'INVFINAAIIJUSTMENTS' MOIAIII 'REALLY 1 ( $0<(+/$ REALLYAEAII))/'. NULLIF
YANW REALLYABAII ...
${ }^{\text {a }}$ 'NULLIFY' MOIIAIII 'SHRINK •AMANGSHRINK '•BAII'.
'NULLIFY. MOIAIII SHRINK .'QW'•USHRINK .'REALLYABAI'..
A
VARIANTS-VARIANTS,' POS-NET-WORTH-ELSE-NULLIFY •
- 

```
    | INII\trianglePURCHASHARES
[1] A PURCHASING-SHARE INIIVIDUALIZEU IN THE FOLLOWING WAY
[2] A I/O-MATRIX ENNOGENOUS IN VOLUME TERMS
[3] A PURCHASING SHARE: (SUM I=1.,.10 IO[X I])\div(SUM I=1...13 10[X I])
[4] A PURCH.-SHARES ARE INIIIVIIUAL FOR MKT X=1...4
[5] A THE RELATION (IO[X I])\div(IO[X J]); I,J\in[1,10],I#J; IS
[6] A FIXEI THOUGH........
[7] A NOTE: IF FN. *AIIIFIRM* SHOULII EE USEI, CHANGE LINES
[8] A 'QF' ANI 'QQt'
[9]
[10]
[11] A
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
\nabla
```

```
Section 6 In Case of Trouble ...
Here are some tricky situations in connection with
the running of the model:
1) Error during simulation. Not the model itself.
Use the system command
    ) SI.
You can then see in what function the simulation
was interrupted.
If you are interrupted in a "print-out" function
(not the model itself) you can usually continue the
simulation by entering: }\mp@subsup{}{}{1
    -> [] LC+1
This means that you skip the line where you were
interrupted. This can damage the printing out of
results in some tables, but not the simulation
itself.
2) Error during simulation. The model itself.
If you are interrupted in a function belonging to
the model itself, this is usually due to one firm
(out of 147) behaving in a perverse way (getting
production volume less or equal to zero or some-
thing like that).
You must then either change some lines in the model
or some lines in the initialization. Due to the
character of the problem it may take anything from
a couple of hours to weeks to correct this error,
```

[^10]since one has to get well acquainted with the model code itself to understand why things have gone wrong. (A quick solution may be to nullify (= delete) this firm in the beginning of the simulation, but this is not the best solution.)
3) Error during initialization

Usually due to some technicalities when using the functions MODADD, MODSUBST, etc. See Section 3.
4) Editing an APL function

While making changes in an APL function one might sometimes wind up in a situation where it is impossible to get a new line number, when pressing the RETURN key. This comes about if one is writing an expression with ' in, and for some reason has omitted an aphostrophe. One must write both a left-hand apostrophe and a right-hand apostrophe to get a new line number.

## Section 7 Standard Print-Out of Result

The result is, as mentioned previously, stored in a workspace called SXXVYY, where $x x$ is the number of the experiment version, and $Y Y$ is the number of the initialization version.

A function PRINT should be used to print out the result.

The result is a number of tables with different names.

To print out a table enter:

PRINT 'name of table'.

The names of the tables, available after a run, are shown if one performs the function call:

## ALLREPORTS

Example:

We wish to print out the table called YEARLY $\triangle$ INDUSTRY $\triangle T O T A L$.

Perform:

PRINT 'YEARLY $\triangle$ INDUSTRY $\triangle T O T A L '$

You then get yearly performance of some main economic indicators.

This result is printed out on the screen and on a printer connected in series with the terminal, after each simulated year. Deleted firms (bankruptcy) are also printed out during simulation.

LITERATURE to Part 1
"The APL Reference Manual": For example: APLSF programmer's reference manual, DEC system 10 , DEC-10-LPLSA-A-D, 1976.
Batch Reference Manual, DEC system 20, DEC-20-OBRMA-A-D, 1978.
Albrecht, J. - Lindberg,T., The Micro Initialization of MOSES, IUI Working Paper No. 72, Stockholm 1982.
Eliasson, G., A Micro-to-Macro Model of the Swedish Economy, IUI Conference Reports 1978:1, Stockholm 1978.
Eliasson, G., Experiments with Fiscal Policy Parameters on a Micro-to-Macro Model of the Swedish Economy, Reprint from Robert H. Haveman and Kevin Hollenbeck, eds., Microeconomic Simulation Models for Public Policy Analysis, Vol. 2, pp. 49-95, 1980.
Eliasson, G., The Firm and Financial Markets in the Swedish Micro-to-Macro Model (MOSES), IUI, 1985.

Part 2

THE INITIALIZATION PROCESS
CONTENTS
Page
Preface ..... 47
Section 1 Introduction ..... 49
Section 2 The Initialization, Main Features ..... 52
Section 3 The Input-Output System ..... 57
Section 4 The Initialization, Overview* ..... 68
Section 5 The Data Base* ..... 77
Section 6 The Consistency Control System ..... 81
Section 7 On Simulation Techniques ..... 86
Appendix A Variables Coming Out From Initial- ization ..... 97
Appendix B1 Macro Data and Micro Data 1976 ..... 122
Appendix B2 Macro Data 1982 ..... 134
Appendix $C$ The Initialization Code, Main Code ..... 143
Appendix D The Initialization Code, Help Functions ..... 178
Notes ..... 197
Literature ..... 199
Supplement A Micro-to-Macro Data Base by Louise Ahlström ..... 201

* The Micro Data Base and the Micro initialization are also described in much detail in AlbrechtLindberg (1982).


## Preface

This paper describes the initialization process. ${ }^{1}$ One can divide the initialization process into three stages: data base work, the initialization procedure and consistency controls.

A tremendous amount of information is needed to start up the model. The main reason for this is the fact that the model simulates the behaviour of the economy mainly by summing up the dynamic performance of individual firms (micro simulation). Each firm is described by about 100 variables. About $250^{2}$ firms participate (in the present version of the model). There are also a large number of variables needed to describe the "macro sectors" in the model, e.g. the household sector, the Government sector, non-industrial sectors etc. The collection of micro data and macro data needed for the initialization has been a drawn out research project at IUI, where a number of people have been involved. ${ }^{3}$ The data base work is documented by the Sections 3, 5, Appendix B and the Supplement.

Micro and macro data have to be transformed in several ways before they finally can be fed into the model. The initialization procedure is the name of this transformation process. In this procedure we also include the task of giving values to parameters affecting the behaviour of households and firms. The initialization procedure is documented by Sections 1, 2, 4 plus Appendices A, C and D. This has also been a lengthy research project at IUI with several people involved. ${ }^{3}$ The Micro Data Base and the Micro Initialization are also described in much detail in Albrecht-Lindberg (1982). This is an integrated description of the way firms
are modelled and how initial data are processed. The main emphasis in this handbook. Section 4, is to provide a brief guide for someone going through the computer code (Appendix C). Section 4 is also a necessary background in order to understand sections 5 and 6, where consistency problems (mismatch between micro and macro data) are discussed.

Finally, one has to check that all variables in the model (for the initial year) are consistent and that micro in all senses add up to the macro totals. This consistency checking has been done by the author of this paper, and is described in the Sections 3 (subsection 3.2) and 6.

Part 1 of this handbook describes how to run the model, in a technical sense. To be able to make experiments with the model one has to know the initialization procedure in some detail. Thus the user of the model must be well acquainted with both Part 1 and Part 2 of the handbook. Section 7 is a bridge between Part 1 and Part 2 where some examples of simulation techniques are presented.

In conclusion, it should be pointed out that this paper has a twofold purpose. It is a documentation of the initialization process and an aid for the future users of the model.

## Section 1 Introduction

The "micro-to-macro model" MOSES simulates the economy quarter by quarter from a given starting year. Before one can start a simulation of the Swedish economy with the model one has to initialize a vast number of variables. The starting year is either 1982 or $1976 .{ }^{4}$ The reason for this is that we only have complete micro and macro data bases for these years.
"Initialization" means, mainly, that three kinds of variables are given values.
(1) Variables for 1982 (1976) needed to start up the model.
(2) Variables needed to determine the future of certain variables which get their values irrespective of what happens during the simulation, i.e. exogenous variables.
(3) Certain constants, some of which are parameters affecting the behaviour of firms, households and market mechanisms.

In what follows, the first kind of variables will be referred to as "start-up variables", the second will be referred to as "erogenous time-series" and the third will simply be called "constant: A constant which affects the behaviour of firms or households is called a paramer.

An example of a "start-up variable" is $R U$, the rate of unemployment 1982 (1976). An example of an "exogenous time-series" is the growth of the government employment in the model. There is a variable ${ }^{5}$ called EXO $\triangle$ REALCHLG, which is a vector (over time) containing the number of people to be
added to the government sector each quarter. An example of a "constant" is SMT which is a factor determining to what extent profit targets are updated with recent development during the simulation. More precisely: ${ }^{6}$

```
Targ(n+1) gets the value Targ(n) - SMT + M(n) \cdot (l-SMT)
```

where
$\operatorname{Targ}(n+1)=$ profit target, quarter $n+1$
$\operatorname{Targ}(n)=$ profit target, quarter $n$
$M(n) \quad=$ actual profit, quarter $n$
The three mentioned kinds of variables can be
micro variablem or macro variables.
A "micro variable" is a variable which is connect-
ed with firms. Such variables are often vectors. A
micro variable can be some characteristic of the
firms (for example the value added share), a behav-
iour parameter (for example SMT above) or a vari-
able which the firm can influence (for example $L$
below).

Example:
$L$ is the labour force (number of people) in each firm.
$\mathrm{L}(\mathrm{n})$ is the labour force in firm n . $\mathrm{n}=1,2,3, \ldots, 147$ for the present.

The length of the vector is equal to the number of firms participating in the simulation. A micro variable can also be a constant, equal for all firms (a scalar). The constant SMT, mentioned above, determines the way profit target changes in each firm between any two quarters, and is an example of such a micro variable.

Typical macro variables are (for example) the rate of unemployment, the growth of the governmentsector and tax-rates.

Certain macro variables apply to macro-entities but are used as micro variables as well. Such variables obviously lie somewhere between the two categories micro and macro.

An example of this is the variable 10 , the inputoutput matrix.

IO(i,j) tells how much of production in sector $j$ comes from input from sector $i$, and is a number between 0 and 1.

During the initialization $I O$ gets the true values from real data for the economy for 1982 (1976). Throughout the whole simulation these shares are used (cf. Section 3) to determine each firm's demand from other sectors.

An alphabetical list of all variables (about 200) coming out from the initialization can be found in Appendix A. An alphabetical list of all variables (about 400 ) in the model itself can be found in Eliasson-Heiman-Olavi (1978).

The main features of the initialization procedure are described in the next section. In Section 3 the input-output system is described, since it is an essential part of the initialization procedure and the data base work. The input-output system is described in rather much detail. The techniques involved are of general interest for builders of large scale simulation models of this kind. Section 4 presents the initialization procedure in more detail. Sections 5 and 6 are devoted to a documentation of the data bases and the consistency control system. Section 7 is of interest for users of the model.

## Section 2 The Initialization, Main Eeatures

The "initialization procedure" is a matter of converting raw-data (micro and macro data) to the variables, mentioned in the previous section, needed for the model-simulation.

Schematically:
rigure 1


We will refer to "variables which will be input to the model" as "model wariables". in what follows.

Micro data, which is data for real firms in the model, are stored in one work-space and macro data in another. Micro variables and macro variables are formed from micro data and macro data.

A more detailed schematic overview of the initialization procedure is shown in Figures 2 and 3. The whole initialization program was rewritten between 1980 and 1981 by the author of this paper. The logical structure of the initialization and the consistency checking were done during this period. An important addition was a part of the program called OUTPUTAOPIRMMYOS, where the model wari-
ables were sifted from other data. Previously everything - raw data, intermediate variables and model variables - came out together after initialization. This meant that output from the initialization was "hidden" among a lot of redundant data. The new initialization procedure has notably facilitated practical work with the model.

Figure 2 The initialization procedure, if the starting year is 1976, input and output


The contents of each workspace in Figure 2 will be described below. The initialization procedure is written in the programming language APL. In APL both variables and functions are stored in socalled workspaces which can be immediately transferred to computer-memory, by aid of certain system commands (cf. Part 1 of this handbook). We write $\mathbb{A} P$-functions $i n$ boldirace letters in what follows, but not workspace names.

The program for the initialization procedure lies in a workspace called INIT. This program consists of a main-function START and a number of part, socalled sub-functions. Figure 3 shows the structure of the initialization program, in workspace INIT.

Pigure 3 The initialization progran

| Main <br> program | Sub-functions, level $l^{\text {a }}$ | Sub-functions, level $2^{\text {a }}$ |
| :---: | :---: | :---: |
| START | ISTARTXX ${ }^{\text {b }}$ | TAKAPARNMIETERRS |
|  | SIAINIT | PUIBLITCASECTOR |
|  |  | MOMEIEARY |
|  |  | hankieis |
|  |  | HIOUSEHOLLDS |
|  |  | ESTABLISHAMEASS |
|  |  | DISSPOSEAVARALITPUT |
|  |  | MARRTETSADATA |
|  |  | SECDMADARYADATA |
|  |  | publicaladata |
|  |  | HOMETAREIADATA |
|  |  | HOUSEHOLIDSADATA |
|  |  | OUTPPGTOPERATIOMS |

[^11]The initialization is, as seen from Figure 3, divided into parts (sub-functions, level 2) according to the type of the variable.

Variables connected with taxes are set in TAX NPRRAMEIERS. Variables connected with the government sector are set in PUBLICASRCTOR. Variables connected with individual firms (micro variables) are given values in the function ESTABLISHINDNrS, etc.

SIAMIF (sub-function, level l) calls all the subfunctions at level 2, and does some administration. 7

Let us now turn to Figure 2 again.

Macro data are fetched from workspace MACRO in the beginning of SIATITI and micro data are fetched from workspace SI76 in the beginning of the subfunction RSSTABLISSBITRIMS.

Help-rumctions for different applications are fetched from workspace FUNCTI.

To know the names of the model-variables variable lists are fetched from workspace VLISTS. In the sub-function OUHPUFAOPERATIONS the variables mentioned in these variable lists are saved in a workspace RXX and the rest are deleted. XX stands for a number given by the user, which refers to the number of the initialization variant. The user gives this number when starting the initialization, by the call ${ }^{8}$ STRRF XX.

If one wishes to make an initialization variant, one makes a function ISTARTME and stores this function in the workspace ISTART. The main-func-

## - 56 -

tion SHARE calls ISHNRTXA before calling SIATNTP. (See sub-functions, level 1 in Figure 3.) How to make ISTARTAK-functions and initialization variants is described in Part $l$ of this handbook.

### 2.1 Summary

What the user should particularly bear in mind is this: Ied macro data should be added to workspace MACRO. New micro data should be added to workspace SI76. Micro data are mainly used in the part of the initialization program called ESTABLISHINANTS.

To make initialization varianfss, use workspace ISTART and check the instructions in Part 1 of the handbook. As soon as new model variables are used, add the names of these in the variable lists in workspace VLISTS according to the instructions in Part l. (If you forget this, the new variables will be delleted!)

The result from the initialization ( $=$ the model variables) winds up in a workspace RXX, where XX is the number used in the call "SHARI $X X$ ", which starts the initialization.

A more detailed description of the initialization program will be presented in Section 4.

## Section 3 The Input-Output System*

It is worthwhiie knowing more about the inputoutput system in the initialization and in the model for three reasons:
a) Among macro data (input to initialization, workspace MACRO) there is an input-output matrix for the Swedish economy for 1976, called IO76. This matrix is used to give many of the model variables (output from initialization) their values. We describe this in Section 3.l.
b) To check up the consistency of the whole initialization the input-output system is used. We describe this in Section 3.2.
c) To be able to understand how the input-output system is used in the model, one has to know more about the model-variable IO, which is a matrix of input-output coefficients constructed from IO76. We describe this in Section 3.3.

The input-output system can be described as a matrix with 14 rows and 21 columns. This matrix, IO76, stored in workspace MACRO, has the structure shown in Table l. The economy is divided into 10 sectors of production (=the first 10 rows and columns) and a number of final demand categories (columns 11, l2...). The first 4 sectors are inhabited by individual firms after the initialization.

Let us first turn our attention to the first 10 columns. This part of the matrix shows the productflows between the 10 sectors and the value added in each sector. For example:

[^12]
## Table 1 Inpurt-curpurt natrix (1076) for the Swedisinh ecano 1976

(Unit: Million of SEK in 1975 year's prices) Explanations for column- and row-numbers, see next page

PRODUCTION MATRIX
Row 1,2,..... 14 Column 1,2...... 10

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5272 | 2890 | 5869 | 1321 | 245 | 94 | 0 | 4192 | 942 | 1943 |
| 2 | 2029 | 5195 | 4805 | 4465 | 908 | 117 | 0 | 3498 | 170 | 2035 |
| 3 | 954 | 2354 | 12296 | 915 | 503 | 213 | 0 | 6294 | 171 | 3079 |
| 4 | 803 | 2428 | 2041 | 14872 | 2078 | 87 | 0 | 2648 | 102 | 6484 |
| 5 | 2400 | 1964 | 341 | 10768 | 383 | 1 | 0 | 1689 | 0 | 312 |
| 6 | 2951 | 210 | 79 | 63 | 26 | 140 | 0 | 418 | 5 | 0 |
| 7 | 4136 | 600 | 151 | 261 | 130 | 213 | 0 | 1009 | 488 | 842 |
| 8 | 1235 | 1198 | 2838 | 961 | 1383 | 162 | 0 | 10928 | 708 | 9874 |
| 9 | 904 | 941 | 475 | 485 | 238 | 171 | 0 | 1118 | 328 | 1010 |
| 10 | 3293 | 3338 | 5919 | 4402 | 1792 | 640 | 0 | 9143 | 426 | 25656 |
| 11 | 63 | 71 | 142 | -2377 | 163 | 10 | 0 | 350 | 5 | 2261 |
| 12 | 8736 | 14351 | 27422 | 19551 | 11452 | 2529 | 0 | 50892 | 6395 | 64383 |
| 13 | 154 | -119 | 178 | 51 | 41 | 35 | 0 | 238 | 0 | 1 |
| 14 | 32933 | 35423 | 62558 | 55738 | 19341 | 4413 | 0 | 92417 | 9738 | 117881 |

FINAL DEMAND MATRIX
Row 1,2.....14 Column 11,12.....21

|  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 758 | 5399 | 0 | 0 | 0 | 380 | 2754 | 12137 | -11478 | 214 | 32933 |
| 2 | 1953 | 9075 | 558 | 0 | 869 | 2170 | 1135 | 14735 | -12965 | -5329 | 35423 |
| 3 | 3522 | 14903 | 3110 | 0 | 4836 | 10231 | 1687 | 29947 | -24563 | -7896 | 62558 |
| 4 | 5102 | 55944 | 112 | 0 | 175 | 132 | 752 | 7450 | -15980 | -29493 | 55738 |
| 5 | 243 | 6807 | 0 | 0 | 128 | 408 | -95 | 1351 | -3597 | -3763 | 19341 |
| 6 | 81 | 24 | 0 | 0 | 0 | 0 | 67 | 1134 | -3015 | 2230 | 4413 |
| 7 | 374 | 2346 | 0 | 0 | 0 | 0 | 188 | 1778 | -6491 | -6025 | 0 |
| 8 | 2929 | 26970 | 17893 | 12436 | 4682 | 765 | 1067 | 7062 | -4453 | -6221 | 92417 |
| 9 | 973 | 3580 | 0 | 0 | 0 | 0 | -76 | 319 | -306 | -421 | 9738 |
| 10 | 8849 | 30617 | 379 | 0 | 591 | 0 | -316 | 10370 | -16362 | 29496 | 117881 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 14 | 24785 | 155664 | 22052 | 12436 | 11281 | 14085 | 7163 | 86284 | -99209 | -27209 | 430440 |

Source: Louise Ah1ström, SAF. See also the Supplement.

Tralble 1 (cont)

| Row 1: | Raw material sector |
| :---: | :---: |
| Row 2: | Intermediate goods |
| Row 3: | Investment goods and consumer durable goods |
| Row 4: | Consumption goods (excl. consumer durable goods) |
| Row 5: | Agriculture, forestry, fishing |
| Row 6: | Mining and quarrying |
| Row 7: | Oil |
| Row 8: | Construction |
| Row 9: | Electricity |
| Row 10: | Other services |
| Row 11: | Commodity based indirect taxes (Not value added tax (moms)) |
| Row 12: | Value added in producer's prices |
| Row 13: | Corrections |
| Row 14 | Vertical sum = production (producer's prices) |
| Columnl, 2 . <br> through 10 | Corresponding rows |
| Column 11: | Government's consumption |
| Column 12: | Household's consumption |
| Column 13: | Government's investments |
| Column 14: | Investments, buildings, residential housing |
| Column 15: | Investments in sector 5.....l0 |
| Column 16: | Other investments (= Investments made by firms) |
| Column 17: | Change in stock (inventories) |
| Column 18: | Exports |
| Column 19: | Imports |
| Column 20: | Moms etc. (Indirect taxes) are deducted |
| Column 21: | Horizontal sum $=$ production (producer's prices) |

Note : Wages in the Government Sector are not included in the Final Demand Matrix, so GNP cannot be calculated from Table 1 alone.

Column l: IO76(m,l), m=1,2,...,10, shows how much sector 1 is buying from the other 10 sectors.

HOTE: Imports are included.

Rows 11 and 13 consist of rather small values and are described further in the Supplement. Row 12 is the value added in each production sector.

Value added (row 12) + Inputs (rows 1,2...10) equals total production in each sector (row l4).

Columns ll, 12 and onwards show the final demandside in the economy.

WOTE: Imports are included.

The division into demand categories follows the usual pattern from national accounting where gross national product is described as $C+I+G+X-M+\Delta L$. ( $C=h o u s e h o l d ' s$ consumption, $G=g o v e r n m e n t ~ s p e n d i n g, ~$ $I=$ investments, $X=e x p o r t s, M=i m p o r t s$ and $\Delta L=$ change in stock.) Investments have been divided somewhat more, though.

The vertical sum of production (row 14, column 1,2...10) shall by definition be the same as the horizontal sum (rows 1,2...10; column 21). Column 20 has to be present to make this work. Columns ll,12... are defined in final prices including indirect taxes, value added taxes (VAT), whereas production in columns 1,2...10 are defined without these taxes. Thus, these taxes (VAT)* are subtracted in column 20 to make "vertical sum of production" match "horizontal sum of production". Some

* In Swedish called MOMS.
other adjustments of a technical nature are also made in column 20. For a more detailed description, see the Supplement to this handbook.


### 3.1 How the Input-Output Matrix 1076 is Used <br> in the Initialization

IO76 is a matrix with flows in SEK (Swedish crowns) These flows are, in general, not used directly to give values to model variables during the initialization procedure. In $95 \%$ of all cases shares, fractions, based on IO76, are used for this purpose. These shares are called IOCOEFF76 and are defined as:
$\frac{\operatorname{IO76}(i, j)}{\operatorname{IO76}(14, j)}=\operatorname{IOCOEFF} 76(i, j)$
$i=1,2,3, \ldots, 13 \quad j=1,2, \ldots, 19$.

The coefficient matrix IOCOEFF76 can be found in Appendix B.

The following model-variables, shown in Figure 4, (cf. Appendix A) get their values from the "inputoutput coefficient matrix" IOCOEFF76.

The first six model variables, in Figure 4, are constants throughout the simulation. The inputoutput matrix IO will be described more thoroughly below, in Section 3.3. QINVG, QINVBLD and QINVIN are start-up variables for the corresponding 9 exogenous time series, concerning non-industrial investments.

Export and import shares XIN and IMP are estimated from IO76.

Figure 4 Modell variables created frca 1076

| Model variable | Coming from: |  |
| :---: | :---: | :---: |
| OMEGA | Column 16 | IOCOEFF76 |
| OMEGAIN | Column 15 | IOCOEFF76 |
| OMEGABLD | Column 14 | IOCOEFF76 |
| OMEGAG | Column 13 | IOCOEFF76 |
| GKOFF | Column 11 | IOCOEFF76 |
| HH76 (household coefficients) | Column 12 | IOCOEFF76 |
| IO (input-output matrix) | Columns 1,2,...,10, rows $1,2, \ldots, 10$ | IOCOEFF76 |
| IO2 (submatrix |  | IOCOEFF76 |
| of IO) |  |  |
| IO3 (submatrix |  | IOCOEFF76 |
| of IO) |  |  |
| QINVG |  | IO76(14,13) |
| QINVBLD |  | IO76(14,14) |
| QINVIN |  | 1076(14, 15) |
| IMP (import shares) | Estimated from | 1076 |
| XIN (export <br> shares) | Estimated from | 1076 |


refer to individual firms. Thus the acro shares are used for the individual firms in the import block of the model. In Appendix $A$ one can see that IMP is classified as a micro variable for sectors 1. 2, 3, 4 and as a macro variable for the remaining sectors.

### 3.2 Consistency checking

For the purpose of checking the consistency of the initialization one would expect that IO76 should be used. This is, however, only the case to some extent. In principle 1076 can not be used since it is expressed in 1975 year's prices instead of 2976 year's prices. All model-variables coming out from the initialization should be in current prices, i.e. 1976 year's prices. This makes a direct comparison between 1076 and the input-output matrix coming out from the initialization a bit difficult.

Even if one managed to express 1076 in 1976 year's prices it would, all the same, be almost practically impossible to check the consistency of the initialization just by direct comparison with IO76. The explanation is as follows:

After the initialization the four industrial sectors (columns $1,2,3,4$ in IO76) are inhabited with firms. $S$ and $Q$ are important firm-variables. $S$ is individual firm sales and $Q$ is individual firm production.

To determine the sum of $S$ in each of the four sectors one must use SCB's national accounting statistics. $Q$ is by definition equal to $S$ minus
changes in finished goods inventories. This also determines the sum of $Q$ in each of the four sectors (approximately) and these figures of the production (in sectors $1,2,3,4$ ) may differ substantially from figures from 1076 (row 14 IO76, reestimated in 1976 year's prices) due to errors ${ }^{10}$ of different kinds.

The consistency of the initialization is instead tested as follows:
a) Form a matrix 1076 II from the initialization by using the sum of micro-variables (for example $Q$ above) when this is possible, and fill in with values from $I 076$ when this is not possible.
b) IO76II is considered consistent if (l) the values in $1076_{I I}$ don't differ "unreasonably much" from 1076 and (2) horizontal sum of production $\approx$ vertical sum of production in 1076 II.

For more details about the consistency check, see Section 6.
3.3 How the Model-Variable IO is Used

We now give a short description of how the modelvariable IO, which is a loxlo sub-matrix of IOCOEFF76 (the input-output coefficients), is used in the model.

The variable $I O$, with some exceptionsll, is not used for the purpose of determining macro variables during the simulation.

IO(i,j) tells how much of production in sector $j$ comes from input from sector $i$, and is a number between 0 and 1, and $i=1,2, \ldots, 10$. Thus $I O(1, j)$, IO( $2, j), I O(3, j), \ldots, I O(10, j)$ are the input-shares for each product (input from sectors $1,2, \ldots, 10$ ) in sector j. The firms belong to sector $1,2,3$ or 4.

The main use of the input-output matrix during the simulation is to determine eacin firi ${ }^{\mathbb{E}}$ demand for goods from other sectors. Thus, a firm in sector j producing $q$ SEK (Swedish crowns) a certain quarter demands $I O(1, j) \cdot q \cdot c$ SEK production from sector 1 and $I O(2, j) \cdot q \cdot c$ SEK production from sector 2, etc.
$c=\frac{\text { the individual firm's input-share }}{\text { average input-share in the sector }}$
The average input-share $=\sum_{i=1}^{10} I O(i, j)$

The fractions $c$ are only estimated for 1976 and are called SHARE in the initialization procedure.

Note that this specification means that the macro input-output coefficients are variable over time during a simulation. Since firms have individual input-shares (see $c$ above) and firms grow at different rates, the macro input-output coefficients vary endogenously although the coefficients IO are constant over time and ezogenous.

This can be clarified by Figure 5.

## Firm A

Input share $=0,75$


1 = input from sector 1
2 = input from sector 2
3 = input from sector 3
4 = input from sector 4
5 = input from sector 5
6 = input from sector 6
7 = input from sector 7
8 = input from sector 8
9 = input from sector 9
$10=$ input from sector 10

Production $=$ Total input+value added

Firms $A$ and $B$ have different individual imput shares. The individual input share is equal to 0.75 for firm $A$, whereas it is 0.5 for firm B. Information about such shares come from micro data. Thus the value added share is 0.25 and 0.5 respectively. How the inputs are divided onto the 10 sectors is determined from the input output matrix (the variable IO). These proportions are the same for all firms, which means that the quotient (input from sector j)/(total imput) is the same, but not the quotient (impur from sector j)/(production).

The macro imput shares ${ }^{12}$ will in general change if the relative size of the firms changes from one year to another during the simulation.

Let us give a concrete example of this. From a simulation performed in $1983^{13}$ the following macro input shares were obtained:

Table 2 simulation results

| Year: | Macro input share <br> (=total input/total production) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1976 (real values) | 0.73 | 0.60 | 0.56 | 0.69 |
| 1977 (simulated values) | 0.72 | 0.62 | 0.55 | 0.69 |
| 1978 (simulated values) | 0.73 | 0.61 | 0.52 | 0.67 |
| 1979 (simulated values) | 0.73 | 0.56 | 0.49 | 0.66 |
| 1980 (simulated values) | 0.70 | 0.52 | 0.48 | 0.65 |

This illustrates some kind of structural change in the four industrial sectors in the simulated economy. In principle one could describe this structural change by investigating the chains of causes at the macro - and the micro - level during the simulation.

