Does the matching between workers and jobs help explain productivity differentials across firms? To address this question we develop a job-worker allocation quality measure (JAQ) by combining employer-employee administrative data with machine learning techniques. The proposed measure is positively and significantly associated with labor earnings over workers' careers. At firm level, it features a robust positive correlation with firm productivity, and with managerial turnover leading to an improvement in the quality and experience of management. JAQ can be constructed for any employer-employee data including workers' occupations, and used to explore the effect of corporate restructuring on workers' allocation and careers.
Working Paper No. 1427
JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality
Working Paper
Reference
Coraggio, Luca, Marco Pagano, Annalisa Scognamiglio and Joacim Tåg (2022). “JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality”. IFN Working Paper No. 1427. Stockholm: Research Institute of Industrial Economics (IFN).
Coraggio, Luca, Marco Pagano, Annalisa Scognamiglio and Joacim Tåg (2022). “JAQ of All Trades: Job Mismatch, Firm Productivity and Managerial Quality”. IFN Working Paper No. 1427. Stockholm: Research Institute of Industrial Economics (IFN).
Authors
Luca Coraggio,
Marco Pagano, Annalisa Scognamiglio, Joacim Tåg