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Abstract

Consider a quasiconcave, upper semicontinuous and homogeneous of degree γ function f . This
paper shows that the reciprocal of the degree of homogeneity, 1/γ, can be interpreted as a measure
of the degree of concavity of f . As a direct implication of this result, it is also shown that f is
harmonically concave if γ ≤ −1 or γ ≥ 0, concave if 0 ≤ γ ≤ 1 and logconcave if γ ≥ 0. Some
relevant applications to economic theory are given. For example, it is shown that a quasiconcave
and homogeneous production function is concave if it displays nonincreasing returns to scale and
logconcave if it displays increasing returns to scale.
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1 Results

Consider a function f : X ⊂ RK 7→ R++, where X is convex and nonempty.1 Suppose that f is

quasiconcave, upper semicontinuous at every point of X and positively homogeneous (note that f is

positive). Crouzeix [7] shows that f indeed is a concave function.2

In this paper, I generalize Crouzeix’s [7] result to positive functions which are homogeneous of any

degree (and not just positively homogeneous).3 In particular, the main result given in Theorem 1.1

shows that the reciprocal of the degree of homogeneity can be interpreted as a measure of the degree of

concavity of a homogeneous function. Thus, for positive functions, Crouzeix’s result appear as a special

case in Theorem 1.1.

As a direct implication of Theorem 1.1, it follows that the shape restriction of a quasiconcave, upper

semicontinuous and homogeneous function of any degree can be further strengthened. The general

∗Research Institute of Industrial Economics (IFN), P.O. Box 55665, SE-102 15 Stockholm, Sweden. E-mail:

Per.Hjertstrand@ifn.se. I would like to thank two reviewers for comments that greatly improved the paper, Magnus

Henrekson and Gunnar Rosenqvist for encouragement, and Torsten Söderbergs stiftelse for funding.

1R++ ≡ {y ∈ R | y > 0}.
2Strictly speaking, Crouzeix [7] proves this result in terms of convexity. Here, I phrase the results in terms of concavity

because I apply the results to economics in which functions are more commonly assumed (quasi)concave in order to

guarantee a maximum. Moreover, it should be noted that Crouzeix [7] also shows that f is a concave function when f is

nonpositive for every x that belongs to the relative interior of X (i.e., the interior of X in the affi ne hull of X ).
3 I discuss the case f = 0 in Remark 1.3 but leave the remaining case f < 0 to future research.
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results in this paper establish a strong relationship between the degree of homogeneity and curvature of

a function and are exhaustive in the sense that they cover any degree of homogeneity.

Before stating the main result, we consider some preliminary definitions:

Definition 1.1 A function f : X ⊂ RK 7→ R is homogeneous of degree γ if it can be written as:

f (tx) = tγf (x) ,

for any number t > 0.

Martos [14] appears to have developed the concept of ρ−concavity.4 Caplin and Nalebuff [6] intro-
duced ρ−concavity to the economics literature. The definition and description of ρ−concavity given next
closely follows Caplin and Nalebuff [6].

Definition 1.2 (Caplin and Nalebuff [6]) Consider ρ ∈ [−∞,∞]. For ρ > 0, a nonnegative function
f , with convex support X ⊂ RK , is called ρ−concave if for all x1, x2 ∈ X and any λ ∈ [0, 1] :

f (λx1 + (1− λ)x2) ≥ [λf (x1)ρ + (1− λ) f (x2)ρ]
1
ρ . (1)

For ρ < 0 the condition is exactly as above except when f (x1) f (x2) = 0, in which case there is

no restriction other than f (λx1 + (1− λ)x2) ≥ 0. Finally, the definition is extended to include ρ =

∞, 0,−∞ through continuity arguments.

Caplin and Nalebuff [6] discuss implications and limiting cases. For ρ > 0, Definition 1.2 states that

fρ is concave, while for ρ < 0, −fρ is concave. The following limiting cases hold:

• If ρ =∞ then f is uniform (constant) on its support, i.e., limρ→∞ [λf (x1)
ρ
+ (1− λ) f (x2)ρ]

1
ρ =

max {f (x1) , f (x2)},

• If ρ = 1 then we obtain the standard definition of concavity, i.e., [λf (x1)
ρ
+ (1− λ) f (x2)ρ]

1
ρ =

λf (x1) + (1− λ) f (x2).

• If ρ = 0 then f is logconcave, i.e., limρ→0 [λf (x1)
ρ
+ (1− λ) f (x2)ρ]

1
ρ = f (x1)

λ
f (x2)

(1−λ) (by

L’Hopital’s rule), in which case, log f (λx1 + (1− λ)x2) ≥ λ log f (x1) + (1− λ) log f (x2).