## Section 4. The Initialization, Overview


#### Abstract

This section will give a more detailed description of the initialization program. Those who wish a complete description of the program may turn to the programming code itself in Appendix $C$ and use this section as a guide. The techniques involved are of general interest for someone wishing to construct a micro-to-macro simulation model.

As was shown in Section 2, Figure 3, the initialization essentially consists of 13 parts (subfunctions, level 2 in Figure 3). 11 of these parts deal with giving values to model-variables, namely: TAXAPNRMNETERS, PUBLICASECTOR, MOMLFTARY, MARIEETS, HOUSEHOLDS, ESSABBILISHMERTIS, MMNINETSADMATA, SECORDARYADATA, HOUSIEHOLLDSADATA, MOMEETNRYADATA and PUBLICADATA.


In the programming code, Appendix $C$, comment lines start with the symbol $\mathbb{A}^{*}$. Such comment lines are inserted to make the program easier to understand. In the beginning of each sub-function there is a comment line beginning with "output from initialization". Thereafter follows a list of the names of those model-variables which have been given values in that particular subfunction. This is an important guide to the reader of the program, because he then knows what is to be considered as output from the sub-function. Other variables in the sub-function are either local variables (help-variables used to form the model-variables) or indata from the macro-data workspace or the micro-data workspace. The macro-data workspace and

[^13]the (non-confidential part of the) micro-data workspace are listed in Appendix B.

An alphabetical list of all model-variables can be found in Appendix A. Now we will comment on each of the 11 parts of the initialization program.

## - TMEAPMRARIETERAS

"Start-up tax variables" (=tax last quarter 1976) are transferred directly from workspace MACRO. These variables are TXVAI, TXVA2.

The rest of the tax-variables in this part of the program are "exogenous time-series" which are formed by extending time-series for the period 1976 and onwards from workspace MACRO.

## - PUBLITCASECTIOR

Some model-variables (OMEGAG, QINVG, GKOFF), mentioned in Section 3, get their values from the input-output system.

The number of people to be added to the govern-ment-sector (EXOXREALCHLG) each quarter during the simulation is an exogenous time-series, and is determined as follows:
a) Quarterly labour force in the government sector is estimated from time-series data (1976-), TIM $\triangle O F F$, from workspace MACRO. For the present this determines EXOAREALCHLG for the first 4 quarters of the model simulation.
b) A trend change of the government sector growth, estimated from historical time-series during the

1970s (the trend change LGTRENDCH comes from workspace MACRO), is used for the remaining quarters in EXO $\triangle$ REALCHLG vector.

Wages in the government sector, the model variables QWG and WG, are determined from wage data in workspace MACRO for 1976-77 (LON $\triangle O F F$ ).

- MARKETIS

Most of the model variables mentioned in Section 3.1 get their values in this part of the initialization program. It is variables connected with the input-output system, for example input-output coefficients of various kinds (="constants"), investments in different sectors (="start-up variables"). import shares of Swedish demand (=IMP ="start up variable") and export shares of production in certain sectors (=XIN="constant").

Model variables starting with "EXO" are "exogenous time-series".

The important model variable EXO $\triangle Q D P F O R$ (=changes in foreign price index) is set using historical price-behaviour (extrapolation). EXO $\triangle \Omega D P F O R$ is a matrix with the format "4 $x$ number of quarters in the simulation" because it yields foreign price changes in each of the 4 industrial sectors.

All price-indices are equal to $\mathbf{1 0 0}$ for the base year (1976).


Household coefficients HH76, i.e. how the consumers distribute their purchases on products from
the 10 sectors in 1976, are set. These coefficients are used later on in the initialization procedure (cf. HOUSEHOLDSADATA below). Some exogenous time-series in connection with the rate of interest (EXOARI and others) in the bank-system are set.

## ESTABLISHMMEHIIS

This is the first time micro variables are given values. Real firms are given their values, and the residuals on each variable are split up on synthetic firms. By residuals we mean deviations from the national accounting level, 1976. For the present, 1983, we have 97 real firms and 50 synthetic firms. The synthetic firms have been created to be able to model the whole industrial sector by a micro simulation process in MOSES.

Only the 4 industrial sectors consist of microunits, i.e. firms in the model. Micro-data are fetched from workspace SI76 (the first line in this sub-function).

Firm-data from this workspace are mainly stored in two variables: $\underline{X}$ and $F \triangle D A T A$. $\underline{X}$ is a matrix where the first index is the firm index and the second is the number of the variable. For example: $\underline{X}(17 ; 7)$ is export sales (question number 7 in the questionnaire) for the 17 th firm.

The function ESTABLISHMENTS is rather complicated and only the main features will be described here.

Let us look at the variable sales, to get a picture of how the initialization of this variable is performed. A similar pattern can be found for many other micro variables.

```
(STEP 1) Realdsales (=help variable) is a vector
with \(R\) components, where \(R=\) number of
real firms. Realdsales(i) gets the
value:
\([\underline{X}(i, 7)+\underline{x}(i, 12)] \cdot 10^{6}\).
    export- domestic
    sales sales
    i \(=\) firm-index \(=1,2,3 .\). R
The rest of the sales value in each of
the 4 industrial sectors is split up on
the synthetic firms.
(STEP 2) Res \(\triangle\) sales (=help variable) is a vector of length 4 and is the rest of the sales value in the 4 sectors. RES \(\triangle\) sales(j) gets the value:
SALES76( \(j\) ) \(-\sum_{i=1 \quad \text { and } i \text { belongs to }}^{R} \quad\) (Realdsales(i))
\(j=1,2,3,4=\) sector-index
SALES76(j) is sales for 1976 in each of the 4 sectors, fetched from SCB national accounting statistics. "i belongs to j" means summation of those real firms ( \(i=1,2, \ldots, R\) ) which belong to sector \(j\).
(STEP 3) Synth \(\Delta\) sales(i) gets the value Scale(i) • res \(\Delta\) sales(M(i)).
M(i) is the sector to which firm 'i' belongs. \(i=1,2,3, \ldots, Q \quad Q=n u m b e r\) of synthetic firms, \(M(i)=1\) or 2 or 3 or 4, \(\mathrm{R}=\) number of real firms.
\(\stackrel{Q}{\Gamma}\)
\(\sum_{i=1}^{Q} \operatorname{Scale}(i)=1\)
and \(i\) belongs to \(j\)
```

Scale is a vector with sizes (fractions), within a sector.
(STEP 4) The model-variable S (= individual firm sales) gets the values: $S(i)=$ Realdsales(i) for $i=1,2, . . ., R$ and $S(i)=$ Synth $\Delta$ sales(i) for $i=R+1, R+2, \ldots, R+Q$.

Thus:
STEP l: Realdsales(=sales for real firms) is set.

STEP 2: Res $\triangle$ sales(=residuals between macro and sum of real firms) are set.

STEP 3: Res $\Delta$ sales is distributed onto synthetic firms. Synthهsales(=sales for synthetic firms) is set.
STEP 4: $S(=s a l e s=m o d e l ~ v a r i a b l e) ~ i s ~ t h e ~ c o m b i n a-~$ tion of Real $\Delta$ sales and Synth $\Delta$ sales.

This 4-step procedure is repeated for many other micro variables. Thus, W(wage-level in firms), L(labour-force in firms), $X$ (export shares in firms) etc are set in much the same fashion.

In connection with "synthetic firm initialization" there are two other important technical points. Namely:
(a) As soon as ratios appear, an inbuilt check
insures that the synthetic firms get the same
mean and dispersion (standard deviation) as
the real firms.

- (b) Certain variables ought to co-vary with other variables in the synthetic firms, and this is also taken into account.

```
Example:
L(i)=labor in each firm R=number of real firms
S(i)=sales in each firm Q=number of synthetic
firms
i=1,2,\ldots,R+Q.
ratio=L(i)/S(i)
This ratio is randomized for the synthetic firms
in such a fashion that the mean and dispersion for
the synthetic firms (i=R+l,R+2,\ldots,R+Q) are the
same, as that of the real firms. (Actually, it is
a bit more complicated than this, since each
sector (1,2,3,4) is treated independently.)
The export share for each firm (an important
model-variable), X, is set in a similar manner.
Jim Albrecht, Columbia University, has made these
randomization procedures in ESTABLISEDNEATIS. }1
Production for each firm Q(i) is estimated as
Q(i) = (S(i)+\triangleK3\triangleFINISH(i))/100
where \triangleK3\triangleFINISH is the change in the finished
goods stock (a help variable) and 100=price index
(the index equals lo0 by definition 1976). Thus
production in both synthetic and real firms is set
indirectly, that is, by aid of sales figures and
changes in finished goods stocks.
Each firm in the model has an individual input
share (input/production), which is estimated from
micro-data. Thus the model variable Share(i) is
created :
the individual firm's input share
average input share in the sector.
```

Section 3.3 describes how this share is used, during the simulation.

## - MARKETSSDDATA

Most of the constants in the model (mainly parameters) are set in this part of the initialization program. Constants connected with the banks system and the household sector ar not set here, though. These constants (parameters) are instead created in HOUSEHOLDSADATA and MONETARYADATR. Inventoryconstants for firms (maximum- and minimum-inventory levels) are set in ESTABLISHMENTS.

- MORIETARYMDATA

Constants connected with the bank system are set. If RIDIS $\triangle E X O G E N O U S=1^{15}$ then the bank system is partly set out of function, since the rate of interest in the economy is set exogenously in this case. In that case most of the other constants in this part become redundant. This is the case for the present (1983), since the bank system is not quite ready yet. Even when this module is ready it is of interest to be able to, for analytical simplicity, perform simulations with an exogenous rate of interest.

```
- SECOmDDARYADITA and PUBLITCADATA
```

Certain labour market variables are given values, for example LU, the number of unemployed during the last quarter 1976. MTEC, a constant describing "the production function" for firms in each market, is set.

## - HOUSEHOLDSADAER

```
Constants connected with the household part of the
model are set here. For example; the coefficient-
vectors BETAl, BETA2 (cf. Appendix A) are given
values. BETAl tells how much consumers tend to
stick to historical consumption levels during the
simulation and BETA2 are marginal propensities to
consume when disposable income varies. Consumption
levels last quarter 1976 are set.
QC(j) = HH76(j) • QDI
j=1,2,...,10=sector index.
QC=consumption, QDI=disposable income, HH76=input-
output shares (see Section 3).
QDI is estimated in a certain function which takes
into account the whole tax system, wage system
etc. This is done in the function QDIAMNJME.
```


## Section 5 The Data Base

The macro data for 1976 for the initialization come from workspace MACRO and the micro data from workspace $S I 76$, see Appendix $B$. If we instead use the 1982 data bases we take macro data from MACR82, documented in Appendix B 2 , and micro data from SI 82.

Below, there is a brief documentation of the variables appearing in these two workspaces.
(MACR82 and SI82 contain the same variables as MACRO and SI, i.e. we have a standardized format.)

### 5.1 Workspace MACRO

In general, most of the variables refer to 1976 or 1976 and a couple of years ahead (to form exogenous time series). The only exceptions are:

|  | Period |
| :--- | :--- |
| $T L \triangle E X P$ (export price indices) | $1970-80$ |
| IMPL $\triangle P R I S, ~ I M P L \triangle P R I S \triangle I N ~(d o m e s t i c ~ p r i c e-i n d i c e s) ~$ | $1974-77$ |
| HIST $\triangle T X V A 2(" m o m s ")$ | $1974-77$ |

TLAEXP is a long time series which is used to extrapolate a future time series starting 1977, i.e. the variable EXO $\triangle Q D P F O R$ mentioned previously. IMPL $\triangle P R I S$ etc are a bit longer to be able to transform data on a quarterly basis for 1976, 1977. The values for 1974 are redundant, though.

Sources:
Reference person for all variables except SALES76, TLAEXP, LON and TIM: Louise Ahlström (previously IUI).

The national accounting statistics from SCB has been used. Reference persons for SALES76, TLAEXP. LON, TIM: Thomas Lindberg, Fredrik Bergholm, IUI.

### 5.1.1 The Problem of Distributing Macro Data

There is a general problem of a practical nature in connection with the three variables LON(=total wage sum in sector $1,2,3,4$ ), TIM(=total number of working hours in sector $1,2,3,4$ ) and SALES76(=total sales in sector $1,2,3,4$ ). LON, TIM and SALES76 are used for micro initialization, as was mentioned in Section 4. They are the macro totals for model variables like labour $L$ and sales $S$.

The problem is that from SCB-figures we have
a) total wage sum in the industry
b) total number of working hours in the industry
c) total sales in the industry.

When al, b) and c) are distributed across the 4 sectors (1-4 in the input-output system) we get the variables I،ON, TIM and SALES76. There is a socalled "weighting matrix" which has been constructed to do this job. However, the result seems to be a bit unsatisfactory. In the consistency check (Section 6) we find residuals indicating that sector 1 is too small and sector 3 and (or) 4 are too large. A consequence of this is that synthetic firms in sector 1 get input shares $F \triangle I N K O P=t h e$ quotient input/production, see Appendix A) larger than 1. The behaviour of these companies disturb the simulation during the first three to four years in quite a conspicuous manner.

Apparently this problem is a crucial one to be overcome in order that a proper initialization may be obtained. In 1983 some measures were taken to
improve matters. Of course there can be many reasons for the inconsistencies.

```
However, the distribution process clearly yields
different results compared with the figures in the
input-output system IO76 in Section 3. This can be
seen as follows:
```

Total sales in the 4 (industrial) sectors 1976 is
207150 million Swedish crowns. SALES76 is a
vector with four components where this amount has
been distributed onto the 4 sectors by aid of the
weighting matrix mentioned above. The following
result is then obtained:
SALES76 $=(0.14,0.18,0.34,0.34) \cdot 207150$
On the other hand, if one distributes total sales
according to the proportions for gross production
(assuming that sales $\approx$ production and thus neglect-
ing changes in finished goods inventories) in the
input-output system 1076 (cf. Table 1 , row 14,
columns 1 through 4) the following result is ob-
tained:
NYSALES76 $=(0.18,0.19,0.33,0.30) \cdot 207150$
In 1983 we started using NYSALES76 instead of
SALES76 in the initialization procedure (initiali-
zation variant ISTART10). This reduced the incon-
sistencies in the initialization (cf. Section 6).
Future work in connection with the variables LON,
TIM and SALES76 should be directed towards ob-
taining more precise distribution procedures,
which at the same time are reasonably consistent
with the input-output system.

### 5.1.2 Changes in the Input-Output Matrix

If the input-output matrix 1076 is changed (corrected) the function COEPPAIO has to be executed to get new input-output coefficients IOCOEFF76.

### 5.2 Workspace SI76

A good description of this workspace can be found in Albrecht-Lindberg (1982). Sources: Reference persons: Thomas Lindberg, IUI, Jim Albrecht, Columbia University, New York. The Planning Survey ("Planenkäten"), collected by the Federation of Swedish Industries, has been used (Ola Virin, Kerstin Wallmark).

## Section 6 The Consistency Control System

Many micro and macro variables are set during the initialization procedure.

One important question is: Are the variables consistent on the macro level?

To check this, one has to sum the micro variables up to country total or sector total (4 industrial sectors) and check whether macro variables obtained in this way "fit the 1976 input-output system". This has already, briefly, been discussed in Section 3.2. The "input-output consistency check" of the initialization is done as follows:
a) Form a matrix IO76 II, having the same form as $^{\text {a }}$ the input-output matrix 1076 (see Section 3), from the initialization by using the sum of micro variables when this is possible, and fill in with macro values from 1076 when it is not possible. We will call the input-output matrix ${ }^{1076}$ II the "control matrix" in this section.
b) IO76 $_{\text {II }}$ is considered to be consistent if (l) the values in $I^{076}$ II do not differ "unreasonably much"16 from 1076 and (2) horizontal sum of production $\approx$ vertical sum of production in 1076 .

A print-out of the control matrix IO76 $_{\text {II }}$ is done during the initialization in the sub function IOAMATRIX, see Appendix $C$. On the following pages an example from 1982 of such a print-out is presented. It is from the present initialization version (that is, the one which can be found in Appendices $C$ and D).

By definition, the horizontal sum (col 1,2 through 20 in row $1,2, \ldots 10$ ) should be equal to the vertical sum in col 1,2...10. The residual between the horizontal and the vertical sum is printed out under the headline "residual". The first number is the residual in sector 1 , the second in sector 2 , etc. The residuals in this case indicate that there is too little production in sector 1 and too much in sectors 3 and 4. (sector 1: -1820, sector 3: 2573, sector 4: 7611).

This problem has already been discussed in Section 5 and is probably due to a bad distribution of production and sales between the 4 industrial sectors. The values in the "control-matrix" do not, in general, seem to differ unreasonably much from those of IO76. But the values in column 1 (sector 1) are apparently too small and the values in column 17 (yearly inventory changes) seem to be somewhat large in comparison with IO76.

The negative residual values in rows $5,6, \ldots, 10$, are due to the fact that the values in columns $5,6, \ldots, 10$ are expressed in 1975 year's prices. This error need not affect the simulation much, though, since production in sectors $5,6, \ldots, 10$ in the simulation is determined by inverting the input-output coefficient matrix IO.

Some other consistency controls are effected in the subfunction CONTROLS, see Appendix C. For example:
a) wages (average wage times number of employees) in firm $i+$ profits $^{17}$ in firm $i=$ value added in firm i. (i=firm index).
b) the input share (compare the variables $F \triangle I N K O P$ and BRINKOP in Appendix $A$ ) in sectors $1,2,3,4$ obtained by summing the micro-units (Epurchases/ Eproduction) should be equal to the input share from the input-output matrix 1076 .

The printout of the consistency control matrix IO76 ${ }_{\text {II }}$ can be made (option) during any initialization, and the user can thus check whether the residuals can be considered to be small enough for performing the simulation experiment afterwards.

Table 3 The control matrix

INPUT-OUTPUT MATRTX FROM INITIALTZATION:

|  | 6 | 7 u | $\operatorname{unit}_{8}=10^{6} \mathrm{~g}$ | SEK | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94 | 0 | 4.192 | 942 | 1943 |  |  |
| 117 | 0 | 3498 | 170 | 2035 |  |  |
| 213 | 0 | 6294 | 171 | 3079 |  |  |
| 87 | 0 | 2648 | 1.02 | 6484 |  |  |
| 1. | 0 | 1689 | 0 | 312 |  |  |
| 1.40 | 0 | 418 | 5 | 0 |  |  |
| 213 | 0 | 1009 | 488 | 842 |  |  |
| 1.62 | 0 | 110928 | 708 | 9874 |  |  |
| 171. | 0 | 1118 | 328 | 1010 |  |  |
| 640 | 0 | 91.43 | 426 | 25656 |  |  |
| 10 | 0 | 350 | 5 | 2261 |  | 1 |
| 2529 | 0 | 50892 | 6395 | 64383 |  | $\infty$ |
| 35 | 0 | 238 | 0 | 1 |  | $\stackrel{\sim}{\infty}$ |
| 4413 | 0 | 92417 | 9738 | 11.7881 |  | 1 |
| 16 | 17 | 18 | 19 | 20 | 21 |  |
| 464 | 4938 | 10737 | -13004 | 214 | 32449 |  |
| 2652 | 2035 | 1.5759 | $\cdots$ | -5329 | 40.339 |  |
| 1.2500 | 3025 | 33620 | $-27314$ | -7896 | 7334. |  |
| 16.1 | 1348 | 9340 | -17427 | -29493 | 72285 |  |
| 498 | -170 | 1.351 | -4.1.4 | 3763 | 19341. |  |
| 0 | 120 | 11.34 | 3069 | 2230 | 14.13 |  |
| 0 | 337 | 1.778 | -6728 | -6025 | 0 |  |
| 935 | 1913 | 7062 | -1457 | -6221 | 92417 |  |
| 0 | $\cdots 136$ | 319 | -320 | -421 | 9738 |  |
| 0 | -567 | 1.0370 | $-17123$ | 29496 | 117881 |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |
| 17210 | $1.284 \%$ | 91470 | -1.08309 | -27209 | 462204 |  |

## Talole 3 (cont)

Rows and columns in the control matrix:

where $A$ is the control matrix in Table 3.

| $R(1)=-1820$ | $R(6)$ | $=-18$ |  |
| :--- | :--- | :--- | ---: |
| $R(2)=$ | $R 42$ | $R(7)$ | $=-154$ |
| $R(3)=$ | $R 73$ | $R(8)$ | $=-3981$ |
| $R(4)=7611$ | $R(9)$ | $=-447$ |  |
| $R(5)=-3302$ | $R(10)$ | $=-3627$ |  |

## Section 7 On Simulation Techniques*

This section is a bridge between Part 1 and Part 2 of the MOSES Handbook. We give some examples of how this manual could be used in connection with simulation experiments. This section presupposes knowledge of the three first chapters in Part 1.

Let us assume, for example, that we wish to extend the micro data base with more real firms and that we want to experiment with varying the foreign export price index and the growth of the government sector. How do we go about accomplishing this?

To begin with, the micro data base must be updated. This means that the 5 variables in the workspace SI76, see Appendix $B$, must be updated. This can be done according to instructions in Albrecht, Lindberg (1982). There is one problem, though; we camot repeat old experiments if we simply update SI76 without taking extra measures. Therefore we must look at the function ESTMBLISEMDARIS where micro data are processed (cf. Section 4). We read the beginning of the function in Appendix $C$.

There is a line in the beginning containing a test for whether a firm belongs to the list of firms chosen to be included in the experiment. This is line [31] in Appendix $C$, function ESTABLISGMILAMS. Apparently this means that if we extend all other micro data base variables (i.e. X, FDDATA, FIRMID, R $\triangle$ MARKET), new firms won't enter the simulation unless LIST is updated as well. If we update LIST during the initialization procedure new firms enter the simulation as an initialization variant, which in turn means that old experi-

[^14]```
ments can be repeated. Therefore we use the
ISMMRTXX-function (cf. Section 2) to extend LIST.
The techniques involved can be found in part l.
The new line needed to update LIST will be (for
example)
LIST & LIST, 4.95 4.96.
The numbers 4.95 and 4.96 are code-numbers for new
firms. We call the initialization version ll, i.e.
we use ISTMRM11. ISMARTMH is shown in Figure 6.
```

Let us now change the export price index. From Section 4 we know that it is an exogenous time series called EXO $\triangle Q D P F O R$. We find EXO $\triangle Q D P F O R$ in Appendix $C$ in the subfunction MNRNRYS on line [56]. In ISMNRE11 we should swap that line for a new one. The matrix EXO $\triangle Q D P F O R$ is (as we see in Appendix $A$ ) the change in the export price index each quarter during the simulation, for each of the 4 industrial sectors. If we, for example, wish to make an experiment with a 2 percent change every quarter for all firms, each component of EXO $\triangle Q D P F O R$ should be given the value 0.02 . The size of EXO $\triangle Q D P F O R$ is not quite obvious. How many quarters ought one to use in the matrix? The maximum number of years to simulate ${ }^{18}$ in the standard initialization is 30 years. Therefore it might be appropriate to use 120 quarters. The export price index must have a start value too. Close inspection of the subfunction MNRNER reveals that the model variables QPFOR and QDPFOR should be given new values too. If we don't care much about the first simulated quarter one could, however, skip this and let QPFOR and QDPFOR keep their values from the standard initialization version.

Let us finally change the government sector employment growth, which also is an exogenous time
series (cf. Appendix A), called EXO $\triangle$ REALCHLG. From Section 4 we know that one line in the subfunction PUBLICASECTOR should be changed. We do this in ISTAPIIl. If we let each component of the vector EXOAREALCHLG take the value 2,500, this means that 2,500 people will be taken from "the pool of unemployment" each quarter during the simulation (unless the pool is empty). The government sector has priority, i.e. firms take people from the "pool of unemployment" after the government sector has satisfied its demand for people. 19

ISTARTII is shown on the next page, together with another example, ISTAREIL.

Let us go on by describing another experiment, corresponding to ISTAREI2.

In this experiment we wish to change the behaviour of firms in connection with profit targets. We also want to make changes in the production function of individual firms. From Section 4 we know that most parameters (definition in Section 1) can be given values in the function MARKETS $\triangle$ DATA. After having checked the parameters in this function with the description in Appendix $A$ we find that SMT is a parameter affecting the profit target behaviour. According to Appendix A, SMT is not a vector, ${ }^{20}$ so we can not change the behaviour of an individual firm, only all the firms at the same time. SMT could be given any value between 0 and 1 . The construction of SMT is described in Section 1, but in general one has to consult the MOSES code, i.e. the simulation program itself, to check the construction of the parameter. The MOSES code is not included in this paper, but is available at IUI. It will be included in another part of the documentation. We set SMT equal to 1 , which means that we
don't update profit targets over time. Similarly, we find a parameter INVEFF affecting the production function. The parameter INVEFF yields $\triangle Q T O P / I N V$ where QTOP is maximum production capacity and INV is investments in machinery and buildings. Apparently INVEFF describes the marginal efficiency of new equipment, i.e. how much the production frontier is pushed upwards due to investments. Since INVEFF is a vector (length = number of firms) we could change this parameter for individual firms. SMT and INVEFF are changed in ISTART12, in Figure 6.

## Pigure 6 Initialization variants and experiment variants, examples

QISTART11[0]V

## $\checkmark$ ISTARTII

[1] SYNTHAFIRMSt $8 \quad 16 \quad 18 \quad 8$
[2] 'ESTAELISHMENTS' MONALI 'JCOWLISTHLIST, 4.954 .96 [3] aTHIS MEANS THAT THE LINE
[4] A LISTHLIST, 4.954 .96
[5] a TS INSERTEI AS A NEW LINE AFTER THE LINE
[:6] a E'JCOPY SI76.

[8. 'MARKETS' MOLSUBST 'QPFORT 16 QPFOR $4+4 \rho 100+(3 \div 3) \times 2 \times 4$ '
[9] 'MARKETS' MOLSUEST 'QLPPFORt (TGQLIPFOR+4ค0.02.
[10] 'PUELICASECTOR' MONDEL 'EXOAREALCHLGG'
$[11]$ 'PUELICASECTOR' MOLAALII 'LG\&QLG[4]wEXOAREALCHLG+120 $25500^{\prime}$
$\nabla$

קISTART12[סק
$\nabla$ ISTART12
[1] SYNTHAFIRMSt 8 16 188
[2] 'MARKETSATIATA' MOLISURST 'SMT+ $\quad$ SMT +1 '
[:3] 'MARKETSALIATA' MOLALII GAMMA+GINVEFF+14700.5'
$\nabla$

TMSTART13[D]
$\nabla$ MSTARTIG
[1] aEXAMPLE
[2] 'NULLIFY' MOLAAIILAST • SHRINK '.QF'. .
[3] a MOLAIILLAST MEANS THAT THE LINE IS AIIIEI AS THE LAST LINE $\nabla$

Note: These functions are examples which no longer are stored in ISTART- and MSTART-workspaces.

### 7.1 New variables (MPORTANIE)

If new variables are added to the model two extra measures have to be taken. Firstly, add the name of the variable to a variable list in workspace VLISTS (cf. Part l). All model variables coming out from initialization should be registered ${ }^{21}$ there. Secondly, add a line in the MOSES-model in a subfunction called सULLIIY. Say that the new variable is called $Q F$. Then the line:

SHRTINR 'QF'
should be added in the function NOLLIPY.

The reason for this procedure is that some firms go bankrupt during the simulation and then all micro variables which are vectors become shrunk (one firm is deleted from the vector). Micro variables which are vectors ${ }^{22}$ must be part of this "shrinking system" and that's why the line above must be added. One should extend $\mathbb{N U L H I F I}$ ber using the function MODNDD in a MSTRRIXX-function (cf. Part l). This is done in MSYARH13 in Figure 6.

```
7.2 Experiment variants, exogenous exports
One common experiment variant is to make some
endogenous variable in the simulation exogenous
instead. One can, for example, make exports ex-
ogenous. This was done in connection with experi-
ments concerning multiplier effects on the Swedish
economy described in Bergholm (1984).
The necessary changes can be made in an MSTART-
function. In Figure 7 below some 23 lines from
experiment version 10, MSTARR10, are shown (cf.
Part l of the handbook):
```


## Pigure 7

```
    MSTARTIO
[10] EXO\triangleEXPORT&XXQS\divQP
[12] TIIL+1
[14] RATE&(\rhoQ)\rho1.05*(1\div4)
[18] 'EXPORTAMARKETG' MOLIIII 'QSUFOR&WQSUFOR+EXIDEXPGRTXRATE*TIII'
[19] 'EXPORTAMARKETS' MOLALIILAST 'XGQSUFOR\divQOPTSU'
[20] 'EXPORTAMARKETS' MOLIAIILAST 'TIII+TIII+1'
[21] 'NULLIFY' MOLIALILLAST ' SHRINK ''RATE'
[22] 'NULLIFY' MOMAMILLAST ' SHRJNK ''EXOAEXPORT''
\nabla
```

Line [18] in MSPRRPIO makes exports QSUFOR exogenous.

QSUFOR $=E X O \triangle E X P O R T \cdot(R A T E)^{T I D}$.
where EXO $\triangle$ EXPORT is the export volume for $T I D=0$,
TID is the time variable (measured in simulated
quarters) and $R A T E$ is the growth rate. The func-
tion MODADDLASY adds the line at the end of the function specified as left hand argument. Note the necessary additions to the subfunction NULLIFY (cf. Section 7.1). To be able to construct and fully understand MSTART-functions like MSTARTIO one has to consult the MOSES code, cf. Eliasson-Heiman-Olavi (1978).

### 7.3 Change of Starting Year of Simulation

To be able to start the simulation in some other year than 1976 or 1982 requires the creation of a new data base for that year.

This manual provides the user with essential information for that task. The whole macro data base is described in Appendix B. This should be updated to the year in question. Price indices come (in general) from $S C B$ data and taxes, sales etc. from national accounting statistics. The cumbersome task is, above all, the input-output system. To update this to, for example, 1980 would probably mean months of work. There is, however, a short curt method of updating the input-output matrix (coefficients).

One could simply run the model for five years and let the simulated coefficients be an approximation of the real coefficients. Consistency problems will probably appear, though (cf. Sections 5 and $6)$.

Micro data can rather easily be fetched from the Planning Survey, since it is collected yearly since 1975 with small changes in the format of the questionnaire.

The initialization procedure (Appendix C) applies, for the time being, only to the starting year 1976. However, one need not change it much to be able to use it in connection with another starting year. Some changes are necessary: New workspaces for macro and micro data should be input to the initialization program. One should not change the names of the variables (for example IO76 etc.)
although that would be natural, or, alternatively, rename them (for example 1080 * IO76) in the beginning of the initialization.

### 7.4 Simulation extension, the ENTRY block

In the MOSES code* there is a function making the entry of firms possible. It is called RDDPIRM and is documented in Appendix $D$.

The idea behind this facility was to remedy the asymmetry connected with the exit-mechanism in the standard version of the model. Firms (cf. Section 7.1) go bankrupt (exit) during the simulation but no inflow of new firms takes place. This ENTRY module is rather primitive and an improved module is documented in Hanson (1989). ADDFIRM should be used in MSTART-functions.

[^15]
## APPRUDIX A VARTMBIES COMING OOL FROM IMIPTNIERAFION, NE NLPHABIFICAL LISI

The concepts "start-up variable", "exogenous time series" "constants", "parameters" and "micro variables" from Section 1 are used to describe types of variable.

This variable list is of utmost importance in connection with simulation experiments. To be able to set parameter values, change exogenous time series or start-up variables, this list must be consulted.

This list also specifies the result of the initialization. Appendix $A$ is a guide which considerably facilitates work with the model and enables one to check this result. Previously a lot of "time consuming detective work" was needed for almost any little change in the initialization procedure or the simulation. Knowledge about the meaning of the model variables below was, in the lack of written documentation, based on experience and scattered notes.

Appendix $A$ is also needed if one wants to extend the model. In such a situation one must do considerable checking up on the input to the model, i.e. the variables below.

Note that Appendix A yields a specification of input needed to start the model any year, not necessarily the present starting year 1976. Thus, this appendix is a piece of information needed when constructing another starting year for the simulation.

All the variables below (with exception of FAINKOP and BRINKOP), are inputs to the model. Start-up variables usually refer to the last quarter 1976 since the model is run by quarters. Some variables also refer to the whole year 1976, though. In the "code-column" we write vectors and matrices with indexes; we write $v(i)$ instead of $v$, if $v$ is a vector. In the "type-column" we tell the range of the index $i$.

## model Vardiables

- An Alphabetical List

| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| ALFABW | Constant, micro variable. parameter | INVFIN to determine firms' desired change in borrowing. INVFIN = investment part of model |
| $\begin{aligned} & \text { ALFA } 3 \\ & \text { ALFA4 } \end{aligned}$ | Constants, parameters | The household sector part of the model |
| AMAN ( $\mathrm{i}, \mathrm{j}$ ) | Start-up variable $i=1,2,3 .$. number of firms $j=1,2,3$ micro variable | For each firm, a three component vector accomodating the two-quarter lag of layoffs |
| AMANDyear | Technical variable, needed for simulation |  |
| BAD (i) | ```Start-up variable, micro variable i=1,2...number of firms``` | Investment financing part of the model. Counts number of quarters a firm has negative net worth. If BAD > 6 then it is nullified in the model |
| BETA | Constant, micro variable parameter | Constant used to compute optimum finished-goods inventory level |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| BETAl(j) | Constant. Vector of length 12 $j=1,2, \ldots 12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint |
| BETA2(j) | Constant, $j=1,2, \ldots 12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint SUM (BETA2) $=1$ |
| BETA3(j) | Constant, $j=1,2, \ldots .12$ | COMPUTE EXPENDITURES to adjust household expenditures in different categories to the income constraint. All BETA3(j) $=0$ for the present |
| BETABW | Constant, micro variable, parameter | INVFIN to determine firms' desired change in borrowing. INVFIN = investment financing part of the model |
| BIG (i) | ```Constant, micro variable i=1,2,3... number of firms``` | Maximum inventory level (fraction of sales). Finished goods |
| BRINKOP(j) | Information variable $j=1,2,3,4$ | Average input share in each industrial sector. For the definition of input share, see Section 3.3 in this handbook. BRINKOP=input/production |
| BW (i) | ```Start-up variable, micro variable i=1,2,\ldots, number of firms``` | A firm's total borrowing Last quarter 1976 |
| CHM (i) | ```Start-up variable, micro variable i=1,2,3.... number of firms``` | Yearly change in $M$ (profit margin). Change 1975-76 |
| CVA (j) | Start-up variable $j=1,2, \ldots 11$ | $\begin{aligned} & C V A=Q C \text { but in } \\ & \text { fixed prices } \end{aligned}$ |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| DELAY $\triangle I N V(i, j)$ | Start-up <br> variable <br> micro variable $i=1,2, \ldots$ <br> number of firms $j=1,2,3$ | Investments between plan and fulfilment. Three stages |
| $\begin{aligned} & \text { DP (i) } \\ & \text { DW (i) } \\ & \text { DS (i) } \\ & \text { DQ(i) } \end{aligned}$ | ```Start-up variables, micro variables i=1,2,..., number of firms``` | Yearly change <br> (a fraction) of $\mathrm{P}, \mathrm{W}$, $S$ and $Q$ respectively |
| DVA (i) | ```Start-up variable, micro variable i=1,2,..., number of firms``` | Change in VA (a fraction) |
| DUR | Index | DUR $=3$ |
| $\begin{aligned} & \text { E1 } \\ & \text { E2 } \end{aligned}$ | Constant, micro variable, parameter | Used in YEARLY EXPECTATIONS in the model. E2=0 at present (Jan. 1982) |
| ELINV | Constant, micro variable, parameter | An elasticity, reducing firms' desired new borrowing (and hence in vestments) whenever capacity utilization is low. Used in INVFIN. |
| ENTRY | Constant, parameter | A parameter regulating the inflow of new persons to the labour market (quarterly fraction of the total labour force) |
| EPS | Constant, micro variable, parameter | EPS $=0$ and thus redundant at present (Jan. 1982) |
| EXO $\triangle$ QCHTXVAI(j) | Exogenous <br> time-series | TAXVA2 = value added tax rate = |
| EXOAQCHTXVA2(j) | $j=1,2, \ldots N Q R$ <br> $\mathrm{NQR}=$ number of quarters in the simulation | "MOMS "EXO $\triangle Q C H T X V A 2$ is change in the "MOMSrate". TXVAl refers to investment goods. EXO $\triangle Q C H T X V A l$ is the change in that tax rate |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXO $\triangle$ QDINVBLD (j) | Exogenous time-series $j=1,2 \ldots N Q R$ $\mathrm{NQR}=$ number of quarters in the simulation | ```Quarterly change (a fraction) of QINVBLD = investments in residential construction``` |
| $E X O \triangle Q D I N V G(j)$ | Exogenous <br> time-series $j=1,2, \ldots N Q R$ <br> $\mathrm{NQR}=$ number of quarters in the simulation | Quarterly change <br> (a fraction) of QINVG = investments in the government sector |
| EXOADINVIN(j) | Exogenous time-series $j=1,2, \ldots N Q R$ <br> $\mathrm{NQR}=$ number of quarters in the simulation | Quarterly change <br> (a fraction) of QINVIN = investments in sectors 5, 6, ...10. |
| EXO $\triangle$ QDPFOR (i, j) | Exogenous <br> time-series <br> (a matrix) $\begin{aligned} & i=1,2,3,4 \\ & j=1,2,3 . . N Q R . \end{aligned}$ <br> $\mathrm{NQR}=$ number of quarters in the simulation. micro variable | The change (a fraction) <br> in foreign price index, <br> for each of the 4 <br> industrial sectors |
| EXO $\triangle$ QDPIN (i, j) | Exogenous timeseries $\begin{aligned} & i=5,6,7,8,9,10 \\ & j=1,2, \ldots N Q R \end{aligned}$ <br> $\mathrm{NQR}=$ number of quarters in the simulation | ```Quarterly change in domestic price index in sectors 5,6,7,8,9,10``` |
| EXO $\triangle$ REALCHLG ( ${ }^{\text {) }}$ | Exogenous time-series $j=1,2, \ldots N Q R$ $\mathrm{NQR}=$ number of quarters in the simulation | A variable (vector) telling the number of people to be added to the government sector each quarter (Government demand) |
| $E X O \triangle R I(j)$ | Exogenous <br> time-series <br> $\mathrm{NQR}=$ number of $j=1,2 . . . N Q R$ <br> quarters in the simulation | The rate of interest |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXO $\triangle$ RIBWFOR(j) | Exogenous time-series $j=1,2 \ldots N Q R$ $\mathrm{NQR}=$ number of quarters in the simulation | The foreign lending rate of interest |
| EXOARIDEPFOR(j) | Exogenous <br> time-series $j=1,2 \ldots N Q R$ <br> NQR = number of quarters in the simulation | The foreign deposit rate of interest |
| EXO $\triangle$ RSUBS (i, j) | Exogenous time-series, micro variable $i=1,2,3,4$ $j=1,2, \ldots N Q R$ $\mathrm{NQR}=$ number of quarters in the simulation. $i=$ sector index | Subventions to the individual firm, expressed as a fraction of sales. Equal for all firms in a sector |
| $\operatorname{EXO\triangle TXC}(\mathrm{j})$ | Exogenous time-series $j=1,2 \ldots N Y R$ NYR=number of years in the simulation | Corporate tax-rate (Tax on firms) |
| EXOATXII(j) | Exogenous time-series $j=1,2, \ldots N Y R$ NYR=number of years in the simulation | Income-tax rate <br> (for households) |
| EXO $\triangle$ TXI $2(\mathrm{j})$ | Exogenous <br> time-series | Some kind of income tax rate used in another version of the MOSESmodel than the present (Jan. 1982). Can't be omitted for technical reasons but redundant |
| EXO $\triangle T X W$ ( ${ }^{\text {j }}$ ) | Exogenous time-series $j=1,2$...NYR NYR=number of years in the simulation | Payroll-tax rate for the non-government sectors |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| EXO $\triangle$ TXWG ( j ) | Exogenous <br> time-series j=1,2...NYR NYR=number of years in the simulation | Payroll-tax rate for the government sector |
| EXPDW (i) | Start-up | Expected change |
| EXPDS (i) | variables, | (a fraction) in |
| EXPDP(i) | micro variables $i=1,2 \ldots$ number of firms etc. | P, W and S |
| EXPXDP | Constants, micro variables | Expected rate of price-change |
| EXPXDW | parameters | Expected rate of wage-change |
| EXPXDS |  | Expected rate of sales-change <br> These are the constant components of expectations, entered exogenously |
| FASS | Constant | Bank-parameter |
| FD | Constant | Bank-parameter |
| FIP | Constants, | Used in "Quarterly- |
| FIW | micro variables | Expectations" in |
| FIS | parameters | the model |
| Firstssimsyear | Technical variable, needed for simulation |  |
| Funds $\triangle$ are $\Delta$ enough | Constant | Bankparameter |
| F $\triangle I N K O P$ (i) | ```Information variable i=1,2,... number of firms``` | F $\triangle$ INKOP is not used in the model. Each firms's input share (fraction of production) of input goods, 1976. See Section 3.3, Part 2 |
| GAMMA | Constant, micro variable, parameter | A constant telling how big a wage increase is needed, for making a person leave his job for another job. GAMMA $=0.1$ at present |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| GKOFF ( j ) | $\begin{aligned} & \text { Constant } \\ & \mathrm{j}=1,2, \ldots .10 \end{aligned}$ | Government purchasing (less investments) in each sector, as a fraction of Government wage sum. GKOFF is a vector |
| HIS'TDP(i) <br> HISTDW(i) <br> HISTDS(i) | Constants, micro variables i=1,2, .. <br> number of firms | For each firm a timesmoothed average of its experienced (historical) price changes (HISTDP), wage changes (HISTDW) and sales changes (HISTDS) |
| HISTDPDEV(i) HISTDSDEV(i) HISTDPDEV(i) | Start-up <br> variables, <br> micro variables <br> $i=1,2, \ldots$ <br> number of firms | For each firm a timesmoothed average of the difference between actual and expected increase in price level, wage level and sales |
| HISTDPDEV2(i) HISTDSDEV2(i) HISTDWDEV2(i) | Constants, micro variables $i=1,2, \ldots$ number of firms | Redundant at present because E2 $=0$ |
| IMBETA | Constant, micro variable, parameter | Constant used to compute optimum input-goods inventory level $=0.5$ |
| IMBIG(i) | ```Constant, micro variable i=1,2,\ldots number of firms``` | Maximum inventory level (fraction of sales). Input goods |
| IMP(i) | ```i=1,2,3,4 Start-up variable micro variable``` | Import share in sectors 1,2,3,4 (the industrial sectors). Start-up value |
| IMP(j) | $j=5,6, \ldots 10$ <br> Constant, <br> nacro variable | Import share in external sectors 5,...l0. Constant. <br> NOTE: IMP is a start-up variable and a constant at the same time! |
| IMPLP $\triangle \underline{\text { REF }}$ | Technical variable needed for simulation |  |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| IMSMALL (i) | ```Constant, micro variable i=1,2,... number of firms``` | Minimum inventory level (fraction of sales). Input goods |
| IMSTO(i, j) | Start-up variable (matrix), micro variable $i=1,2,3$. number of firms $j=1,2,3, \ldots 10$ | Inventory level of input goods for each type of product (10 sectors). Fixed (1976 year's) prices |
| IN | Vector-index | Index for external sectors <br> IN $=5,6,7,8,9,10$ |
| INVEFF(i) | Start-up <br> variable <br> micro variable $i=1,2,3 \ldots$ <br> number of firms | The quotient change in QTOP investment QTOP $=$ potential maximum production level. Production function parameter |
| IO(i,j) | ```Constant, micro variable i=1...l0 j=1...10``` | ```Input-output coeffi- cients, lOxl0 matrix. Tells the share of pro- duction in sector j coming from sector i 10 \Sigma IO(i,j) + value i=1 added share = l``` |
| IO2 (i,j) | $\begin{aligned} & \text { Constant, } \\ & i=1,2,3,4 \\ & j=5,6, \ldots 10 \end{aligned}$ | Input-output coefficient Submatrix of IO(i,j) |
| IO3 (i, j) | $\begin{aligned} & \text { Constant, } \\ & i=5,6 . .10 \\ & j=5,6, \ldots 10 \end{aligned}$ | Input-output coefficients. Submatrix of IO(i,j), which is inverted during simulation |
| IOTA | Constant, micro variable, parameter | A constant used by firms to form their initial <br> wage offer in <br> LABOUR SEARCH. <br> IOTA=0.5 at present |
| K1 (i) | Micro variable start-up variable $i=1,2 \ldots$ number of firms | For each firm, the replacement value of its production equipment |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| K2 (i) | Micro variable start-up variable $i=1,2, \ldots$ number of firms | For each firm, its current assets last quarter 1976 |
| Kappal <br> Kappa2 | Constants | Bankparameters |
| Kıвоок(i) | Start-up <br> variable <br> micro variable | For each firm, the book value (1976) (for taxation purposes) of its production equipment |
| KSI | Constant, micro variable, parameter | A constant, used in LABOUR SEARCH which tells by how much a firm raises its own wage level after it has performed an unsuccessful attack <br> KSI $=0.25$ at present |
| L(i) | Start-up variable i=1,2... number of firms micro variable | Number of people in each firm. <br> Last quarter 1976 |
| Lamdal Lamda2 | Constants | Bank-parameters |
| Last LTXI2 $^{\text {dyear }}$ | Technical variable needed for simulation |  |
| Lastsyear | Technical variable needed for simulation | Last Lyear $=1976$ |
| LEFT(i) | ```Logical vector (start-up variable) i=1,2... number of firms``` | Logical vector indicating whether a firm is out of business or not. During simulation LEFT(i) takes the value zero if firm i is nullified (deleted) |
| LG | Start-up variable | Number of people employed in the government sector last quarter 1976 |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| LIQB | Start-up variable | The bank's holdings of "liquidity" of an unspecified nature. Updated in BANK UPDATE |
| LI QBFOR | Start-up variable | The bank's current holdings of foreign "liquidity" of an unspecified nature. Updated in BANK TRANSACTIONS |
| LOSS | Constant, micro variable, parameter | Used in connection with production function |
| LU | Start-up variable | Number of people unemployed last quarter 1976 |
| M ( i ) | Start-up variable micro variable $i=1,2 \ldots$ number of firms | Profit margin (profit/value added) for each firm the whole 1976 |
| MARKET (i) | Start-up variable micro variable $i=1,2,3 \ldots$ number of firms | MARKET (i)=1 or 2 or 3 or 4. This variable tells to which sector a certain firm belongs |
| MARKET $\triangle I T E R$ | Parameter | Telling the number of iterations in the product market process in the model |
| MAXDP | Constant, micro variable, parameter | ADJUST-PRICES in the model |
| Maxqchri | Constant | Bank-parameter. Maximum change in rate of interest |
| Maxri | Constant | Bank-parameter |
| Maxridiff | Constant | Bank-parameter |
| MB | Constant | Bank-parameter |
| Minri | Constant | Bank-parameter |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| MHIST (i) | Start-up <br> variable <br> micro variable <br> i=1,2,3... <br> number of firms | For each firm, an average of past profit margins (a fraction) |
| MKT | $\begin{aligned} & \text { "Vector index" } \\ & \text { MKT=1,2,3,4 } \end{aligned}$ | Index for industrial <br> sectors $=1,2,3,4$. In the <br> APL-language "vector <br> indices" are allowed. |
| MTEC(j) | ```Start-up variable micro variable j=1,2,3,4``` | On each market, sector 1,2,3,4, a technology factor of modern equipment (potentially produced units per person and quarter). Last quarter 1976. Production function parameter |
| NDUR | $\begin{aligned} & \text { "Vector-index" } \\ & =1,2,4,5 \ldots 11 \end{aligned}$ |  |
| NDUR $\triangle$ DUR | $\begin{aligned} & \text { "Vector-index" } \\ & =1,2,3,4 \ldots 11 \end{aligned}$ |  |
| NITER | Parameter | Telling the number of labour-market iterations in the labour market process in the model |
| NH | Constant | The number of households in the model |
| NMARKETS | Index | The number of industrial sectors in the model=4 |
| NWB | Start-up variable | The net value of the bank. Residual between assets and liabilities |
| OMEGA ( ${ }^{\text {) }}$ | Constant, micro-variable $j=1,2, \ldots 10$ | A distribution vector indicating how firms' outlays for investments are allocated on purchases from different model sectors. Assumed to be equal for all firms |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| OMEGABLD ( ${ }^{\text {) }}$ | $\begin{aligned} & \text { Constant } \\ & j=1,2, \ldots 10 \end{aligned}$ | A distribution vector indicating how investments in residential construction result in purchases from different model sectors |
| OMEGAG ( ${ }^{\text {) }}$ | Constant $j=1,2 \ldots 10$ | A distribution vector indicating how government investments result in purchasing from different model sectors |
| OMEGAIN(j) | Constant j=1, 2, ...10 | A distribution vector indicating how investments from external sectors $(5,6,7 \ldots 10)$ (less residential construction) result in purchases from different model sectors |
| ORI GMARKET (i) | $\begin{aligned} & \text { Vector } \\ & i=1,2 . \text {.. } \\ & \text { number of firms } \end{aligned}$ | Copy of the vector MARKET. Needed because MARKET will be changed during simulation |
| P (i) | Start up variable $i=1,2,3 \ldots$ micro variable | ```Yearly price index 1976 =100 for all i (IMPORTANT)``` |
| POSG | Start up variable | The government's net position in the bank |
| POSGFOR | Start up variable | The government's net foreign deposit/borrowing position 1976 |
| $\mathrm{P} \triangle \underline{\operatorname{REF}}$ ( $j$ ) | Constant $j=1,2 \ldots 10$ | Reference-price level. QPDOM+"value added tax" (=MOMS) value |
| Q (i) | $\begin{aligned} & \text { Start up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 \ldots \\ & \text { number of firms } \end{aligned}$ | ```Yearly production in each firm 1976, in fixed (1976) prices``` |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QC(j) | Start up variable j=1,2...11 | Each household's consumption of products from the 10 sectors. QC. (number of households) yields aggregate consumption. The llth component is redundant. Last quarter 1976. Current prices |
| QCHRI | Start up variable | Change in RI (rate of interest) |
| QCPI | Start up variable | Quarterly consumer price index. Last quarter 1976 |
| QDCPI | Start up variable | ```Quarterly change (a fraction) of quarterly price index QCPI. Last quarter 1976``` |
| QDI | Start up variable | Disposable income per household. QDI•(number of households)=aggregate disposable income. Last quarter 1976 |
| QDMTEC(j) | ```Constant micro variable j=1,2,3,4``` parameter | On each market, the rate of technology upgrade for production equipment (a fraction on quarterly basis). <br> Entered exogenously |
| QDPDOM (i) | ```Start up variable micro variable i=1,2...10``` | ```Change in QPDOM. A fraction. Last quarter 1976. lO sectors``` |
| QDWIND | Start-up variable | Average wage increase in the industry (sector $1+2+3+4$ ) during one quarter (a fraction) |
| QIMQ(i,j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & \text { micro variable } \\ & i=1,2,3 \ldots . . \\ & \text { number of firms } \\ & j=1,2 \ldots 10 \end{aligned}$ | Each firm's quarterly purchases of each kind of product ( 10 sectors). Fixed (1976) prices. Last quarter 1976 |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QINPAY | Start-up variable | Households' aggregate wage and capital income from the external sectors (sectors 5,6...10) during one quarter. Computed in EXTERNAL SECTORS. Last quarter 1976 |
| QINV (i) | Start-up <br> variable <br> micro variable <br> $i=1,2,3 \ldots$ <br> number of firms | Each firm's investments during a quarter. Will enter the bookkeeping next quarter (last quarter 1976). NOTE: QINV is in current prices |
| QINVBLD | Start-up variable | Investments in the construction sector last quarter 1976 |
| QINVG | Start-up variable | Government investments last quarter 1976 |
| QINVLAG(i) | ```Start-up variable micro variable i=1,2,3... number of firms``` | Each firm's investment plans during a quarter. (There is a couple of quarter's delay between plan and fulfilment of investment.) <br> Last quarter 1976 |
| QINVIN | Start-up <br> variable | Investments in sectors 5,6...10. <br> Last quarter 1976 |
| QP(i) | ```Start-up variable i=1,2... number of firms micro variable``` | Quarterly price-index <br> for each firm. <br> Last quarter 1976 |
| QPDOM (j) | Start-up variable (micro-variable to some extent) $j=1,2,3,4 \ldots 11$ | Domestic quarterly price index in the four industrial sectors last quarter 1976. Each firm has the same domestic price in a sector |
| QPFOR(j) | ```Start-up variable j=1,2,...4 micro variable``` | The foreign price index last quarter 1976. 4 sectors. Each firm has the same foreign price in a sector |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| QPH ( ${ }^{\text {) }}$ | Start-up variable j=1,2...11 | Domestic prices for households for 10 sectors. The ll:th component is redundant, but must be there for technical reasons |
| QQ (i) | Start-up variable micro variable | Same as Q, but applies to quarter instead of year. Last quarter 1976 |
| QS (i) | Start-up variable micro variable | Same as S, but quarterly variable. Last quarter 1976 |
| QSAVHREQ | Start-up | One quarter's reduction in aggregate household borrowing |
| QTOP (i) | ```Start-up variable micro variable i=1,2,3... number of firms``` | Potential maximum production in each firm's production function Last quarter 1976 |
| QTDIV | Start-up variable | One quarter's aggregate payments of dividends from firms to households Last quarter 1976 |
| QTTAX | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \end{aligned}$ | Total tax receipts by the government during one quarter. Updated in GOVERNMENT ACCOUNTING. Last quarter 1976 |
| QVA (i) | Start-up variable micro variable | Same as VA, but last quarter 1976 instead of the whole year |
| QW (i) | ```Start-up variable micro variable``` | Same as W, but refers to quarter instead. (Wage is expressed as the yearly wage-sum though) |
| QWG (i) | ```Start-up variable micro variable i=1,2... number of firms``` | Same as WG, but refers to last quarter 1976. (Still expressed as early wage-level) |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| R | Constant, micro variable parameter | Used in YEARLY-EXPECTATIONS in the model |
| REDCHBW | Constant, micro variable parameter | Maximum allowed change in borrowing (fraction of borrowing) |
| RES (i) | ```Start-up variable micro variable i=1,2... number of firms``` | Parameter connected with the production function |
| RESDOWN | Constant, micro variable parameter | Used in connection with production function |
| RESMAX | Constant micro variable, parameter | ```A constant telling maximum slack any firm can possibly have RESMAX = 0.2 (Jan. 1982)``` |
| RET | Constant, parameter | Retirement rate on the labour market (a fraction on quarterly basis) |
| RHO | Constant micro variable parameter | Physical depreciation rate of production equipment (a fraction on quarterly basis) |
| RHOBOOK | Constant micro-variable, parameter | Maximum allowed depreciation rate of production equipment, for taxation purposes. A fraction quarterly basis |
| RHODUR | Constant, parameter | Depreciation rate of consumer durable goods (a fraction on quarterly basis) |
| Rfundl <br> Rfund2 | Constant | Bank parameters |
| RI | Start-up variable | Rate of interest (a fraction). <br> Last quarter 1976 |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| R1D1S $\triangle$ EXOGENOUS | Logical <br> variable | R1 $\triangle 1 \mathrm{~S} \triangle$ EXOGENOUS $=1$ means that EXO $\triangle$ RI will be used, i.e. rate of interest will be exogenous |
| RLU | Constant, parameter | Fraction used in HOUSEHOLD INIT to compute unemployment compensation in proportion to average wage level in the industry. RLU=0.6 (Dec.1982) |
| RSUBS $\triangle$ CASH (i) | ```Constant micro-variable i=1,2,3... number of firms parameter``` | Government subventions to individual firms. Temporary subvention. The amount is expressed as a fraction of sales |
| RSUBS $\triangle$ EXTRA (i) | ```Constant micro variable i=1,2... number of firms parameter``` | Government subventions to individual firms expressed as a fraction of sales in the firm. Nontemporary subvention |
| RTD | Constant <br> micro variable <br> parameter | Ratio between firms' dividend payments and corporate taxes |
| RTRANS | Constant, parameter | Ratio between total transfer payments to households (less unemployment compensation) and total taxes. Used in HOUSEHOLD INIT; assumed constant |
| RU | Start-up variable | Rate of unemployment (fraction of total labour-force) last quarter 1976 |
| RW (i) | ```Constant, micro variable i=1,2... number of firms parameter``` | A constant giving firms' desired amount of work ing capital (K2) as a fraction of current yearly sales |
| S(i) | ```Start-up variable micro variable i=1,2,3... number of firms``` | Yearly sales in each firm (current prices) 1976 |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| SAV | Index. SAV=12 |  |
| SHARE (i) | ```Constant, micro variable \(i=1,2 \ldots\) number of firms``` | ```SHARE(i) = individual firm's input share average inputshare in sector See Section 3.3``` |
| SKREPA | Constant, parameter | A constant factor by which the probability for the pool of unemployed to be selected at a labour market attack is upgraded, as compared with the probability for any firm to be selectd. Used in CONFRONT |
| SMALL (i) | Constant, micro variable $i=1,2,3 \ldots$ number of firms | Minimum inventory level (fraction of sales) Finished goods |
| SMOOTH(j) | $\begin{aligned} & \text { Constant } \\ & \mathrm{j=1,2} \mathrm{\ldots .12} \end{aligned}$ | Used in the household part of the model |
| SMP | Constant, micro variable, parameter | This variable is used by firms to (each year) time-smooth their priceexperiences. Equal for all firms |
| SMS | Constant <br> micro-variable <br> parameter | This variable is used by firms to (each year) <br> time-smooth their sales experiences |
| SMT | ```Constant micro variable value jan-82: 0.5 parameter``` | This variable controls how quickly the profittarget is changed between two quarters. Equal for all firms |
| SMW | Constant, micro variable, parameter | Used by firms to (each year) time-smooth their wage experiences |
| STO(i) | ```Start-up variable micro variable i=1,2,3... number of firms``` | Inventory level of finished goods. Fixed (1976 year's) prices. Last quarter 1976 |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| STODUR | Start-up variable | Each household's stock of durable goods, current prices, last quarterl976 |
| TEC(i) | ```Start-up variable i=1,2... number of firms``` | Parameter connected with the production function of the individual firm |
| THETA | Constant micro-variable parameter | Parameter used in the labour market-process in the model |
| Thistyear | Technical <br> variable needed for simulation | $=1976$ |
| TMFASS | Constant | Bank-parameter |
| TMFD | Constant | Bank-parameter |
| TMIMP(j) | ```Constant j=1,2,3,4 micro variable parameter``` | Time constant for Swedish consumers to adjust import share (of demand) in each of the 4 industrial sectors |
| TMIMSTO | Constant micro variable parameter | Constant used for inventories. See the PLANQRE-VISE-part of the model. Has to do with adjust-ment-speed to optimum inventory level |
| TMINV(j) | ```Constant micro variable j=1,2,3,4 parameter``` | Average delay time to install investments in new production equipment Used in INVFIN; assumed to be equal for all firms in a sector. Sectors 1,2,3,4 |
| THMSTO | Constant micro variable parameter | Constant used for inventories. See the PLANQRE-VISE-part of the model. Has to do with adjust-ment-speed to achieve optimum inventory level |
| TMX ( ${ }^{\text {) }}$ | ```Constant micro-variable j=1,2,3,4 parameter``` | Time constant for firms when they adjust export share. Common to all firms in a sector |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| TSTOCURF(j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & j=1,2,3,4 \end{aligned}$ | For each industrial sector (1..4) the aggregate finished goods inventories at current factor prices |
| TSTOCURM(j) | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \\ & =1,2,3,4 \end{aligned}$ | For each industrial sector, the aggregate finished goods inventories at current market prices |
| TXI3 | Technical variable needed for simulation |  |
| TXVAI | Start-up variable | Value added tax, last quarter 1976. Compare with EXO $\triangle Q C H T X V A 1$ |
| TXVA2 | Start-up variable | Value added tax rate $=$ "Moms". <br> Last quarter 1976 |
| VA (i) | ```Start-up variable micro-variable i=1,2,3... number of firms``` | Valued added for each firm 1976. Current prices in the model |
| UTREF | Constant <br> micro-variable | A "reference" level of capacity utilization. Used in INVFIN when firms form their desired new borrowing and correct it for their current degree of utilization. Assumed equal for all firms |
| W(i) | ```Start-up variable micro-variable i=1,2,3... number of firms``` | Wage-sum per employee (expressed as wage sum per year) the whole 1976 |
| WG | $\begin{aligned} & \text { Start-up } \\ & \text { variable } \end{aligned}$ | Wage level in government sector 1976. Expressed as: yearly wages/number of people |


| Code | Type | Used in (purpose) |
| :---: | :---: | :---: |
| WG $\triangle$ REF | Copy of WG for technical reasons |  |
| WH | Start-up variable | Each household's wealth <br> last quarter 1976 <br> (current value of its bank deposits) |
| WHRA | Start-up variable | Each household's so called wealth ratio (quotient between bank deposits and quarterly disposable income) |
| WSG | Start-up variable | Total government wage sum last quarter 1976. Expressed as yearly wage sum |
| WTIX | Constant WTIX=1 | Probably redundant, at present |
| X (i) | Start-up variable micro-variable $i=1,2,3,4, \ldots$ number of firms | ```Export share (exports/ production) for each firm in the 4 industrial sectors. Last quarter 1976``` |
| XIN(j) | Constant $j=5,6, \ldots 10$ | Export share (exports/ production) in external sectors (5,6...10) |
| Z | $\begin{aligned} & \text { Index } \\ & \mathrm{Z}=11 \end{aligned}$ |  |

The names of all the model-variables are stored in a workspace VLISTS.

The contents of this workspace are listed below. The names are stored in the text-variables:

VARIABELGRUPP1,...VARIABELGRUPP5, GRUPPl.

Two functions COPYSAVE and KIWL are also stored in this workspace (documented in Appendix C).

## NPPEENDIX A: WORISSACE VLISTS