• If ρ = −1 then f is harmonically concave, i.e., f (λx1 + (1− λ)x2) ≥
[
λ 1
f(x1)

+ (1− λ) 1
f(x2)

]−1
=

f (x1) f (x2) [λf (x2) + (1− λ) f (x1)]−1 if λf (x2)+(1− λ) f (x1) > 0 and f (λx1 + (1− λ)x2) ≥ 0
if f (x1) f (x2) = 0. Any positive function f is harmonically concave if and only if 1/f is convex.

This variant of concavity appear less known than the other limiting cases.5

• If ρ = −∞ then f is quasiconcave, i.e., limρ→−∞ [λf (x1)
ρ
+ (1− λ) f (x2)ρ]

1
ρ = min {f (x1) , f (x2)}.

As illustrated by the limiting cases, higher values of ρ correspond to more stringent variants of con-

cavity. To see this, define Mρ (y1, y2) = [λyρ1 + (1− λ) y
ρ
2 ]

1
ρ for any y1, y2 ≥ 0, and note that Mρ is

what Hardy, Littlewood and Pólya [10, p.13, Eq.(2.2.5)] calls the weighted mean of order ρ. Since Mρ is

4Balogh and Ewerhart [3] survey the origins of ρ−concavity and give Martos [14] credit of having introduced ρ−concavity.
Martos [14] is written in Hungarian, where ρ−concavity is originally called ω−concavity. Balogh and Ewerhart [3] give
translations of relevant sections in Martos [14] into English. ρ (or ω) −concavity has also been referred to as α−concavity
in the mathematics literature (e.g., [13], [17]).

5But see e.g., [13].
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monotonic in ρ, we have that if σ ≤ (<) ρ then Mσ ≤ (<)Mρ.6 Now, suppose that f is ρ−concave, in
which case f (λx1 + (1− λ)x2) ≥ [λf (x1)ρ + (1− λ) f (x2)ρ]

1
ρ . Set y1 = f (x1) and y2 = f (x2). Then,

for any σ with ρ ≥ σ, f satisfies f (λx1 + (1− λ)x2) ≥ [λf (x1)
ρ
+ (1− λ) f (x2)ρ]

1
ρ = Mρ (y1, y2) ≥

Mσ (y1, y2) = [λf (x1)
σ
+ (1− λ) f (x2)σ]

1
σ , which implies that f also is σ−concave. Thus, by monotonic-

ity of Mρ, a ρ−concave function is always σ−concave for all σ ≤ ρ (See e.g., Kennington [13, Property

2, p.689]). Hence, ρ parameterizes (and can be interpreted as a measure of) the degree of concavity of a

function.

Illustrating this on the limiting cases given above, any concave function (ρ = 1) is also logconcave

(ρ = 0), and any logconcave function is always harmonically concave (ρ = −1). Of course, any concave,
logconcave or harmonically concave function is, by definition, quasiconcave (ρ = −∞). Moreover, since
concave, logconcave and harmonically concave functions are 1−concave, 0−concave and −1−concave,
respectively, any ρ−concave function, f , with ρ ≥ 1 is concave, any f with ρ ≥ 0 is logconcave, and any
f with ρ ≥ −1 is harmonically concave.

Theorem 1.1 Consider a nonconstant function f : X ⊂ RK 7→ R++, where X is convex and nonempty.
Suppose that f is quasiconcave, upper semicontinuous at every point of X and homogeneous of degree γ.

Then f is ρ−concave with ρ = 1
γ .

Proof of Theorem 1.1 Suppose the function f : X 7→ R++ is nonconstant, upper semicontinuous,
quasiconcave and homogeneous of degree γ. Consider any two points x1, x2 ∈ X . Without loss of

generality, it suffi ces to consider the case λ ∈ (0, 1).7 Define yγ1 = f (x1) and y
γ
2 = f (x2) such that

y1 = f (x1)
1
γ and y2 = f (x2)

1
γ . Homogeneity of degree γ implies:

f

(
x1
y1

)
=
1

yγ1
f (x1) =

1

f (x1)
f (x1) = 1,

and analogously f
(
x2
y2

)
= 1. By quasiconcavity, we have, for any α ∈ [0, 1] :

f

(
α
x1
y1
+ (1− α) x2

y2

)
≥ min

{
f

(
x1
y1

)
, f

(
x2
y2

)}
= 1.