```
GOKUMENOKUMENTATION
A LIOCUMENTATION:
A COMPLETE LISTS OF OUTPUT-VARIAELES FROM INITIALIZATION
A VARIABELLISTAI= EXOGENOUS VARIAELES
A VARIAEELLISTA2= ENIIOGENOUS VARIAELES
A VARIAEELLISTA3= CONSTANTS
A VARIAELELISTA4,VARIAEELLISTAS= OTHER VARIAELES (TECHNICAL)
A GRUPPI = VARIAELES WHICH ARE TAKEN IIIRECTLY FROM INPUT-
A WORKSPACE MACRO.
A
A IF NEW VARIAGLES ARE AIIEEI TO THE INITIALIZATION,THE
A VARIAELELISTS AEOVE HAVE TO BE UPIIATEII WITH THE NEW
A VARIAELES,OTHERWISE THE VARIABLES WILL EE IIELETEI
& IN THE FUNCTION OUTPUTAOPERATIONS.
A FREIIRIK FERGHOLM , DEC 1981
```



## APPRIDIX A: WORRSPACIB VLISTIS

VARIABELGRUPP1
EXOARSUBS QINVG EXOAREALCHLG EXOAQIINVG GKOFF OMEGAG XIN IMP IO IO2 IO3
OMEGA OMEGABLI QINVELI QINVIN EXOAQIINVIN EXOAQIINVELI QPFOR EXDA
QIIPFOR EXOAQIIPIN SHARE QIMTEC EXPXIP EXPXDW EXPXIS RET ENTRY EXO $\triangle Q C H T X V A 1$ EXDAQCHTXVA2 MTEC WSG RSUESAEXTRA RSUESACASH NH OMEGAIN EXOATXC EXOATXII EXOATXW EXOATXWG EXOARI EXOARIEWFOR EXOARIIIEPFOR RET ENTRY EXOAQIINVELII

VARIAEELGRUPP2
LG QWG WG LU IMP QPIIOM X HISTIP HISTIW HISTIS HISTIIPIEV2 HISTIWIIEV2 HI STISIEV2 MHIST QIMQ L EXPIIP EXPIIW EXPIIS IIP IIW IS DQ QP QW QS QQ Q STLSIEV2 MHIST QIMQ L EXPIIP EXPIW EXPIS IIP IW IV S W VA MVA AMAN IMSTO STO QTOP TEC RES K1 K2 BW INVEFF QINV QINVLAG IIELAYAINV QTDIV KIBOOK QIWINI RE KI K2 TSTOCURF TSTOCURM QPH WH WHRA QC CVA QIICPI STOLIUR QSAVHREQ QCPI KAEOOK QIIP IIOM HISTIIPIEV HISTIWIÉV HISTIISIEV CHM QIII

## APPEETDIX A: WORKSPACE VLISTS

VARIABELGRUPP3
HETA TMSTO IMEIG IMSMALL TMIMSTO IMEETA RHO RHOHOOK RESMAX LOSS RESNOWN WTIX RW ALFAEW EETAEW ELINV RTI TMINV EPS TMX TMIMP RLU MAXIIP UTRE F-R E1 E2 SMP SMW SMS FIP FIW FIS GAMMA THETA KSI SKREPA IOTA SMAL L BIG RTRANS POSGFOR TMFASS TMFII FII FASS KAPPA1 KAPPA2 RFUNII RFU NII LAMIIA1 LAMIIA2 MAXQCHRI ME MAXRIIIIFF MINRI MAXRI FUNIISAAREDENOU GH RHOIUR ALFA3 ALFA4 BETA1 EETA2 EETA3 SMOOTH SMT BAII REIICHEW

VARIAEELGRUPP4
RIAISAEXOGENOUS MARKET MKT IN NDURAIUR LIUR NITER MARKETAITER SAV Z NIUR LEFT

## WGAREF VARIABELGRUPPS

GRUPP1
TXVA1 TXVA2 RI NWE LIQB POSG LIGEFOR RU QCHRI QTTAX QINPAY LASTAYEAR HISAYEAR FIRSTASIMAYEAR AKANAYEAR LASTATXI2AYEAR NMARKETS EXOATXI2 IMPLPAREF TXI3

## APPIENDIK B1 MACRO- ARD MICRO-MATA DOCUMENTATION DEC. 1983 <br> WORKSPACE MACRO AND SI76

All variables (dec 83) in workspace MACRO are listed in this appendix. This is a complete documentation of the macro data base. The micro data base is also complete, although firm variables are not printed since they are confidential. This appendix is needed as a pattern if one wants to initialize the micro-to-macro model for another starting year.

There are also 3 functions in workspace MACRO. They are used to form certain variables during the initialization procedure (AGGRITAX and TLAESPAPRIISA76) or before the initialization (CORPRAIO).

The variables are:

| AMAN $\triangle$ YEAR | BL.D $\triangle$ RATEl | BLD $\triangle$ RATE2 | EXO $\triangle$ QTXVAI |
| :---: | :---: | :---: | :---: |
| EXOAQTXVA2 | EXO $\triangle$ RI | EXOARIBWFOR | EXOARIDEPFOR |
| EXO $\triangle$ TXC | EXOATXII | EXO $\triangle$ TXI2 | EXO $\triangle$ TXW |
| EXO ${ }^{\text {dTXWG }}$ | FIRSTASIM $\triangle$ YEAR | G $\triangle$ RATEl | G $\triangle$ RATE 2 |
| HIST $\triangle$ TXVA 2 | HOURS $\triangle$ PER $\triangle$ YEAR | HUSHALLSDEP | IMPL $\triangle$ PRIS |
| IMPL $\triangle$ PRIS $\triangle I N$ | IMPLP $\triangle$ REF | IN $\triangle$ RATE1 | IN $\triangle$ RATE2 |
| INIT $\triangle$ GROWTH | 1076 | IOCOEFF76 | LAST $\triangle T X I 2 \triangle Y E A R$ |
| LASTAYEAR | LGTRENDCH | LIQB | LI QBFOR |
| LON | LON $\triangle$ OFF | MACROLIST | NMARKETS |
| NWB | POSQ | QCHRI | QINPAY |
| Qttax | RI | RU | SALES 76 |
| THIS $\triangle$ YEAR | TIM | TIM $\triangle$ OFF | TL $\triangle$ EXP |
| TRENDM | TXC | TXII | TXVA1 |
| TXVA2 | TXVAZ | TXW | RSUBS |

## APPIENDIX B1 WORKSPACE MACRO

RLIIARATE2
1.0027 g .

ExDAatXVal
00000
exdagtivaz
$0.150 .15 \quad 0.1$
$0.564 \begin{aligned} & \text { EXOATXC } \\ & 0.59 ~ \\ & 0.5\end{aligned}$
0.5640 .580 .5750 .575
39.2 EXOATXI

ExOatXI2
0.000551240 .0005466

EXOATXW
0.2880 .2890 .2880 .294

EXOATXWG
0.3070 .3090 .3090 .312

EXDARI 0.171 0.171Value added tax . Quarterly series starting with first quarter 1977
0.09810 .09860 .09790 .0980 .0987 Rate ofterest, quarterly series starting with first quarter 1977 .




Probably redundant (jan 1982), but needed for technical. reasons
Growth-rate of investments in residential housing,1976
Long term growth rate,investments in residential housing. (yearly change)
Value added tax on invostmonta goods. Quartarly arian atarting with first quarter 1977. Tax-rate,firms.Yearly series starting with 1977. Income-tax rate, households.Yearly series starting with 1977 Frobably redundant,but needed for technical reasons.

Wage-tax rate.Yearly series starting with 1977
Wage-tax rate,goverment sector. Yearly series starting with 1977.

## APPIENDIX B1 WORKSPACE MACRO

## FIRSTASIMAYEAR

RATE1
1.08732

GARATE?
1.03269 HISTATXVA?

| 0.15 | 0.12 |
| :--- | :--- |
| 0.15 | 0.15 |
| 0.15 | 0.15 |
| 0.15 | 0.15 |

$0.15 \quad 0.15$
HOURSAPERAYEAR
1600
hUSHALSDEEP
1.133900000 E 11

IMPLAPRIS
$88.27192527 \quad 94.18785677 \quad 100$
$84.99043977 \quad 96.36711281 \quad 100$
. 23072889 89.77451494
82.2360953589 .78433598
0.12
0.15
0.15
0.17

IMPLAPRISAIN
$\begin{array}{lll}74.98647333 & 90.96869026 & 100 \\ 74.104440123 & 96.87819857 & 100 \\ 83.47457627 & 85.2672751 & 100\end{array}$
75.1002004
75.1002004
83.97033657
81.640625 87.6252505 89.50370793 $89.67633929 \quad 100$

First year of simulation. 77 stands for 1977 . Growth-rate of investments in the Goverment-sector,1976.

Long term growth-rate,investments in the government-sector, yearly change.
0.15 VALUE-ADDED TAX " "moms"
0.15 Rows: Years ,starting with 1974
0.171 Columns: Quarters .

Average number of working hours per year,1976.Roughly.
Household's bank deposits 1976.
107.3170732 YEARLY PRICE-INDEX SERIES, domestic prices.
103.5.372849 Rows: Sector $1,2,3,4$ (Industrial sectors)
$111.801+7673$
Columns: Years;1974,1975,1976,1977

YEARLY PRICE-INDEX SERIES, domestic prices.
111.1.604083 Rows: Sector 5,6,7,8,9,10
94.06345957 Columns: Years;1974,1975,1976,1977
108.8657106
11.1.8653736
111.1049107

## APPEINIDIX B1 WORKSPACE MACRO

Value added shares,from input-output matrix 1976.
 This variable is used in some print-

Growth rate of investments in non-industrial sectors (sector 5,6..10),1976.
Long term growth rate of investments in non-industrial sectors, (yearly
Growth rate, labour productivity in the 4 industrial
sectors (sector $1,2,3,4$ ). Used in function secondarydata in
the initialization procedure.

## APPENDIX B1 WORKSPACE MACRO

INPUT-OUTPUT matrix , 1976,in kr, expressed in 1975 year's prices.
14 rows and 21 columns


The 11 remaining columns.Final Demand side of the matrix.

| 1076 |  |  |
| ---: | ---: | ---: |
| 758 | 5399 |  |
| 1953 | 9075 | 558 |
| 3522 | 14903 | 31.10 |
| 5102 | 55944 | 112 |
| 243 | 6807 | 0 |
| 81 | 24 | 0 |
| 374 | 2346 | 0 |
| 2929 | 26970 | 17893 |
| 973 | 3580 | 0 |
| 8849 | 30617 | 379 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 24785 | 155664 | 22052 |

0
0
0
0
0
0
0
1.24 .36
0
0
0
0
0
124.36
0
869
4836
175
128
0
0
4682
0
59.1
0
0
0
1128.1
380
2170
10231
132
408
0
0
765
0
0
0
0
0
14085
2754
1135
1687
752
-95
67
188
1067
-76
-316
0
0
0
7163

| 12137 | -11478 | 214 |
| ---: | ---: | ---: |
| 14735 | -12965 | -5329 |
| 29947 | -24563 | -7896 |
| 7450 | -15980 | -29493 |
| 1351 | -3597 | -3763 |
| 1134 | -3015 | 2230 |
| 1778 | -6491 | -6025 |
| 7062 | -14453 | -6221 |
| 31.9 | -306 | -421 |
| 10370 | -16362 | 29496 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 86284 | -99209 | -27209 |

32933
35423
62558
55738
19341
4413
9247
9738
117881
0
0
0
430440

## APPENDIX B1 WORKSPACE MACRO

INPUT-OUTPUT coefficients estimated from IO76. Vertical sum=1.13 rows, 19 columns.
See function COEFFAIO

$$
\begin{aligned}
& \text { on p. } 12 \\
& \text { The first }
\end{aligned}
$$

in this appendix. See also section 3 .

|  | IOCOEFF76 |  | The first 10 columns |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.16 | 0.08 | 0.09 | 0.02 | 0.01 | 0.02 | 0.00 | 0.05 | 0.10 | 0.02 |
| 0.06 | 0.15 | 0.08 | 0.08 | 0.05 | 0.03 | 0.00 | 0.04 | 0.02 | 0.02 |
| 0.03 | 0.07 | 0.20 | 0.02 | 0.03 | 0.05 | 0.00 | 0.07 | 0.02 | 0.03 |
| 0.02 | 0.07 | 0.03 | 0.27 | 0.11 | 0.02 | 0.00 | 0.03 | 0.01 | 0.06 |
| 0.07 | 0.06 | 0.01 | 0.19 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
| 0.09 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.13 | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.05 | 0.01 |
| 0.04 | 0.03 | 0.05 | 0.02 | 0.07 | 0.04 | 0.00 | 0.12 | 0.07 | 0.08 |
| 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.01 | 0.03 | 0.01 |
| 0.10 | 0.09 | 0.09 | 0.08 | 0.09 | 0.15 | 0.00 | 0.10 | 0.04 | 0.222 |
| 0.00 | 0.00 | 0.00 | -0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
| 0.27 | 0.41 | 0.44 | 0.35 | 0.59 | 0.57 | 0.00 | 0.55 | 0.66 | 0.55 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |

## APPENDIX B1 WORKSPACIE MACRO



## APPENDIX B1 WORKSPACE MACRO

LONAOFFF
$5.807200000 \mathrm{E} 10 \quad 6.994700000 \mathrm{E} 10$
Nmarkets
NWB
7.779457670 E 10
7.396300000 E 1

QCHRI
0.0002

QINPAY
3.240000000 E 10
3.7800000000E1
$0.0979^{\mathrm{RI}}$
RU
0.016

SALES76*)
. 9132906 SALES76*
3.7885146400 E 10 THISAYEAR

76
"Year counter"in the model
$04338800 \quad 264942430 \quad 60686511.0 \quad 398119570$
TIMAOFF

Total wage-sum in the goverment-sector. 1976 and 1977.

Number of industrial sectors in the model. (=4)
See appendix A. 1976.
See appendix A.1976.
Change in rate of interest,last quarter 1976.
See appendix A.Last quarter 1976.
Total tax receipts by the government,last quarter 1976
Rate of interest,last quarter 1976.
Rate of unemployment,1976

14659500001498760000 Total number of working-hours
Total number of working-hours sector. 1976 and 1977
*) Since 1983 the following variable is,usually,used instead of SALES76:

NYSALEST6
$3.660000000 \mathrm{E} 10 \quad 3.930000000 \mathrm{E} 10 \quad 6.950000000 \mathrm{E} 10 \quad 6.180000000 \mathrm{E} .10$

## APPENDIX B1 WORKSPACE MACRO

Export price index, the four industrial sectors. (sector $1,2,3,4$ ) Price-series, 38 quarters. 1971:1 .. 1980:2
These serles are used to form future price-series.See function TLAESP $\triangle{ }^{P R I S} \triangle^{76}$ on p. 12 in this appendix.


| 1.01 |  |
| :---: | :---: |
|  | 108.3 |
|  | 190.4 |
|  | 185.1 |
|  | 1.78 .1 |
|  | 252 |
| 1.00 |  |
|  | 109.2 |
|  | 188 |
|  | 184.8 |
|  | 201.1 |
|  | 258.6 |
| 99.6 |  |
|  | 110.3 |
|  | 14.1 |
|  | 173.2 |
|  | 202.8 |
|  | 235.1 |
| 100.5 |  |
|  | 112.3 |
|  | 1.45 .5 |
|  | 167.8 |
|  | 203.3 |

98.6
100.2
100.2
100.4
101.5
$115.8 \quad 101.51 .8$
$148.2 \quad 150.3$ $170.5 \quad 178.2$ $204.1 \quad 208.3$

| 96.5 |  |
| :---: | :---: |
|  | 132.3 |
|  | 177.1. |
|  | 183 |
|  | 193 |
| 101.8 |  |
|  | 118.2 |
|  | 190.6 |
|  | 1.84 .2 |
|  | 207 |
| 101.5 |  |
|  | 115.9 |
|  | 150 |
|  | 179.9 |
|  | 209.9 |
| 101.5 |  |
|  | 118.7 |
|  | 150.3 |
|  | 178.2 |
|  | 208.3 |

95.2
143.9
172.6
182.6
203.9
95168.
173.
173.
186.7
210.2
105.7
$\begin{array}{ll}7 & 105 .\end{array}$
$\begin{array}{ll}149.4 & 163.5 \\ 184.9 & 192.4\end{array}$
228.8
104.8
127.9
157.

157
188.9
188.9
1.03 .2
122.9
152.6
183.5
183.5
219.8
219.8
$\begin{array}{lll}184.9 & 182.4 & \\ 195.9 & 199 & \text { SECTOR } 2\end{array}$
96.6

177 SECTOR 1
$177.3^{\text {SECTOR }}$
180.4
1
$\stackrel{\rightharpoonup}{\omega}$
$\dot{0}$
108.1
131.2
165.2
190
1.90 .5
106.3
139.5

162 SECTOR 4
191.7
226.8
226.8

## APPERNDIX B1 WORKSPACE MACRO

| $\begin{gathered} \text { TRENDM } \\ 0.0133237 \end{gathered}$ |  |
| :---: | :---: |
| 0.00840916 |  |
| $0.01729822$ |  |
|  |  |
|  |  |
| 0.0141188 |  |
| $0.561{ }^{\text {TXC }}$ |  |
|  |  |
|  | TXII |
| 0.354 |  |
|  | TXVA1 |
| 0 - |  |
|  | TXVA2 |
| 0.15 |  |
|  | TXW |
| 0.267 |  |
|  | TXWG |
| 0.277 |  |
|  | RSUES |
| 0 |  |
| 0 |  |
| 0 |  |
| 0.035 |  |

Trend change (quarterly change) in domestic price index for sector 5,6..10

Corporate tax-rate. 1976.
Income tax-rate (households). 1976
Value added tax,investment goods.Last quarter 1976.
Value added tax-rate,"moms". Last quarter 1976.
Wage-tax rate . 1976.
Wage-tax (government-sector) rate. 1976 .
Subventions to the 4 industrial sectors, (sector $1,2,3,4$ ).
1976-. Food subventions " to sector 4.
Subventions are expressed as fractions of sales in each sector.

## APPENDIX B1 WORKSPACE MACRO

VAgGritaxc.[]D
R+AGGRITAX Y
1] $\mathrm{R}+\mathrm{TXIIXY}$

This function estimates income-tax, in $k r$
Usage: See function QDI_INIT,subfunction in appendix $C$.
$\nabla \begin{gathered}\text { VCOEFFAIOLIJV } \\ \text { COEFFDIO;S;SUMMA ; SUMMAMAT }\end{gathered}$
COEFF $\operatorname{LIO}$; S ; SUMMA ; SUMMAMAT
[2]
UMMAt $+/[11076$
[3] SUMMAMATt(13 19) ¢SUMMA
[4] IOCOEFF76+S $\div$ SUMMAMAT
[6] IOCDEFF76[;7]+0
Q VTLAEXPAPRISA76LLIV

- VTLAEXPAPRISATGLITJ R TLAEXPAPRTSAT6 $N$;AR;CYCL; DU;DUM; DUMMY;FUT
1] EXPORT-PRICE CHANGES WITH NEW LIATA, COVERTNG PERIOI
[2] A 1971:1 THROUGH $1980: 2$
[3] A OUTPUT IS QUARTERLY CHANGES FROM 1 Q-76 UP TO ENII OF
[4] A SIMULATION =ARG. N. DUR AND NDUR UN THE AVER-
[4] SIMULATION $=$ ARG. N. HUR ANI NHUR ON THE AVER-
[5] A AGE TRENI $1971-76$. RAW ANI IMEII WITH A CYCLE FROM
$\begin{array}{ll}\text { [5] A AGE TRENL 1971-76. RAW ANII JME } \\ {[6]} & \text { A } 1980: 3 \text { AS THE ONE FROM } 1975: 1\end{array}$
[7] ARt (1 $\downarrow \rho \mathrm{TLAEXP})$
[8] FUT $+(1+4 \times N)-(-1+A R-22$
[9] CYCL $(-16+1 \downarrow \rho T L \triangle E X P)$
$[10] \quad$ DUMMY $+(-1+(T L \Delta E X P[; 1+\mid A R-1] \div T L \Delta E X P[; A R-1])$ )
[11] DUM\& 0 (T) (TLUEXP


[14] ATEMPORARY CHANGE $4 / 12$ 1980,TO LOWER FOREIGN JNFLATJON RATE
[15] RGUMM, IU


## APPENDIX B1 FORRSPACE SI76 - MICRO DATA

A vector telling what firm-group a certain firm belongs to




## Firm-code.

1,01 LIST 1.031 .071 .081 .091 .121 .131 .171 .181 .261 .291 .411 .442 .012 .022 .032 .062 .072 .122 .132 .192 .21


 $1.91 \quad 1.92 \quad 1.93 \quad 3.91 \quad 4.91 \quad 4.924 .934 .94$

A vector telling what sector (1,2,3 or 4) a certain firm belongs to.


[^16]
## APPENDIX B2 MACRO DATA 1982 (WORKSPACE MACR82)



## APPENDIX B2 continued



APPENDIX B2 continued

| 1076. |  | INPUT-OUTPUT ma |  | 1982, | ws an | Im | s, below | he first | 10 columns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11036 | 7975 | 12347 | 26.57 | 553 | 116 | 0 | 8227 | 2909 | 5804 |
| 5839 | 16460 | 13209 | 11039 | 2764 | 261 | 0 | 11600 | 1271 | $1339 \%$ |
| 176.3 | 6031 | 24926 | 1301 | 857 | 224 | 0 | 11136 | 420 | 7236 |
| 1364 | 6102 | 3607 | 267:32 | 3888 | 75 | 0 | 4041 | 171 | 15960 |
| 4965 | 5292 | 695 | 19734 | 748 | 1 | 0 | 3155 | 0 | 8:24 |
| 5481 | 0 | 0 | 0 | 0 | 109 | 0 | 0 | 0 | 0 |
| 8597 | 1670 | 381 | 540 | 275 | 243 | 0 | 1997 | 1494 | 2428 |
| 1305 | 1360 | 3331 | 0 | 1953 | 35 | 0 | 16617 | 1567 | 20444 |
| 2023 | 2765 | 1286 | 1158 | 557 | 205 | 0 | 2562 | 1063 | 3447 |
| 7265 | 96.72 | 13108 | 8863 | 3778 | 75.5 | 0 | 18508 | 1497 | 71042 |
| 0 | 0 | O | 0 | O | 0 | 0 | 0 | 0 | 0 |
| 9246 | 31097 | 46845 | 33819 | 20429 | 2549 | 0 | 104724 | 17080 | 147745 |
| 0 | -373 | -1103 | -1456 | -327 | 0 | 0 | -1153 | 276 | -304s |
| 58383 | 88047 | 118635 | 104416 | 35474 | 4626 | 0 | 181413 | 27175 | 285284 |

The remaining 11 columns. Final demand side of the matrix

| 076 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1710 | 10900 | 0 | 0 | 0 | 281 | -12\%0 | 20367 | -25254 | 566 | 58694 |
| 4405 | 18000 | 0 | 0 | 2050 | 1610 | - 1500 | 43914 | -42223 | -14093 | 8804\% |
| 5700 | 30800 | 126.73 | 0 | 11408 | 13573 | -2841 | 164969 | -5045s | -20883 | 118635 |
| 11510 | 115000 | 0 | 0 | 412 | 100 | -202 | 18523 | -24372 | -77994 | 104416 |
| 546 | 13000 | 0 | 0 | 300 | 300 | 427 | 1967 | -6530 | -9952 | 35474 |
| 132 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | 0 | 2828 | -2596 | -1373 | 4626 |
| 845 | 14500 | 0 | 0 | 0 | 0 | -90 | 3703 | -20652 | -15931 | 0 |
| 6.15 | 67000 | 28742 | 27023 | 11043 | 570 | -54 | 12381 | -2167 | -16907 | 1:31413 |
| 2198 | 11800 | 0 | 0 | 0 | 0 | -490 | 340 | -6.24 | -1117 | 27175 |
| 19970 | 52000 | 0 | 0 | 1394 | 0 | -950 | 33128 | -32754 | 78006 | 235234 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7733 | 0 |
| 53681 | 353000 | 41415 | 27023 | 26611 | 16234 | $-6990$ | 202620 | $-208130$ | -71955 | 90.395 |

NOTE: The name of the matrix is misleading. A more logical name would have been 1082. We have, however, refrained from changing names of variables.

## APPENDIX B2 continued

INPUT-OUTPUT coefficients for 1982 estimated from 1076 on the previous page. The matrix contains 13 rows and 19 columns. The vertical sum is equal to 1.0

| IGCOEFF76 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.19 | 0.09 | 0.10 | 0.0 .3 | 0.02 | 0.03 | 0.00 | 0.05 | 0.11 | 0.02 |
| 0.10 | 0.19 | 0.11 | 0.11 | 0.08 | 0.06 | 0.00 | 0.06 | 0.05 | 0.05 |
| 0.03 | 0.07 | 0.21 | 0.01 | 0.02 | 0.05 | 0.00 | 0.06 | 0.02 | 0.03 |
| 0.02 | 0.07 | 0.03 | 0.26 | 0.11 | 0.02 | 0.00 | 0.02 | 0.01 | 0.06 |
| 0.08 | 0.06 | 0.01 | 0.19 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
| 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.15 | 0.02 | 0.00 | 0.01 | 0.01 | 0.05 | 0.00 | 0.01 | 0.05 | 0.01 |
| 0.02 | 0.02 | 0.03 | 0.00 | 0.06 | 0.02 | 0.00 | 0.09 | 0.06 | 0.07 |
| 0.03 | 0.03 | 0.01 | 0.01 | 0.02 | 0.04 | 0.00 | 0.01 | 0.04 | 0.01 |
| 0.12 | 0.11 | 0.11 | 0.03 | 0.11 | 0.16 | 0.00 | 0.10 | 0.06 | 0.25 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.16 | 0.35 | 0.37 | 0.32 | 0.53 | 0.55 | 0.00 | 0.58 | 0.63 | 0.52 |
| 0.00 | 0.00 | -0.01 | -0.01 | -0.01 | 0.00 | 0.00 | -0.01 | -0.01 | -0.01 |

APPENDIX B2 continued

| I COEOEFF 76 |  | INPUT-OUTPUT coefficients for 1982, continued. Below:column |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | 0.18 | 0.10 | 0.12 |
| 0.03 | 0.05 | 0.00 | 0.00 | 0.03 | 0.10 | 0.21 | 0.22 | 0.20 |
| 0.11 | 0.09 | 0.31 | 0.00 | 0.43 | 0.82 | 0.41 | 0.32 | 0.24 |
| 0.21 | 0.35 | 0.00 | 0.00 | 0.02 | 0.01 | 0.03 | 0.07 | 0.12 |
| 0.01 | 0.04 | 0.00 | 0.00 | 0.01 | 0.02 | -0.016 | 0.01 | 0.03 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
| 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.10 |
| 0.12 | 0.20 | 0.69 | 1.00 | 0.42 | 0.04 | 0.01 | 0.06 | 0.01 |
| 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 |
| 0.37 | 0.16 | 0.00 | 0.00 | 0.05 | 0.00 | 0.14 | 0.16 | 0.1 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| ***** | LASTATMIZAYEAR | ***** |
| :---: | :---: | :---: |
| 78 |  |  |
| **** | LASTAYEAR | ***** |
| E2 |  |  |
| ***** | LETRENDCM | ***** |
| 7875 |  |  |
| ***** | LIGE | ***** |
| 1.0201 EE 11 |  |  |
| ***** 2.511510 ***** |  |  |
|  |  |  |
| $\begin{aligned} & * * * * * ~ L D N \\ & 7344000000 \\ & 2.2779 E 10 \\ & 4.072 E 10 \quad 2.4456 E 10 \end{aligned}$ |  |  |
|  |  |  |
| LONADFF$1.29076 E_{11} \quad 1.39981 E_{11}$ |  |  |
|  |  |  |

## APPENDIX B2 continued



NOTE: A number of new variables, compared to Workspace MACRO are introduced.

## APPENDIX B2 continued



## APPENDIX B2 continued

| ＊＊自＊${ }^{\text {a }}$ | TRENIM | ＊＊＊＊ |
| :---: | :---: | :---: |
| 0.0133237 |  |  |
| 0.00840916 |  |  |
| 0.01729822 |  |  |
| 0.0124923 |  |  |
| 0.00939622 |  |  |
| 0.0141188 |  |  |
| ＊＊＊＊ | T以に | ＊＊＊＊＊ |
| O． 579 |  |  |
| ＊＊＊＊ | T※I 1 | ＊＊＊＊＊ |
| 0.276 |  |  |
| ＊＊＊＊ | TXVA1 | ＊＊＊＊ |
| 0 |  |  |
| ＊＊＊＊ | T×VA2 | ＊＊＊＊＊ |
| O．11 |  |  |
| ＊＊＊＊＊ | TXVAZ | ＊＊＊＊＊ |
| 0.15 |  |  |
|  | T×W |  |
| 0.33 |  |  |
| ＊＊＊＊ | TXWS | ＊＊＊＊ |
| 0.361 |  |  |


| EXOAESIPFOR |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0344 | 0.0573 | 0.0133 | 0.0463 | 0.0675 | 0.0166 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -18 |
| -0.00\%5 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 6 | 0 |
| -0.00\% | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | \% |
| -0.0095 | -0.0095 | -0.0095 | -0.00\% | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 | -0.0095 |  |
| 0.0191 | 0.0142 | 0.0126 | 0.0194 | 0.0231 | 0.0239 | 0.0123 | 0.0123 | 0.0123 | $0.0123)$ | H |
| 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | $0.0123\}$ | \% |
| 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | \% |
| 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 | 0.0123 |  |
| 0.0207 | 0.0109 | 0.0107 | 0.0191 | 0.0111 | 0.0069 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | \% |
| 0.0055 | 0.0055 | 0.0055 | 0.005 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | ${ }_{0}$ |
| 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 |  |
| 0.0055 | 0.0055 | 0.005 | 0.005 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 8 |
| $0.017 \leqslant$ | 0.0217 | 0.0134 | 0.0272 | 0.0360 | 0.0131 | 0.0078 | 0.0078 | 0.0078 | 0.00787 | - |
| 0.0075 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0073 | 0.0078 | 0.0078 | \% |
| 0.0078 | 0.0075 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | $\stackrel{\square}{\circ}$ |
| 0.0076 | 0.0073 | 0.0078 | 0.0079 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 | 0.0078 |  |
|  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { ron }}{\substack{0 \\ 0 \\ 0 \\ 0}}$ |
| FIRMAEXOAE | PFOR |  |  |  |  |  |  |  |  | ¢ |
| 0.0311 | 0.0344 | 0.0373 | 0.0133 | -0.0113 | -0.0113 | -0.0113 | -0.0113 | -0.0015 | -0.0015) | 0 |
| -0.0015 | -0.0015 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0117 | 0.0119 | 0.0119 | $0.0119\}$ | $\stackrel{\sim}{\sim}$ |
| $0.011 \%$ | 0.0119 | 0.0119 | 0.0119 | 0.0119 | $0.011 \%$ | 0.0119 | 0.0119 | 0.0119 | 0.0119 |  |
| 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | 0.0119 | $\stackrel{\sim}{\sim}$ |
| 0.0393 | 0.0196 | 0.0142 | 0.0126 | -0.0122 | -0.0122 | -0.0122 | -0.0122 | 0.0136 | 0.0136 | $\stackrel{\square}{\circ}$ |
| 0.0135 | 0.0136 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0111 | 0.0111 | 0.0111 | $0.0111\}$ | 0 |
| 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 악 |
| 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | $\stackrel{+}{\sim}$ |
| 0.0645 | 0.0207 | $0.010 \%$ | 0.0107 | 0.0115 | 0.0115 | 0.0115 | 0.0115 | 0.0097 | 0.00977 | - |
| 0.0097 | 0.0097 | -0.0314 | -0.0.14 | -0.0314 | -0.0314 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | $\stackrel{\sim}{2}$ |
| 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 |  |
| $0.00 \%$ | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0093 | 3 |
| 0.0494 | 0.0176 | 0.0217 | 0.0134 | 0.0284 | 0.0284 | 0.0284 | 0.0284 | 0.0102 | 0.0102 | 3 |
| 0.0102 | 0.0102 | $0.009 \%$ | 0.0089 | 0.0089 | 0.0089 | 0.0098 | 0.0093 | 0.0093 | 0.00986 | O |
| 0.0093 | 0.0098 | 0.0098 | 0.0095 | 0.0098 | 0.0098 | 0.0098 | 0.0098 | 0.0099 | 0.0098 | $\stackrel{\infty}{\sim}$ |
| 0.0098 | 0.0093 | 0.0098 | 0.0098 | 0.0008 | 0.0098 | 0.0098 | 0.0098 | 0.0098 | 0.0098 |  |

## APPERIDIX C THEE IRIPIALIEATIOA CODE, MAIIN CODE

The functions listed below are the functions stored (jan 82) in workspace INIT. They are described in Sections 2 and 4 in Part 2.

The functions have line-numbers leftmost. A function stands between the symbols $\nabla$ (upside-down delta).

Local variables in each function can be found on line zero after the semicolon (i). After the func-tion-name a parameter to the function may appear. For example: STRRE N. $N$ is a parameter (an integer) to the function SmRRI.

## APPERDIE C FUECEIO SIARI

```
    ~ START N
    G')MAXCORE 160.
    A NEEDEE SPACE IN COMPUTER...
    WORKSPACENAMEF'R',IN
    ATIE: RE:GULT FROM THE INITIALIZATION WILL WE gTOREHI IN A WORKEPACE
    GCALLEI RXX, WHERE XX IS THE NUMHER N GIVEN IN THE CALL START N
        - RESULT FROM INITIALIZATION IS STOREII IN WORKSPACE., TWORKSPACENAME
    A
    aWORKSPACENAME IS USELI IN FUNCTION OUTPUTAOPERATIONS...
    A
    NYR+30
    ANUMBER OF YEARS TO INITIALIZE VARIAELES.
    aCAN HE CHANGEII IN FUNCTION ISTARTXX.
    A &')COPY FUNCTI MOLAALI MONIEL MOLISUEST SCANMAT PACK ENS EQUALS ABOVE'
    NAME& 'ISTART', IN
    \epsilon')COPY ISTART.
    ASTART-FUNCTIONS SHOULII LIE IN WORKSPACE ISTART
    ENAME
    athe line above means that the function istartXX Will be executel.,
    AXX IS THE NUMEER OF THE INITIALIZATION, (XX=N)
    AISTARTXX IS SPECIFIC FOR A CERTAIN EXPERIMENT
    AIN ISTARTXX ONE CAN CHANGE LINES EELOW WITH 3 SPECIAL
    AFUNC,TIONS MOLALIT,MOLISUEST, MONDEL,
    atHUS ISTARTXX CAN CHANGE THE PROGRAM GELOW IUUING EXECUTION.
    A
    SIAINIT NYR
        'initialization completefi'
        <)CLEAR
        *'bg clfar'
    v
```


## MPPREDIE C FONCTION SIAIETE

```
Q SIAINIT NYR;HIUMMY
    GIUMMY+G')COPY SI76 FALIATA X FIRMIII'
    LLINE AROVE EXECUTEII IN FUNCTION ESTABLISHMENTS
    ALINE AROVE EXECUTE[I
    IIUMMY+G')COPY MACRO'
    a
    A
    aFIRMIIATA FROM WORKSPACE SIT6
    aMACROIAATA FROM WORKSPACE MACRO
    AHELPFUNCTIONS FROM WORKSPACE FUNCTIONS
[9] A
[11] TESTUTSKRIFT+O
[12] aNYR=NUMGER OF YEARS TO RUN THE SIMULATION.
[14] A
[15] NQR+4\timesNYR
[16] aNQR=NUMEER OF QUARTERS
[17] NMARKETS+4
[20] TAX\trianglePARAMETERS
[21] PUELICASECTOR
[22] MONETARY
[23] MARKETS
[24] HOUSEHOLDS
[25] ESTAFLISHMENTS
[26] AFUNCTION DIISPOSEAVARAINPUT DELETES VARIAELES FROM WORKSPACE MACRO...
[27] AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXEXXXXXXXXXXXXXXXXX
[28] A SECONII PART OF INITIALIZATION
[29] & XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
[30] aTHE FOLLOWING VARIAELES ARE NEEIEII IN THE SECONII PART
[31] aOF THE INITIALIZATION.COPIES ARE TAKEN RECAUSE IT SEEMS LOGICAL
[32] ATO FORHIII REAIIING FROM INPUTFILES IN SECONI PART OF
[32] ATO FOREIII REALIING
[33] AINITIALIZATION..'.
[35] TXVA2COPY+TXVA2
[36] RU\triangleCOPY+RU
[37] TXWCOPY+TXW
```

[8]
[10]
[13] ค
[18] A
[19]

## NPPEENDIXC PUNCROW STAIEIY (cont.)

```
[38] TXWGCOPY&TXWG
[39] QINPAYCOPY+QINPAY
[40] RI\triangleCOPY+RI
[41] TXI1COPY&TXI1
[42] AFROM NOW ON NO MORE REAIIING FROM INPUT-WORKSPACES
[43] A(MACRO ANII SI76). THERE WILL BE,ONLY,FURTHER WORK WITH
[44] aVARIAELES AND PARAMETER-SETTING.
[45] IIISPOSEDVAROINPUT
[46] MARKETSAIIATA
[47] SECDNIIARY\triangleIIATA
[48] PUFLIC\triangleINTA
[49] MONETARYAIIATA
[50] HOUSEHOLISATIATA
[51] A
[52] A
[53] OUTPUT\triangleOPERATIONS
[54] aTHIS FUNCTION HANILES OUTPUIT.(UNNECESSARY VARIABLES ARE IIELETE[I)
[55]
    TESTUTSKRIFT2'
```

$\nabla$ TAXAPARAMETERS

```
1] GVARIAELES IN WORKSPACE MACRO WHICH IS FINAL OUTPUT FROM INITIALIZATION:
[2] a TXVA1,TXVA?
[3]
[4] A OTHER VARIABLES IN TAX\trianglePARAMETERS WHICH WILL BE FINAL
[5] A OUTPUT FROM INITIALIZATION:
[6] A ALL EXD-VARIAELES TO THE LEFT OF '&' EELOW ANL TXI3
[7] A
8] EXO\triangleQCHTXVA1+NQRTIIFF EXO\triangleQTXVA1
[9] EXO\triangleQCHTXVA2+NQRTIIFF EXOAQTXVAZ
[10] EXOSTXC+NYR CONTINUEI EXOATXC
[11] EXOATXI1&NYR CONTINUE1 EXOATXI1
[12] EXOATXWFNYR CONTINUE1 EXOATXW
[13] EXOATXWG+NYR CONTINUE1 EXOSTXWG
[14] TXI3+1.6
```

```
\nabla PUBLICASECTOR;ALG;QLG;WAGES ; RATE1; RATE2 ; QCHLG
[1]
[2] A VARIABLES IN PUBLICASECTOR WHICH WILL BECOME
[3] A FINAL OUTPUT FROM ININTIALIZATION:
[4] A OMEGAG,QINVG,EXO\triangleQIIINVG,EXOARSUBS,QWG,WG,LG,WGAREF
[5] AGKOFF,EXO\triangleREALCHLG
[6] A
\!`]
[8]
[8] OMEGAG+104IOCOEFF76[;13]
[9] INVG+I076[14;13]
[10] RATE1&GARATE1
[11] RATE2&GARATE2
[12] A RATE1=YEARLY PERCENTAGE CHANGE IN INVG,RATE2=TREND CHANGE
[13] ALG&TIM\triangleOFF\divHOURS\trianglePERAYEAR
[14] A
[15] WAGES+2p0
[16] WAGES[1]+LONAOFF[1]\divALG[1]
OLLG[1]
[17] WAGES[2]+LONAOFF[2]\divALG[2]
[18.| A
[19] QLG+(4x(pALG))p0
[20] QLG&MAKEQUARTERS ALG
[21] aRESULT FROM MAKEQUARTERS :QLG=
[22] AAVERAGE LABOUR FORCE IN EACH QUARTER,QLG(1)=
[23] AQUARTER 1 EASE YEAR ANII SO ON...
[24] QCHLG&[IFF QLG
[24] QCHLG&[IIF;
[25] EXO\triangleREALCHLG&NQR CONTINUE1(3\downarrowQCHLG),LGTRENLICH
[26] EXO\triangleREALCHLG+NQR CONTINUE1(3\downarrowQ
[28] AATTEMPT TO MOIITFY GOVERNMENT IIEMANII FOR LABOUR IUUE TO
[29] AFICTIOUS LAEOUR-FORCE IN THE MOIIEL,.,
[30] A(GOVERNMENT LAEOUR+INLIUSTRY LABOUR)\div(TOTAL LAEOUR FORCE)=1.7\div4.1 MILLION PEOPLE
[31] RTHAT IS: FICTIOUS LABOURFORCE=1.7 MILL, PEOPLE IS
[32] AAPPROXIMATELY 0.4XTOTAL LAABOUR FORCE
[33] ATHAT'S WHY IIEMANII IS MULTIPLIEII WITH 0,4,.,
[347] AFREIIRIK &
[35] A
[36] QWG&WAGES[1]+0.375x(WAGES[2]-WAGES[1])
[37] WG+WAGES[1]
```

```
[38] [39] RINVG+(0.25\timesINVG\times1000000)\timesRATE1*(1.5\div4)
[40] AQUARTER1: RATE1*(-2,5\div4)
[41] AQUARTER2: RATE1*(-1,5\div4)
[42] AQUARTER3: RATE1*(0.5\div4)
[43] AQUARTER4: RATE1* 1.5\div4)
[44] ASUM = (APPROX.) 4, WHICH MEANS THAT SUM(QINVG)=INVG
[45] EXO\triangleQIIINVG+(NQR\rho(RATE2*(1\div4)))-1
[46] EXOARSUFS+NYR CONTINUE2 RSUBS
[47] GKOFF+(10*6) 人(1041076[;1IJ)\div(WG*LG)
[48] A
[49] WG\triangleREF+WG
```


## APPIESDIL C FUNCEIOI MNQGES

$\nabla$ MARKETS ; PIOM ; MAPRICE

```
AFINAL OUTTPUT FROM THIS FUNCTION:
[2] AXIN,IO,IO2,IOS,OMEGA,OMEGAELI,OMEGAIN,IMP
[3] AQINVELII,QINVIN,EXOAQIINVIN,EXOAQIINVELII,
[5]
[5]
[6]
[7]
[8]
[10]
[11]
[12]
[13]
[14]
[15] XIN+6\rho0
[16] XIN[1,2,4,5,6]+I076[5,6,8,9,10;18]\divIOT6[14;5,6,8,9,10]
[17] AXIN=EXPORT SHARES IN SECTORS OUTSIIIE OUR 4 MARKETS
[18] SWEIISHALIEMANLI+IO76[110;21]-(IO76[110;20]+IO76[110;19]+I076[110;18])
[19] ASWEIISHALIEMANII+PROUUCTION(INCL, IMPORTS)-(IIFF+IMPORTS+EXPORTS).
[20] ANOTE THAT IMPORTS IS STOREI WITH NEGATIVE SIGN IN IOTG...
[21] A
[22] IMP+(1I076[110;19])\divSWEIISHALIEMANI
[23] AIMP = IMPORT-SHARE OF SWEIIISH_CONSUMER'S IEEMANE ...
[24]
[25]
[26]
[27]
[2B] IO+IOCOEFF76[110;110]
[29] I02+IOCOEFF76[14;4+16]
[30] IO3+IOCOEFF76[4+16;4+16]
[31] OMEGA+10^IOCOEFF76[;16]
[32] OMEGAEL[1+10^IOCOEFF76[;14]
[33] OMEGAIN+10\uparrowIOCOEFF76[;15]
[34]
[35]
[36]
[37]
AOUTPUT TO FUNCTION HOUSEHOLDSALIATA
AQIIPIN, QNPFOR
A
A
A
IMP+10\rho0
XIN+6\rho0
XIN[3]&0
A IMP=IMPORTS VECTOR F\overline{O}\overline{R}
A
A
IO3+IOCOEFF76[4+16;4+16]
A
A
A
```

```
[38] INVFL[1+IO76[14;14]
40] QINVELIIF(0.25\timesINVELTIX1000000) \HLTIARATEI*(1. 5\div4)
[41] QINVIN+(0.25\timesINVINX1000000) \INARATE1*(1.5\div4)
[41] QINVIN+(0.25XINVINX1000000)\timesINARATE1*(1
[43] EXOAQIINVFLIIt-1+(NQRP(RLIIARATE2*(1\div4)))
[44] A
[45] A
[46] A
[47] A HIST\triangleTXVA2[YEARS;QUARTERS] YEAR=1,2,3,4 YEAR 1=1974
[48] & P[MARKETS;YEARS]YEAR=1,2,3,4
[49] PFIMPLAPRIS,[1]IMPLOPRISAIN
[50] \overline{PLOMPLP IIIVB 1-0.25x+/HISTATXVA2[14;]}
[50] F
[51] E\overline{NS}\overline{S}P\overline{P};3]=100
[52] AQPFO\overline{R ESTIMATELI FROM VARIAELE EXPORTAPRIS I}
[53] AOLII INITIALIZATION (REFORE JULY 1980)...
[54] QPFORt 101.4 100.8 102.1 101
[55] QIIPFORt(TLAEXPAPRISAT6 NYR)[;1]
[56]
[57] A
[58] ATHOMAS LINDEERG HAS MALE THE FUNCTION TLAEXPAPRISAT6
[59] aWHICH YIELIIS QUARTERLY EXPORTPRICE-CHANGES...
[60] A
[61] A
[62]
[63]
QLIPNOME 1+(PDOM[;4]*PDOM[;3])*(1\div4)
[64] QIIPINt-1+((IMMP[\trianglePRISĀIN\overline{L};4]\divIMPL\trianglePRISAIN[;3])*(1\div4))+(HIST\DeltaTXVA2[3;4]-HISTATXVA2[3;3])
[65] M\trianglePRICE+(6,4\times(pIMPLAPRISAIN)[2J)\rho0
[65] MAP
[67] ST:->(J=7)/SL
[68] M\trianglePRICE[J;]+MAKEQUARTERS IMPLAPRISAIN[J;]
[69] J+J+1
[70] ->S
[71] SL:
[72] M\trianglePRICE+(0,11)+M\trianglePRICE
[73] EXOAQIIPIN&NQR CONTINUE2((RELIIIFF MAPRICE),TRENIM)
[74] P\triangleREF+PIOM[;3]
```


## MONETARY[G]D

```
\(\nabla\) MONETARY
[1] A VARIARLES FROM WORKSPACE MACRO WHICH WILL REMAIN
[2] A UNCHANGEII ANL WHICH WILL BECOME FINAL OUTPUT FROM
[3] AINITIALIZATION: RI,LIQE,POSG,LIQEFOR
[4]
[5]
[6] ค
[7] EXOARI+NQR CONTINUE1 EXOARI
[8] EXO\triangleRIEWFOR+NQR CONTINUE1 EXOARIBWFOR
[9]
```

$\nabla$ HOUSEHOLIIS
MOUTPUT FROM INITIALIZATION: SEE HOUSEHOLISSDIATA INSTEAD
[2] AWHSUM ANI HH76 WILL EE USED IN HOUSEHOLDSADATA IN
[3] ATHE SECOND PART OF INITIALIZATION...
[4] HH76+IOCDEFF76[110;12]
[5] WHSUMGHUSHALLSUEP
$\nabla$ ESTABLISHMENTS;R;F;ALPHA;SCALE;RATIO;RATIO1;RATIO2;HELP;FLAG;LUMMY E.)COPY SIT6 X FAIIATA FIRMII 'LIST RAMARKET AFIRM-VARIAELES FROM WORKSPACE SI76
ค
A
A IN
AINPUT FROM FUNCTION MARKETS:IO (INPUT-OUTPUT-MATRIX)
AINPUT FROM ISTARTXX-FUNCTION: SYNTHAFIRMS
A
A
AOUTPUT FROM THIS FUNCTION:
AMARKET, $P, Q P, I I P, W, Q W, I I W, S, Q S, I I S, Q, Q Q, \Gamma Q$
AMARKET, P, QP, IIP, W, QW, IIW,S,QS, IIS, Q, QQ, IIQ,
AL, EXPLIP, EXPLIS, EXPIIW, HISTIIP,HISTIS,HISTIW,
AL, EXPLIP, EXPLIS, EXPLIW, HISTIIP, HISTLIS, HISTIW,
AHISTIIPLIEV2,HISTIWLIEV2, HISTISIUEV2, MHIST, CHM
AHISTIIPIEVZ, HISTIIWLIEV2, HISTHSIEVV, MHIST, CHM
AVA, QIMQ, QVA, IIVA, M, AMAN, STO, IMSTO,
AVA, QIMQ, QVA, IIVA, M, AMAN, STO, IMSTO,
AQTOP, TEC, QINV, QINVLAG, DELAYAINV,K1,K1BOOK, K2, EW,
AQTIIV, RSUBSACASH, RSUBSAEXTRA, RES, INVEFF, RESMAX, BETA,
A IMBETA, TMINV, EIG, SMALL, IMEIG, IMSMALL,FAINKOP, BRINKOP,
a SHARE, $X$, ORI GMARKET, LEFT
A
ค
AINFORMATION ABOUT INIIATA:
AX IS FIRM-IIATA.
AF $\triangle I I A T A$ IS INLIATA ABOUT FIRM-GROUPS.
AX IS A MATRIX WITH FIRST COMPONENT = FIRM
AĀNI SECONL COMPONENT = VARIABLE (SALES,LABOUR,ETC,.).
AX CONSISTS MAINLY OF IIATA FOR THE YEAR 1976.
${ }^{-}{ }^{-}$
A RENUCTION ON LIST
AFIRMS WITH INCONSISTENT VARIAELES ARE OMITTEI
L $0: F \rightarrow F I R M I I I[X[; 1] \in L I S T) / \rho X[; 1]]$
NAMNAMARKET+ $\operatorname{R} \triangle M A R K E T[(X[; 1] \in L I S T) / 1 \rho X[1]]$
NAMNAMARKET+R $\triangle M A R K E T[(X[; 1] \epsilon L I S T) / 1 \rho X[1]]$
ALPHA $+(+/ X[(\underline{X}[1] \in L I S T) / 1 p \underline{X}[1] ; 712]) \div F \Delta I I A T A[F ; 15]$
ALPHA+ $+/ \times[(X[; 1] \epsilon L I S T) / 1 \rho X[; 1] ; 712]) \div$
ค CHECK ON ALPHA
$\rightarrow(0=\rho F L A G+(1<A L P H A+. X F \cdot,=1 \Gamma / F) / 1 \Gamma / F) / L 2$
$\rightarrow(0=\rho F L A G+(1<A L P H A+. X F \cdot,=\imath \Gamma / F) / V / F) / L 2$
HELP 10
A OLII: L1:HELPGHELP,FIIfFLAG

```
38] L1:HELP+HELP,ALPHAIL/ALPHA[((14FLAG)=F)/,\rhoF
39] }->(0<PFLAG+1+FLAG)/L
[40] 'IIROPPING ',(5 2 TLIST[HELP]),' FROM LIST.
[41] LIST+(~(1pLIST) EHEL.P)/LIST
[42] ->L0
[43] L2:\underline{x}+\underline{x}[(\underline{x}[;1]&LIST)/1p\underline{X[;1];]}
[44] A
[44] A
[45] A
46]
47] A R=NUMEER OF REAL FIRMS.
48] AMARKET=VECTOR WITH MARKET NUMEERS FOR EACH FIRM,
[49] AFOR EXAMPLE: 111 1 2 1 3 114 1 4 %..ETC.
[50] AS\triangleMARKET=VECTOR WITH MARKET-NUMEERS FOR SYNTHETIC FIRMS
[51] A
[52] S\triangleMARKET+SYNTHAFIRMS DUP\4
[53] MARKET+NAMNAMARKET, S\triangleMARKET
[54] R+1†\rhoX
[55] A
[56] 'SIZE-UTSKRIFT 2'
[57] ध')SIZE
[58] *
[59] ค
[60] A
[60] n
[61] A SETTING SCALE FOR SYNTHETIC FIRMS:
[62] SCALEH1O
[63] SCALE+SCALE,SYNTHAFIRMS[1]SCALE 0.02
[64] SCALE+SCALE,SYNTHAFIRMS[2]STCALEE 0.001
[65] SCALE&SCALE,SYNTHAFIRMS[3]SLCALE 0.02
[66] SCALE+SCALE,SYNTHAFIRMS[4]STCALGE 0.0001
[67] ENS 1=SYNTHDSUM1 SCALE
[68] A
[69]
[69] [RL+123476
[70] AORL YIELIS START-VALUE FOR PSEUIIO-RANIOM-NUMEERS:
[71] ATHIS MEANS THAT THE SAME 'RANDOM-NUMBERS' WILL EE
[72] AGENERATEII IN DIFFERENT EXECUTIONS AS LONG AS ONE
[73] aLIOESN'T CHANGE DRL.
[74] aRANDOMNUMEERS OCCUR IN THE FUNCTIONS 'USING' ANLI 'RANIIOMIZE'.
[75] &
[76] 
[77] A
```


## APPEADIM C FUNCPIOI ESTNBLISMMNDFS (cont.)