Set

α =
λy1

λy1 + (1− λ) y2
.

6Specifically, by Jensen’s inequality, ∂Mρ (y1, y2) /∂ρ ≥ 0. See also Hardy, Littlewood and Pólya [10, Ch.2.9, p.26]. And
see e.g., [5, Chapter III] where weighted power means and their properties are studied thoroughly.

7 Indeed, the cases λ = 0 and λ = 1 trivially satisfies the definition of ρ−concavity regardless of whether the function
is quasi-concave, homogeneous or upper semicontinuous. To see this consider λ = 0 (λ = 1 follows analogously), in which

case the left-hand side of (1) in Definition 1.2 becomes f (λx1 + (1− λ)x2) = f (x2) while the right-hand side becomes[
λf (x1)

1
γ + (1− λ) f (x2)

1
γ

]γ
= f (x2), which of course trivially satisfies (1).
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Substituting α and by homogeneity, we have:

1 ≤ f

(
α
x1
y1
+ (1− α) x2

y2

)
= f

((
λy1

λy1 + (1− λ) y2

)
x1
y1
+

(
1−

(
λy1

λy1 + (1− λ) y2

))
x2
y2

)
= f

((
λy1

λy1 + (1− λ) y2

)
x1
y1
+

(
(1− λ) y2

λy1 + (1− λ) y2

)
x2
y2

)
= f

(
λx1 + (1− λ)x2
λy1 + (1− λ) y2

)
=

1

[λy1 + (1− λ) y2]γ
f (λx1 + (1− λ)x2) .

Since y1 > 0 and y2 > 0 (which implies [λy1 + (1− λ) y2]γ > 0) we can multiply both sides of the

inequality by [λy1 + (1− λ) y2]γ to obtain:

f (λx1 + (1− λ)x2) ≥ [λy1 + (1− λ) y2]γ .

Substituting y1 = f (x1)
1
γ and y2 = f (x2)

1
γ , we then get:

f (λx1 + (1− λ)x2) ≥
[
λf (x1)

1
γ + (1− λ) f (x2)

1
γ

]γ
.

Thus, by Definition 1.2 it follows that f is ρ−concave with ρ = 1
γ . �

Theorem 1.1 shows that the reciprocal of the degree of homogeneity, 1/γ, can be interpreted as a

measure of the degree of concavity of a homogeneous function given by the parameter ρ, i.e., ρ = 1
γ .

Thus, Theorem 1.1 establishes a direct relationship between the degree of homogeneity and curvature

of a homogeneous function. The next result is a direct implication of Theorem 1.1 and generalize the

results in Crouzeix [7].

Corollary 1.1 Consider a nonconstant function f : X ⊂ RK 7→ R++, where X is convex and nonempty.
Suppose that f is quasiconcave, upper semicontinuous at every point of X and homogeneous of degree γ.

Then f is: (i) harmonically concave if γ ≤ −1 or γ ≥ 0; (ii) concave if 0 ≤ γ ≤ 1 and (iii) logconcave
if γ ≥ 0.

Proof of Corollary 1.1 Theorem 1.1 establishes that f is a ρ−concave function with ρ = 1
γ . For (i),

recall that since harmonically concave functions are −1−concave, ρ ≥ −1 implies that f is harmonically
concave. We have γ ≤ −1 or γ ≥ 0 ⇐⇒ 1/γ ≥ −1. Thus, ρ = 1

γ ≥ −1 so f is harmonically concave.
For (ii), recall that since concave functions are 1−concave, ρ ≥ 1 implies that f is concave. We have
0 ≤ γ ≤ 1 ⇐⇒ 1/γ ≥ 1. Thus, ρ = 1

γ ≥ 1 so f is concave. Finally, for (iii), recall that since

logconcave functions are 0−concave, ρ ≥ 0 implies that f is logconcave. We have γ ≥ 0 ⇐⇒ 1/γ ≥ 0.
Thus, ρ = 1

γ ≥ 0 so f is logconcave. �

Crouzeix [7] established concavity in the case γ = 1 (which is a special case of (ii) in Corollary 1.1).

That 0 ≤ γ < 1 also guarantees concavity is well-established. However, cases (i) and (iii) are new.

Note that both harmonic concavity and logconcavity are significantly stronger shape restrictions than

quasiconcavity and possess several nice properties (not shared by quasiconcavity).8

To close this section, we give some remarks pertinent to Theorem 1.1.