```
[78] А
79]
80] ASALES
[81] ASUM1, REAL\triangleSUM1, SYNTHASUM1 ETC, SUM FIRMVARIABLES TO
82] AMARKET-VARIARLES,A FIRM-VECTOR IS SUMMEI UP TO A
[83] AMARKET-VECTOR OF LENGTH 4.
84] REALASALESt(+/X[; 7 12]×1000000)
[85] RES\triangleSALES&SALES̄76-REAL\triangleSUM1(REAL\triangleSALES)
[86] SYNTHASALESHSCALEXRESASALES[S\triangleMARKET]
[87] S&REAL\triangleSALES,SYNTHASALES
[88]
[89]
[90]
91]
alakOUR
93] REAL\triangleLABOUR+X[;3]
RES\triangleLABOUR+(TIM\divHOURS\triangleAPER\triangleYEAR)-REAL\triangleSUM1(REALALAEOUR)
.94]
[95]
[96] AFUNCTION 'USING' HAS THE FORM 'A USING E'
97] AFUNCTION 'USING' DOES:
[98] A(1) EXTENDS VARIABLE A WITH RANDOMIZEII VALUES FOR
[99] A SYNTHETIC FIRMS.
[100] a (2)THE RANLIOMIZEII VALUES OF A COVARIES WITH B.
[101] A THE VARIAELES A ANI B ARE FIRM-VECTORS...
[102] A
[103] SYNTHALABOUR+SYNTH\triangleLABOURX(RESALABOUR\div(SYNTHASUM1 SYNTHALABOUR))[S\triangleMARKET]
[104] L&REALALAEOUR,SYNTHALAROUR
[105] ค
[106] A
[107] A
[108] AEXPORT FRACTIONS (EXPORTS\divSALES)
[109] AXM= EXPORT-SHARE (MARKET-AVERAGE), FROM
[110] AIO-MATRIX, XM IS A VECTOR OF LENGTH=4
[111] ASALES IS APPROXIMATEII WITH PROIUUCTION
[112] XM+4P0
[113] XM+IO76[,4;18]\divIOT6[14;14]
[114] AXM+EXPORTS (MARKETS 1,2,3,4) < PRONUCTION (MARKETS 1,2,3,4)
[115] REAL\triangleRATIO+(X[;7]\div(+/X[; 7 12]))
[116] SYNTHARATIO&REAL\triangleRATIO RANIOMIZE S
[117] RES\triangleEXPORT\leftarrow(XMX(SUM1 S))-REAL\triangleSUM1(REAL\triangleRATIOXREAL\triangleSALES)
```

```
[118] SYNTHARATIO&SYNTHARATIOX(RES\triangleEXPORT\div(SYNTHASUM1 (SYNTHARATIOXSYNTHASALES)))[SAMARKET]
[119] X +REAL\triangleRATIO,SYNTHARATIO
[120] 'TEST PA EXPORTANIEL:X>0.95
[121] (X<0)v(X>0.95)
[122] }x+0\lceil0.95L
[123] A
[124] A
[124] A
[125] A
[126] ค
[127] aPRICES
[128] Pt(\rhoMARKET)\rho100
[129] A
[130] A
[131] AINVENTORIES
[132] ARATIO=ACTUAL STOCK-RATIO=STOCK\divSALES
[132] &RATIO=ACTUAL STOCK-RATIO=ST
[133] 
[135] बRATIO1=NORMAL LEVEL OF STOCK-RATIO
[136] RATIO1+(X[;50]\div100)USING RATIOT0.01
[137] A NOTE WE ARE SETTING EIG, SMALL, ETC FOR EACH FIRM
[138] BIG+RATIO\Gamma(1+\Delta+0.5)\timesRATIO1
[139] SMALL&RATIOL(1-\Delta) XRATIO1
[140] BIG[HELP/\PEIG]&(HELP&(RATIO<(1-\Delta)\timesRATIO1))/(2\timesRATIO1)-RATIO
[141] EIG+0「0.SLEIG
[141] FIIG+0[0,SLEIG 
[143] SMALL+O\GammaSMALL
[144] \triangleK3\triangleFINISH+SXRATIO-RATIOI
[145] & THAT WAS PROIIUCT INVENTORIES,.NEXT IS INPUT GOOLS INVENTORIES,
[146] A
[147] AINPUTRATIO=(PURCHASES OF RAW MATERIALS)\divSALES
[147] AINPUTRATIO=(PURCHASES OF RAW MAIERIALS
[148] I
[150] RATIO1+(X[;44]\div100)USING INPUTRATIO
[151] A RATIO1=ĀCTUAL STOCK-RATIO.
[152] RATIO2+(X[;46]\div100)USING RATIO1[0.01
[153] ARATIO2= NORMAL STOCK LEVEL.
[154] K3AIMEIHESINPUTRATIOXRATIOI
[155] IMMBIG&RATIOIT(1+\Delta)\timesRATIO2
[155] IMBIG&RATIO1[(1+\Delta)\timesRATIO2
[156] IMSMALL&RATIO1L(1-\Delta)\timesRATIO2
```


## 

```
[158] IMEIG&0[0,5LIMEIG
[159] IMSMALL[HELP/1pIMEIG]+(HELP+(RATIO1:(1+\Delta) &RATIO2))/(2\timesRATIO2)-RATIO1
[160] IMSMALL+O「IMSMALL
[161] BETA&IMEETA&0.5
[162] AK3\triangleIMEII-SXINPUTRATIOXRATIO1-RATIO2
[163] AIMSTO IS A FIRMXPRODUCT-MATRIX (=FIRMX10-MATRIX)
[164] AMULTT MULTIPLIES A MATRIX WITH A COLUMN-VECTOR,
[165] A
[166] AM MULT7 V ,M=MATRIX M(I,J) V=VECTOR V(I)
[167] aRESULT: A MATRIX WITH ELEMENTS M(I,J)XV(I)
[168] A
[169] A NEXT: SPREAII K3\triangleIMEI ACROSS SECTORS USING IO-MATRIX
[170] IMSTO+((<(QIO)DIV7+/QIO)[MARKET;])MULTT K3AIME[I)\div100
[171] A NOTE: WE HAVE IIIVIDEII BY 100 ASSUMING BÄSE YEAR=START YEAR.
[172] AIMSTO SHOULD EE IN FIXEI PRICES,THUS IIVISION EY 100
[173] A,WHICH IS THE PRICEINIEX FOR 1976
[174] A THE IIIEA EEHINID THAT COMPUTATION WAS AS FOLLOWS:
[175] A (QIO)[1;I LOOKS LIKE A[1,1],....,.,A[1,10], WHERE
[176] A A[1,J]=FRACTION OF GROSS PROIUCTION IN SECTOR 1 ACCTII FOR GY
[177] a INPUTS FROM SECTOR J.
[178] A THEN A[1,J]\divSUM ON J OF A[1,J] = FRACTION OF INPUT GOOIIS
[179] A COMING FROM SECTOR J
[180]
[181] ค
[182] ^
[183] ค
[184] A COMPUTATION OF INPUT GOOLIS PURCHASES
[185] REALAINP&X[;17]\times1000000
[186] QCURR+S+\Delta\overline{K}3\DeltaFINISH
[187] A
[188] AQCURR=PRONUCTION IN CURRENT PRICES:SALES+CH, IN STOCK
[189] AHELP (BELOW) IS TOTAL INPUT CONSUMPTION EY THE
[190] &SYNTHETIC FIRM UNITS PER SECTOR (1,2,3,4).
[191] ค
[192] HELP&(+/(QIO)[14;]MULT7 SUM1 QCURR)-(REAL\triangleSUM1(REALAINP-R{AK3AIMEII)
[193] HELP+HELP+SYNTHASUM1(R\AK3AIMEII)
[193] HELP&HELP+SYNTH\triangleSUM1(R+\triangleK3AIME[I)
[195] A IN EACH SECTOR
[196] A INP=INPUT GOOI PURCHASES FOR EACH PRONUCTION UNIT, SUMMEII DVER SECTORS
[197] A PINP = PMARKETS
```


## MPPMEDIE C FUICTIOM ESTABMIEBWDIS (cont.)

```
[198] INP&REALAINP,(RłSXINPUTRATIO)x(HELP\div(SYNTHASUM1 RłSXINPUTRATIO))[S\triangleMARKET]
[199] ค
[200] A QIMQ=INP SPREAI ACROSS THE 10 SECTORS. JUST LIKE IMSTO ABOVE.
[201] QIMQ+((()NIO)IIVV+/QIO)[MARKET;])MULTT INP)\div100
[202] QIMQ+QIMQ\div4
[203] A SAME COMMENT AS APPLIES TO THE LEFLATION OF IMSTO
[204] A VALUE AIIIEII
[205] VA+QCURR+\triangleK3\triangleIME[I-INP
[206] [IISPOSE1\triangleFIRMS
[207] ค
[208] ACONSUMPTION=INP-\triangleK3AIMEII=PURCHASES-CHANGE IN STOCK
[209] A VALUE ALIIEII=PROIUUCTION-CONSUMPTION
[210] A
[211] RES\triangleFORVF+SYNTHASUM1 (R+VA)
[212] FORVF+SUM1(VA)
[213] REAL\triangleFORVF&RTVA
[214] SYNTHAFORVF&R+VA
[215] AFORVF,REALAFORVF ETC, ARE USE[I IN FUNCTION CONTROLS BELOW....
[216] A
[217] ค
[217] ค
[218] A
[220] 
[221] A WAGES
[222] REALAKRALON+X[ ; 5] x 1000000
[223] REAL\triangleW\leftarrowREALAK}R\DeltaLON\div(RTL).
[224] SYNTHAW&R&Sx(RATIO&(REALAKRALON\divREALASALES)USING L) }\div
[224] SYNTH\DeltaWFR&SX(RATIO&(REAL\DeltaKR\DeltaLON\divREAL\DeltaSA
[226] SYNTHAW&SYNTHAWX(RESAKRALON\div(SYNTHASUM1(R+L) xSYNTHAW))[SAMARKET]
[227] W&REALAW,SYNTHAW
[228] SYNTHAKRALON+SYNTHAWX(R+ll)
[229] [IW&(-1+(x/X[; 2 S]) \divx/XX[; 3 4])USING W
[230] QLIW+[IW\div4
[231] QW+((Q((2,(\rhoW)) \rho(W,W+[W)))+, x(0,625,0,375))
[232] IIVA+IIS+(-1+(+/X[; 7 12])\div+/X[; 6 11])USING rIW
[233] QS+((Q((2,(\rhoS))p(S,S+[IS)))+xx(0.625,0,375))\div4
[233] QS+((Q((2,(\rhoS)) p(S,S+[1S)))+..x(0.625,0.375))\div4
[234] QVA+VAx(1+IIVA\div4)\div4
[235] A
[236] A
[237] A
```

```
[238] A
[239] a MARGINS
[240] M+1-W\timesL\divVA
[241] M75&1-(X[;4]\div+/X[[; 6 11]) XR45\divVA
[242] & MTS=PRŌFIT MARG\overline{IN 197%.}
[243] HELP&(R4M)-M75
[244] MHIST*0.5x(2XM)-CHM+HELF USING IIS
[245] AVARIAFLES FOR FUNCTION CONTROL. BELOW
[246] ค
[247] OVERSKOTT+SUM1 (MXVA)
[248] SYNTH\triangleOVERSKOTT&R\downarrow(MXVA)
[249] REAL\triangleOVERSKOTT&R& (MXVA)
[250] IIP&((R&ISS)-X[;26]\div100)USING .IS
[251] QP+((Q ((2,(\overline{\rho}P))p(P,P+[1P)))+,x(0.625,0.375))
[252] & QUANTITIES
[253] Q+(S+\DeltaK3\DeltaFINISH)\divP
[254] QQ&(QS+\triangleK3\DeltaFINISH\div4)\divQP
[255] [1Q+IIS-[IP
[256] A SOME VARIAELES ALIDEI 27 OCT 1980...
[257] FAINKOP+(INP-AK3AIMED)\div(100\timesQ)
[258] APURCHASING-SHARE PER FIRM =FAINKOP
[259] ERINKOP*4+(+/[1]IO)
[260] aPURCHASING SHARE PER MARKET =ERINKOF
[261] SHARE+FAINKOP\divERINKOP[MARKET]
[262] ASHARE IS USED IN THE MONEL IN THIS WAY
[263] aSHAREX(MARKET AVERAGE INPUT SHARE)=
[264] ATHE INIIIVIUUAL INPUT SHARE FOR EACH FIRM.
[265] AMARKET AVERAGE INPUT SHARE=BRINKOP[1],.ERINKOP[4]
[266] A
[267] A
[268] A
[269] A
[269] A
[270] A
[271] A A21 ANII A22
[272] A22+(-/X[; 30 32]\div100)USING A21+(-1X[; 32 26]\div100)USING M
[273] A21+0r0.5LA21
[274] A22+0.025%0.5LA22
[275] A MUST ENSURE A22%0 SO TEC CAN BE COMPUTEL.,
[276] A AMAN--BASEII ON APPROXIMATION GIVEN IN INIUUSTRIKONJUNKTUREN PAPER
[277] AMAN+Q(3,\rhoL)\rho(LXA21\div1+A21)\div3
```


## MPPEIDIE C FUICTIO ESWABLISMIDFIS (cont.)

```
[278] A EXPECTATIONS:.,NOTE THAT EXPDW SHOULII EE FIXEII
```



```
[280] HISTIISIEV2&(HIST[ISNEV̌&-0.02 HETWEEN(pHISTDS)p0.02)*2
[281] HISTHP+EXP[IP&((R4EXP[IS)-X[;28]\div100)USING EXPIIS
[282] HISTLIPLEV2&(HISTIIPIIEV&-0.02 BETWEEN(\rhoHISTIIP)\rho0.02)*2
[283] HISTIMW+EXPIWW+EXPIIS-EXPIIP
[284] HISTLWLIEV2&(HISTRIWIIEV&-0.02 EETWEEN(\rhoHISTIIW)P0.02)*2
[285] A PROLUCTION FUNCTION PARAMETERS.
[286] QTOP+(QQ\times1+A21+A22)\div1-RES+(\rhoQQ)\rho0.5\timesRESMAX+0.2
[2B7] TEC(-1\times(0A22\div1+A21+A22)\timesQTOP\divL
[288] ENS(QQ-QFR1 L)<0.5
[289] ค FINANCIAL VARIABLES
[290] K1FOOK+Sx((\div/FAIIATA[F; 5 15])USING S)
[291] K1&Sx((%/FALIATA[F; 26 15])USING K1HOOK)
[292] K2+K1EOOKX(((+/F\triangle[AATA[F; 1 2 4 6])\divFOIATA[F;S])USING K1)
[293] A\leftarrowK1+K2+K1BOOKX((\div/FADATA[F; 3 5])USING S)
[294] EW+K1HOOKX(()+/F\DeltaLIATA[F; 8 9 10])\divFAIIATA[F;5])USING K1)
[295] BA[1F(\rhoBW)\rho0
[296] QTHIV+SUM2 - 0,25\timesK1HOOKx((\div/FADATA[F; 20 5])USING M)
[297] INVEFF+QTOPXQP\divK1
[299] QINV S-Sx(((+/X[; 21. 24])\div+/X[; 7 12])USING 5)\div4
[299] QINVLAG+QINV\overline{x}1+(VA AVG1 IP DIIV 4)[IUR+3]
[300] TMINVt 2 1 1 0.5
[301] IIELAYAINV&&(3,pQINV)PQINV MULT1(4xTMINV)\div3
[302] RSUESACASH+RSUESAEXTRA&LXO
[303] A
[305] CONTROLS
[306] A
[306] A
[307] A
[308] A CONSISTENCY-CONTROLS ARE MADE IN FUNCTION CONTROLS
[309] A
[310] IOAMATRIX
[311] AIO-MATRIX IN FLOWS IS WRITTEN OUT
[312] A
[313] [ISPOSE2AFIRMS
[314] ATHIS FUNCTION IIELETES VARIABLES OF NO FURTHER USE
[315] A
[316] A SOME VARIAELES NEELIEII FOR NULLIFY ANII SHRINK
[317] LEFT&MARKET=ORIGMARKET&MARKET
[318] 'SIZEUTSKRIFT 3'
[319] E')SIZE
[320] 
```

Note: Line $290, \ldots 302$ FINANCIAL variables.
Function CONTROLS is listed on the following page.
Function IO-MATRIX is listed on the following pages.

```
MPPIESDLS C SORENECEION CONTROLS
(subfunction to ESTABLISHMENTS)
Consistency Control
    \nabla CONTROLS;IIIFF
ENS LON=(REAL\triangleSUM1 REALAKR\triangleLON) +(SYNTHASUM1 SYNTHAKRALON
        ENS OVERSKOTT=(REAL\triangleSUM1 REALAOVERSKOTT)+(SYNTH\DeltaSUM1
        SYNTHAOVERSKOTT)
        ENS FORVF=(REAL\triangleSUM1 REAL\triangleFORVF)+(SYNTH\triangleSUM1 SYNTHAFORVF)
        HIFF+SALES76-(SUM1 S)
        ENS IITFE:1,000000000E-6 x(SUM1 S)
        ENS [IIFF<1,000000000E-6 (SUM1 S) (TIM\divHOURSAPERAYEAR)=(REAL\triangleSUM1 REALALAEOUR)+SYNTHASUM1
        ENS(TIM\divHOURS\trianglePERAYEAR)=(REAL\triangleSUM1 REAL\triangleLAEOUR)+SYNTHASUM1
        SYNTHALABOUR
        ENS(REAL\triangleFORVF-(REALAKRALON+REALAOVERSKOTT))<1.0000000000E`7
        ENS(SYNTHAFORVF-(SYNTHAKRALON+SYNTHAOVERSKOTT)) <1,000000000E`7
        ENS(SYNTHASUM1 (SYNTH\DeltaWXSYNTH\DeltaLAFOUR))=SYNTH\DeltaSUM1 (SYNTHAKR\DeltaLON)
        ENS(REAL\triangleSUM1(REAL\triangleWXREALALAROUR))=REAL\triangleSUM1(REAL\triangleKRALON)
        ENS(SYNTHASUM1((R+M) XSYNTHAFORVF))=SYNTHASUM1 (SYNTHAOVERSKOTT)
        ENS(REAL\triangleSUM1 ((R`M)\timesREAL\DeltaFORVF))=REAL\triangleSUM1 (REALAOVERSKOTT)
        ENS }X\geq
        ENS X
        ENS((SUM1 VA) %(SUM1 QCURR))=(1-FRINKOP[.14])
        ENS((SUM1(INP-AK3\DeltaIME[I))\div(SUM1 QCURR))=(ERINKOP[14])
        DIFF+(XMXSUM1 S)-(SUM1 KxS)
        ENS DIFF<(0.01\timesSUM1 S)
    \nabla
```

Note: The subfunction ENS is documented in Appen-
dix D.


```
(subfunction to ESTABLISHMENTS)
(Consistency Control is performed)
```

$\nabla$ IOAMATRIX;MA;PROII;CHAR;RESIIUAL;SWE[IISHADIEMAND

```
aTHIS FUNCTION NIOES:
[1]
[2]
[3]
[4]
[6]
[7]
[8]
[8]
[10]
[11] 'IO YOU WANT THE INPUT-OUTPUT-MATRIX PRINTED OUT?'
[12] 'YES OR NO
[13] CHAR+M
[14] ->(^/(CHAR[1 2]='NO'))/O
[15] ค
[16]
[17] PROLHSSUM1(Qx100)
[18] MA[;14]+(IOCOEFF76[;14],[1]1)MULT8(PROD*10%6)
[19] A THE FIRST 4 COLUMNS IN MA ARE REPLACED WITH FLOWS
[19] A THE FIRST 4 COLUMNS IN MA A
[21] n COLUMN 5..10 UNCHANGED.
[22] MAL,113;11]+(GKOFF\timesWG\timesL.G\div10*6), (0,0,0)
[23] MA[14;11]++/[1]MA[113;11]
[24] MA[113;12]+(HH76\times4\timesQNIIAINIT2\div10*6),(0,0,0
[25] A QIISINIT2 YIELIS THE HOUSEHOL[I'S IIISPOSAELE INCOME
[26] MA[14:12]t+/[1]MA[113;12]
[26] MA[14;12]++/[1]MA[113;12]
[27] MA[;13]+(OMEGAGXQINVGX4\div10*6),(0,0,0,4\timesQINVG\div10*6)
[28] MA[;14]+(OMEGARLIIXQINVFLD * 4 < 10*6),(0,0,0,QINVBLIN 4\div10*6)
[29] MA[;15]+(OMEGAINXQINVINX4\div10*6),(0,0,0,4\timesQINVIN\div10*6)
[30] MA[;16]+(OMEGAX(+/QINV) x 4 \div10*6),(0,0,0,4\times(+/QINV)\div10*6)
[31] &
[32] MA[113;17]&(+/(AK3\DeltaIME[1+\DeltaK3\DeltaFINISH)\div10%6)\timesIOCOEFF76[,13;17]
[33] MA[14;17]t+/[1]MA[113;17]
[34] A
[34] A
[35] MA[1 2 3 4;18]+(SUM1 (Xx5))\div10*6
[36] MA[14;18]t+/[1]MA[113;18]
[37] A
```


## APPMEDIE C SUBMTUCTIOT IOAMAFRTLK (cont.)

```
l38] SWEIISHAIIEMANLIF+/MA[110;117] 
```


## MPPREDIE C SUBPOMCTIOM IOAMATEIX (cont.)



## 

```
    \nabla MARKETS\triangleLIATA;TMEXP;TMTARG
    output from initialization:All variables below except TMEXP,TMTARG,NPER
    NPER+4
    IUR+3
    MKT+14
    IN+4+16
    ค
    RETt-1+1.035*(1\div4)
    ENTRY+RET+0.0068\divNPER
    ENTRY+RET+0.0
    EXPX[1P+0.03
    EXPX[IW+0.07
    EXPXIIS
    E1+0.1
    E2+0
    SMP+SMW+SMS+1-2\div1+TMEXP&3
    FIP+FIW+FIS+(1-R) \2\div1+NPERXTMEXP
[16] FIP+FIW&FIS+(1-R)\times2
[18] A
[19] GAMMA+0.1
[20] THETAF0.01
[21] KSI+0.25
[22] SKREPA+50
[23] IOTA+0.5
[24] NITER&9
[25] ค
[26] TMSTO&1
[27] &
[28] TMIMSTO&1
[29] A
    RHOt-1+(1+1\div35)*(1\div4)
[31] RHOFOOK&-1+(1.15)*(1\div4)
[32] QLIMTEC+"1+(1.056 1.03 1.026 1.004)*(1\div4)
[33] & RESMAX+0.2 IS SET IN ESTABLISHMENTS...
[34] LOSS+0.1
[35] RESIIOWN+0.9
[36] WTIX1-1
[37]
    A
```


## 

```
[38] RW+K2\divS
[39] ALFAEW+0.075\divNPER
[40] EETAEW&-1
[41] UTREF+0.85
[42] ELINV+3
[42] ELINV+
[43] RTIL1+1 IS SET IN ESTAFLISHMENTS
[44] ATM
[46] EPS+0
[47] TMXt 3 3 3 3
[48] TMIMP+ 3 3 3 3
[49] ค
[50] RLU+0.6
[51] MAXILP+0.06
```



```
SHCOMDNETS-DSTR
```

```
\nabla PUELICDIIATA
[1] A VARIAELES WHICH WILL EE OUTPUT FROM INITIALIZATION: WSG,RTRANS,T
    STOCURF,TSTOCURM
        WSG+WG\timesLG
        RTRANS+0.5
        ATSTOCURF IS A MARKET-VECTOR (4 MARKETS).FUNCTION SUM1 TRANSFORMS
        FIRMS-IATA TO MARKET-IIATA..
        TSTOCURF+SUM1 (STOXQP)
        TSTOCURM+QPIOM[14]\times(SUM1 STO)
\nabla
```

$\nabla$ SECONIIARYADATA;MTECAPERAFIRM aVARIABLES WHICH WILL EE OUTPUT FROM INITIALIZATION: AMTEC, LU, QDWINI
arUACOPY IS A COPY OF RU WHICH COMES FROM INPUTFILE
AL,QW, QIIW, QIMMEC,TEC COMES FROM ESTARLISHMENTS
aGROWTH COMES FROM INPUTFILE (INITAGROWTH=GROWTH)
aLG COMES FROM FUNCTION PUELICASECTOR
LU $+(L G+S U M 2(L)) \times R U \Delta C O P Y+(1-R U \Delta C O P Y)$
$L U+(L G+S U M 2(L)) \times R U A C O P Y+(1-R U A C O P Y)$
ALG+SUM2 L=WORKING LABOUR FORCE=TOTAL LAROUR FORCE-UNEMPLOYED
ALG+SUM2 L=WORKING LABOUR FORCE $=$ TOTAL
AUNEMPLOYED=RX'WORKING LAEOUR FORCE'
AUNEMPLOYED=RX'WORKING LAEOUR FORCE'
WWHERE R SHOULD RE UNEMPLOYED $\div$ WORKING LABOUR FORCE
aSINCE RU IS IIEFINED AS UNEMPLOYEI $\div T O T A L$ LABOUR FORCE $R=R U \div(1-R$
U).
QDWINLI- $-1+(L$ AVG2 QW×(1+QDW) ) $\div(L$ AVG2 QW)
MTECAPER $\triangle F I R M+T E C \operatorname{IIV}(1-$ QIMMTEC $\div((R H O+G R O W T H) *(1 \div 4)))$
MTECH AVG1 MTECAPERAFIRM
AAVG1 YIELDS MARKET-AVERAGES FROM FIRMS-DATA (MTECAPERAFIRM) WEIGH
TED EY LAEOUR-SHARES (L־SUM L)
ENS O<MTEC
${ }^{16]} \nabla$

## APPMETII C SOBFOLCCICN MOMETREX-DATA

[^17]```
    \nabla HOUSEHOLIIS\triangleDATA;PRICECHANGES;DUR
        nINPUT TO THIS FUNCTION:
        AGKOFF,LG,WG,L,QW,QTDIV,LU,QIWINII FROM FUNCTION PUELICASECTOR,ESTA
        FLISHMENT, SECONIIARYAIIATA
        AQPLIOM,QLPFOR,QDPIN FROM FUNCTION ESTAELISHMENTS
        ARTRANS,RLU,RHO FROM FUNCTION MARKETS\triangleDATA
        ATXII,TXW,TXWG,QINPAY,RI (INDIRECTLY) FROM WORKSPACE MACRO
        aHH76,WHSUM FROM HOUSEHOLISS. 
```



```
        AOUTPUT FROM THIS FUNCTION,WHICH WILL BE FINAL OUTPUT FROM INITIAL
        IZATION:
        AZ,SAV,NIUR,NIURAIIUR,NH,WH, WHRA,QPH,QC,CVA, QILCPI, QCPI, QII
        AQSAVHREQ,RHOIUR,STOIUUR,ALFA ANI HETA-COEFFICIENTS,SMOOTH ,MARKET
        \triangleITER...
    A
[11]
[12]
[13] NIURAIURRHI11
[14] }\textrm{Z}+1
[15]
[16] NNUR+(DUR#/11)//11
[17] aNIUU,Z,SAV ARE INDEX-VARIABLES..,
[18] NH+LG+(SUM2 L)+LU
[19] WH+WHSUM\divNH
[20] QLIIDINIT
[21] aFUNCTION QDIAINIT IS CALLED TO GIVE A VALUE TO QDI,ANI THIS IS TH
    A ONLY PURPOSE OF THIS FUNCTION.QDI=DISPOSAELE INCOME
        WHRA+WH}\divQII
[23] QPH+QPIIOM,O
[24] AQPH USEI TO BE A VECTOR OF LENGTH 11,QPH(11) WAS THE PRICE IN THE
        SERVICE SECTCP.THERE IS NO LONGER AN ELEVENTH SERVICE- SECTOR,SO
        QPH=QPUIOM.FOR TECHNICAL REASONS WE SEE TO THAT QPH
25] aHAS THE LENGTH 11 [IESPITE THIS,FOR THE TIME beING,WHERE WE WILL H
    AVE A REIUNIIANT O AT THE ENI...
        QC+(HH76\timesQIII),0
[27] QC+(1,pQC)pQC
[28] QC+QQC
[29] AGC ANII CVA MUST EE COLUMN-VECTORS FOR TECHNICAL REASONS..
[30] aSEE MOSES-FUNCTION C\overline{PI}1...,
[31] CVAFQC IIIV7 QPH
[32] QCPItCPI1(QPH)
[33] PRICECHANGESHQIPFOR,QIPIN,O
[34.1 QLICPI+(PRICECHANGES+, X,QC)\div(+/,QC)
```

Note: QDI-INIT is a subfunction listed later on.

## APPIERIIX C SURFONCTIOW BOOSGAOLDS-DATA (cont.)

```
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[45]
[46]
[47] MARKETAITER+3
[48] AMARKETAITER TELLS HOW MANY ITERATIONS WILL EE IIONE IN THE MARKET
AMARKET\triangleITER TELLS HOW MANY IT
NH+1\rhoNH
[49]
```

```
APPMENDIX C SUBHUUCTIO DISPOSE1-PIRAS
            (deletes a number of variables)
            This function is called in subfunc-
            tion ESTABLISHMENTS.
```

    \(\nabla\) VIISPOSE1AFIRMSLDJ
    [1] $\rightarrow$ IISPOSE1AFIRMS
[2] 'REALADRATIO'
[3] REALARATIO
[4] 'SYNTHARATIO
[5] SYNTHARATIO
[6] INPUTRATIO.
[7] INPUTRATIO
[7] INPUTRATIO
[8] 'REALASALES
[9] REALASALES
$\begin{array}{ll}{[9]} & \text { REALASALES } \\ \text { [10] } & \text { SYNTHASALES. }\end{array}$
[11] SYNTHASALES
[12] 'SLUT PA TESTUTSKRIFT I DISPOSE1AFIRMS
[13] START:
[14] A
[15] KILL 'SCALE MAKEQUARTERS'
[16] KILL ' RĀMĀ̄̄KET FIRMID RESALABOUR SYNTHASALES RESASALES RATIOI RAT
IO2 INPUTRATIO.
[17] KILL •REALDRATIO SYNTHARATIO RESAEXPORT REALAINP LIST K3AIMEI:
[18] RTHIS FUNCTION DELETES VARIABLES ANII FUNCTIONS OF NO FURTHER USE.

```
APPMadIE C SURFUMCFICN DISPOSI2-PTPMS
(deletes a number of variables)
This function is called in subfunc-
tion ESTABLISHMENTS.
```

| $\nabla$ | จbispose2afirmscajv IIISPOSE2AFIRMS |
| :---: | :---: |
| [1] | $\rightarrow($ TESTUTSKRIFT=0)/START |
| [2] | 'SAMARKET ${ }^{\text {S }}$ |
| [3] | SİMARKET |
| [4] | 'A21' |
| [5] | A21 |
| [6] | 'A22' |
| [7] | A22 |
| [8] | 'INP' |
| [9] | INP |
| [10] | 'QCURR' |
| [11] | QCURR |
| [12] | M75 ${ }^{\text {' }}$ |
| [13] | M75 |
| [14] | ' $\triangle$ K 3 ITMEL ${ }^{\prime}$ |
| [15] | $\triangle$ S3AIMEII |
| [16] | ' $\triangle$ K 3 AFINISH ${ }^{\text {' }}$ |
| [17] | $\triangle K 3 \Delta F I N I S H$ |
| [18] | 'REALAFORVF' |
| [19] | REALAFORVF |
| [20] | 'SYNTHAFORVF' |
| [21] | SYNTHAFORVF |
| [22] | 'FORVF' |
| [23] | FORVF |
| [24] | 'realalahour' |
| [25] | REALALAEOUR |
| [26] | SYNTHALAFOUR' |
| [27] | SYNTHALAEDUR |
| [28] | REALAW |
| [29] | REALAW |
| [30] | SYNTHAW ${ }^{\text {' }}$ |
| [31] | SYNTHAW |
| [32] | 'REALAOVERSKOTT' |
| [33] | REALAOVERSKOTT |
| [34] | SYNTHAOVERSKOTT ${ }^{\text {- }}$ |
| [35] | SYNTHAOVERSKOTT |
| [36] | OVERSKOTT ${ }^{\text {' }}$ |
| [37] | OVERSKOTT |
| [38] | 'realakralon' |
| [39] | REALAKRALON |
| [40] | 'SYNTHAKRALON' |
| [41] | SYNTHAKRALON |
| [42] | 'LON' |
| [43] | LON |

```
APPRENDII C SURFUNCIOW DISPOST2-PTEASS (cont.)
```

```
[45] START
[46] KILL'X FATATA SAMARKET NAMNAMARKET A21 A22 INP QCURR M75'
[47] KILL - AK3\triangleIMEL A}\3\AFINISH REAL\triangleSALES REAL\triangleFORVF SYNTH\triangleFORVF FORVF
    REALALAGOUR SYNTHALAFOUR
[48] KILL 'REALAW SYNTHAW REAL\triangleOVERSKOTT SYNTHDOVERSKOTT OVERSKOTT'
[49] KILL 'REALAKRALON SYNTHAKRALON LON SCALE HELP'
[50] KILL 'IOAMATRIX CONTRDLS REALASUM1 SYNTHASUM1 IIISPOSEIAFIRMS RANI
    OMIZE USING QFR1 HISTORY GETWEEN
[51] A
[52] ATHIS FUNCTION IIELETES FUNCTIONS ANII VARIAELES OF NO FURTHER USE..
\nabla
```

```
    \nablaKILL[QJ\nabla
    \nabla KILL NAMES;POS;IIUMMY
        L:->(0=pNAMES)/0
        POS+NAMES:
        TUUMMY&DEX(POS-1)&NAMES
        NAMES+POS \NAMES
        L
\nabla
```

This function is stored in workspace VLISTS.