8See Section 3.5 in [4] for a detailed discussion of the properties of logconvex/logconcave functions and [2] about

logconcave/logconvex probability distributions.
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Remark 1.1 Theorem 1.1 can be further strengthened whenever γ > 0 to read: Suppose that f is non-

constant, quasiconcave, upper semicontinuous and homogeneous of degree γ > 0. Then f is ρ−concave
with ρ ≤ 1

γ .

Remark 1.2 Theorem 1.1 covers nonconstant functions. The extension to constant functions is trivial,

since if f is constant on its entire support, then f must be ρ−concave with ρ =∞.

Remark 1.3 Theorem 1.1 covers positive functions. However, the extension to nonnegative functions

is nontrivial. Indeed, suppose for some x1, x2 ∈ X that f (x1) = 0 and f (x2) > 0. By homogeneity of

degree γ > 0, [
λf (x1)

1
γ + (1− λ) f (x2)

1
γ

]γ
= (1− λ)γ f (x2) = f ((1− λ)x2) .

But suppose x1, x2 > 0 and that f is strictly decreasing, in which case f (λx1 + (1− λ)x2) < f ((1− λ)x2).
As such, f cannot be ρ−concave with ρ = 1

γ . Thus, to establish ρ−concavity of any nonnegative f such
that ρ = 1

γ requires imposing additional properties on f besides the ones stated in Theorem 1.1.

2 Applications to Economics

In this section, I provide some relevant applications of Theorem 1.1 and Corollary 1.1 to economic theory.

Balogh and Ewerhart [2] provide a more exhaustive list of applications of generalized concavity/convexity,

and discuss some applications of generalized concavity/convexity in the operations research literature.

Production economics A firm’s production process is frequently modelled using the concept of pro-

duction functions. Specifically, a production function is a positive and nonconstant function that maps

a convex set of (nonnegative) input quantities to a unique (positive) quantity of output. Most often,

the production function is assumed to satisfy certain properties such as continuity and monotonicity.

This usually also includes assuming that the function satisfies some kind of shape restriction often in the

form of quasiconcavity. Another standard assumption is that the production function is homogeneous,

which is commonly imposed to ensure that the function displays either decreasing, constant or increasing

returns to scale.

Definition 2.1 A production function, f : X ⊂ RK 7→ R++, displays:

• decreasing returns to scale when f (tx) < tf (x) for any number t > 1;

• constant returns to scale when f (tx) = tf (x) for any number t > 0;

• increasing returns to scale when f (tx) > tf (x) for any number t > 1.

Hence, returns to scale is a measure of the effect of proportionately varying the inputs to the change

in output in the long run. If the change in inputs gives exactly the same effect in the output level then

we say that the production technology displays constant returns to scale; if the effect in output is lower

than the proportionate change in input then the technology displays decreasing returns to scale, and if

the effect in output is larger then the technology displays increasing returns to scale. Although there

are strong reasons to believe that mature firms are characterized by nonincreasing (i.e., decreasing or

constant) returns to scale, there is compelling empirical evidence that many smaller firms in various

industries (e.g., electric, gas, motor vehicles and equipment, chemicals, tobacco) are characterized by

increasing returns to scale (e.g., [16]).
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Proposition 2.1 Suppose that f : X ⊂ RK 7→ R++ is an upper semicontinuous, quasiconcave and

homogeneous of degree γ > 0 production function. Then f displays:

1) decreasing returns to scale if and only if γ < 1 for any number t > 1;

2) constant returns to scale if and only if γ = 1 for any number t > 0;

3) increasing returns to scale if and only if 1 < γ for any number t > 1.

Proof of Proposition 2.1 2) is obvious. For 1), suppose that f has the property of decreasing returns

to scale, i.e., f (tx) < tf (x). Then for any number t > 1 and since f is positive and homogeneous,

tf (x) > f (tx) = tγf (x)⇔ t > tγ ⇔ ln t > γ ln t⇔ 1 > γ.

Conversely, for any t > 1, suppose that 1 < γ. This implies tγ < t. Then, by homogeneity and since f

is positive:

f (tx) = tγf (x) < tf (x) ,

which corresponds to decreasing returns to scale in Definition 2.1. Case 3) follows analogously. �

It is a standard textbook exercise to show that a production function displaying constant returns to

scale is concave on its entire support; See e.g., Theorem 21.15 in [18].9 The next result is a generalization

to any form of returns to scale whenever f is a homogeneous production function, and follows immediately

from Corollary 1.1 and Proposition 2.1.

Corollary 2.1 Suppose that f : X ⊂ RK 7→ R++ is an upper semicontinuous, quasiconcave and homo-
geneous of degree γ > 0 production function.

(1) If f displays nonincreasing returns to scale then f is concave.

(2) If f displays increasing returns to scale then f is logconcave.

Auction theory and mechanism design Many important results in mechanism design and auction

theory rest on the assumption that the underlying type distribution is regular, which means that the

virtual valuation of auction bids, defined as

b (x) = x− 1− F (x)
f (x)

,

is strictly increasing in the type x, where f and F , respectively, are the density and distribution functions

of the type distribution. b (x) is an additively separable function, i.e., b (x) = b1 (x) + b2 (x), where

b1 (x) = x is linear (i.e., monotonic) and b2 (x) = − (1− F (x)) /f (x) is minus the reciprocal of the so
called hazard rate, f (x) / (1− F (x)). Thus, b is monotonic if b2 is monotonic (since the sum of monotonic
functions is monotonic). One approach commonly used in the literature to ensure monotonicity of b2
is to apply conditions under which the hazard rate is monotonic (as b2 and the hazard rate will share

the same monotonicity property). A suffi cient condition to guarantee monotonicity of the hazard rate

is that f is drawn from a logconcave probability distribution.10 However, as pointed out by Ewerhart

[9], logconcavity is an overly restrictive condition to ensure monotonicity of the hazard rate. Ewerhart

9This also follows as a special case of the results in Theorem 3.1 in Jehle and Reny [11] and [8,15].

10See e.g., Bagnoli and Bergstrom [2] for conditions on distributions which guarantee logconcavity.
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[9] gives a weaker condition by showing that monotonicity holds for probability distributions that are

ρ−concave with ρ > − 12 , which he calls “strong
(
− 12
)
−concavity”. By the properties of ρ−concavity,

we know that any strongly
(
− 12
)
−concave function is always logconcave (ρ = 0). Thus, the class of

logconcave functions is nested within the class of strong
(
− 12
)
−concave functions, and Ewerhart [9]

gives several examples of distributions satisfying regularity but are not logconcave. A direct application

of Theorem 1.1 shows that Ewerhart’s condition for regularity applies to homogeneous functions of degree
1
γ > −

1
2 , which holds for any γ < −2 and (trivially) for any γ > 0.

Voting The median voter theorem in political economy aims at explaining why politicians anywhere on

the left-right spectrum tend to navigate towards the center in order to attract as many voters as possible.

Under certain assumptions, the median voter theorem roughly says that the candidate preferred by the

“median voter” always wins and that this outcome is a Nash equilibrium. However, this result does

not apply to elections in which candidates differ in more than one dimension. Caplin and Nalebuff [6]

provides a multidimensional extension of the median voter theorem by giving conditions under which the

preferred candidate of the “mean voter”wins according to a 64%-majority rule. Their result relies on

an application of the Prékopa-Borell theorem, which says that ρ−concavity of a probability distribution
function implies that the cumulative distribution of this probability distribution is ρ′−concave with
ρ′ = ρ/ (1 + nρ), where n is the dimension of the probability distribution and ρ must satisfy ρ ≥ −1/n.
Using this result, Caplin and Nalebuff [6] shows that for all logconcave distributions (given n → ∞),
the candidate most preferred by the mean voter is unbeatable under a 64%-majority rule. By a direct

application of Theorem 1.1, Caplin and Nalebuff’s condition applies to homogeneous functions of degree

1 < γ ≤ ∞.

Cournot competition Cournot competition is an economic theory commonly employed to describe

competition in a market where firms compete over the amount of output they will produce. It is assumed

that each firm on the market produces a homogenous product and maximizes firm profits by choosing

how much to produce. All firms choose their output simultaneously taking as given the quantity of

every other competing firm. Anderson and Renault [1] derive bounds on the ratios of deadweight loss

and consumer surplus to producer surplus under Cournot competition. These bounds are derived from

the curvature of market demand which is parametrizied by ρ−concavity and ρ−convexity. As market
demand gets “more concave”, the share of producer surplus in overall surplus increases, consumer surplus

relative to producer surplus decreases and the ratio of deadweight loss to producer surplus also decreases.

Theorem 1.1 can be applied to the results in Anderson and Renault [1] if market demand is assumed to

be homogeneous of degree γ. In particular, several of their results rest on the assumption that demand

is both ρ−concave and ρ′−convex with ρ′ ≥ ρ > −1, which implies that demand is harmonically concave
(ρ = −1). A direct application of Theorem 1.1 then shows that this assumption holds for homogeneous

functions of degree γ < −1 or γ > 0.
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