## 

```
\nabla\ISPOSEAVARAINPUTEQIV INSOSEAVARAINPUT;COPARI;COPATXW;COPATXWG;COPARIDEPFOR
COP\triangleRIBWFOR; COPATXC ; COP\triangleTXII
    ATHIS FUNCTION GETS RID OF INPUTVARIABLES FROM
    AFIRST PART OF INITIALIZATION
[4] COP\triangleRIIIEPFOR+EXOARIIIEPFOR
[5] COP\triangleRIEWFOR+EXOARIEWFOR
[6] COPARI+EXOARI
[7] COPATXW+EXOATXW
[8] COPATXWG&EXOATXWG
[9] COPATXC+EXOATXC
[10] COPATXI1+EXOATXII
[13] KTLL MACPOLIST
[14] EXO\triangleRIDEPFOR&COPARIIIEPFOR
[15] EXOARIEWFOR&COPARIEWFOR
[16] EXOARI+COPARI
[17] EXO\triangleTXWFCOPATXW
[18] EXOATXWG+COPATXWG
[19] EXOATXC&COPATXC
[20] EXOATXI1+COPATXII
[21] AVARIABLES FROM WORKSPACE MACRO HAVE SOMETIMES THE SAME
[22] A NAME AS AN OUTPUT-VARIABLE,SUCH VARIABLES MUST NOT
[23] AEE DELETEI BY THE CALL ''KILL MACROLIST'
```

[2]
[4]
[11] ค
$[12]$
$[13]$
[24] ${ }^{\text {A }}$

```
NPPMNDIS C SOBPUMCTION QDI-IMIT
This function is called in subfunc-
tion HOUSEHOLDS DATA
```

$\nabla$ QIIAINIT;QTWS;QTI;QWTAX;QINTH;QTRANS;QITAX;TXII
[1] AINPUT TO THIS FUNCTION:
[2] aGKOFF,LG,WG,L,QTIIV,QW,LU FROM PUELICASECTOR,ESTAELISHMENTS,SECON
LIARYOLIATA, , $\div$ FROM MARKETSALATA
a RTRANS, RLU FROM MARKETSADATA
aTXII,TXW,TXWG, QINPAY,RI COME (INIIRECTLY) FROM INPUTFILE MACRO.,
alocal copies of tXw, TXWG...ARE USEI...
aNH,WH FROM HOUSEHOLISSIIATA
A QTRANS $-(R T R A N S \times(L G \times Q W G \div 4) \times 1++/ G K O F F)+R L U \times 0.25 \times L U \times L$ AVG2 QW $1-$
TXWCOPY
QINTH $+N H \times(R I \triangle C O P Y-M E) \times W H \div 4$
QINTH $+N H \times(R I \triangle C O P Y-M E) \times W H \div 4$
QTWS $+(L G X Q W G \div 4)$,SUM2 $L \times Q W \div 4$
QTWS+(LGXQWG $\div 4)$, SUM $2 L X Q W \div 4$
QTWS + QTWS $+(0$, QINPAYCOPY $)$
QTWS + QTWS $+(0$, QINPAYCOPY)
QWTAX + QTWS,$+ \times$ (TXWGCOPY, TXWC
QTI
QTI+QTDIV+QINTH+QTRANS+((+/QTWS)-QWTAX)
TXI1+TXIICOPY
QITAXt0.25XAGGRITAX $4 \times Q T I$
QIIIt(QTI-QITAX) $\div \mathrm{NH}$
$\nabla$

```
APPIGODIXC SUBEOECTIGO QDI-INIT2
This function is called in subfunc-
tion IO-MATRIX.
```

קQIIIAINIT2CDJ
ZZ+QLIAINIT2;QTWS;QTI;QWTAX;QINTH;QTRANS;QITAX;LU;NH;MB;RTRANS; RLU
[1] AINPUT TO THIS FUNCTION:
[2] AGKOFF,LG,WG,L,QTIIV, QW,LU FROM PUELICASECTOR,ESTAELISHMENTS, SECON
[IARYALIATA. : $\div$
RTRANS +0.5
RLU +0.6
$M B+0.015$
atXII,TXW,TXWG,QINPAY,RI COME (INLIRECTLY) FROM INPUTFILE MACRO..
LUt(LG+SUM2(L))×RU $\div(1-R U)$
$\mathrm{NH}+\mathrm{LG}+\operatorname{SUM} 2(\mathrm{~L})+\mathrm{LU}$
$\begin{array}{ll}\text { [8] } & \text { NH\&LG+SUM2(L } \\ \text { [9] } & W H+W H S U M \div N H\end{array}$
[10] $\quad$.
[11] QTRANS+(RTRANS $\times(L G \times Q W G \div 4) \times 1++/ G K O F F)+R L U \times 0.25 \times L U \times L$ AVG2 QW×1-TXW
[12] OINTH+NHX(RIT-ME) $\times W H \div 4$
[13] QTWSt(LGXQWG $\div 4)$, SUM2 LXQW $\div 4$
[14] QTWS + QTWS + (O, QINPAY)
[15] QWTAX + QTWS + , X(TXWG, TXW) $\div 1+$ (TXWG,TXW)
[16] QTI+QTIIV+QINTH+QTRANS+( $(+$ QTWS)-QWTAX)
[17] QITAX+0.25XAGGRITAX $4 \times Q T I$
${ }^{[18]} \nabla$
ZZ+(QTI-QITAX)

```
\nablaOUTPUTAOPERATIONS[DJD
OUTPUT\triangleOPERATIONS;LIST;TOTLIST
[1] AOUTPUT FROM INITIALIZATION IS HEING GROUPED:
[2] AVARIABELGRUPP1,VARIABELGRUPP2,.,COME FROM WORKSPACE VLIST
```



```
[5] e')WSIII TEMPORARY
[6] E')SAVE.
[7] LIST&DNL 2,3
[8] LIST&,LIST
[9] E)COPY VLISTS
[10] MN+WORKSPACENAME
[11] KILL LIST
DRL+123467 MACRO .,GRUPP1, ...
[14] TOTLIST+VARIABELGRUPP1,',VARIABELGRUPP2,' ',VARIABELGRUPP3
```



```
[16] \epsilon')ERASE VARIABELGRUPP1 VARIABELGRUPP2 VARIABELGRUPP3'
[17] E)ERASE VARIABELGRUPP4 VARIABELGRUPPS GRUPPI LIST'
[18] \epsilon')ERASE IIOKUMENTATION
[21] MN COPYSAVE TOTLIST
[22] AOUTPUT FROM INITIALIZATION, ANII NOTHING ELSE,IS SAVEI
[23] AIN WORKSPACE(WHDSE NAME IS STOREII IN WORKSPACENAME).
[26] E')IIROP TEMPORARY.
```

[19] A
[24] $\quad$ A
[25] A
$\nabla$ Y COPYSAVE X
a THIS FUNCTION TAKES VARIAELES FROM WORKSPACE TEMPORARY
[2] A,TAKING ONLY THOSE SPECIFIEII IN LIST X.ANI SAVES THEM IN A WORKSP
ACE WITH NAME Y..
$3]$ \& E') COPY TEMPORARY $\quad, X, \cdots$

[5] $\downarrow$
This function is stored in workspace VLISTS.

## APPERDIX D THEE IRITTLALTMATIOII CODE, HISLP-PCNECTIONS

The help-functions, in general, perform operations which occur many times during the initialization or which are so technical that they preferably should not be part of the main initialization code.

The help-functions are, in alphabetical order:
 CPII, DDIV, DEN. DIFP, DIV1, DIV7, DIV8, DUP, ENS, EOUNL, HISTORY, MAKEOUARTEERS, MODADD, MODDEEIュ MODSUBST, MULFI, MULIT, MULTB, PACK, QFRI, RARDDONIZE, REALASUREI, RELDIIPT, SCANMAT, SUMI, SUM2. SSMMTASUML, USHEG, SCALE

They are stored in workspace FUNCTI.

A short description of what some of the help-functions do:
nVG1:
Has 2 parameters $W(=v e c t o r)$ and $D(=v e c t o r)$.

i in 1 means: Summation over index $i$ (usually number of firms) but only taking those $\mathbf{i}$ which belongs to sector l, etc...

Thus we get a weighted average in each industrial sector (1,2,3,4) of a micro-variable. The result is a vector of length equal to 4 .

SUREL:
Has 1 parameter $V(=$ vector). (V=micro-variable).

Result: A vector of length=4 with the sum of $V$ in one and each of the four industrial sectors (compare with AVGI above).

MODADD, MODDEL, HODSURSSF:
These functions can change lines in another function, i.e. the programming code itself.* They are described in Part 1, Section 2.

## MOLT7:

Example:
M MULPT $V=\left[\begin{array}{ll}\mathrm{v}_{1} \mathrm{~m}_{11} & \mathrm{v}_{1} \mathrm{~m}_{12} \\ \mathrm{v}_{2} \mathrm{~m}_{21} & \mathrm{v}_{2} \mathrm{~m}_{22}\end{array}\right]$
where $M=\left[\begin{array}{l}m_{1} m_{12} \\ m_{21} m_{22}\end{array}\right]$ and $V=\left(v_{1}, v_{2}\right)$
MULT7 is an operator which performs a kind of multiplication between a matrix and a vector.

[^18]
## קABOVE[DJD

$\square$ M+M1 ABOVE M2

- to FORM a matrix with mi above m2, paliging with elanks or zeroes IF NEEDEI
a EACH OF M1 ANI MZ IS MATRIX, VECTOR, OR SCALAR.
[3]
$M+(((1 \uparrow \rho M 1), 1 \downarrow(\rho M 1) \Gamma \rho M 2) \uparrow M 1),[1]((1 \uparrow \rho M 2), 1 \downarrow(\rho M 2) \Gamma \rho M 1+(-2 \uparrow 11, \rho$ M1) $P M 1$ ) 9 M2 $+(-2411, p M 2) P M 2$
$\nabla$

קAVG1[DJ

- A+W AVG1 I
[1] ค
[2] A TO GET MARKET AVERAGES FROM FIRM LIATA
[3] A 'D' IS THE FIRM (VECTOR) IIATA TO RE AVERAGELI.
[4] A 'W' IS A WEIGHTING VECTOR
[5] a GLOEAL VECTOR 'MARKET' TELLS MARKET NUMBER OF EACH FIRM
[6] a global 'nmarkets' tells number of markets.
[7] A A. IS THE (VECTOR) AVERAGE.
[8] ค
[9] A+ $((W \times[1)+, \times M A R K E T 0,=1$ MMARKETS $) \div(W+, \times M A R K E T 0,=$ NMARKETS $)$
$\nabla$


## APPRITDIE D

```
VAVG2[ロJワ
- A+W AVG2
\(\left[\begin{array}{ll}{[1]} & A \\ \text { [2] } & \text { A } O \text { GET A COUNTRY AVERAGE FROM FIRM IIATA }\end{array}\right.\)
[3] A 'II' IS THE FIRM (VECTOR) DATA TO EE AVERAGEII
[4] A 'W' IS A WEIGHTING VECTOR.
[5] A 'A' IS THE (SCALAR) AVERAGE
[6] A
[7] \(A+(+/ W \times[1) \div(+/ W)\)
\(\nabla\)
```

DEETWEEN[D]
$\nabla \quad R \leftarrow A$ EETWEEN $B$
[1] $R+A+(B-A) \times 0.01 \times-1+? 101 \times E=E$
$\nabla$

จCONTINUE1[DJV
$\nabla \quad R+N$ CONTINUE1 $V$
[1] $R \leftarrow N \uparrow V, N_{p}^{-1} \uparrow V$

## NPPERTDIX $D$

DCONTINUE2［0］$\nabla$
$\left[\begin{array}{ll}\nabla & R+N \operatorname{CONTINUE2} M \\ \nabla & R+((1 \uparrow p M), N) \uparrow M, Q(N, 1 \uparrow p M) p M[;(p M)[2]]\end{array}\right.$

DCPIILロコロ
$\nabla \quad \mathrm{Z} \leftarrow \mathrm{CPI} 1$ PRICES
［1］$A A \div B$ WHERE $A=Q C 1 \times N H+Q C 2 \times N H, \ldots A N I$
［2］$A B=Q C 1 \times N H \div P 1+Q C 2 \times N H \div P 2+\ldots$
［3］ค
［4］$\nabla \quad \mathrm{Z}+(+/ \mathrm{QC}+, \times \mathrm{NH}) \div((\mathrm{QC}+, \times \mathrm{NH})+, \div \mathrm{PRICES})$

## APPREDIE D

```
    \nablaDHIVEDJV
    | Z&A INIV E
[2] A TO 'IIVIDJE' A TRENI PERCENTAGE,
[3] A 'Z' IS COMPUTEII AS THE SOLUTION TO: (1+A)=(1+Z)*B
[5], Z+-1+*(1+A)\divE
```

[1]
[4] A
$\nabla$ VIEVEDJ
[1] $A+X-+1 X \div P X$

VIIFF[DJV
[1]
$R+((((-1+\rho \rho F) \rho 0), 1) \downarrow F)-((((-1+\rho p F) \rho 0),-1) \downarrow F)$

## APPEMDIX D

```
    \nablaLIV1CDJV
    \nabla ZHF IIIV1 M
[1] [2] A TO IIIVIIIE FIRMS' DATA WITH A MARKET VECTOR:
[3] A 'F' IS THE FIRMS' IIATA VECTOR.
[3] A 'F'. IS THE FIRMS' IIATA VECT
[4] A 'M' IS THE MARKET VECTOR.
[5] A GLOBAL VECTOR 'MARKET' CONTAINS MARKET NUMEER OF EACH FIRM.
[6] A 'Z' IS THE RESULTING (FIRM VECTOR) IIATA.
[8] Z+F\divM[MARKET]
    \nabla
```

〔7] ค
VIIVTED]V
- $Z+M$ IIIV7 $V$
$\operatorname{ENS}(p V)=(p M)[1]$
[1]
[3]
[4]
[5]
a TO IIVIIIE A MATRIX WITH A VECTOR:
a EACH ELEMENT 'M[I;J]' IS IIVILEEI BY 'V[I]'.
A THUS, ' $M$ ' MUST HAVE AS MANY ROWS AS ' $V$ ' HAS ELEMENTS.
[6]
${ }^{\mathrm{A}} \mathrm{A}$
[7] $\nabla$

## NPPETDIE D

קLIV8[ם]
$\nabla \quad Z+M$ IIV8 $V$
ENS $(\rho V)=(\rho M)[2]$
[2] A TO IIIVIIE A MATRIX WITH A VECTOR:
[3] A EACH ELEMENT M[I;J] IS IIVIIEEI EY V[J].
[4] A THUS, M MUST HAVE AS MANY COLUMNS AS $\because$ HAS ELEMENTS,
[5] $Z+M \div(\rho M) \rho V$
$\nabla$

קIUPC[J]
$\nabla \quad Z+$ NUM IUP EL
A $Z+(N U M[1] p E L[1]),(N U M[2] p E L[2]), \ldots,(N U M[N] p E L[N])$
ENS ( $1 \geq \rho \rho N U M),(1 \geq \rho \rho E L)$
$\operatorname{ENS}(1 \leq p, N U M),(2 \leq p, E L)$
$\operatorname{ENS}(1=\rho, \operatorname{NUM}) \vee((\rho, \operatorname{NUM})=(\rho, E L))$
NUML ( $\rho E L$ ) $\rho$ NUM
$Z+E L[(0 \neq Z) / Z \leftarrow, q(((\Gamma / N U M), \rho N U M) \rho \backslash \rho N U M) \times(1 \Gamma / N U M) \circ, \leq N U M]$

## APPIEIDIX ID

קENScロנק
$\nabla$ ENS STRING

```
1] ->(^/STRING=1)/0
[2] -ERROR IIETECTE[I BY FUNCTION ENS'
[3] ERR
[3] [r
| ALINE ABOVE STOPS EXECUTION
\nabla
```

DEQUALSCIJD
$\nabla$ Z $+A$ EQUALS E
1] $\quad \rightarrow((\rho \rho A) \neq \rho \rho E) / Z+0$
$[2] \quad \rightarrow((, \rho A) \vee, \neq \rho E) / 0$
[3] $Z \in(, A) A,=, B$
$\nabla$


## APPREIDILE D

DMAKEQUARTERSCDJV
WHMAKEQUARTERS $V$
$\nabla \quad$ WHMAKEQUARTERS $V$;FUNKA;FUNKB; LIELTA; IIFF;F0;F1;F2;NIVAO;NIVAI;R;I; J;K;M;N;LEVEL;EXPR1;EXPR2;FUNKX;FIKTIV1;FIKTIV2
[1] ATHIS FUNCTION IIISTRIEUTES VARIAELES ON QUARTERS.FLOW-VARIABLES MU ST BE IIIVILEII BY 4 AFTERWARIIS.,.
2] $A V=I N P U T=Y E A R L Y$ FIGURES $W=R E S U L T=Q U A R T E R L Y$ FIGURES
3] W世 $4 \times(\rho V)) \rho D$
[4] FUNKEF DELTAXX* ( (LIELTA-N) $\div$ N)
[5]
[6]
$[7]$
$[8]$
[9]
[10]
[11]
[12]
[12] A
13]
[14] START: $\rightarrow(I=M) /$ SLUT
[15] $F 0+V[I]$
$[16] \quad F 1+V[I+1]$
[17] $F 2+V[I+2]$
[19] NIVAO+F0+(F1-F0) $\div 2$
$\begin{array}{ll}{[19]} & \text { NIVAO } \\ {[20]} & \text { NIVAI } \\ {[21+(F 2-F 0) \div 2} \\ (F 2) \div 2\end{array}$
[21] IUELTAFNIVA1-NIVAO
[22] $N+(F 1-F 0) \div 2$
[23] $\rightarrow$
[24] FUNKX+FUNKE
[25] $\quad 1((x(F 2-F 1)) \neq x(F 1-F 0)) /$ FUNK $X+F$ UNKA
[26] ค
[27] $\mathrm{J}+1$
[28] $S: \rightarrow(J=5) / L$
[29] $\quad X+(J-1) \div 4$
[30] LEVEL+ ${ }^{\prime} \mathrm{FO} 0+\mathrm{N}+{ }^{\prime}$, FUNKX
[31] EXPR1+1FUNKX
[32] $\quad X+J \div 4$
[33] EXPR2+』FUNKX
[34] R[J]+LEVEL+(EXPR2-EXPR1) $\div 2$
[35] Jt J +1
[36] $\rightarrow$ S
[37] L
[38] $\quad$ IIFF + F1- $-(+/ R) \div 4$
[39] $\rightarrow($ TESTUTSKRIFT $=0) / \mathrm{L} 3$
[40] 'TESTUTSKRIFT

APPENDIX D

```
[41] R[1],R[2],R[3],R[4]
[42] 0&IIFFF
[43] IIIFF
[44] L3:
[45] W[K+14]+R+[IIFF
[46] I+I+1.
[47] ->START
[48] SLUT:
[49] }->(\mathrm{ TESTUTSKRIFT =0)/EXIT
[50] [] +'RESULTAT'
[51] I&0
[52] S2:->(I=(M-1))/L2
[53] [ [ V[I+1]
[54] [ +W[(14)+I\times4]
[55] I I I +1
[56] ->52
[57] L2:'0K
[58] EXIT:
```


## APPREMEI D

VMOLIALILILITD

- NAME MOLIALIII OLINEW; GREAK;CR;ROWS

ENS MOI' $V, \neq 3 \uparrow$ NAME + , NAME
$\begin{array}{ll}\text { [1] ENS } \\ {[2]} & \text { ENS } 3=\square N C \text { NAME }\end{array}$
$\begin{array}{ll}\text { [2] ENS } 3=\text { INC NAME } \\ \text { [3] } & \text { ENS (BREAK }>1), 1=\rho \text { GREAK }+\left({ }^{\prime} \omega{ }^{\prime}=\text { OLIINEW ) / } \rho O L \text { LINEW }\right.\end{array}$
[4] ENS $1=\rho$ ROWS $+(C R+$ DCR NAME)SCANMAT(EREAK-1) $\uparrow O L[I N E W$
[5] ENS DEX NAME
[6] ENS (PACK NAME)EQUALS [FX CR[IROWS; ]ABOVE(EREAK \$OLIINEW)ABOVE(ROWS, 0) $\downarrow$ CR
$\nabla$

- VMOLIELLRID
[1]
[2]
[3] N+..
[リ] ENER 1efllig
[5] ENS DEX NAME
[6] $\nabla$
ENS NAME EQUALS [FX(AfROWS $\neq \neq 11$ ipCR)/[1]CR
$\nabla$


## NPPIMDIX D

DMOLISUESTEDJ
$\nabla$ NAME MODSUBST OLIINEW; BREAK;CR; ROWS
[1]
[2] ENS MOI $v, \neq 34$
[3] ENS (BREAK > 1) , $1=\rho$ EREAK $-\left({ }^{\prime} \omega^{\prime}=\right.$ OLIINEW $) /$ คOLINEW
[4] ENS $1=\rho R O W S+(C R+$ DCR NAME)SCANMAT (EREAK-1) \&OLINEW
[5] ENS DEX NAME
[6] ENS(PACK NAME)EQUALS [FX CR[, ROWS-1;]AHOVE (BREAK $\downarrow O L[I N E W) A E O V E($ ROWS , 0 ) $\downarrow$ CR
$\nabla$

จSCANMAT[G]D
$\nabla$ RHM SCANMAT $S$
[1] $R+\left(V / \wedge t\left(\phi(\rho, S) \leq 1^{-1} 1 \uparrow \rho M\right) /\left(Q((1 \uparrow \rho M), \rho, S) \rho^{-1+1 p, S) \phi(, S) 0,=M) / 14 \rho M}\right.\right.$
$\nabla \begin{array}{r}\nabla P A C K C D I \nabla \\ Z \& P A C K \\ \hline\end{array}$
[1] $Z+1 \nmid(Z \vee 1 \Phi Z+0, \cdot \quad \neq S) / \prime \cdot, S$

## APPIKTDIE $D$


［1］A $\quad$ A TO MULTIPLY FIRMS＇IIATA WITH A MARKET VECTOR：
［3］A＇F＇IS THE FIRMS＇DATA VECTOR．
［4］A＇M＇IS THE MARKET VECTOR．
［5］A GLDEAL VECTOR＇MARKET＇CONTAINS MARKET NUMEER OF EACH FIRM，
［6］A＇Z＇IS THE RESULTING（FIRM VECTOR）IIATA．
$\begin{array}{ll}\text {［7］} & \text { A } \\ \text {［8］} & Z+F \times M[M A R K E T]\end{array}$
$\nabla$

จMULTフ［ロコロ
$\nabla \quad Z+M$ MULTT $V$
$\operatorname{ENS}((\rho V)=(\rho M)[1]),(2=\rho \rho M),(1=\rho \rho V)$
［1］
［2］$\rightarrow$
［3］A TO MULTIPLY A MATRIX WITH A VECTOR
［4］A EACH ELEMENT＇M［I；J］＇IS MULTIPLIEI WITH＇V［I］＇
［5］A THUS，＇M＇MUST HAVE AS MANY RQWS AS＇V＇HAS ELEMENTS，
［6］$\rightarrow$
［7］$\nabla$
$Z+M \times Q(\oplus \rho M) \rho V$
$\nabla$

จMULTBLDJV
$\nabla$ Z $\rightarrow$ M MULTB $V$
［1］ $\operatorname{ENS}((\rho V)=(\rho M)[2]),(2=\rho \rho M),(1=\rho \rho V)$
［1］ENS $(\rho V)=(\rho M)[2]),(2=\rho \rho M),(1=\rho \rho V)$
［2］A TO MULTIPLY A MATRIX WITH A VECTOR
［3］A EACH ELEMENT M［I；J］．IS MULTIPLIEII WITH v［J］＇
［4］A THUS，＇M＇MUST HAVE AS MANY COLUMNS AS＇V＇HAS ELEMENTS．
［5］
［6］$Z+M \times(\rho M) \rho V$
$\nabla$

## APPIENDIX $\mathbb{D}$

```
    \nablaQQFR1[DJ#
[1]
    \nabla
```


1] C+((REALDSUM1 A) +4 NAMNAMARKET' $\quad=14)[5 \triangle M A R K E T]$
[2] a EACH ELEMENT OF C EQUALS CORRESPONIING REAL MARKET AVERAGE
[3] $\rightarrow((0=\mathrm{F}) \wedge 1=\rho \mathrm{H}) /$ ENH
[4] A IF E=0, SKIP CORRELATION ASPECT
[4] A IF $B=0$, SKIP CORRE
[5] D+( $\rho$ NAMNAMARKET) $\uparrow \mathrm{B}$
[6] $E+(\rho[1)+E$
[7] A HELP VELES: D=REAL PART OF E, E=SYNTHETIC PART OF B

[9] A AIII=IIEVIATIÕN OF ELEMENTS OF E FROM THEIR MK̄T AVERAGES
[10] $C+C+A I D x((+/(\operatorname{DEV} \mathrm{D}) \times \operatorname{DEV} A) \div+/(\operatorname{DEV} E) * 2) \times(\rho E) \div \rho \mathrm{L}$
[11] A THAT USEI THE APPROXIMATION $\operatorname{COV}(C, E)=\operatorname{COV}(A, I 1)$
[11] A THAT USE[I THE APPROXIMATION COV $(C, E)=C O V(A, I 1)]$ [
[12] ENI:AIII+A-( $(A+$. XNAMNAMARKET•, $=14) \div+$ +NAMNAMARKET•, $=14)$ [NAM
[13] A AIII=IEVIATION OF ELEMENTS OF A FROM THEIR MKT AVERAGES
$[14] \quad \operatorname{CHC+}+(-50+(\rho C) P 100) \div 50) \times((($ REAL $\triangle$ SUM 1 AID*2 $) \div+f$ NAMNAMARKET0, $=14) *$
$0.5)[S \triangle M A R K E T]$
$[15]$ A $C[I, J]=C[I] \times(1+E P S[I, J]) \times S I I(A[I])$
[16] A WHERE: C[I]=C FOR MARKET I AS COMPUTED ABOVE
[17] A EPS[I,J] IS UNIFORM OVER [ $\left.{ }^{-0} 0.5,0.5\right]$
[18] ${ }^{\text {A }}$
SII(:)=STANIARD IEVIATION OF A ON THE ITH MARKET

## APREMDI: D

```
    \nablaREALASUM1[DJD
    \nabla A&REALASUM1V
[2] A TO SUM FROM FIRMS TO MARKETS
[3] A 'V' IS THE FIRM IIATA TO EE AGGREGATEN, IF IT HAS MORE THAN
[4] A ONE AXIS, FIRST IIIMENSION MUST INIICATE FIRM NUMEER.
[5] A GLOEAL VECTO
[6] A GLOHAL 'NMARKETS' TELLS NUMEER OF MARKETS.
[7] A 'A. IS THE AGGREGATE.
```

[1]
[8]
[9] $\nabla$
VRELIIFFEDJ
[1]
DSUM1[D]V
A+SUM1 V
[1] ค
[2] A TO SUM FROM FIRMS TO MARKETS:
[3] A V' IS THE FIRM IIATA TO GE AGGREGATEII. IF IT HAS MORE THAN
[4] A ONE AXIS, FIRST IIIMENSION MUST INIICATE FIRM NUMBER.
$\left[\begin{array}{ll}{[5]} & \text { A GLOEAL VECTOR TMARKET TELLS MARKET NUMERER OF EACH FIRM. }\end{array}\right.$
[6] A GLOEAL 'NMARKETS' TELLS NUMEER OF MARKETS.
[7] $A$ ' $A$ ' IS THE AGGREGATE,
[9] $A+((, N M A R K E T S) \bullet,=M A R K E T)+, X V$
$\nabla$

## APPMEIDIL $D$

DSUM2Cロコロ
－$A \leftarrow S U M 2 V$
［2］A TO SUM FROM FIRMS TO A COUNTRY TOTAL．
［3］A＇V＇IS THE FIRM IIATA TO EE AGGREGATEII．IF IT HAS MORE THAN
［4］A ONE AXIS，FIRST IIIMENSION MUST INIIICATE FIRM NUMEER．
［与］$A$＇$A$＇IS THE $\bar{A} \bar{G} G \bar{R} E G A T E$
［6］ค
［7］$\nabla$
［1］
จSYNTHASUMI［D］D
R＋SYNTHASUM $1 \quad V$
$\nabla$

VUSINGCOJV
OUT＋REAL USING $V$
1］$\nabla$
OUT\＆REAL，（REAL RANIIDMIZE V）
$\nabla$ SCALE［DIV

```
\FN-SCALE PAR
[1] ENS (\overline{0}\\overline{P}\overline{A}\overline{R}),(1\leqq\rhoPAR),(PAR\leqqS+1, -1\downarrowPAR)
[2] A TO GET N SCALEII NUMEERS IN IIESCENLING ORIIER.
[3] A (-1\downarrowPAR) ARE SIZES OF NUMEERS 2,3,... RELATIVE TO FIRST NUMBER.
[4] A AFTER THAT, MORE NUMEERS ARE GENERATEII IN A LOGARITHMICAI.LY TIFCL,
    INING FASHION IIOWN TO (-14PAR).
    A NUMEERS ARE NORMALIZEI TO HAVE SUM=1.
[6] }\quad+(N=\rhoSt-(NL.\rhoS)\uparrowS)/
[7] S+S,\phi("1\uparrowPAR)\times((\divブ-2\uparrow1,PAR)*\divN-\rhoS)*-1+1N-\rhoS
[8] L:S+5\div+/5
```


## APPENDIX D ENTRY VARIANT，ADDFIRM

```
\nablaAIIIIDFJ:FM
```




```
A TO IHSERT NEW F_IRM(S) IHTO OHE MAFREET; TO EE USEI AT A YEAR
LIMIT OHALY.
```



```
HEWSYMEOL&(MMM+ZOMMM) [2]
MM&MMM[1]
\triangle&PARMS[1]
FELSIZE+1\psiPAFPMS
A MM IS MAFPFET RUUMEER
ค HEWSYMEOOL EIVES HUMERIGAL GOIE FOF FLOTTIVG
A \triangle IS PROFIT-MAREIM AIVANTAGE COMPAREII TO THE AVERAGE FIRM
A RELSIIE IS SIZE OF HEW FIRM(S) AS A FRAGTIOH OF GUFPENT MARY:
ET AEGREGATE
EHS O= OHC MHRS.
PI THAT WAS TO EHSUPE A YEAF LIMIT
f
FW%RW, (FRFELSIIE)PS AVES RIW
A
A21\divVA AVES AZ1
AZ2+VA AVES Aここ
A
IHVEFF+INVEFF, (مFELSIIE)FHF1 AVG5 IHVEFF
ト1+ド1, FELSIIEXSUMS ド1
K1EOOK゙世N1EOOH, RELSIZEXSUME ト1EOOK
ザ2+ト2, RELSIIEXSUMS ド2
E:W&E:W, RELSIIEXSUMST E:W
QIHUV&DIHV, FEELSIZEXSUMS @IHV
RIHVLAG*QIHVLAG,RELSIZEXSUME, RIHVLAG
```



```
A
M&, (PRELSIZE)PS AVGS 
A
P&P,P&(FFELSIZE)PS AVES P
QP&DP, 显\div(FPELSITE)PRS AVES RP
IPP&IPP, IPP\div(NPELLSIIE)NS AVGS IIP
P
W+W,W+(FPEELSIIE)FL AVGE}
IW&FW, (NRELSIIE)FVA AVES IW
NIW%OINW, (FUPELSIZE)F(LXEW)AVES ETW
DW+QW, (FPELSIIE)FOL AVES DW
```


## APPENDIX $\mathbb{D}$ ENTRY VARIANT，ADDFIRM（cont．）

```
[3E]
[:39]
[40]
[41]
[42]
[4:3]
[44]
[45]
[46]
[47]
[4E]
[4%]
[50]
[51]
[5%]
[5%]
[54]
[55]
[5心]
[57]
[5:]
[5]
[5%]
[60]
[61]
[61]]
[6.3]
[6.3]
[64]
[65]
[6&]
[6<]
[67]
[68]
[69]
[70]
[71]
[71]
[72]
[73]
[74]
[75]
[7に]
[7に] P
[77] RES+FES, RES%(PRELSIZE)PVA AVESGRES
[7E] QTOP&DTOP,QTOP+QQ\div1-AZ1+A2Z+EES
```



```
[80] ค
[81] MARKEET:MARKET, (NRELSIZE)FMM
[82] OPIGMARKET&ORIGMARFEET, (NRELSIIE) FOMM
[B3] SYMEOL\div5YMEOL, (PRELSI工E) PNEWSYMEOL
[日4] LEFT%LEFT, PELSIIE=PELSIZE
[BS] A
[EK] RSUESACASH&RSUESAGASH,OXRELSIZE
[B7] RSUES\triangleEKTRA&RSUESSEXTFPA,OXPELSIZE
[ES]
```

HOTES to Part 2

1 A more detailed description of the micro (firm) database can be found in Albrecht-Lindberg (1982). In this working paper the micro initialization is also described.

2 When starting the simulation 1976 only about 150 firms participate, whereas 250 firms participate when starting 1982.

3 See Albrecht-Lindberg (1982), Ahlström (1978), Bergholm (1982), and Eliasson-Heiman-Olavi (1978).

4 Comments about choosing another starting year are made in Section 7.

5 For example:
EXOAREALCHLG(1) = 3000 means that 3,000 persons will be added to the sector the first quarter 1977.

EXOAREALCHLG(5) $=2500$ means that 2,500 persons will be added to the fifth simulated quarter 1977.

EXODREALCHLG etc. is a vector with a number of components $=$ the number of quarters to be simulated ...

6 For the present $\operatorname{SMT}=1 / 2$ so $\operatorname{Targ}(n+1)$ is an ordinary average of Targ(n) and $M(n)$. Targ is specified for the individual firm.

7 The only thing the function SIDINIT does is to fetch data from workspace MACRO and FUNCTI and to call the sub-functions on level 2 i Figure 3.

8 Formally $X X$ is a parameter to the main function START

9 The corresponding exogenous time-series are EXO $\triangle$ QINVG, EXODQINVBLD etc.

10 a) Statistical errors in SCB statistics.
b) IUI computation errors when distributing total industry sales on the 4 sectors in the model. 11 In the sectors $5,6, \ldots, 10$, where there are no firms in the model, IO is used to determine these sectors' demand for products. This is done in a conventional input-output fashion by inverting a sub-matrix of $I O$.

12 Both the share (total input)/(total production) and the share (input from sector $j) /(t o t a l$ production) will change at the macro level.

13
Initialization version 19 and experiment version 11 were used. The experiment is labeled S11V19 (cf. Part 1 of this handbook).

14 The sub-functions RANDOMIZE and USING. August 1980 . See Appendix D. See also "The micro initialization of MOSES" by Albrecht-Lindberg (1982).

15 The variable RIAIS $\triangle$ EXOGEOUS is a logical variable being zero or one.

16 Remember that 1076 is in 1975 year's prices (see Section 3) whereas 1076 II should be in 1976 year's prices.

17 Profits $=$ gross operating surplus.
18 To simulate more than 30 years, one has to set the variable NYR equal to that number in a ISTARTXX function. For example NYR $\leftarrow 50$.

19 This is behaviour of the government sector in the labour market in the present version of the model. One could think of other possibilities.

20 If a parameter is a vector of length $=$ the number of firms, one can change the behaviour of individual firms, otherwise it's much more tricky, i.e. one must make changes in the model to be able to do that.

21 However, if one is sure that the new variable does not affect the initialization procedure and the consistency in any way, one can introduce the new variable directly in a MSTART function.

22 i.e. vectors of length $=$ number of firms in the simulation.

23 MSTART10 is a function stored (since 1983) in the MSTART workspace.

## LITERATURE to Part 2

"The APL Reference Manual": For example:
APLSF programmer's reference manual, DEC system 10, DEC-10-LPLSA-A-D, 1976.

Albrecht-Lindberg, The Micro Initialization of MOSES, IUI, l982, Working Paper No. 72.
Ahlström, L., 1978, "The Market Oriented InterIndustry Stock and Flow Data Aggregation Scheme Used in the Swedish Model" in Eliasson (1978), op.cit.

Bergholm, F., 1984, "De utlandsetablerade företagens multiplikatoreffekter på svensk industri - nåyra simuleringar" i De utlandsetablerade företagen och den svenska ekonomin, Eliasson (1984), IUI, Stockholm.

Eliasson, G, 1978, A Micro-to-Macro Model of the Swedish Economy, IUI Conference Reports 1978:1, Stockholm.
Eliasson, G, 1980, Experiments with Eiscal Policy Parameters on a Micro-to-Macro Model of the Swedish Economy, Reprint from Robert H. Haveman and Kevin Hollenbeck, eds.. Microeconomic Simulation Models for Public Policy Analysis, vol. 2, pp.49-95.
Eliasson, G., 1985, The Firm and Financial Markets in the Swedish Micro-to-Macro Model (MOSES), IUI.
Eliasson, G. with the assistance of Heiman, M.. Olavi, G., 1976, A Micro Macro Interactive Simulation Model of the Swedish Economy, Preliminary Documentation, Economic Research Reports Bl5, Federation of Swedish Industries, Stockholm.

Eliasson, G., Heiman, M., Olavi, G., 1978, "Technical Specifications for the Swedish Micro Based Macro Model" in Eliasson (1978), op.cit.
Hansen, K., (1989) Chapter VI "Firm Entry in MOSES" in Albrecht, J.W. et al., MOSES Code, IUI (forthcoming).

# SUPPLEMIENT A MICRO-TO-MACRO DATA BASE 

by Louise Ahlström

Even though the presence of advanced high-speed computers make the development of complex micro simulation models possible, the obstacle to rapid progress is not modeling per se or computor capacity but rather the need to obtain a consistent micro-macro data base and to incorporate the micro data into a macro model format.

Data base work, if not organized efficiently, easily overwhelms the project group. Certain approximations are always needed and according to our experience problems often arise when micro data sets are forced into consistency with official and often internally inconsistent macro data. It is necessary to make a series of decisions as to how to bypass these problems. The process of making these decisions is a painful one, especially since one does not know which problem will come next. Frequently, after having successfully dealt with one problem, it is necessary to give up the "solution", since the solution of the problem that one stumbles on thereafter is not in line with the solution chosen for the first. The construction of a data base can thus be described as a tedious process of two steps forward and one step back sometimes one step forward and two steps back. By necessity there will be many versions of the model and the corresponding data bases before the model project is terminated.

The structure we have finally chosen for the construction of the data bases must be seen as one way among a theoretically vast number of ways to deal with an operation analysis problem. We dare not claim that we have managed to find the best one. Our endevours ought to be judged only in the light of the objectives for our particular project. We will now point to some aspects of a general character.

The objectives for the construction of the Swedish micro-to-macro model were

```
1. to formulate a micro explanation for inflation and
```

2. to study the relationships between inflation, profits, investment and growth.

The chosen problems relate to typical dynamic processes and place heavy emphasis on the market process and its importance for price and income determination and growth at the macro level. For this reason an aggregation scheme that centers on markets and the use of industrial products rather than on the ordinary classification according to the production technique and raw material base is necessary. The aggregation scheme includes four industrial production sectors:

Raw Material Processing Industries (RAW)
Intermediate Goods Industries (IMED)
Investment and Consumer Durable Goods Industries (DUR)
Non Durable Consumption Goods Industries (NDUR)

Each industrial sector holds a large number of individual firms which constitute the micro feature
in MOSES. The market processes in the model operate both between and within the four sectors. The aggregation scheme has been designed on the same format as that of the Annual Planning Survey of the Federation of Swedish Industries. This means that the capacity utilization data of this survey can be directly incorporated into the micro data base. Regarding the macro data base, we have had to develop a market-oriented classification scheme of our own in order to adapt the national accounts macro statistics to our micro-based sector classification. Lack of some firm data necessitates the use of industrial macro data as substitutes. The input-output matrix is one example where such simplifications have been necessary. ${ }^{1}$

In the early stages of constructing the model it was built around a 1968 base year macro data base. It was our ambition to be able to start the model in any year from 1950 and onwards. Thus a great deal of effort was put into collecting time series for macro variables. Due to lack of relevant data it was difficult to obtain time series that were consistent over time as well as with each other. The calibration of the model was done by starting simulations in 1968 and running them for a 10 -year period. We compared the behavior of key macro variables in the model with reality, adjusted the parameters according to the results and started the process over again.

[^19]We have had to put in substantial effort to overcome inconsistencies in the data base that have crept in not only because of our new aggregation type but also because of inconsistencies between the various parts of the national accounts statistics themselves. We have found by experience that a consistent data base for the first period of a simulation is imperative for a proper tracking by the model of historic macro test data. During the next stage of model life we wanted to update the data base in order to be able to start simulations in 1976 - we therefore decided to concentrate our efforts on obtaining a good base year. For this reason it was necessary to create an accounting system as a framework for the construction of the macro data base.

As the core around which we chose to build the accounting system (see Tables 1:1 through 1:3) we used the input-output system. The input-output coefficient matrix for 1976 used in the model is calculated from an input-output matrix expressed in producer ${ }^{\text {b }}$ s prices. Since the final demand, on the other hand, is expressed in purchaser's prices we have had to adjust the accounting system for the difference in price levels (DIF, Column 20). On the macro level the difference (DIF) is equal to the total of the commodity-based indirect taxes on final demand. The production value in market prices is identical to the production value in purchaser's prices on the macro level, since the transport and trade margins are included in the production value of the trade sector. For the individual sectors this is not true, which in turn depends on the existence of margins as well as on the mix-up of industrial sectors in the basic statistical material. The residual (RES, row 13) arises from differences in the gross production data if calculated
from the demand side or from the production side. Since there is reason to believe that the data on the demand side have greater reliability, we have chosen to treat the residual as a row vector.
The input-output system has been created through
the aggregation of input-output matrices expressed
in producer's prices, provided by the central
Bureau of Statistics. Since data in producer's
prices were only available for 1975 , we had to
project the 1976 I/o matrix by assuming the same
change between 1976 and 1975 in the coefficients
expressed in producer's prices as in those in
purchaser's prices. The input-output matrices shown
in Section 2 in Part 2 of this handbook were con-
structed in this way. The aggregation scheme con-
sisting of a weighting matrix based on value added
is documented in Table 2 .
Technically speaking the input-output coefficients
are kept constant over time in the model. The model
is not solved by inverting the input-output matrix
in the traditional way. For the four industrial
production sectors, the production volume is deter-
mined in the business system block, while the
corresponding input-output coefficients determine
the amount of inputs needed to make this level of
production possible. At both ends of these sectors
(that is, at both ends of each individual firm)
there are buffer stocks to even out production
flows. For the remaining six "external sectors" on
the other hand, the input-output matrix is operat-
ing as in a conventional macro input-output model
complemented witha Keynesian demand system. since
individual firms within and between markets meet
with success and failure differently, they grow at
very different rates. consequently, the macro
input-output coefficients in the model vary endog-
enously over time.

Table 1:1
The Acoounting Eystem in Mases


Table 1:2
The Accounting System in MOSES

| Vertically: | $\frac{\text { Row }}{1-10}$ |  |
| :--- | :--- | :--- |
| Inputs into sectors $1-10$ |  | INPUTS |
| Total inputs | 11 | TAX |
| Commodity based indirect taxes, net | 12 | VA |
| Value added in producers' prices | 13 | RES |
| Residual | 14 | TOTAL |


| Horizontally: | Column |  |
| :---: | :---: | :---: |
| Input deliveries into sectors 1-10 | 1-10 |  |
| Total input deliveries |  | INPUTS |
| Government consumption | 11 | GOVT |
| Private consumption | 12 | CONS |
| Investments | 13-16 | INV |
| Change in stocks | 17 | ASTO |
| Exports | 18 | EXP |
| Total use |  | USE |
| Imports and duties | 19 | IMP |
| Gross production | ( USE-IMP) | TOT |
| Difference | 20 | DIF |
| Gross production in producers' prices | $\begin{aligned} & 21 \\ & (\mathrm{TOT}-\mathrm{DIF}) \end{aligned}$ | TOTAL |

Sectors 1-10: *

| Agriculture, Forestry and Fishing | 1 | $\mathrm{~A} / \mathrm{F} / \mathrm{F}$ |
| :--- | :--- | :--- |
| Mining and Quarrying | 2 | ORE |
| Petroleum Products Imports | 3 | OIL |
| Raw Material Processing Industries | 4 | RAW |
| Intermediate Goods Industries | 5 | IMED |
| Investment and Consumer Durable Goods Industries | 6 | DUR |
| Construction | 7 | CONSTR |
| Non Durable Consumption Goods Industries | 8 | NDUR |
| Electricity | 9 | EL |
| Other Services | 10 | SERVICE |

$\therefore$ The column and row numbers for sectors $1-10$ have been altered in the present (March 1983) data base.

GOVT + CONS + INV + $\triangle$ STO + EXP - JMP

| INPUTS | TAX | VA | DTF |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| in producers <br> prices, incl. <br> imports and <br> duties | commodity based <br> indirect taxes, <br> net | wages | operating <br> surplus incl. <br> depreciation | non commodity <br> taxes, net | commodity based <br> indirect taxes <br> on final demand, <br> net | transport and <br> trade margins |

$\stackrel{ }{2}$
GROSS PRODUCTION IN PRODUCER'S PRICES
INPUTS in purchaser's prices VALUE ADDED in producer's prices

GROSS PRODUCTION IN PURCHASER'S PRICES


Comment: On the macro level the production value in market prices is identical to the production value in purchaser's prices, since transport and trade margins are included in the production value of the trade sector (part of SERVICE).

Table 2 The MOSES Aggregation Scheme According to the Standard for Swedish Classification of Economic Activities (SNI) with Comparisons to the Industry Group in the Input-Output Statistics (I/0), the National Accounts Statistics (SNR) and the Classification Used in the IUI Long Term Survey (LB)

| 1/O | Sector | SNR | LB | $\begin{gathered} 1 \\ A / F / F \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | 3 <br> OIL | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | 5 IMED | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | 7 CONSTR | 8 <br> NDUR | $\begin{array}{r} 9 \\ \text { EL } \end{array}$ | 10 <br> SERVICE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Agriculture | 1100 | 1 | 11 |  |  |  |  |  |  |  |  |  | 11 |
| 2 | Forestry | 1200 | 1 | 12 |  |  |  |  |  |  |  |  |  | 12 |
| 3 | Fishing | 1300 | 1 | 13 |  |  |  |  |  |  |  |  |  | 13 |
| 4 | Mining and quarrying | 2000 | 3 |  | $\begin{aligned} & 20 \text { excl. } \\ & (220) \end{aligned}$ | $(220)^{\text {a }}$ |  |  |  |  |  |  |  | 20 |
| 5 | Sheltered food manufacturing | 3111 | 4 |  |  |  |  |  |  |  | $\begin{aligned} & 3111 / 2 \\ & 3116-8 \end{aligned}$ |  |  | $\begin{aligned} & 3111 / 2 \\ & 3116-8 \end{aligned}$ |
| 6 | Import - competing food manufacturing | 3112 | 5 |  |  |  |  |  |  |  | $\begin{aligned} & 3113-5 \\ & 3119-22 \end{aligned}$ |  |  | $\begin{aligned} & 3113-5 \\ & 3119-22 \end{aligned}$ |
| 7 | Beverage and tobacco manufacturing | 3120 | 6 |  |  |  |  |  |  |  | 313/4 |  |  | 313/4 |
| 8 | Textile and leather industries | 3200 | 7 |  |  |  | - | $321 \cdot 0.25$ | $321 \cdot 0.25$ | - | $\begin{aligned} & 321 \cdot 0.5 \\ & 322-324 \end{aligned}$ |  |  | 32 |
| 9 | Manufacture of wood and woot prod. ucts | 3410 | 8 |  |  |  | 33111 | 3312/9 | $3320 \times 0.4$ | 33112/9 | $3320 \cdot 0.6$ |  |  | 33 |

Import - com-
peting food
manufacturing $\quad 3112 \quad 5$

Beverage and $\begin{array}{ll}\text { facturing } & 3120 \quad 6\end{array}$
Textile and $\begin{aligned} & \text { leather in- } \\ & \text { dustries }\end{aligned} \quad 3200 \quad 7$

Manufacture ucts $\quad 3410 \quad 8$
$\begin{array}{lllll}33111 & 3312 / 9 & 3320 \cdot 0.4 & 33112 / 9 & 3320 \cdot 0.6\end{array}$

Table 2 (cont)

| 1/O | Sector | SNR | LB | $\begin{gathered} 1 \\ A / F / F \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | $\begin{gathered} 3 \\ \text { OIL } \end{gathered}$ | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | 5 <br> IMED | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | $7$ <br> CONSTR | $\begin{gathered} 8 \\ \text { NDUR } \end{gathered}$ | $\begin{array}{r} 9 \\ \text { EL } \end{array}$ | 10 <br> SERVICE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10a | Manufacture of pulp | 3420 part | 8 |  |  |  | 34111 | 34112 | - | 34113 | - |  |  | 34111-3 |
| 10b | Manufacture of paper products | 3420 part | 8 |  |  |  | - | 3412 | - | - | 3419 |  |  | 3412/9 |
| 11 | Printing and publishing | 3430 | 9 |  |  |  | - | - | - | - | 3420 |  |  | 342 |
| 12 | Manufacture of chemicals and chemical products | 3520 part | 11 |  |  |  | - | $\begin{aligned} & 351 \\ & 3521 / 9 \end{aligned}$ | - | - | 3522/3 |  |  | 351/2 |
| 13 | Petroleum refineries, manufacture of products of petroleum and coal | 3530 | 12 |  |  | $(353 / 4)^{\text {a }}$ | $\begin{aligned} & 353 / 4 \text { excl. } \\ & (353 / 4) \end{aligned}$ | - | - | - | - |  |  | 353/4 |
| 14 | Manufacture of rubber products | 3510 | 10 |  |  |  | - | 35900.8 | - | - | 35500.2 |  |  | 395 |
| 15 | Manufacture of plasticproducts | 3520 part | 11 |  |  |  | - | 35601 | - | - | 35609 |  |  | 356 |
| 16 | Manufacture of non-metallic mineral products | 3600 | 13 |  |  |  | - | 36202 | - | $\begin{aligned} & 36201 / 9 \\ & 369 \end{aligned}$ | $\begin{aligned} & 361 \\ & 36203 \end{aligned}$ |  |  | 36 |

Table 2 (cont)

| I/O | Sector | SNR | LB | $\begin{gathered} 1 \\ A / F / F \end{gathered}$ | $\begin{gathered} 2 \\ \text { ORE } \end{gathered}$ | $\begin{aligned} & 3 \\ & \text { OIL } \end{aligned}$ | $\begin{gathered} 4 \\ \text { RAW } \end{gathered}$ | 5 <br> IMED | $\begin{gathered} 6 \\ \text { DUR } \end{gathered}$ | 7 <br> CONSTR | $\begin{gathered} 8 \\ \text { NDUR } \end{gathered}$ | $\begin{array}{r} 9 \\ \text { EL } \end{array}$ | 10 SERVICE | SNI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | Iron-, steeland ferroalloys industries | 3700 part | 14 |  |  |  | 37101/2 | 37103 | - | - | - |  |  | 371 |
| 18 | Non-ferrous metal industries | 3700 part | 14 |  |  |  | 37201-3 | 37204 | - | - | - |  |  | 371 |
| 19 | Manufacture of fabricated metal products, machinery and equipment | 3810 | 15 |  |  |  | - | $\begin{aligned} & 3811 \\ & 38199 \\ & 38191 / 2 \end{aligned}$ | $\begin{aligned} & 3812,382 \\ & 3842-9 \\ & 385 \end{aligned}$ | $\begin{aligned} & 3813 \\ & 38193 / 4 \end{aligned}$ | 38195 |  |  | $\begin{aligned} & 381 / 2, \\ & 385 \\ & 3842-9 \end{aligned}$ |
| 20 | Manufacture of electrical machinery, apparatus appliances and supplies | 3830 | 15 |  |  |  | - | $\begin{aligned} & 3839 \\ & 3521 / 9 \end{aligned}$ | $3831-3$ |  | $3522 / 3$ | 351/2 |  | 383 |
| 21 | Shipbuilding and repairing | 3843 | 16 |  |  |  |  |  | 3841 |  |  |  |  | 3841 |
| 22 | Manufacturing industries not elsewhere classified | 3900 | 17 |  |  |  |  |  |  |  | 39 |  |  | 39 |
| 23 | Repair of household applicances and motor vehicles etc. | $\begin{aligned} & 3600 \\ & 3842 \\ & 9511 / 3 \end{aligned}$ | 13 15 |  |  |  | 36202 |  | 36201/9- |  | 361 |  | 951 | 36 951 |

Table 2 (cont)

|  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\text {a }}$ The SNI code within parentheses refers to imports.

LITERATURE to the Supplement

Ahlström, L., 1978, The Market Oriented InterIndustry Stock and Flow Aggregation Scheme Used in the Swedish Model in A Micro-to-Macro Model of the Swedish Economy. IUI Conference Reports 1978:1, Stockholm.

Ahlström, L. 1980, Input-output systemet och dess utveckling in Kalkyler för 80-talet. Specialstudier för IUIs lángtidsbedömning 1979. Del 2.

Dorfman, R., Samuelson, P. and Solow, R., 1958, Linear Programming and Economic Analysis, New York.
Höglind, B. and Werin, L., 1964, The Production System of the Swedish Economy, An InputOutput Study, IUI, Stockholm.

Statistical Report N 1972:44, Input-Output Tables for Sweden 1968. National Central Bureau of Statistics.

Statistical Report N 1980:3. Input-Output Tables for Sweden 1975. National Central Bureau of Statistics.


[^0]:    * An earlier version is described in full detail in Eliasson (1978, abbreviated in (1980)). A new, updated presentation of the full model plus a complete bibliography is presented in Eliasson (1985).
    ** A shorter version of the MOSES model (based on synthetic micro data) is also written in FORTRAN and installed on a Norsk Data computer in the Central Institute of Mathematical Economics (CEMI), USSR Academy of Sciences, Moscow.

[^1]:    *** A more detailed description of the micro (firm) database can be found in Albrecht-Lindberg (1982).

[^2]:    1 or 1976, if we choose to use this year as the first year of the simulation. This is the earliest year for which a complete micro-to-macro database exists.

[^3]:    1 which dates back to January 1982.

[^4]:    1 A program can update another program during execution in the APL-language. This is a somewhat unusual feature for a programming language.

[^5]:    1 which dates back to the version as it stood in 1978 .

[^6]:    1 There are different versions of APL, one of which is APLSF, working on the DEC20 system.

[^7]:    1 artificial firms, which define the difference between macro data (national accounting) and micro data (real firms). See Albrecht-Lindberg (1982).

[^8]:    1 Note: It is not allowed to change the function where you are at the moment. Thus MODSUBST, MODDEL, MODADD cannot make changes in the function START.

[^9]:    $\overline{1}^{-1}$ For a complete understanding of these changes one needs, however, the model program itself, the so-called MOSES code, which will be presented in another part of the MOSES Handbook.

    2 The changes in PERMANENTACHANGES are perhaps more permanent than MOSESAVARIANTS, which is why they are separate.

[^10]:    1 In front of LC should be an APL symbol which is an empty square. For typographical reasons this is written as [].

[^11]:    a The greek letter "delta", $\Delta$, is used in functionnames in the APL-code instead of blanks, if the function-name consists of several words. Thus PUBLICASECIOR should be read "public sector" etc.
    b XX in ISTARIXX stands for a number indicating different initialization variants.

[^12]:    * This discussion is based on data for 1976.

[^13]:    * This symbol looks like an $A$, but is smoother than an ordinary $A$. For typographical reasons we write this as a boldface $A$, in this text.

[^14]:    * This discussion is based on the case when we use 1976 as starting year.

[^15]:    * Not documented in this handbook. See Eliasson-Heiman-Olavi (1978).

[^16]:    12250 All firm-data lie in an enormous matrix with 122 rows and 50 columns.
    4026 PFALIATA
    All firm-group data lie in an enormous matrix with 40 rows and 26 columns.
    4026
    $X$ and $F D D A T A$ are not listed in this documentation, because the figures are given by the firms provided that the figures aren ${ }^{-t}$ published

[^17]:    $\nabla$ MONETARY $\triangle D A T A$
    [1] AALL VARIABLES HELOW WILL RE DUTPUT FROM INITIALIZATION
    [2] POSGFDR+O
    [3] TMFASS $+3 \div 12$
    [4] TMFD-2 $\div 12$
    [5] F[ITFASSt (SUM2 $\times \times$ S) $\times$ TMFASS
    [6] KAPPA1+0.02
    [7] KAPPA2+0.3
    [8] RFUNLI $1+0.5$
    [9] RFUNI2 $2+0.25$
    [10] LAMLA $1+0.6$
    [11] LAMLA2+0.8
    [12] MAXQCHRI+0.01
    [13] MB+0.015
    $[14]$ MAXRIDIFF -0.05
    [15] RIAISAEXOGENOUS+1
    [16] MINRI 4 MB
    $\begin{array}{ll}{[17]} & M A X R I+0.25 \\ {[18] ~ F U N I S A A R E A E N O U G H}\end{array} O$
    $[195$ RELCHBW -0.15

[^18]:    * The possibility of changing lines in one program by aid of another program is a particular feature of the APL-language.

[^19]:    1 For a description of how macro data are combined with real firm data see Eliasson, G., A Micro Simulation Model of a National Economy, Chapter 3 on estimation methods, in A Micro-to-Macro Model of the Swedish Economy, IUI Conference Reports 1978:1. Also see Eliasson, G., The Firm and Financial Markets in the Swedish Micro-to-Macro Model Theory, Model and Verification, IUI Stockholm 1985, Chapter VIII.

